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The Tangent Method: what is it about?

The topic of this talk is the determination
of the “Arctic Curve” of 2-dimensional tiling
models which are Yang–Baxter integrable,
with special attention to the famous case
of “Alternating Sign Matrices”, that is, the
6-Vertex Model with domain-wall boundary
conditions at the ∆ = 1

2 combinatorial point.

The title of this conference is
and

hmm. . .I will only mention here (and nowhere again)
that Gelfand–Tsetlin patterns, seen as lozenge tilings

of a trapezoid, are the simplest instance of the method,
and that Paul’s interpretation of Littlewood–Richardson coefficients

(i.e. Knutson–Tao puzzles) as integrable square-triangle tilings
is also (in principle... to be done...) ameaneable to the method.
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The dawn of Arctic Curves

The first examples of Arctic Curves have been on models
of free fermions, realised as dimer models on bipartite graphs.

A famous case is lozenge tilings of a regular hexagon
(the MacMahon problem of “boxed plane partitions”)

This led to the famous
arctic circle phenomenon

z-w H. Cohn, M. Larsen
and J. Propp,
The Shape of a Typical
Boxed Plane Partition,
1998
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The ultimate theory for Arctic Curves in dimer models

Nowadays, thanks to the work of
Kenyon, Okounkov and Sheffield,
we have a (beautiful) general uni-
fied theory for Arctic Curves of
dimer models on portions of peri-
odic planar bipartite graphs.

An example: the cardioid
for the hexagonal domain
with a frozen corner

picture taken from:
z-w R. Kenyon, A. Okounkov,

Limit shapes and the complex
Burgers equation, 2005
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Phase separation phenomena beyond free fermions

When we started this project, years ago,
my dream was to have an equivalent of the results
in Kenyon–Okounkov theory for integrable systems

out of the free-fermionic manifold.

This is a complicated goal for several reasons
that will be clear later on...

Let us just say, by now, that we want some result, in the fashion
of the Arctic Circle phenomenon, for a non-free-fermionic
integrable model that shows phase separation phenomena.
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6VM: the ‘best’ model for phase separation phenomena

Although the Tangent Method applies to many different
(integrable) models, we will mainly talk here of the 6-Vertex Model
(6VM), on portions of Z2 with DWBC. Configs in this model are

also bijectively related to Fully-Packed Loops (FPL)
and Alternating-Sign Matrices (ASM).

FPL 6VM ASM
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6VM: the ‘best’ model for phase separation phenomena

Also in large ASM’s you see the emergence of an Arctic Curve
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The path representation

Another local bijection is in terms of (interacting) non-intersecting paths.
Note that we have four ways of drawing paths,

each of which leaves empty one different “frozen corner”
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ω-enumeration of Alternating Sign Matrices

For ω ∈ R+, let us weight ASMs
with a measure ω#

ω-enumerations of ASM
form a YB-integrable line,
with a fermionic point at ω = 2
(domino tilings of the Aztec Diamond)

Numerical simulations suggest
that the arctic curve varies smoothly
with ω, at least in some range...

ω = 1
...but what was know theoretically
when we started all this?

from this point on, ASM pictures are produced with C code based on a

version kindly provided by Ben Wieland
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ω = 32...but what was know theoretically
when we started all this?
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ω = 52...but what was know theoretically
when we started all this?

from this point on, ASM pictures are produced with C code based on a
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ω-enumeration of Alternating Sign Matrices

For ω ∈ R+, let us weight ASMs
with a measure ω#

ω-enumerations of ASM
form a YB-integrable line,
with a fermionic point at ω = 2
(domino tilings of the Aztec Diamond)

Numerical simulations suggest
that the arctic curve varies smoothly
with ω, at least in some range...

ω = 72...but what was know theoretically
when we started all this?

from this point on, ASM pictures are produced with C code based on a

version kindly provided by Ben Wieland
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Old facts from integrability

The ω-enumeration of ASMs is a 1-parameter deformation of the
uniform measure within the much deeper and more general

deformation inspired by the integrability of the underlying 6VM
with DWBC...
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The 6-Vertex Model in general

Let us define precisely our 6-Vertex Model:

x

y

z = x/y

l you have a degree-4 outer-planar graph

l variables are edge-orientations

l weights are on the vertices

depend on the four arrows,
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − (zq)−1︷ ︸︸ ︷ b = z − z−1︷ ︸︸ ︷ c = q − q−1︷ ︸︸ ︷

Andrea Sportiello The Tangent Method: where do we stand?



