Exactly solvable models of tilings and Littlewood–Richardson coefficients

P. Zinn-Justin

LPTHE, Université Paris 6

October 7, 2009

arXiv:0809.2392
Outline of the talk

1. Introduction
2. Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
3. Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new “integrable” proof
4. Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another “integrable” proof
5. Conclusion and prospects
Outline of the talk

1. Introduction
2. Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
3. Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new “integrable” proof
4. Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another “integrable” proof
5. Conclusion and prospects
Outline of the talk

1. Introduction
2. Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
3. Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new “integrable” proof
4. Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another “integrable” proof
5. Conclusion and prospects
Outline of the talk

1. Introduction
2. Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions
3. Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new “integrable” proof
4. Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another “integrable” proof
5. Conclusion and prospects
Outline of the talk

1. Introduction

2. Lozenge tilings and Schur functions
 - Plane partitions, lozenge tilings
 - NILPs and Fermionic Fock space
 - Schur functions and skew-Schur functions

3. Square-triangle-rhombus tilings and LR coefficients
 - Interacting fermions
 - Puzzles and square-triangle tilings
 - A new “integrable” proof

4. Inhomogeneities and equivariance
 - Cohomology of Grassmannians and Schur functions
 - MS-alt puzzles, Equivariant puzzles
 - Another “integrable” proof

5. Conclusion and prospects
Random tilings

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperature limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have “forbidden” symmetries. For example, the square/triangle model has 12-fold symmetry!
Random tilings are simple models whose main purpose is to describe quasi-crystals.

They typically correspond to a high-temperate limit where entropy considerations dominate.

All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.

Typical configurations may have “forbidden” symmetries. For example, the square/triangle model has 12-fold symmetry!
Random tilings are simple models whose main purpose is to describe quasi-crystals.

They typically correspond to a high-temperate limit where entropy considerations dominate.

All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.

Typical configurations may have “forbidden” symmetries. For example, the square/triangle model has 12-fold symmetry!
Random tilings

- Random tilings are simple models whose main purpose is to describe quasi-crystals.
- They typically correspond to a high-temperate limit where entropy considerations dominate.
- All (known) random tiling models can be thought of as fluctuating surfaces (i.e. bosonic fields) in a higher-dimensional space.
- Typical configurations may have “forbidden” symmetries. For example, the square/triangle model has 12-fold symmetry!
Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.

- They are also characters of $GL(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.
Schur functions and Littlewood–Richardson coefficients

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $GL(N)$.
 - They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
 - Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
 - Geometrically, they correspond to intersection theory on Grassmannians.
Schur functions and Littlewood–Richardson coefficients

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $GL(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.
Schur functions and Littlewood–Richardson coefficients

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $GL(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.
Schur functions and Littlewood–Richardson coefficients

- Schur functions are the most important family (basis) of symmetric functions in algebraic combinatorics.
- They are also characters of $GL(N)$.
- They form bases of the cohomology ring of Grassmannians. (related to Schubert varieties)
- Littlewood–Richardson coefficients are structure constants of the algebra of Schur functions.
- Geometrically, they correspond to intersection theory on Grassmannians.
Plane partitions
Plane partitions
Lozenge tilings
Non-Intersecting Lattice Paths
Non-Intersecting Lattice Paths
Define a *partition* to be a weakly decreasing finite sequence of non-negative integers: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. We usually represent partitions as *Young diagrams*: for example $\lambda = (5, 2, 1, 1)$ is depicted as

\[
\lambda = \begin{array}{cccc}
\square & \square & \square & \\
\square & \square & \\
\square & \\
\end{array}
\]
To each partition $\lambda = (\lambda_1, \ldots, \lambda_n)$ one associates a fermionic state $|\lambda\rangle$ so that the black (resp. red) sites correspond to vertical (resp. horizontal) edges:

$$F = \bigoplus_\lambda \mathbb{C} |\lambda\rangle$$

is the fermionic Fock space (with charge 0).
Definition of Schur polynomials

To a pair of Young diagrams λ, μ one associates the skew Schur polynomial $s_{\lambda/\mu}(x_1, \ldots, x_n)$:

The (usual) Schur polynomial is $s_\lambda = s_{\lambda/\emptyset}$.

