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Abstract

We are interested in obtaining bounds for the spectrum of the infinite Jacobi
matrix of a birth and death process or of any process (with nearest-neighbour
interactions) defined by a similar Jacobi matrix.

To this aim we use some results of Stieltjes theory for S-fractions, after
reviewing them. We prove a general theorem giving a lower bound of the
spectrum. The theorem also gives sufficient conditions for the spectrum to be
discrete.

The expression for the lower bound is then worked out explicitly for several,
fairly general, classes of birth and death processes. A conjecture about the
asymptotic behavior of a special class of birth and death processes is pre-
sented.

CONTINUED FRACTIONS; STIELTJES FRACTIONS; SPECTRUM; JACOBI MATRICES

1. Introduction

The Stieltjes theorem for the so-called S-fraction is a celebrated result given
by all classical treatises on continued fractions (see, for example, Wall (1967),
p. 120).

Actually, Stieltjes theory goes a good deal further than usually stated. In this
paper, after reviewing Stieltjes theory (for convenience these results are
collected in the appendix), we show that application to birth and death
continued fractions gives rather ‘practical’ results such as the nature of the
spectrum and lower bounds for the absolute value of the poles.

The same results also apply to any system governed by an infinite set of
differential equations similar to the Kolmogorov equations of a birth and death
process. Several examples will be given later, but first of all let us state the
Kolmogorov equations.
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508 G. BORDES AND B. ROEHNER

1.1. The differential equations. We consider a birth and death process whose
transition rates A,, w, are such that

Ao>0, wo=0; A, >0, ty, >0 n=1.

o =0 means that n =0 is a natural limit of the process.
A complete description of that Markov process is provided by the transition
probabilities from an initial state n, to state n at time ¢:

P(n, t/ng, to) = pa(t).

These transition probabilities are the solutions of the Kolmogorov equations

dp.
(1) —d_pt—: _()\n+l“’n)pn+/\'n—1pn~1+“'n+1pn+1 né()

with the convention that p, should be 0 for n <0.

1.2. Practical applications. Although we are primarily interested in birth and
death processes, we note that similar sets of differential equations occur also
for mechanical systems with an infinite number of degrees of freedom and with
nearest-neighbour interactions. In those cases the first derivative of the left-
hand side is of course to be replaced by a second derivative. Examples are:

—the longitudinal vibrations of an infinite number of harmonic oscillators;

—small transverse oscillations of a beaded string;

—small oscillations of a multiple pendulum.

In all these situations, the equations are of the form

o>

“ =+ Ap=0, a=1lor2

where A is an infinite (normal) Jacobi matrix (Gantmacher and Krein (1960),
p. 77). Obtaining bounds for the spectrum of that matrix will be our main
purpose. To motivate such a program, it should be recalled that solving (or
even obtaining the complete spectrum of) the Kolmogorov equations (1) is a
very difficult task whenever the transition rates A, u, are non-linear. Informa-
tion about the spectrum can be considered as a first step on the way to that
solution.

Let us also mention two cases in which knowledge of a bound for the
‘spectrum is of immediate importance. Since the spectrum will be discrete,
~ pon-positive and simple, let us denote it by

— Sk k=1,2,--- with 0=5<sp<s3<---.

1. If s, #0 the large-time behavior of a birth and death process is given by
s;. Of course it would be useful also to know the next smallest, i.e. s,, which
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tells how soon the dominant behavior occurs; for such an estimate in the case
of a finite birth and death process, see Dambrine and Moreau (1981).

If s, =0, the process has a stationary distribution and s, gives an estimate of
the speed of convergence to that stationary distribution when time goes to .

2. In the approximation theory of continued fractions, the pole which is
nearest to the origin is directly related to the speed of convergence of the
approximants of a continued fraction, as indicated by the following result
(Baker (1975), Gilewicz (1977), p. 6. 29).