The 6-Vertex Model in general

Let us define precisely our 6-Vertex Model:

x

y

z = x/y

l you have a degree-4 outer-planar graph

l variables are edge-orientations

l weights are on the vertices

depend on the four arrows,
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − (zq)−1︷ ︸︸ ︷ b = z − z−1︷ ︸︸ ︷ c = q − q−1︷ ︸︸ ︷

Andrea Sportiello The Tangent Method: where do we stand?



The 6-Vertex Model in general

Let us define precisely our 6-Vertex Model:

∆ =
a2 + b2 − c2

2ab
=

1

2

(
q +

1

q

)

l you have a degree-4 outer-planar graph

l variables are edge-orientations
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The Izergin determinant

Now, suppose that, near to one boundary, your graph (and
boundary conditions) look like this:

x

y1 y2 · · · yn
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By YB, the partition function
Z (x , y1, . . . , yn, · · · )
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The vertices in the bottom row
form a sequence aa · · · acbb · · · b
Call refinement position the
column index of this c-vertex.
Also, Z = x−nP(x2), where P
ia a degree-(n − 1) polynomial
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Now, suppose that, near to one boundary, your graph (and
boundary conditions) look like this:

x

y1 y2 · · · yn

By YB, the partition function
Z (x , y1, . . . , yn, · · · )
is symmetric in y1, . . . , yn

The vertices in the bottom row
form a sequence aa · · · acbb · · · b
Call refinement position the
column index of this c-vertex.
Also, Z = x−nP(x2), where P
ia a degree-(n − 1) polynomial

If x = q−1y1, the bottom-left vertex must be a “c”,
if x = yn, the bottom-right vertex must be a “c”.
In both cases, the whole row can be filled in a unique way.
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The Izergin determinant

Reasonings of this sort led Izergin to determine that

Zn(x1, . . . , xn; y1, . . . , yn) =

∏
i ,j a(xi/yj)b(xi/yj)∏
i<j b(xi/xj)b(yi/yj)

× det

(
c

a(xi/yj)b(xi/yj)

)
1≤i ,j≤nx1

x2

...

xn

y1 y2 · · · yn

Zn(z , . . . , z ; 1, . . . , 1) counts configs
with homogeneous weights a, b and c .
Due to DWBC, up to trivial factors,
it only depends on |a|/c and |b|/c .

For z = iq−
1
2 we recover ω-enumerated

ASMs, with ω = −(q
1
2 − q−

1
2 )2.

z-w A.G. Izergin, Partition function of the six-vertex model in a finite

volume, 1987
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2-refined enumerations (this is not old, but it could have been...)

The homogeneous limit of the Izergin determinant is a bit tricky,
as it requires multi-dimensional l’Hôpital.

A better idea is to write a recursion for Zn(xz , z . . . , z ; y , 1, . . . , 1),
by mean of the Desnanot–Jacobi formula

detM detM1n,1n = detM1,1 detMn,n − detM1,n detMn,1

As a bonus, we have a formula
for the 2-refined enumeration polynomials Arc

n (u, v).
In the parametrisation a2 = 1, b2 = t, c2 = w this gives

(1− u)(1− v) An−1

(
Arc
n+1(u, v)− (uvt)nAn

)
− uvw An A

rc
n (u, v)

−
(
(1− u)(1− v)− uvw

)
Ar
n(u)Ac

n(v) = 0
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2-refined enumerations (this is not old, but it could have been...)