Remark: the number of plane partitions in $a \times b \times c$ is $s_{[a \times c]}(x_1 = \cdots = x_{a+b} = 1)$.
Definition of Schur polynomials

To a pair of Young diagrams λ, μ one associates the skew Schur polynomial $s_{\lambda/\mu}(x_1, \ldots, x_n)$:

$\lambda = \begin{array}{ccc}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{array}$

$\mu = \begin{array}{c}
\text{ } \\
\text{ } \\
\end{array}$

The (usual) Schur polynomial is $s_{\lambda} = s_{\lambda/\emptyset}$.

Remark: the number of plane partitions in $a \times b \times c$ is $s_{[a \times c]}(x_1 = \cdots = x_{a+b} = 1)$.

P. Zinn-Justin

Solvable tilings and Littlewood–Richardson coefficients
Example

\[s_{\square}(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 \]
Consider the operator $T(x)$ on \mathcal{F} with matrix elements

$$\langle \mu | T(x) | \lambda \rangle = s_{\lambda/\mu}(x)$$

It corresponds to the addition of one row of the tiling. In particular

$$s_{\lambda/\mu}(x_1, \ldots, x_n) = \langle \mu | T(x_1) \ldots T(x_n) | \lambda \rangle$$
Properties

• “Integrability” property:

\[[T(x), T(x')] = 0 \Rightarrow s_{\lambda/\mu} \text{ symmetric polynomial} \]

• Stability property:

\[T(0) = 1 \Rightarrow s_{\lambda/\mu}(x_1, \ldots, x_n, x_{n+1} = 0) = s_{\lambda/\mu}(x_1, \ldots, x_n) \]

Thus, the \(s_{\lambda/\mu} \) are symmetric functions (symmetric polynomials in an infinite number of variables).

In fact, the \(s_{\lambda} \) are known to be a basis of the space of symmetric functions (which is thus isomorphic to \(\mathcal{F} \)).
Properties

- **“Integrability”** property:
 \[
 [T(x), T(x')] = 0 \implies s_{\lambda/\mu} \text{ symmetric polynomial}
 \]

- Stability property:
 \[
 T(0) = I \implies s_{\lambda/\mu}(x_1, \ldots, x_n, x_{n+1} = 0) = s_{\lambda/\mu}(x_1, \ldots, x_n)
 \]

Thus, the \(s_{\lambda/\mu}\) are **symmetric functions** (symmetric polynomials in an infinite number of variables). In fact, the \(s_{\lambda}\) are known to be a basis of the space of symmetric functions (which is thus isomorphic to \(\mathcal{F}\)).
Properties

- “Integrability” property:
 \[[T(x), T(x')] = 0 \Rightarrow s_{\lambda/\mu} \text{ symmetric polynomial} \]

- Stability property:
 \[T(0) = I \Rightarrow s_{\lambda/\mu}(x_1, \ldots, x_n, x_{n+1} = 0) = s_{\lambda/\mu}(x_1, \ldots, x_n) \]

Thus, the \(s_{\lambda/\mu} \) are symmetric functions (symmetric polynomials in an infinite number of variables). In fact, the \(s_{\lambda} \) are known to be a basis of the space of symmetric functions (which is thus isomorphic to \(\mathcal{F} \)).
Some identities

- An identity that can be derived using the formalism above:

\[
\sum_{\mu} s_{\lambda/\mu}(x_1, \ldots, x_n)s_{\mu/\rho}(y_1, \ldots, y_m) = s_{\lambda/\rho}(x_1, \ldots, x_n, y_1, \ldots, y_m)
\]

- Identities which remain mysterious:

\[
s_{\lambda/\mu}(x_1, \ldots, x_n) = \sum_{\nu} c_{\lambda,\mu}^{\nu}s_{\nu}(x_1, \ldots, x_n)
\]

\[
s_{\lambda}(x_1, \ldots, x_n)s_{\mu}(x_1, \ldots, x_n) = \sum_{\nu} c_{\lambda,\mu}^{\nu}s_{\nu}(x_1, \ldots, x_n)
\]

\[
s_{\lambda}(x_1, \ldots, x_n, y_1, \ldots, y_n) = \sum_{\mu,\nu} c_{\lambda,\mu}^{\nu}s_{\mu}(x_1, \ldots, x_n)s_{\nu}(y_1, \ldots, y_n)
\]
Some identities

- An identity that can be derived using the formalism above:

\[
\sum_{\mu} s_{\lambda/\mu}(x_1, \ldots, x_n)s_{\mu/\rho}(y_1, \ldots, y_m) = s_{\lambda/\rho}(x_1, \ldots, x_n, y_1, \ldots, y_m)
\]