If a function represented by a continued fraction is analytic in a disc of radius
R around the origin, its nth-order approximant converges at least as ¢s" in the
whole domain:

= (1+z/R):—1 <z>%

" {1+ 2/RE+1 \R

The paper is organized as follows. In section 2, we introduce the continued
J-fraction as a formal solution of Kolmogorov equations and we show that it
can be written in a Stieltjes fraction form. In section 3, we prove the main
theorem. In sections 4 and 5, we apply that theorem to asymptotically
symmetric and asymptotically proportional processes. Finally, in section 6 we
present an example of a non-asymptotically proportional process.

2. The Stieltjes S-fraction

2.1. The J-fraction. Going to the Laplace transform p,(s) of p,.(t) in the
Kolmogorov equations changes them into a set of recurrence relations which
reads, for n# n,,

s+ /\n + K = qn—1+ “n+1/\n
qn
with
— ﬁn)‘n
" ﬁn+1

If n,=0, this set can be solved recursively for po(s) in the form of a
continued fraction (a theorem by Perron (1929), p. 251, gives full justification
for this formal derivation):

(2) Po(s)=1/s+0a0=Yo/s+a1= Y1/~ "~ V-1 /ST O =" " Op = Ayt Wy
Y = Anbbng-1

which is the starting point of our study.

2.2. Check of the Stieltjes criterion. The J-fraction (2) is the even part of a
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continued S-fraction:

3) 1/a;s+1/a,+1/azs+- - - a,>0

provided there exist numbers P,=0, P,>0, P,>0,...such that (Stieltjes
(1918), p. 405):

Yn
Gn - Pn

P, <o,; =P, n=0.

With P, = u,,, n =0 the inequalities are easily seen to be satisfied.

2.3. Transformation formulas from S-fraction to J-fraction. Given the S-
fraction (3), we introduce the numbers

(4) bo=—, b,=

The fraction (3) transforms to

bo/s+by[1+bys+by/+---
which (by a standard transformation) can be rewritten as
ﬁ)jS"}" bl"‘blbzfs"l' b2+ b3—'b3b4" :

Hence, by comparison with the J-fraction (2) we derive the relations

=b
(5) Oy 1
Yo—1=— b2n—1b2n_ nz1

O, = b2n + b2n+1'

These formulas are quite general, but for w, =0, there is a convenient term-
to-term correspondence between the A,,, u, and the b,:

1

A, =by = n=0
Ao2p+1 - A2na2
1
Kn = b2n = n= 1
Aop - Aop+1

2.4. Relation between the Laplace transform py(s) of the probability transitions
for different processes. Before coming to our main subject, let us notice that the
Stieltjes form of the birth and death continued fraction leads quite easily to
relations between the py(s) of different processes, which would not be obvious
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otherwise. (We are grateful to our referee for bringing this property to our
attention.)

Proposition 1.
1. Let A, u®) be a process such that

AP =1 (and pn’=0).
Define a second process (A%, u?) by

@_ @
u,(z)—O An T Hnt1 n=0
o — VY

p@=A0 =l

The Laplace transforms of the probability transitions to 0 of both processes are
related in the following way:

) 1
P& (s) =

s@E(s)+1)°
2. Let AP, u") be a process such that

AP =pP’=1 (and p’=0).

Define a second process (A2, u?) by

AP=A81  nz0
@ _ @_, @
n _0, n — MHnp+1-
Then
=(2)
pP(s) =L D E L
pP(s)(s+1)+s
Proof
1. Let us first show that
a?=a, n=1
The inversion of formula (4) gives
@,..,®
a(zz):i a(22)= (! Hn—1 n=2
2 n 2 2 2 =
AP APAP - A2,
AL A2
2 _ 2 o ‘n—1
ai’ =1 A m a5 nzl,
i
which reads ~
&)
aP=af  ag=ti
) nT Ty
Ao Ag
2y _y (D Q1 2 . 1 1
ai”’ = Ag a(z ) a(2r3+1 = /\6 )a(2(1l+1)-
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This reduces to the relation we wish to prove if A{” = 1. The Stieltjes form of
P (s) is
5P(s)=1/aPs+1/aP +1/aPs+- .
This reads here
pPR(s)=1/as’s+1/as’+1/ag s+ - -
which should be compared with
5O(s)=1/aPs+1/aP+1/aPs++ -+ .
Thus we have (since a{’’ =1)