Arc
n (u, v) :=

∑
A∈An

t
1
2

#bw
1
2

(#c−n)ui(A)v j(A)

(1− u)(1− v) An−1

(
Arc
n+1(u, v)− (uvt)nAn

)
− uvw An A

rc
n (u, v)

−
(
(1− u)(1− v)− uvw

)
Ar
n(u)Ac

n(v) = 0

0 1 2 3 4 5 6 7 8 9
9
8
7
6
5
4
3
2
1
0

This configuration
contributes u3v6w9

to Arc
10(u, v)|t=1
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Some special facts at the combinatorial point

When q = e
2
3
πi (i.e. ω = 1), a number of further miracles occur:

I Some enumerations are ‘round’: An =
n−1∏
j=0

j!(3j + 1)!

(2j)!(2j + 1)!

Ar
n+1[r ] := [ur ]Ar

n+1(u) = An+1
(2n)!

n!(3n + 1)!

(n + r)!(n + r̄)!

r ! r̄ !
(r̄ = n − r)

I Up to prefactors, Zn is symmetric in the 2n variables
{qx2

1 , . . . , qx
2
n , y

2
1 , . . . , y

2
n}, and in fact a ‘double-staircase’

Schur function s(n−1,n−1,n−2,n−2,...,1,1)(· · · )
z-w S. Okada, Enumeration of symmetry classes of alternating sign

matrices and characters of classical groups, 2006
I As a result, the row-column 2-refined enums Arc

n (u, v) can be
related to their simpler row-row analogue Arr

n (u, v)
z-w Yu. Stroganov, A new way to deal with Izergin-Korepin

determinant at root of unity, 2002
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The Colomo–Pronko formula

Define the Emptiness Formation Probability, EFP(n; r , s): the
probability that there are no ±1 elements in the s × r top-left
rectangle of the n × n domain.

hn,s(z1, . . . , zs) :=
1

∆(z)
det
(
zk−1
j (zj − 1)s−kAr

n−k+1(zj)
)
j ,k

EFP(n; r , s) =

∮
0

dz1

2πi
· · ·
∮

0

dzs
2πi

∏
j

((t2 − 2t∆)zj + 1)s−j

zn−rj (zj − 1)s−j+1

×
∏
j<k

zj − zk
t2zjzk − 2t∆zj + 1

hn,s(z1, . . . , zs)

For (r , s) crossing the Arctic Curve, EFP(n; r , s) must show a 0-1
transition. However the asymptotic analysis is complicated and
non-rigorous.
z-w F. Colomo and A.G. Pronko, 2008–’09

z-w F. Colomo, A.G. Pronko and P. Zinn-Justin, 2010
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The Colomo–Pronko formula: ω = 1

Picture and formula for ω = 1:

The South-West arc satisfies
x(1− x) + y(1− y) + xy = 1/4
x , y ∈ [0, 1/2]

(just a “+xy” modification
w.r.t. a circle)
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The Colomo–Pronko formula: generic ω

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x−1)+

ω

(z − 1)(z − 1 + ω)
y+ lim

n→∞

1

n

∂

∂z
lnAr

n(z) .

C(x , y) is algebraic only at discrete special values of ω
(including 1, 2, 3), namely when q is a root of unity
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A few comments

In a few words, something very complicated already for the square.

Also, it’s not clear that nice EFP formulas may exist in other domains.

Furthermore, differently from the curves in the Kenyon–Okounkov
theory, already for ω = 1, the curve is not C∞ at the points of
contact with the boundary of the domain, and for generic ω it is
not even piecewise algebraic

How can we hope for an analog of Kenyon–Okounkov results for
the 6-Vertex Model?

Can we hope to prove the Colomo–Pronko formula for the square?

Can we hope to determine new arctic curves, in domains more
complicated than a square?
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Emptiness Formation: typical configurations

It is instructive to observe a typical configuration in the ensemble
pertinent to EFP(n; r , s).
For (r , s) inside the arctic curve, we see the emergence of a new
(2-cusp) cardioid-like arctic curve (just like in Kenyon–Okounkov)

here n = 200, (r , s) = (80, 90)
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Height function in ASMs

The height representation
is crucial in KO theory.
It also exists in the 6VM
(configs are the same as
in domino tilings, that’s just
the weight that is different)
so this is good news. . .
As in Kenyon-Okounkov,
(and as in “soap bubbles”),
the surface minimizes a functional,
and DWBC correspond to ±1 slopes.
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A reminder on the basic theory of Plane Curves

The envelope E of a one-parameter family of curves {Cz}z∈I is the
(minimal) curve that is tangent to every curve of the family.

