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Chapter 1

Introduction

1.1 Some concepts in statistical mechanics and phase transitions

1.1.1 Phases of matter

Matter can be found in a large number of different states. Understanding and describing such a
variety in the nature of matter is a central problem not only in physics but also in chemistry and
biology (at the end of the day, we are all complex matter!). Let us give three examples, ranging
from high energies to very low temperatures:

• Cosmologists and particle physicists try to elucidate the nature of matter in the first moments
of the Universe after the Big Bang. The understanding of the different phases of nuclear
matter, such as the quark-gluon plasma is another open challenge.

• At room temperatures, the properties of a type materials known as glasses depend on their
thermal history. In this category we find the familiar structural glasses, but also dense granular

matter or proteins. There is a longstanding debate about their underlying stable phase and
whether there is a phase transition in the hypothetical limit of infinitely long relaxation times.

• At very low temperatures, strongly correlated electrons in metallic layers can form Mott

insulators, fractional quantum-Hall matter, heavy fermion materials. These materials show
unusual (but technologically very useful) properties, such as superconductivity. Even in the
theoretical limit of zero temperature, matter can be found in a variety of phases, depending
on the strength of quantum fluctuations.

The quest for the understanding of the nature of matter has lead to a vast interdisciplinary
cross-fertilization with other fields of physics and mathematics. Field theory, developed to describe
quantum relativistic theories is now a fundamental tool in classical non-relativistic statistical me-
chanics. In the opposite way, the BCS and Ginzburg-Landau theories of superconductivity were
the main ideas leading to the formulation of the Higgs mechanism in particle physics.

New problems often involve developing new mathematical tools, that then can be used in dif-
ferent disciplines. For example, mathematical concepts developed for the study of glassy systems,
such as replica symmetry breaking are now central in computer science. The study of 2d critical
phenomena has given a fabulous push to a very important field in modern mathematics: the geom-
etry of random curves. The mathematical framework developed to understand the movement of a
pollen grain in a fluid (stochastic processes) is now at the core of the analysis of financial markets.
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1.1.2 Symmetry breaking and phase transitions

Given the variety in the phases of phases described in the previous paragraphs, a natural step
forward is to study the nature of the transformations from one to another, i.e., phase transitions.

Phase transitions are usually characterized by the system undergoing a transition from a sym-
metric (disordered) state which incorporates some symmetry of the Hamiltonian to a broken-
symmetry (ordered) state which does not have that symmetry, although the Hamiltonian still
possesses it. Typically, the more symmetrical phase is on the high-temperature side of a phase
transition, and the less symmetrical phase on the low-temperature side. This happens because the
Hamiltonian exhibits all the possible symmetries of the system, whereas the low-energy states lack
some of these symmetries. At low temperatures, the system tends to be confined to the low-energy
states. At higher temperatures, thermal fluctuations allow the system to access states in a broader
range of energy, and thus more of the symmetries of the Hamiltonian.

A good example is given by a spin ferromagnet: the relevant symmetry of the Hamiltonian
is the rotational symmetry in spin space, and the disorder and ordered states are represented by
the paramagnetic and the ferromagnetic states, respectively. In the former, there is no preferred
direction for the magnetic moments of the spins. The net magnetization is therefore zero, and
the state has the same spin rotational symmetry as the Hamiltonian. That is, if we rotate the
coordinate system in spin space, then the system still looks the same. In the ferromagnetic phase,
there is a preferred direction for the spins, and this is the direction which the overall magnetization
will point in. The state therefore does no longer respect the spin rotational symmetry, and we say
that the symmetry is spontaneously broken (spontaneously in order to distinguish this phenomenon
from the explicit breaking that occurs if we apply an external field).

The order parameter is a quantity that measures the degree of order in the system. It is
usually defined as zero in the disordered phase and non-zero in the ordered one. For example, in a
ferromagnetic system the order parameter is the net magnetization.

1.1.3 Classification of phase transitions

A phase transition is then characterized by an abrupt change in value of the order parameter
given a smooth change of a control parameter, that is in general the temperature or some other
thermodynamic field. This abrupt change implies a discontinuity in the nth derivative of the free
energy density at the transition point. The traditional classification of phase transitions, due to
Ehrenfest, group phase transitions according to the degree of non-analyticity involved.