- Identities which remain mysterious:

\[
s_{\lambda/\mu}(x_1, \ldots, x_n) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x_1, \ldots, x_n)
\]

\[
s_{\lambda}(x_1, \ldots, x_n)s_{\mu}(x_1, \ldots, x_n) = \sum_{\nu} c_{\lambda,\mu}^{\nu} s_{\nu}(x_1, \ldots, x_n)
\]

\[
s_{\lambda}(x_1, \ldots, x_n, y_1, \ldots, y_n) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x_1, \ldots, x_n)s_{\nu}(y_1, \ldots, y_n)
\]
Two species of fermions

Pilings of (hyper)cubes in \textit{four} dimensions!
Two species of fermions

Pilings of (hyper)cubes in four dimensions!
Two species of fermions

Pilings of (hyper)cubes in *four* dimensions!
The interaction
Theorem

If \(x + y + z = 0 \), then

\[
\begin{array}{c}
\text{z} \\
\text{x} \\
\text{y}
\end{array}
\begin{array}{c}
\text{y}
\end{array}
\begin{array}{c}
\text{z}
\end{array} =
\begin{array}{c}
\text{x}
\end{array}
\begin{array}{c}
\text{y}
\end{array}
\begin{array}{c}
\text{z}
\end{array}
\]

for any fixed boundaries and where tile \(x \) (resp. \(y, z \)) is only allowed where marked.
Theorem

If \(x + y + z = 0 \), then

\[
\begin{array}{c}
\text{z} \\
\text{y} \\
\text{x}
\end{array} = \begin{array}{c}
\text{x} \\
\text{y} \\
\text{z}
\end{array}
\]

for any fixed boundaries and where tile \(x \) (resp. \(y, z \)) is only allowed where marked.

Example:

\[
\begin{array}{c}
\text{+} \\
\text{+} \\
\text{=} \text{0}
\end{array}
\]
Yang–Baxter equation

Theorem

If \(x + y + z = 0 \), then

\[
\begin{array}{c}
\begin{array}{ccc}
 z & y & x \\
 x & y & z \\
\end{array}
\end{array}
\]

= \[
\begin{array}{c}
\begin{array}{ccc}
 x & y & z \\
 y & x & z \\
\end{array}
\end{array}
\]

for any fixed boundaries and where tile \(x \) (resp. \(y, z \)) is only allowed where marked.

Example:

\[
\begin{array}{c}
\begin{array}{ccc}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{array}
\end{array}
\]

+ \[
\begin{array}{c}
\begin{array}{ccc}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{array}
\end{array}
\]

+ \[
\begin{array}{c}
\begin{array}{ccc}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{array}
\end{array}
\]

= 0
Puzzles

Remove all tiles x, y, z:
Some history...

- 1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (∼ puzzles) and proves integrability.
- 1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size→ ∞).
- 2008: K. Purbhoo reformulates puzzles as mosaics (∼ square-triangle tilings).
Some history . . .

1993: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (∼ puzzles) and proves integrability.

1994: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size → ∞).

2008: K. Purbhoo reformulates puzzles as mosaics (∼ square-triangle tilings).
Some history...

- **1993**: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (∼ puzzles) and proves integrability.

- **1994**: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size → ∞).

- **1992**: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).

- **2008**: K. Purbhoo reformulates puzzles as mosaics (∼ square-triangle tilings).
Some history...

- **1993**: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (∼ puzzles) and proves integrability.
- **1994**: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size → ∞).
- **1992**: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- **2008**: K. Purbhoo reformulates puzzles as mosaics (∼ square-triangle tilings).
Some history...

- **1993:** M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (≈ puzzles) and proves integrability.
- **1994:** P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations (size → ∞).
- **1992:** Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- **2003–2004:** A. Knutson, T. Tao and C. Woodward reexpress it in terms of puzzles.
- **2008:** K. Purbhoo reformulates puzzles as mosaics (≈ square-triangle tilings).
Some history...