If the equation of the family {Cz} is given in Cartesian coordinates
by U(z ; x , y) = 0, the non-singular points (x , y) of the envelope E
are the solutions of the system of equations

U(z ; x , y) = 0 ;
d

dz
U(z ; x , y) = 0 .

We call geometric caustic the
envelope of a family of straight lines.
In this case U is linear in x and y :

U(z ; x , y) = x A(z) + y B(z) + C (z)
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A new hope

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x−1)+

ω

(z − 1)(z − 1 + ω)
y+ lim

n→∞

1

n

∂

∂z
lnAr

n(z) .

C(x , y) is algebraic only at discrete special values of ω
(including 0, 1, 2, 3).

But this has not been derived geometrically!
Maybe, if we could interpret the meaning of the lines {F (z ; x , y)}z ,
we would have a new approach to the Arctic Curve!

This will lead to the Tangent Method
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A new hope

For ω-weighted ASM on the square, the arctic curve C(x , y) is the
geometric caustic of the family of lines, for z in the interval [1,+∞)
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For ω-weighted ASM on the square, the arctic curve C(x , y) is the
geometric caustic of the family of lines, for z in the interval [1,+∞)

F (z ; x , y) =
1

z
(x−1)+

ω

(z − 1)(z − 1 + ω)
y+ lim

n→∞

1

n

∂

∂z
lnAr

n(z) .

But this has not been derived geometrically!
Maybe, if we could interpret the meaning of the lines {F (z ; x , y)}z ,
we would have a new approach to the Arctic Curve!

This will lead to the Tangent Method
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A reminder on interacting NILP

Recall that an ASM can be seen (in 4 different ways) as a
configuration of interacting non-intersecting lattice paths (NILP),
which are in fact non-interacting when ω = 2.
Path weights:

√
ω for each corner, ω−1 for each contact.

The refinement position is the point at which the most external
path leaves the boundary
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The structure of a typical refined ASM

Some thinking suggests how
a typical large ASM of size n
refined at r should look like.

It must be like a typical ASM,
plus a straight line connecting
(0, r) to the Arctic Curve, and
tangent to the Arctic Curve

Indeed, this is what you see in
simulations...

n = 300, r = 250

Let us turn this into the main idea
of the first flavour of the Tangent Method
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The Geometric Tangent Method

κ2 `2

κ1

r

`1

Principle 1: Geometric Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

In the large n limit, a typical config on Λ, conditioned to have
refinement position r along `1, shows the Arctic Curve C of the
unrefined ensemble, plus a straight path from r to the tangency
point on C.
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The Geometric Tangent Method in a picture

n ↑

n + m

→

n ↓

n − 1

←

m

→
1

←

Let us see the consequences of
this principle

In this geometry, there is no
reason for the isolated line to
change direction at row n. Then,
if, according to our principle,

• the arctic curve exists

• it does not depend on m

• the segment reaches the curve
tangentially

then the tangent method pro-
vides a caustic parametrisation
of the curve
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The Geometric Tangent Method in a picture

n ↑

n + m

→

n ↓

n − 1

←

m

→
1

←

The trick is that

Zn,m =
∑
r

An,rBr ,m

where Br ,s =
∑

γ:(0,0)→(r ,−s)

√
ω

#corners

For large n, the sum in r is
dominated by a saddle point r∗.
The resulting straight line
goes through (r∗, 0) with slope
−m/r∗ and is tangent to C.

Varying m/n ∈ R+, the caustic
of these lines makes one arc of
the curve C.
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The Entropic Tangent Method

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

Call Λ′ the domain Λ minus one row and one column, along
the sides containing κ1 and κ2
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The Entropic Tangent Method

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Call A(Λ) the number of configs in Λ, and A(1)(Λ, r), A(2)(Λ, s)
the refined ASM enumerations along `1 and `2

Say X (n) ∼ Y (n) if limn→∞
1
n ln Y (n)

X (n) = O(ln n).
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The Entropic Tangent Method

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Then

F
(1,2)
Λ (r , s) :=

A(1)(Λ, r)A(2)(Λ, s)

A(Λ)A(Λ′)Br ,s
∼ 1

If and only if the segment
(
(0, r), (s, 0)

)
is tangent to C

(otherwise F (r , s) ∼ exp(−n θ(1)))
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The Entropic Tangent Method in a picture

A(1)(Λ, r)A(2)(Λ, s) ∼ A(Λ)A(Λ′)Br ,s iff
(
(0, r), (s, 0)

)
is tangent to C.