• First order phase transitions exhibit a discontinuity in the first derivative of the free energy
with a thermodynamic variable. The various solid/liquid/gas transitions are classified as
first order transitions because they involve a discontinuous change in density (which is the
first derivative of the free energy with respect to the chemical potential). First-order phase
transitions involve a latent heat: during such a transition, a system either absorbs or releases
a fixed amount of energy. First-order transitions are associated with mixed-phase regimes
in which some parts of the system have completed the transition (jumping over the energy
barrier) and others have not. This phenomenon is familiar to anyone who has boiled a pot
of water: the water does not instantly turn into gas, but forms a mixture of water and water
vapor bubbles.

• Second order phase transitions Second-order phase transitions are continuous in the first
derivative but exhibit a discontinuity in a second derivative of the free energy. These include
the ferromagnetic phase transition in materials such as iron, where the magnetization (which
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is the first derivative of the free energy with the applied magnetic field) increases continu-
ously from zero as the temperature is lowered below the Curie temperature. The magnetic
susceptibility, the second derivative of the free energy with respect to the field, changes dis-
continuously. They have no associated latent heat. It turns out that in a continuous phase
transition, thermodynamic quantities diverge as power-law functions of the control param-
eter. It is customary to describe the phase transition by its exponents, known as critical

exponents. It is a remarkable experimental fact that second order phase transitions arising in
different systems often possess the same set of critical exponents. This phenomenon is known
as universality. For example, the critical exponents at the liquid-gas critical point have been
found to be independent of the chemical composition of the fluid. More amazingly, they are
exactly the same as the critical exponents of the ferromagnetic phase transition in uniaxial
magnets. Such systems are said to be in the same universality class. Universality is naturally
explained in the framework of renormalization group theory: the thermodynamic properties
of a system near a phase transition depend only on a small number of features, such as di-
mensionality and symmetry, and are insensitive to the underlying microscopic properties of
the system. The fact that the critical behavior is independent of the microscopic details of
the Hamiltonian is due to the diverging correlation length. In order to correctly describe the
universal critical behaviour it is then sufficient to work with an effective theory that keeps
explicitly only the large-distance behavior of the original Hamiltonian.

• Infinite order phase transitions are continuous phase transitions, but break no symmetries.
The most famous example is the Kosterlitz-Thouless transition in the two-dimensional XY
model.

1.1.4 Thermal vs. Quantum phase transitions

A fundamental question is the following: to what extent is quantum mechanics necessary in order to
understand critical phenomena, and to what extent will classical physics suffice? Generally speak-
ing, quantum mechanics is important whenever the temperature goes below some characteristic
energy of the system under consideration. For instance, in an atom, the characteristic energy is the
Rydberg energy. Let us assume its value is hωc. It then follows that quantum mechanics will be
important when kBT < hωc. This indicates that for any phase transition that takes place at a non-
zero temperature, the critical behavior asymptotically close to the transition can be described by
classical physics. These phase transitions are called classical or thermal transitions. What drives
the correlation length to infinity are thermal fluctuations, which become very large close to the
critical point.

In constrast, we can think of a transtion that occurs at zero temperature, and that is triggered
by varying some non-thermal parameter (e.g. a coupling constant in the microscopic Hamiltonian).
These transitions are called quantum or zero-temperature phase transitions. Even at zero tempera-
ture a quantum-mechanical system has quantum fluctuations and therefore can still support phase
transitions.

Note that some phase transitions in systems that are considered as the paradigm of quantum
mechanics, like the superconducting transition in mercury or the λ-transition in helium are thermal
transitions. Indeed, in both cases the critical behavior (but not the physical mechanisms or the
properties of either phase) can be understood enterely using classical physics. By the way, this
is the very reason for the fact that there are three Nobel Prizes for the theoretical description
of superconductivity. In 1950, the phenomenological theory of superconductivity was devised by
Landau and Ginzburg. The complete microscopic theory of superconductivity was finally proposed
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in 1957 by Bardeen, Cooper, and Schrieffer. In 1959, Lev Gorkov showed that the BCS theory
reduced to the Ginzburg-Landau theory close to the critical temperature.