1

() =
S)= .
P = )

2. The proof of the second part of the proposition is very similar. In that
case, we have
a?=a®, n=1.

Proposition 2. The processes 1 and 2 considered here are those defined in
Part 1 of Proposition 1. If the spectrum, —s;, of process 1 is such that
si>m, m>0
then the spectrum, —sg, of process 2 satisfies
s1=0, s2>m. |
Proof. Writing pg” as N/D and inverting the formula giving P, we obtain

D —sN
sN

P& (s) =

Denote the zeros of pi (s) by

—ol k=1,2,---, oi<oi<---
Thus
{s3,53,---}={0,01, 03, - -}

_ If there are no common factors in the numerator and denominator of P&, then

{s}, 52, -+ }={0,01,03,- - }.

To complete the proof concerning the bound of the spectrum, we observe that
olz=s!. In fact, pi(s) is positive in the whole convergence domain of the
Laplace integral, i.e. for s >—sj.
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3. General result for the lower bound of the spectrum

3.1. Preliminaries. First we introduce the following three basic series:

S

= s
¢ 1DMe 1D

Qn

B (a1+' : '+a2n—l)a2n

C= Z (ar+-- 4+ zn) 0241
n=1

The convergence of series S on one hand and of series B and C on the other
hand are related:
S<o& B<o and C<®

because B<S?, C<S8? S<B+C.
We define furthermore the series

oo oo 1
D= Z Arn-1 D, = Z aszi+1 Z (ag+-- -+ Ao —1) Ao
n=1 =1 =1

Let us emphasize that, apart from technicalities, the following result is based

on two facts:
__the easy correspondence between the coefficients a, of the S-fraction and

the transition rates A,, w, (section 2.3).
_the existence of a limit for the coefficients of the polynomials in the
denominators and numerators of the approximants of the S-fraction

(appendix).

3.2. Main theorem
(a) If any of the series S, B or C converge, the process (A, n3 20=>0, po=0)
has a discrete, non-positive, simple spectrum:

—s k=120 0=5<5<-<g<---
which is such that the series
i 1
— Sk
converges.

(b) The absolute value of the spectrum has the following lower bound:
1. If S converges (which implies convergence of B and O

s;=1/B>1/S>.
2. If B converges (and S diverges along with C)
s:=1/B.
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This process is dishonest, i.e. },._o p. (1) <1.
3. If C converges (and S diverges along with B)

s; =0, s, =D,/D,>1/C.
This process is honest (i.e. Y ,,—o p.(t)=1) and has a stationary distribution.

Proof

1. Part (a) of the theorem is merely a consequence of the Stieltjes theory
reviewed in the appendix. It has been stated here for completeness.

2. Let us first assume that at least B converges (which comprises the case
when S converges).

From Equation (A.2) and with due regard to the positivity of the s;

_1_< f: 1 =B(12n).

(2n)

S(12") 1=1 352")
Now (appendix)
S (12n) T St
and from Equation (A.4)
B¢ —B.

n—o

Hence, going to the limit, we obtain 1/s,=B. Moreover, if S converges,
B < 82, The last (less accurate) bound is interesting in so far as it may be easier
to estimate S than B.

3. Assume now that only C converges. Then, we have to work with
Q,,..1(s). But in that case, since S diverges, the odd and even approximants
have the same limit. Hence the results for the poles of the odd part will be
relevant for our J-fraction too.

From Equation (A.3),

(2n+1) D(ZE;— 1)
n n

+
l—=I ( (2n+1)) 1-‘}_D(2n+1) S+ +D(12n+1) S

Thus

1 nil 1 D(22n+1)

S(22n+1) = S(2n+1) D52n+1) .