Free energy
(logarithm)
of...

A(1)(Λ, r)

+

A(2)(Λ, s)
=

Free energy
(logarithm)
of...

A(Λ)

+

A(Λ′)

+

Br ,s
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The Entropic Tangent Method’s F (r , s)� 1

A(1)(Λ, r)A(2)(Λ, s)�A(Λ)A(Λ′)Br ,s if
(
(0, r), (s, 0)

)
is not tangent to C.

1) segment inside the arctic curve

ln(...)

A(1)(Λ, r)

+

A(2)(Λ, s)
�

ln(...)

A(Λ)

+

A(Λ′)

+

Br ,s
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The Entropic Tangent Method’s F (r , s)� 1
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)
is not tangent to C.

2) segment outside the arctic curve
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The Entropic Tangent Method’s F (r , s)� 1

A(1)(Λ, r)A(2)(Λ, s)�A(Λ)A(Λ′)Br ,s if
(
(0, r), (s, 0)

)
is not tangent to C.

2) segment outside the arctic curve

ln(...)
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A(2)(Λ, s)
�

ln(...)

A(Λ)

+

A(Λ′)

+
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The 2-Refinement Tangent Method

κ2 `2

κ1

r

s

`1

Principle 3: 2-Refinement Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

Call Λ′ the domain Λ minus one row and one column, along
the sides containing κ1 and κ2
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The 2-Refinement Tangent Method

κ2 `2

κ1

r

s

`1

Principle 3: 2-Refinement Tangent Method

Call A(Λ) the number of configs in Λ, and A(1,2)(Λ, r , s), the
refined ASM enumerations along (`1, `2)

Define E
(1,2)
Λ (r , s) by A(1,2)(Λ, r , s) = A(Λ′) Br ,s E

(1,2)
Λ (r , s)

Note that 0 ≤ E
(1,2)
Λ (r , s) ≤ 1 when ω ≥ 1
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The 2-Refinement Tangent Method

κ2 `2

κ1

r

s

`1

Principle 3: 2-Refinement Tangent Method

Then E
(1,2)
Λ (r , s) should have a sharp (∼

√
n) 0-1 transition,

when the segment is inside/outside the arctic curve.

If you can estimate E
(1,2)
Λ (r , s), and see that it has such a

transition, on a convex curve, then you have a proof that this
curve is one arc of the Arctic Curve of the model.
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Three flavours: advantages and disadvantages

So, we have seen that the Tangent Method
exists in three flavours: geometric (G-TM),
entropic (E-TM) and 2-refinement (2R-TM)

G-TM: Simplest one for calculations, easiest to visualise, links
directly to Colomo–Pronko final formula. Seemed hard to make
rigorous, see however the recent work of Amol Aggarwal.

E-TM: Looks crazy at first, but it seems to work pretty well.
No hope for making its assumptions rigorous without extra tricks.

2R-TM: This method is fully rigorous, at least when the
contact-term interaction of the paths is repulsive. But it requires to
calculate Arc(u, v), which is harder than Ar(u). Possibly, in some
models/geometries we will have Ar(u), and never get to Arc(u, v).
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Three flavours of a unique method?

Recall that we have seen that YB implies the symmetry
of Z over spectral parameters in the same bundle. In
some lucky cases this leads to determinantal formulas
like Izergin’s one.

And determinants satisfy the Desnanot–Jacobi identity,
which leads to a recursion for Arc involving Ar and Ac

A nice surprise is that, as experience suggests in a few cases, DJ
“blends our flavours”, and allows to enjoy the rigour of 2R-TM
together with the simplicity of G-TM and E-TM. . .