- **1993**: M. Widom introduces the square-triangle model, deforms it into a regular triangular lattice (\sim puzzles) and proves integrability.
- **1994**: P. Kalugin (partially) solves the Coordinate Bethe Ansatz equations ($\text{size} \to \infty$).
- **1992**: Berenstein, Zelevinsky introduce a new Littlewood–Richardson rule (honeycombs).
- **2008**: K. Purbhoo reformulates puzzles as mosaics (\sim square-triangle tilings).
Lozenge tilings and Schur functions
Square-triangle-rhombus tilings and LR coefficients
Inhomogeneities and equivariance
Conclusion and prospects

Interacting fermions
Puzzles and square-triangle tilings
A new “integrable” proof

\[\sum_{\lambda, \mu, \nu} c_{\mu, \nu}^\lambda s_{\mu}(\tilde{x}^{-1}) s_{\nu}(y^{-1}) \]
Lozenge tilings and Schur functions
Square-triangle-rhombus tilings and LR coefficients
Inhomogeneities and equivariance
Conclusion and prospects

Interacting fermions
Puzzles and square-triangle tilings
A new “integrable” proof

$s_{\lambda}(\tilde{x}^{-1}, y^{-1})$

P. Zinn-Justin
Solvable tilings and Littlewood–Richardson coefficients
Cohomology of Grassmannians

The cohomology ring of $Gr(n,k) = \{ V \subset \mathbb{C}^n, \dim V = k \}$ is the quotient of the ring of symmetric functions by the span of the s_λ, $\lambda \not\subset [k \times (n-k)]$.

Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset [k \times (n-k)]$ such that the s_λ are their cohomology classes. There is a torus $T = (\mathbb{C}^\times)^n$ acting on $Gr(n,k)$ and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1, \ldots, y_n]$, with basis the \tilde{s}_λ, $\lambda \subset [k \times (n-k)]$.

If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_λ are the equivariant cohomology classes of the Schubert varieties.
The cohomology ring of $Gr(n, k) = \{ V \subset \mathbb{C}^n, \dim V = k \}$ is the quotient of the ring of symmetric functions by the span of the s_λ, $\lambda \not\subset [k \times (n - k)]$.

Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset [k \times (n - k)]$ such that the s_λ are their cohomology classes.

There is a torus $T = (\mathbb{C}^\times)^n$ acting on $Gr(n, k)$ and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1, \ldots, y_n]$, with basis the \tilde{s}_λ, $\lambda \subset [k \times (n - k)]$.

If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_λ are the equivariant cohomology classes of the Schubert varieties.
Cohomology of Grassmannians

The cohomology ring of \(Gr(n, k) = \{ V \subset \mathbb{C}^n, \dim V = k \} \) is the quotient of the ring of symmetric functions by the span of the \(s_\lambda, \lambda \not\subset [k \times (n - k)] \).

Given a fixed flag, one can build Schubert varieties indexed by \(\lambda \subset [k \times (n - k)] \) such that the \(s_\lambda \) are their cohomology classes.

There is a torus \(T = (\mathbb{C}^\times)^n \) acting on \(Gr(n, k) \) and a corresponding equivariant cohomology ring. It is a module over \(\mathbb{Z}[y_1, \ldots, y_n] \), with basis the \(\tilde{s}_\lambda, \lambda \subset [k \times (n - k)] \).

If flag and torus are compatible (so that the Schubert varieties are \(T \)-invariant), the \(\tilde{s}_\lambda \) are the equivariant cohomology classes of the Schubert varieties.
Cohomology of Grassmannians

The cohomology ring of $Gr(n, k) = \{ V \subset \mathbb{C}^n, \dim V = k \}$ is the quotient of the ring of symmetric functions by the span of the s_λ, $\lambda \not\subset [k \times (n - k)]$.

Given a fixed flag, one can build Schubert varieties indexed by $\lambda \subset [k \times (n - k)]$ such that the s_λ are their cohomology classes.

There is a torus $T = (\mathbb{C}^\times)^n$ acting on $Gr(n, k)$ and a corresponding equivariant cohomology ring. It is a module over $\mathbb{Z}[y_1, \ldots, y_n]$, with basis the \tilde{s}_λ, $\lambda \subset [k \times (n - k)]$.

If flag and torus are compatible (so that the Schubert varieties are T-invariant), the \tilde{s}_λ are the equivariant cohomology classes of the Schubert varieties.
Double Schur functions

The \tilde{s}_λ can be represented as polynomials $s_\lambda(x_1, \ldots, x_n|y_1, \ldots, y_n)$.
(such that $s_\lambda(x_1, \ldots, x_n|0, \ldots, 0)_k = s_\lambda(x_1, \ldots, x_n)$).
Product formulae

- **Knutson–Tao problem:**

\[
s_\lambda(x_1, \ldots, x_k|z_1, \ldots, z_n)s_\mu(x_1, \ldots, x_k|z_1, \ldots, z_n) = \sum_{\nu} c_{\nu,\lambda}^{\mu}(z_1, \ldots, z_n)s_\nu(x_1, \ldots, x_k|z_1, \ldots, z_n)
\]