Going to the limit and taking into account relation (A.5), we get

Finally, the inequality D,/D,>1/C comes from the fact that

=) 1 o
D,< Z azi+1 Z azi Z azi—1=C. D;.
I=1 i=1

k=1
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4. We come now to the interpretation of series S, B and C in terms of birth
and death processes. This will prove the characterizations of the process given

in Parts b2 and b3 of the theorem.
Notice first that the inversion of formula (4) gives

1 My1™ " Hn—1
a,=7", arn = n=?2
2 Ao o AoAy "t Ay
Ao A
a, =1, azn+1:_0—__‘_1 nz1
Mg ™" My

which indicates that series S, B and C, stand respectively for series T, R and S
of Reuter (1957). We may thus summarize Reuter’s results regarding unique-
ness and honesty along with our results for the spectrum in the following
classification of birth and death processes. We have also indicated in the table
whether a stationary distribution exists or not. For an honest process, the
stationary distribution’s existence criterion is the convergence of series D,
(Parzen (1962), p. 280).

Uniqueness of

Kolmogorov Spectrum bound
equation Stationary given by the
solution Honesty distribution theorem

S<oo No Dishonest, ex- No 1/B

cept for one of
the solutions

B<w Yes Dishonest No 1/B

=00
B=wx
C <o Yes Honest Yes D,/D,
B=wx Theorem does not
C=o apply

The most pathological case is when S converges and in that case a problem
still remains: is the solution given by the continued fraction (with the p,, n=1
obtained from p, through the recurrence relations) the one which is honest or
not? |

In more intuitive terms, a process is honest if the average transition time of
the process from any given state n, to % is infinite (John (1957)), i.e. the
process does not diverge in finite time.

In the following sections, the theorem will be applied to three classes of birth
and death processes (belonging exclusively to Cases 2 and 3). This will at the
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same time illustrate, in specific situations, how an estimate of the bound can be
gained.

Let us make a general comment about those applications. Since
Hn_ Q2(n+)

p(n)= X a,

we have a,, =p(n—1) - - - p(1a,. Thus a,, depends on p(n) in a very ‘critical’
way. The three classes of process we discuss below correspond respectively to

L. p(n) ~ 1
2. p(n) — r#Ll
3. p(n) ~ n*.

n—oo

It is to be expected that the most accurate bounds will be obtained for the
first and second class rather than for the fast-varying series of class 3.

4. Application to asymptotically symmetric processes

The asymptotically symmetric processes which are characterized by the
property that

—~

nn_,w“‘n

were first introduced for quadratic processes (i.e., when A, and w, are
quadratic functions of n) where they play a very special role since it is the only
case where the (infinite) system for the moments m; (1), k=1,2, - - - closes for
every k (Roehner and Valent (1982)).

In our framework, asymptotically symmetric processes correspond to the

case

Az a2(n+1)-

n—oo

The following corollary gives lower bounds of the spectrum for some
particular asymptotically symmetric processes.

Remark. In Corollaries 1 to 4 below at least one of the series S, B or C will
converge. Hence the spectrum will be discrete and non-positive and such that

- 1

k=2 Sk

converges. We make that statement once and for all to avoid repetition.
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Corollary 1. For the following asymptotically symmetric processes, the
spectrum is discrete with lower bounds as indicated in each case.

1.
A =(m+1)
ey TEEDT g a2
Z=h
o= 1 >a—2
T a-1) a-V
where {(s) is Riemann’s zeta function.
2.
A, =(n+1)° n=z0
P2 >2
(F2) p.=m+1* nz=l, pe=0 “
s; =0; SH= a1
1 ’ 2= c(a_l)_1_22—a
L) oa—2
3.
A, =(n+1)p" >1
@y MEEEDET g P
tn = NP
(p>—1)
s;=0; SHE—— .
! 2Zpp*+p+1)
Proof
1. The a, corresponding to the first process are
1
arni1=1, n=0; a2n=F, nz1.

Since a is assumed larger than 2, the series B converges. We are thus using the
bound given by Case 2 of the proposition.

- 1 I * dx a—1
B= = 1< +1=—".
Z -1 {(a ) na—l ‘ a— 2

o
n=101 1

2. The processes P; and P, are related in the way indicated by the first part of
Proposition 1 (section 1.4) and Proposition 2 gives the relation between their
spectra. However since we have no a priori knowledge about possible common

factors in the numerator and denominator, let us obtain the bound by direct
calculation. It is interesting to notice that this bound will prove sharper than
the potential bound (a—2)/(a—1), but only for « >2-4,

The a,, corresponding to the second process are

1

Aon+1 = _(n'_‘—+ 1= sz = 1.
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Since « is larger than 2, C converges. Hence the bound is given by Case 3 of

the proposition.
Let us obtain an upper bound for D, by the following steps.