This works for the 6VM in general, but let us first illustrate this at
ω = 1, where it gets simpler...
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A helping hand from Stroganov

At ω = 1 we just have Br ,s =
(r+s

r

)
, and the 2R-TM definition of

the 0 ≤ En(r , s) ≤ 1 quantity reads

Arc(n + 1; r + 1, s + 1) = A(n)

(
r + s

r

)
En(r , s)

The knowledge of Arc(n; r , s) (the “row-column” doubly-refined
enumeration) is not so explicit as Ar(n; r), but is well under control
(see e.g. z-w Yu. Stroganov, A new way to deal with Izergin-Korepin

determinant at root of unity)

Arc(n; r , s + 1) + Arc(n; r + 1, s)− Arc(n; r + 1, s + 1) = Arr(n; r , s)

Arr(n; r , s)− Arr(n; r − 1, s − 1) = A(n − 1)−1[
Ar(n − 1, r − 1)

(
Ar(n, s)− Ar(n, s − 1)

)
+ (r ↔ s)

]
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To start: a simple transform

We want to find (the bottom-left corner of) the ω = 1 arctic
curve, which satisfies x(1− x) + y(1− y) + xy = 1/4

However, as our goal is to find it through the limit n→∞ of
En(ρn, σn), we shall equivalently represent it on the (ρ, σ) plane,
where it gives (ρ, σ)θ =

(
1−
√

3 tan θ
2 ,

1−
√

3 tan(π
6
−θ)

2

)
, for θ ∈ [0, π6 ]

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5
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Let’s have a look at En(r , s)

Let’s have a look at En(r , s), that shall converge to a step function

It is nicer to look at −
√
n∂(1,1)En(r , s), that shall converge to a

delta-function on our curve.

n = 128
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Let’s have a look at En(r , s)

Let’s have a look at En(r , s), that shall converge to a step function

It is nicer to look at −
√
n∂(1,1)En(r , s), that shall converge to a

delta-function on our curve.

n = 256
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Let’s have a look at En(r , s)

Let’s have a look at En(r , s), that shall converge to a step function

It is nicer to look at −
√
n∂(1,1)En(r , s), that shall converge to a

delta-function on our curve.

n = 512
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A nice accident

In fact, although Arc(n; r , s), the row-column 2-ref enumeration is
well under control, Arr(n; r , s), the row-row 2-ref enumeration is a
bit easier

By a lucky accident, we have

Arc(n; r , s + 1) + Arc(n; r + 1, s)− Arc(n; r + 1, s + 1) = Arr(n; r , s)

Thus we are done if we prove that Arr(n;r ,s)

A(n−1)(r+s
r )
6= exp(−Θ(n))

only on the transform Ĉ of the arctic curve.

Also its gradient along the (1, 1) direction shall concentrate on Ĉ,
and also change sign on this curve.

This can be done easily, as, by Stroganov formula, Arr is just a
Plücker-like combination of A and Ar, and both quantities are ‘round’.
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A nice accident

In fact, although Arc(n; r , s), the row-column 2-ref enumeration is
well under control, Arr(n; r , s), the row-row 2-ref enumeration is a
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By a lucky accident, we have

Arc(n;r ,s+1)+Arc(n;r+1,s)−Arc(n;r+1,s+1)

A(n−1)(r+s
r )

= Arr(n;r ,s)

A(n−1)(r+s
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Thus we are done if we prove that Arr(n;r ,s)

A(n−1)(r+s
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6= exp(−Θ(n))

only on the transform Ĉ of the arctic curve.
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A nice accident

In fact, although Arc(n; r , s), the row-column 2-ref enumeration is
well under control, Arr(n; r , s), the row-row 2-ref enumeration is a
bit easier

By a lucky accident, we have

r
r+s

Arc(n;r ,s+1)

A(n−1)(r+s−1
r−1 )

+ s
r+s

Arc(n;r+1,s)

A(n−1)(r+s−1
r )
− Arc(n;r+1,s+1)

A(n−1)(r+s
r )

= Arr(n;r ,s)

A(n−1)(r+s
r )

Thus we are done if we prove that Arr(n;r ,s)

A(n−1)(r+s
r )
6= exp(−Θ(n))

only on the transform Ĉ of the arctic curve.