1.1.5 Equilibrium vs. Out-of-Equilibrium statistical mechanics

• Equilibrium dynamics. Usually, when studying equilibrium properties of a system, it is not
necessary to know its microscopic dynamics. The ergodic theorem states that computing
ensamble averages is equivalent to taking time averages. This equivalence also allow us to
perform simulations in which we explore very efficiently the phase space by implementing non

physical movements.

• Out of equilibrium, but close to equilibrium: the linear regime. If we slightly deviate a sys-
tem from its equilibrium state by applying an instantaneous perturbation, the system will
then relax to the equilibrium state by dissipating the energy transfered in the kick. The idea
of relating the amplitude of this dissipation to the amplitude of fluctuations in equilibrium,
dates back to Einstein’s work in Brownian motion. Later, Onsager, established the hypoth-
esis that the relaxation of a macroscopic nonequilibrium perturbation follows the same laws
which govern the dynamics of fluctuations in equilibrium systems. This results represents a
fundamental tool in non-equilibrium statistical mechanics since it allows one to predict the
average response to external perturbations, without applying any perturbation. In fact, via
equibrium simulations one can compute correlation functions at equilibrium and then, using
the Green-Kubo formula, obtain the transport coefficients. Note the difference between this
and to use directly the definitions of transport coefficients: one perturbs the system with an
external force or imposes driving boundary conditions (e.g. a shear) and observes the relax-
ation process. It is in the framework of the out of equilibrium linear regime where Onsager
developed the ideas on Irreversible Linear Thermodynamics.

• Far from equilibrium in a Stationary state. Non-equilibrium steady states. Imagine that we
coupled our system to two thermal reservoirs with different temperatures or two particle
reservoirs with different chemical potentials. It is reasonable to assume that after a transient
interval, a steady state is eventually reached. Although its statistical properties will be time-
independent, this state will be very different from the equilibrium one. The fluctuations of far
from equilibrium systems are much richer than equilibrium ones because time-reversibility is
lost, and the Gibbs-Boltzmann distribution does not hold. This kind of states are the natural
playground of the recently developed Fluctuation Theorems [1, 2, 3].

• Crossing a phase transition out of equilibrium. Another possibility to force a system to a
far from equilibrium situation is by changing rapidly some of the control parameters, in
such a way that we force it to cross a phase transition. The system will subsequently relax
to the equilibrium state corresponding to the new values of the control parameters. This
relaxation usually exhibits slow dynamics and the relaxation time eventually diverges in the
thermodynamic limit.

The relaxation process will depend on the nature of the transition crossed. Let us consider first
the case of a system crossing a second order phase transition. Due to symmetry breaking,
in the low temperature phase there will exist several different ground states in which the
order parameter takes different values. In an Ising ferromagnet we have two minima in the
ferromagnetic phase: all the spins pointing up or all the spins pointing down. As we force
our system to cross the transition at a finite velocity (or even instantaneously in a quench),
different regions of the system will choose different minima of the free energy. This leads to the
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appeareance of topological defects. Note that the local choice of the minima is instantaneous
when crossing a second order phase transition, because there is no energy barrier to overcome.
In the Ising ferromagnet this example corresponds to the appearance of regions where the spins
are parallel and pointing either up or down. These regions are called domains and their walls

are the corresponding defects.

In order to reach the equilibrium state, the system needs to eliminate these defects. This
process is known as coarsening or phase ordering dynamics. One of the most striking features
of this out of equilibrium evolution is a dramatic slowing down in the dynamics. Looking
at two-times quantities that depend on two times s and t (where t > s), we observe that
the decay as a function of t is slower for larger s. This phenomenon is usually referred to as
ageing: older samples respond more slowly. An important aspect of ageing systems is that
the equilibrium fluctuation-dissipation theorem (FDT) does not hold. Such violations of the
FDT have been the starting point for the introduction of fruitful ideas such as non-equilibrium
fluctuation-dissipation relations and effective temperatures [4, 5, 6, 7].