01 kdx 1 1

n=1

{ 1 +1 dx
Z (a1+' . '+a2k_1)a2k < al-— a1 |
k=1 a— 1 1 X

Hence
1 & 1 ( 1 )] 1
D,<—— - -
2 a—l,;[al a—2 1 (l+1)°‘_2 (I+1)~
1 & 1 ( 1 )] 1
<___ —_— J— —
b, a—1,§1[“l a2 \L72:3) |1

which gives

[

1 2o
Dy<— atla—1)-—1 (-2

Since D, = {(a) the claimed result follows.

Remark 1. Note that in both previous cases, the lower bound goes to 0
when o — 2. This is obvious in Case 1, and in Case 2 it results from (Magnus et

al. (1966), p. 19)
1

&(s) ~ Py

This result is in agreement with the fact that the quadratic asymptotically
symmetric process has a continuous spectrum extending from 0 to —o

(Roehner and Valent (1982)).

Remark 2. Ledermann and Reuter (1954) proved the discreteness of the
spectrum, (in a matrix framework) for processes of the form

A, =c(n+h)* +O(1)

n

1
un=n°‘+O(—)
n
in the two cases
1
1. c=1, h<l-—, a>2
(44

2. 0<c<1, a>31
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The first and second processes of Corollary 1, although bordering on this
class, do not belong to it.

Maki (1976) obtained similar results in a framework involving orthogonal
polynomials and continued fractions. But he restricted himself to rational
transition rates, although his method could be extended (private communica-
tion).

3. The a, corresponding to the third process are

1 1

Arne1™ o Aon
P

In this case also, C converges; indeed,

C= Z(1+ > i

n=1 p -
Let us obtain an upper bound for D, by the following steps.

1
1 1_?5
(a;+- - +an_1axy =7

k 1

1—-=

P
! 1 'd

Z (a1+' . ‘+a2k_1)a2k <L (1—"‘{)[‘[ _x+ 1]

k=1 p_l p 1 X

I-fence

P < 1\ 1
D,<— ll+1(1-——)—
2 p—lg(n ) p'/p'

D2<—— Z l(l—l)l,

p— p/p
which gives

Da< 5 [<p - 1)2_<p2p—21>2]‘

Since D, = p/(p—1) the claimed result follows.

5. Application to asymptotically proportional processes
" We shall say that a process is asymptotically proportional if

An
LT L
Pen

The motivation for this definition is the special properties the spectrum
seems to have in that case (see conjecture at the end of the section).
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Let us first state a lemma which will prove of frequent use.

Lemma. If

the following upper bound holds:

n k n
Y £ <a( p) E+b(a, )
k=1 k n
a+1 2
ala, p)=1+— b(a, p)=p— ap .
Inp 2%Inp
Proof. For the sequence
k
p
— k=m,m+1,---
kOL
to be increasing, the condition on p is
1 [
p= (1 + —)
m
Writing
n k n k
p p
TPt L e
kgl k k§2 k

we observe that the terms of the sum in the right-hand side are increasing,
provided that p =(3)*. Hence an estimate can be obtained from

n k n _x n
Z B; < L —e; dx +£;.
ko k b n
Integrating by parts,

n x 1
I p—adx —
2

X

P

xO(

nanx
P

dx
> Inp ), x

a+1 *

X Inp

Now for n=2

I P dx=(n-2) p+1<p_.
2

xa+1 na a

The first inequality is obvious provided that p= ()", Collecting all the terms,
. the lemma follows.

5.1. First example
Corollary 2. The spectrum of the birth and death process

P4) A, =(n+1)” ,

o

v

0

n
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is discrete in the following two cases, with lower bounds as indicated:
1. p<1, a>1.

1-p
Sl> 1 o1 1 - M1
L)+ <ln —) F(l—a, In —)
p p

where I'(a, x) is the incomplete gamma function.