Also its gradient along the (1, 1) direction shall concentrate on Ĉ,
and also change sign on this curve.

This can be done easily, as, by Stroganov formula, Arr is just a
Plücker-like combination of A and Ar, and both quantities are ‘round’.
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A nice accident

In fact, although Arc(n; r , s), the row-column 2-ref enumeration is
well under control, Arr(n; r , s), the row-row 2-ref enumeration is a
bit easier

By a lucky accident, we have

r
r+sEn(r − 1, s) + s

r+sEn(r , s − 1)− En(r , s) = Arr(n;r ,s)

A(n−1)(r+s
r )

Thus we are done if we prove that Arr(n;r ,s)

A(n−1)(r+s
r )
6= exp(−Θ(n))

only on the transform Ĉ of the arctic curve.

Also its gradient along the (1, 1) direction shall concentrate on Ĉ,
and also change sign on this curve.

This can be done easily, as, by Stroganov formula, Arr is just a
Plücker-like combination of A and Ar, and both quantities are ‘round’.
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A nice accident

In fact, although Arc(n; r , s), the row-column 2-ref enumeration is
well under control, Arr(n; r , s), the row-row 2-ref enumeration is a
bit easier

By a lucky accident, we have

− r∂−r + s∂−s
r + s

ERW
n−1(r , s) =

Arr(n; r , s)

A(n − 1)
(r+s

r

)

Thus we are done if we prove that Arr(n;r ,s)

A(n−1)(r+s
r )
6= exp(−Θ(n))

only on the transform Ĉ of the arctic curve.

Also its gradient along the (1, 1) direction shall concentrate on Ĉ,
and also change sign on this curve.

This can be done easily, as, by Stroganov formula, Arr is just a
Plücker-like combination of A and Ar, and both quantities are ‘round’.
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A nice accident

In fact, although Arc(n; r , s), the row-column 2-ref enumeration is
well under control, Arr(n; r , s), the row-row 2-ref enumeration is a
bit easier

By a lucky accident, we have

− r∂−r + s∂−s
r + s

ERW
n−1(r , s) =

Arr(n; r , s)

A(n − 1)
(r+s

r

)
Thus we are done if we prove that Arr(n;r ,s)

A(n−1)(r+s
r )
6= exp(−Θ(n))

only on the transform Ĉ of the arctic curve.

Also its gradient along the (1, 1) direction shall concentrate on Ĉ,
and also change sign on this curve.

This can be done easily, as, by Stroganov formula, Arr is just a
Plücker-like combination of A and Ar, and both quantities are ‘round’.
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A look at ∂(1,1)[A
rr(n; r , s)/(A(n − 1)

(
r+s
r

)
)]
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n = 64
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A look at ∂(1,1)[A
rr(n; r , s)/(A(n − 1)

(
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r

)
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A look at ∂(1,1)[A
rr(n; r , s)/(A(n − 1)

(
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r
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Was this too easy? Let us try generic ω then!

So, where is this claimed blend of the E-TM and 2R-TM?

Actually, due to the lucky ‘round’ expressions of the combinatorial
point, and the Stroganov relation among Arc

n (u, v) and Arr
n (u, v),

in this very case we can solve the problem with 2R-TM, and no
mention at all of the other flavours.

However, all the ingredients are there, and the case of generic ω
will illustrate this more clearly. . .

Recall: for a = b = 1 and c =
√
w ,

(1− u)(1− v) An−1

(
Arc
n+1(u, v)− (uv)nAn

)
− uvw An A

rc
n (u, v)

−
(
(1− u)(1− v)− uvw

)
Ar
n(u)Ac

n(v) = 0

Also note: ∑
r ,s

Br ,su
rv s =

(
(1− u)(1− v)− uvw

)−1
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Was this too easy? Let us try generic ω then!

