

CELEBRATING OUR BNL PHYSICISTS

The Views Expressed in This Editorial Column Do Not Necessarily Reflect Those of The Community News

IRAQ: WHAT IS (LIKELY) TO HAPPEN NEXT?

by Bertrand Roehner

On the C-Span channel, the viewers can voice their opinion. Not surprisingly, in early April 2003 most of the calls concerned Iraq. During the time I took my breakfast, various views alternated. "I think we are doing a good job in Iraq," "I'm strongly opposed to this war"....As a matter of fact, each opinion was valuable. I believe "every man is wise in his own eyes."

What made these opinions different was the fact that they started from different assumptions, whether religious beliefs, military considerations or whatever. After the fall of Saddam Hussein's regime symbolized by the toppling of his statue on April 9, what should we expect? Personally, as a scientist, I don't have any definite opinion about what is going to happen in Iraq within the next two or three years until I can get the "right data".

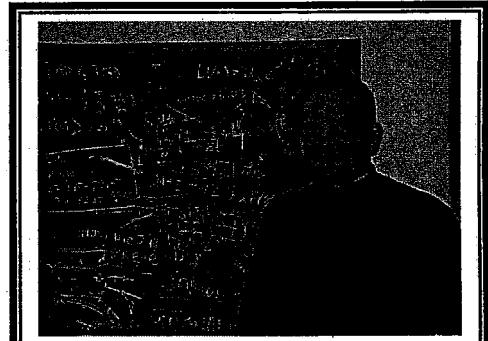
At BNL, producing reliable new innovative data has been a way of life for over five decades and it lead to five Nobel Prize winning discoveries. So, what is the "right data" in the case of Iraq?

Sometimes it is claimed (mainly by persons who are opposed to the war) that Vietnam might provide a possible model for what may be to come. However, a little reflection shows that Vietnam or Korea are very poor parallels mainly because there is no "North Iraq" which would be able to support opposition forces in "South Iraq". Another possible comparison (mainly advocated by people who are in favor of the war) would be with the liberation of France, or perhaps more realistically of Italy, during World War II.

However, a much better comparison is probably provided by Iraq itself. As we know, Iraq was part of the Ottoman (or Turkish) Empire for over three centuries until it was occupied by Britain in 1917 after a bitter war against the Turks. How did Iraq's inhabitants accept this occupation? Well, surprisingly this is not a question that can be easily answered. Of course, any textbook about the history of Iraq would tell us that there was a strong revolt in 1920 which left the country in a state of chaos for over a year; by the way, this revolt was not confined to Iraq but also extended to Syria then occupied by France.

However, in order to understand what really happened during the four decades of British rule we need much more detailed historical information. Was there only one revolt or were there others on a smaller scale? Which regions and which segments of the population (e.g. people from the cities or countryside?) took part in the insurrections?

In order to unravel the mysteries of the quark-gluon plasma, physicists record and store thousands of megabytes of data. In the case of Iraq, if one wants to understand what is going on, one needs a lot of accurate data as well. Some of them may be found in books written by British historians (excerpts are available on the Internet), but in order to get a more balanced and realistic view it is probably safe to look also at books written by American, German, French, Turkish or Arab historians. Not an easy task of course!


Understanding the world has a cost, but it is also what makes life worthwhile.

Isn't it?

Bertrand Roehner

Bertrand Roehner is a French physicist currently on a two-month stay at BNL. His interest in history goes back to his school years, and what first began as a hobby eventually lead to the writing of two books ("Pattern and Repertoire in History" and "Separatism and Integration") which propose a scientific approach to history. He would be pleased to further discuss the matter with any person at BNL who might be interested at roehner@cmt7.phy.bnl.gov

Konstantinos ("Kostas") Orginos, a physicist from Greece, standing in front of a blackboard filled with scientific equations in his Physics office.

Konstantinos Orginos, who goes by "Kostas," knew he wanted to be a physicist since as long as he can remember. He started learning about physics in 5th grade and enjoyed watching documentaries by Jacque Cousteau. He said that as a child, "science was very easy for me."

Today, he is certainly following his childhood dream for his future. Kostas is working here at BNL at RIKEN in the Quantum Chromo Dynamics (QCD) theoretical group. QCD is an unsolved theory of the nuclear interactions among quarks, the most basic constituents of matter. Kostas seemed very excited about his work and explained it in simple terminology. In order to calculate the theoretical equations, they utilize a super computer that can do, "one trillion arithmetic operations per second." He jokes that it would "take a little too long" to do them by hand.

Kostas came to the United States from Greece to attend graduate school at Brown University where he obtained his PhD in Physics. "Graduate life was very different from my expectations. The apartments were not nice and the language was a bit difficult." Kostas said because of the language barrier it was sometimes difficult to make friends, though he did manage to meet his future wife there! He also mentioned that odd "American talk shows were new to me and so strange!"

But, now, when Kostas travels back to Greece to visit his father, he feels a little "strange" in his old environ. Kostas has grown so accustomed to life in the States that he experiences some culture shock upon arriving in his native country.

Celebrating Our BNL Physicists continued on page 4.