2. p>1, a>1. For p=(@)**!
N 0 S2> 1 P = M2,

p—

——+a(l(a)—1)+

p p(p—1)

where a and b are the numbers defined in the lemma.
Proof. This process corresponds to the following a,,:

1 pn—l
Aop+1 =" n%O, Arpn = n=1.

1. In the first case, the series B converges; indeed,

[n21 _n—— nzl n® ]
Thus the bound of the spectrum is given by 1/B. The sequence p"/n* is of
course decreasing; hence,

Z p—a>I B; dx.

n=1 R 1 X
Taking into account the definition of the incomplete gamma function (Magnus
et al. (1966), p. 337) we obtain Result 1 of the corollary.

A limiting case. If p goes to 0, the process (P4) becomes a pure birth process
and the pole with smallest absolute value is s, = A, = 1. On the other hand, the
bound M, becomes

, 1
J— <
35% M, = ¢(a) L

~ As « tends to o, the bound approaches 1. As a — 1, {(a) — ; this singularity
is discussed at the end of this section.

2. The second case is different since now the series B diverges. Since series
C converges, we are using the bound D,/D,. In that case the process does not
diverge and furthermore has a stationary distribution. D, is simply a geometric
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series, and for D, we have
p L pk—l
p— 1,2 k*

1
Z (a1 +: -+ axy_1)ay <
k=1

To use the lemma, we must assume that

p=(3)".
Then
| - [a b]
D, <ayaa3+—— —+—1
Replacing the Riemann series and the geometric series by their value and
collecting all terms gives Result 2 of the corollary.

A limiting case. Divide both transition rates of the previous process by p.
This leads to the process

)\n=l(n+1)°‘

(P4) N n=0; p>1, a>1.

Kr

How are both spectra related?

The answer is given by the following scaling rule that follows from the
Kolmogorov equations (1).

If the transition rates are multiplied by a constant k, the spectrum (i.e., each
pole) is multiplied by the same constant k. Thus the spectrum of process (P4')
has the bound

s;=0, s2>p_1 ! 5 =M.
—+a(l(a)— 1D+
P p(p—1)

If p goes to =, the process (P4') reduces to a pure death process, and after
s; = wo =0, the smallest s, is s,=u;=1. On the other hand, the bound M,
becomes

1
lim M5 =——.
e 2 L(a)

The case a =1. It is easy to see that neither series B nor C converges if
a=1. Indeed
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Nevertheless, if p# 1, the spectrum is discrete. For a =1, the spectrum is even
known explicitly:
s, =n(l—A\) n=12,-"-

Of course, in that case, the series
i 1
=1 Sn
does not converge. Thus the three cases enumerated by Stieltjes do not cover

all the situations where the spectrum is discrete.

5.2. Second example. Our second example is a generalization of a remarka-
ble continued fraction (corresponding to the case a =2) given by Stieltjes
(1918), p. 550, for which the spectrum is known exactly.

Corollary 3. The spectrum of the process

A, =@2n+1)~
(PS) — (271)0‘ n= 0’ a> 1’ p > (%)(a/2)+1
n p |
is discrete and has the following lower bound:
1
§>—
m

b(c/2, p))(z)"‘ 1 +a(a/2, p)
3 a—1

=1+ (1 L bl p)
m o2 o2 {(a)
with a, b as defined in the lemma.

Proof. The process (P5) is very similar to (P4). However, the a, are rather
different:

a1 = az = 1
« n n—-1D"
A1 = AZni1P Asnia =W =1
1 2n—-2)!
—AS o Ag = =2
a2y, 2n pn—l 2n (2" _ 1)” ’

where we have used the notation
2n-D"'=1.3---2n—-1)
2n)'=2.4---(2n).