This can be slightly rephrased, by first noting that

1 =
Br−1,s

Br,s
+

Br,s−1

Br,s
+ (w − 1)

Br−1,s−1

Br,s
=: π1,0(r , s) + π0,1(r , s) + π1,1(r , s)

and then looking at the [urv s ] coeff of the DJ relation, divided by
AnAn−1Br ,s . Calling Tx the “shift operators”
Tx f (· · · , x , · · · ) = f (· · · , x − 1, · · · ), this reads, in terms of the
quatities

F (n, r , s) :=
Ar
n[r ]Ac

n[s]

An An−1 Br ,s
of the E-TM and

E (n, r , s) =
Arc
n [r , s]

An−1 Br ,s
of the 2R-TM, in the form

P1(Tr ,Ts ,Tn)E (n, r , s) = P2(Tr ,Ts ,Tn)F (n, r , s)

where P1, P2 are certain polynomials, involving the πij(r , s)’s.
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The structure of the DJ relation

P1(Tr ,Ts ,Tn)E (n, r , s) = P2(Tr ,Ts ,Tn)F (n, r , s)

where P1, P2 are certain polynomials, involving the πij(r , s)’s.
P1 and P2 are crucially different: P1(1, 1, 1) = 0, so it acts as a
“discrete gradient” in a suitable direction of (r , s, n) ∈ N3, while
P2(1, 1, 1) 6= 0. From this we get the “moral” equation

∇E (n, r , s) ' F (n, r , s)

which agrees with the fact that E is (asymptotically) a step
function below Ĉ, while F is (asymptotically) a delta function on Ĉ.

Luckily enough, the inversion of our ∇ operator is sufficiently
under control, so that the hypotheses of the E-TM imply the
consequences of the 2R-TM
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One Arctic Curve on a ‘new’ geometry

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!

b c

a

b
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c

b

a

c

b

c

a
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One Arctic Curve on a ‘new’ geometry

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!

This domain arises from the work of L. Cantini and myself on the
classification of domains for which the Razumov–Stroganov corre-
spondence holds (together with a 1-refined version of it, first con-
jectured by Di Francesco)

As a corollary, at ω = 1 the enumeration of all configurations fac-
torises into

∑
π Ψπ = An · Ψπmin . And Ψπmin is equal the number

of lozenge tilings of a hexagon, Ma,b,c .
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One Arctic Curve on a ‘new’ geometry

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!
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Thus Aa,b,c = Aa+b+cMa,b,c

But in fact more is true: call n = a + b + c ,
Aa,b,c(r) =

∑
r ′ A(n, r − r ′)Ma,b,c(r ′)

Andrea Sportiello The Tangent Method: where do we stand?



The arctic curve for the triangoloid

Very easy to find the position of tangence points κi .
Then, finding the arc between two of these points is harder but
feasible (through the entropic method). . . finally you get a
parametric expression (here a = 1− b − c , p ∈ [0, 1], q = 1− p)

x(b, c , p) =
3− c

2
− 2− p

2
√

1− pq

− (1− c)(1− (pb + qc))− 2pbc

2
√

(pb − qc)2 − 2(pb + qc) + 1
;

y(b, c , p) = x(c , b, 1− p) .
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Analytic continuation

The surprises are not over...
Just like the arc of the Colomo–Pronko Arctic Curve can be
completed to a certain ellipse...

x(1− x) + y(1− y) + xy = 1/4

...we can try to continue an-
alytically our curve. We get
a closed curve composed of
6 arcs, for the intervals p ∈
(−∞, 0], [0, 1], [1,+∞), and a
±-choice for square roots.

This curve is framed into a
hexagonal box, with side-slopes
0, 1,∞ and nice rational tan-
gence points.
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The shear phenomenon

Fact:
Consider a given arc of the triangoloid arctic curve C
(the one “near vertex A”)

The two other arcs of C (the ones “near vertices B and C”)
do coincide with the 45-degree shear of the neighbouring arcs in
the boxed analytic continuation of the first arc.

This fact is of course true also in Colomo–Pronko ellipse, but here
it sounds much more striking: we have two free parameters
(b/a and c/a), and the single arcs do not have a polynomial
Cartesian representation

It is believable that this points towards the universality of the shear
phenomenon, for any tangent point of the arctic curve C on its
boxing domain Λ, for ω = 1 ASM.
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