We can also think of a system crossing a first order phase transition. As discussed before,
first order phase transitions are characterized by the existence of metastable states in the
phase diagram region defined by the spinodal lines. Metastability is the consequence of the
existence of energy barriers that the system needs to overcome in order to reach the low
temperature phase. Two well defined time intervals characterize then the relaxation process:
first, the system needs to wait until a large enough thermal fluctuation that allows it to cross
the energy barrier is produced (nucleation). Then, the low temperature phase can grow to
cover all the system.

1.1.6 Different levels in the description of the dynamics

• Microscopic equations. In principle, the true dynamics of a system is specified by its micro-
scopic equations of motion. Depending on the system under consideration, they can be:

– Classical equations of motion: Newton or Hamilton equations (e.g., as it is usually
considered in “soft-matter” physics).

– Quantum equation of motion: Heisenberg or Schöedinger equations (e.g., as it is usually
considered in “hard” condensed matter problems).

– Equations of motion for the fields (e.g., as it is usually considered relativistic quantum
field theories).

However, solving the dynamics in this fully microscopic approach is rarely viable for many
body systems, even numerically. Moreover, in some situations only a few number of all the
degrees of freedom play an interesting role. We need then to introduce some kind of “coarse-
grained” dynamics. The new dynamics are usually constructed by integrating out the fast

degrees of freedom in the problem, which give rise to some effective stochasticity:

• Master equation. This approach makes use of the representation of the dynamics as a stochas-
tic process defined in the space of configurations of the system. At this description level, one
has to assign the transition rates between different configurations on the basis of physical
considerations. Then, the master equation rules the time evolution probability of finding the
system in a given state.
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• Mesoscopic level: Langevin equation. A phenomenological description in terms of mesoso-
copic variables is in some cases preferable, since it focuses directly on those quantities that
are expected to determine the dynamical properties at length and time scales (referred as
mesoscopic) that are much larger than the microscopic ones but still small compared to the
macroscopic one (set by the dimension of the sample). A viable approach to dynamics, which
was first succesfully applied to Brownian motion, consists of a description taking advantage
of the separation between the typical time scale of fast and slow dynamical processes. This
separation of time scales emerges naturally in many problems. An example is a colloidal
suspension in a fluid, where the molecules of the fluid play the role of the heat bath while the
colloidal particles move much slower. It is natural to assume that the dynamics of the meso-
scopic observables can be described as a result of an effective slow deterministic drift towards
a stationary state (equilibrium or not) and of a stochastic force that sums up the effects of
the fast microscopic fluctuations. The mathematical implementation of this idea is known
as the Langevin equation. Of course, this description fails to reproduce the dynamics taking
place at microscopic time and length scales. Hence, when the macroscopic physics is crucially
related to some microscopic events, such a mesoscopic description is not expected to capture
the relevant physical mechanisms. During this work, we will consider systems for which the
mesoscopic description is feasible. The Langevin equation is rarely derived rigorously from
the underlying microscopic dynamics, and some ad hoc assumptions must be done. To com-
pensate for insufficient microscopic information, great care with physical intuition goes into
choosing the order parameter and its equations of motion.
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1.2 Goals of the thesis and results presented in the manuscript

The goal of this thesis was to gain some understanding in the dynamics of systems forced to cross

a phase transition out of equilibrium. This being a vast research field, we have studied in detail
some particular problems summarized in the next paragraphs.

1.2.1 Geometry of domain growth in 2d

When a system is instantaneously quenched through a second order phase transition, the relaxation
proceeds by the anihilation of defects. In this case, defects are the walls separating the domains
where the order parameter takes one of the two possible equilibrium values. This dynamical process
is known as “domain growth” or “coarsening” [8].

In this manuscript we present and discuss analytical results, simulations and experiments in
the phase ordering dynamics of 2d systems. A general idea along our work will be to study this
phenomenon from a geometrical point of view. This project has been done in collaboration with
Alan Bray (Manchester), Jeferson Arenzon (Porto Alegre) and Leticia Cugliandolo (LPTHE, Paris).