Let us find an upper bound for series B. Actually it is not, a priori, obvious that
series B converges, but this will become apparent as we proceed.
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First let us obtain estimates for the sequences A,,.; and A,,. They are
decreasing, but the associate sequences Ay, .1 . V2n and A,, .v2n—1 are both
increasing and therefore bounded by their limits. We have (Pdlya and Szego
(1972), p. 97)

1 1 Jor
A2n+1 A2n ~ -
n=>C nr n—><) ¥p
Thus
A o4 L \/ 7
2n+1 /_—mr 2n > n—l.
Then

Z Az =1+ Z Aops1 <1+ w2 Z ka/2

k=0 k=1

Using the lemma, we obtain, for p=3)***"

n—1 k n—l

Z ‘:/2<a(04/2 p)———a,5+b(a/2, P).
k=1 k (n—-1)

This will give rise to two different series in series B (where we omit the first

term a,a,):
1.
i p" ! a=i s «/w 1
n=2 (n - 1)a/2 2n n=2 (n - 1)(!/2 n=2 (n 1)0L
Hence
@ n—1
P Jr
ZZ (n _ 1)a/2 <_ {(a)
2.

- A5 h - 1 1
Z Arn = Z 2 Z " (%)0‘ -1
n=2 P

n=2 p n=1 [
“Collecting all the terms gives Corollary 3.

Application to a =2. In this case, the poles have the following expression
(Stieltjes (1918), p. 551):
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where

/2 S' 26 ——%
[1— n ] deo.

Ko)= [ -

(0]
Let us compare s; with our bound, for p =2. We obtain

473

:mi 81:“—0.72

S1
and on the other hand

l:0.30.
m

To conclude this section, let us propose the following conjecture.

Conjecture. If A~ n*

n—»00

M, 2 en®  pFl, a>0

the poles are asymptotically proportional to n%, i.e. s, ~,_. C.n” where the
constant C is a function only of w.

This conjecture is supported by several facts.

1. It is known to be true for a« =1. For a =2, it is also verified in all
instances where the spectrum is known exactly: see the previous example and
also the finite case of Roehner and Valent (1982).

2. (a) The series

8

Ii

1
n=2 Sn
converges if a > 1. (This has been shown, at least for particular forms of Xn and
W, in Corollaries 2 and 3.)

(b) The series

S
108
:mtol""

converges if @ > 3 (Ledermann and Reuter (1954)).

3. Finally, the poles may be computed numerically as eigenvalues of the
finite matrix obtained by cutting the infinite matrix at some sufficiently high
rank. This computation supports the conjecture.

6. Application to non-asymptotically-proportional processes

The processes
A, =An+1

W, = pn’
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correspond to the deterministic equation dx/dt=Ax—ux”+1 which is the
logistic equation. They are therefore given the same name.

Corollary 4. For the process

A, =A(n+1)° A>1
pm, =nk B>az=1

v

nz0

the spectrum is discrete with the following lower bound:

1 dF()\aB) n
me 22

$:=0,  s>— F(A a, B)+A{2B—a—-1)+L(B)
m dA
o0 A"
F\;a,B)= ZO It
i is the position of the minimum of the sequence ((n—1))®~*/A"n*. In

particular:
1. If a=1, B =2 (logistic process)

=e"(1+):)+(1+/\)—— %(\/H——l)

2 fa=0,B=2

L, 2VAN)+L(2VA) | I(2vA) ’
N 2\ T MO

where I,(x) is the Bessel function.

Proof. The corresponding a,, are

A" [(n— D1
T MER ST

v

n=1,

and in this case, C will converge. Since we shall not try to obtain the ‘best’
possible bound, let us use the less accurate (but simpler) result s,=1/C. We
denote by n the value of n for which the sequence a,, is minimum. We
decompose C into a sum and a series:

C=C+ C2
Ci = Z A2n+1 Z azi Z A2n+1 Z Az
= = n=f+1
C<—Zna <1 Zn a iF()vozﬁ)
1 )\ o 2n+1 )‘ ) 2n+1 = d/\ s Xy

n
Z a2n+12a2k+ Z Azn+1 Z Aszp
k=f+1

n=ti+1 n=f+1
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The first term can be estimated as in C; and in the second we take the term a,,,
apart. Thus

~

i o e . — 1
Co<— Z azni1+ Z (n— 1)z, 11020—1) T Z e

n=fi+1 n=fi+1 n=f+1 Hn

The second and third terms give rise to the zeta functions appearing in the
expression of Corollary 4.