- **Molev–Sagan problem:**

\[
s_\lambda(x_1, \ldots, x_k|z_1, \ldots, z_n)s_\mu(x_1, \ldots, x_k|y_1, \ldots, y_n) = \sum_{\nu} e_{\nu,\lambda}^{\mu}(y_1, \ldots, y_n; z_1, \ldots, z_n)s_\nu(x_1, \ldots, x_k|y_1, \ldots, y_n)
\]

Unifying solution of these two problems!
Product formulae

- Knutson–Tao problem:

\[s_\lambda(x_1, \ldots, x_k|z_1, \ldots, z_n)s_\mu(x_1, \ldots, x_k|z_1, \ldots, z_n) = \sum_\nu c_{\mu,\lambda}^\nu(z_1, \ldots, z_n)s_\nu(x_1, \ldots, x_k|z_1, \ldots, z_n) \]

- Molev–Sagan problem:

\[s_\lambda(x_1, \ldots, x_k|z_1, \ldots, z_n)s_\mu(x_1, \ldots, x_k|y_1, \ldots, y_n) = \sum_\nu e_{\lambda,\mu}^\nu(y_1, \ldots, y_n; z_1, \ldots, z_n)s_\nu(x_1, \ldots, x_k|y_1, \ldots, y_n) \]

Unifying solution of these two problems!
Product formulae

- Knutson–Tao problem:
 \[s_\lambda(x_1, \ldots, x_k|z_1, \ldots, z_n)s_\mu(x_1, \ldots, x_k|z_1, \ldots, z_n) = \sum_{\nu} c_{\mu,\lambda}^{\nu}(z_1, \ldots, z_n)s_\nu(x_1, \ldots, x_k|z_1, \ldots, z_n) \]

- Molev–Sagan problem:
 \[s_\lambda(x_1, \ldots, x_k|z_1, \ldots, z_n)s_\mu(x_1, \ldots, x_k|y_1, \ldots, y_n) = \sum_{\nu} e_{\lambda,\mu}^{\nu}(y_1, \ldots, y_n; z_1, \ldots, z_n)s_\nu(x_1, \ldots, x_k|y_1, \ldots, y_n) \]

Unifying solution of these two problems!
Introduction
Lozenge tilings and Schur functions
Square-triangle-rhombus tilings and LR coefficients
Inhomogeneities and equivariance
Conclusion and prospects

Cohomology of Grassmannians and Schur functions
MS-alt puzzles, Equivariant puzzles
Another “integrable” proof

Solvable tilings and Littlewood–Richardson coefficients

P. Zinn-Justin
\[s_\lambda(x|z)s_\mu(x|y) = \sum e^\nu_{\lambda,\mu}(y;z)s_\nu(x|y) \]
“Integrable” proofs of combinatorial identities?

- Coproduct formula for double Schur functions?
- Use of Bethe Ansatz?
- Generalization to other families of symmetric polynomials? (Jack, Hall–Littlewood, Macdonald)
- Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)
- Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau’s talk)
“Integrable” proofs of combinatorial identities?

Coproduct formula for double Schur functions?

Use of Bethe Ansatz?

Generalization to other families of symmetric polynomials? (Jack, Hall–Littlewood, Macdonald)

Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)

Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau’s talk)
“Integrable” proofs of combinatorial identities?

Coproduct formula for double Schur functions?

Use of Bethe Ansatz?

Generalization to other families of symmetric polynomials? (Jack, Hall–Littlewood, Macdonald)

Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)

Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau’s talk)
“Integrable” proofs of combinatorial identities?

Coproduct formula for double Schur functions?

Use of Bethe Ansatz?

Generalization to other families of symmetric polynomials? (Jack, Hall–Littlewood, Macdonald)

Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)

Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau’s talk)
“Integrable” proofs of combinatorial identities?

Coproduct formula for double Schur functions?

Use of Bethe Ansatz?

Generalization to other families of symmetric polynomials? (Jack, Hall–Littlewood, Macdonald)

Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)

Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau’s talk)
“Integrable” proofs of combinatorial identities?

Coproduct formula for double Schur functions?

Use of Bethe Ansatz?

Generalization to other families of symmetric polynomials? (Jack, Hall–Littlewood, Macdonald)

Generalization to other families of polynomials of geometric origin? (Schubert, Grothendieck)

Application to FPLs / Razumov–Stroganov conjecture? (cf Nadeau’s talk)