Particular cases. In the first case, F(A; «, B) is merely an exponential and in
the second we have (Gradshteyn and Ryzhik (1965), p. 961):

o An
—_— 2
Z, G~ oYY
and (Gradshteyn and Ryzhik (1965), p. 970):

d I,(2VA) + I,(2V)
dA 2VA '

I,(2VA) =

7. Conclusion

We have obtained bounds for the spectra of very different processes; let us,
however, recall here the limitations of the method. These are:

1. The condition A,# 0 (the condition u,=0, on the other hand, seems a
natural one).

2. The condition that one of the series A, B or C converges. This excludes
in particular the processes where w,~, ..hn* a=1.

On the other hand, the basic property that the poles are the roots of a poly-
nomial (tending to a series) with converging and positive coefficients may probably
be used to extract additional information (besides the bounds) about the spectrum.
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Appendix

Since Stieltjes’s work is written in French, we have attempted to make the
present paper almost self-contained by giving here a brief account of the results
used. All the page numbers in this appendix refer to Stieltjes (1918).
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1. Let us first of all recall the general notion of the even (or odd, respec-
tively) part of a continued fraction

(A.l) a-l_/b1+gzjb2+"'
The quantity

P,
o= a/bitaafbat -+ aufb,

is called the nth approximant of the continued fraction (A.1). The limit, if it
exists, of the sequence

Por = Pony

Q... Qanr1

is called the even (or odd) part of the fraction (A.1).
2. Stieltjes developed a theory for the fraction

(3) 1/a;s+1/a,+1/ass+- - a; >0.

(a) A first general result concerns the poles of the approximants. The zeros of
Q,,.(s) and Q,,.(s) are real, simple and negative (p.411).

(b) Let us now introduce the following notations for the numerator and
denominator of the approximants:

(A.2) 0, (s)=1+BE s+ -+ B@s" =[] (1+ sgﬂ))

P2n+1(S) =1+ Cg2n+1)s 4.4 C512n+1)sn
(A.3)

+
@2n+1) @n+1)g2 4 @r+Dn+l _ y@n+1
Q,,1(8)=D7" s+ D5™" e+ Dy s” D¢ s H ( (2n+1)>

The following expressions hold:
BP™ = Z (ay+- - -+ ax—1) Az
(A.4) k=t

n
C(12n+1)= Z (ar+- - “+ Ao ) Aokt
k=1

n n l
(A.5) D¢V = Z Azp 11 Dg+D = Z aszii1 Z (a;+- -+ ay_1)ax.
k=1

=1 k=1

3. Two different cases occur in the theory of the S-fraction (3).

Case.l. If the series
- Z a,
k=1

converges, the four polynomials P,,(s), Q2,(s), Pani1(s), Qz,+1(s) admit finite
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limits p(s), q(s), pi(s), g,(s) which are analytic functions in the whole complex

plane.
Let s, denote the limits of the roots s™. Then (p. 446):

pis) ¥ _
q(s) Zistse
The s, are real, simple, positive and such that the series
i 1
k=1 Sk
converges.

Case 2. If the series S diverges, the odd and the even parts of the
fraction have the same limit which is an analytic function in the complex plane
deprived of the negative real axis.

4. Particular cases (p. 525). Suppose that S diverges. Then, the polynomials
P.(s) and Q,(s) do not in general admit a finite limit. There are however two
cases (and only two) where the odd (or even) polynomials still admit a finite
limit.

(a) If the series

B = z (a1+' : .+a2n—1)a2n
n=1

converges, Q,,(s) has a finite limit Q(s). The zeros of Q(s) have the same
properties as in Case 1.

Remark. The convergence of B implies the convergence of

Y o
n=1

Since S should diverge, so does the series Y., 1 Gz,+1-
(b) If the series

C= Z (a2+. : '+a2n)a2n+1
n=1

converges, P,,.1(s) has a finite limit. Hence, Q,,,.1(s) has a finite limit too and
the zeros of the limit Q(s) have the same properties as in Case 1. Moreover,
because of the form (A.3) of Q,,.:(s), the odd approximants all admit the
simple pole s, =0.
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