The structure of the manuscript is the following:

Chapter 2 is a general introduction to phase ordering dynamics. We present in detail the
phenomenology of coarsening phenomena and the state of the art.

In chapter 3 we obtain some exact results for the coarsening dynamics of a non-conserved scalar
field in two dimensions. In particular, we obtain the distribution of the areas enclosed by the domain
walls at any moment during the evolution. This result provides the first analytical proof of the
dynamical scaling hypothesis for two-dimensional curvature driven coarsening. We also compute
some other geometrical quantities such as the distributions of domain areas and lengths, and the
fractal properties of the boundaries.

In chapter 4, we analyze the coarsening dynamics of two-dimensional models with non-conserved
order parameter under the effect of weak quenched disorder. By “weak disorder” we mean random-
ness that does not modify the character of the ordered phase. An important property of the domain
growth in systems with weak disorder is the so-called “super-universality hypothesis” that states
that once the correct growing length scale is taken into account, all scaling functions are inde-
pendent of the disorder strength. In particular, the scaling functions of the disorder system are
the same than the ones corresponding to the pure (non disorder) one. Having obtained the exact
scaling function for the distribution of wall enclosed areas in the pure case, we can then put to
the test the super-universality hypothesis. Comparing the scaling function of the disorder case,
obtained numerically, with the ones obtained analytically in the pure case, we conclude that the
super-universality hypothesis applies to the random bidimensional ferromagnet.

In chapter 5 we extend the geometrical analysis previously developed to the domain growth in
systems where the order parameter is a conserved quantity (e.g. demixing in binary fluids). This
work was done in collaboration with Yoann Sarrazin, student at the Master in Theoretical Physics
of Complex Systems at Paris 6 and whom I co-supervised during his stage.

In chapter 6 we present an experiment in the coarsening dynamics of liquid crystals. We
performed this experiment in collaboration with the group lead by Ingo Dierking (Manchester).
When the liquid crystal is confined in a quasi-2d layer and an electric field is applied between the
top and the bottom plates of the layer, domain growth is observed. Comparing the experimental
measurements with our predictions, we conclude that the coarsening dynamics in this liquid crystal
is a curvature-driven process. Moreover, we show that our analytical results can be used as an
experimentally-useful test for this dynamical universality class.
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The manuscript finishes with chapter 7, in which we discuss the global picture of domain growth
in 2d emerging from our studies.

The results presented in this manuscript have been published in a series of papers [9, 10, 11, 12],
and [13] to be published.

1.3 Results not presented in the manuscript

1.3.1 Defect formation through a passage by the phase transition. Revision of

the classical Kibble-Zurek mechanism.

Crossing a symmetry breaking phase transition at a finite velocity causes the formation of topolog-
ical defects. A natural question is then to understand how the density of defects created depends
on the velocity at which the transition is crossed.

This problem has been mainly investigated by cosmologists, trying to understand the first
moments of the universe. After the Big Bang, as the fireball expands, the temperature of the
universe decreases. These could have lead the universe to go through a serie of symmetry breaking
phase transitions, which precise number is still matter of debate. As the typical temperatures of
these phase transitions are orders of magnitude higher than ones that can be obtained in particle
accelators, the study of the defects is the only possible way to understand the phase transitions in
the early universe [14, 15, 16, 17].

In the late 70’s, Tom Kibble [18] proposed a theoretical framework to compute the density of
defects as a function of the cooling rate at which the transition is crossed. Some years later, W.
Zurek pointed out that, as the Kibble mechanism was only based on universality arguments, it
could be possible to test it by performing experiments in condensed matter systems [19, 20].

Despite a vast experimental interest, the Kibble-Zurek (KZ) mechanism has never been proven
nor refuted. Some of the most notorious experiments are [21, 22, 23]. A complete review of other
experiments can be found in [24]. The KZ mechanism has also been applied very recently to the
study of quantum non-dissipative systems crossing a zero temperature phase transition [25, 26, 27,
28].

In collaboration with Giulio Biroli (Saclay) and Leticia Cugliandolo we proposed a critical
revision of this classical framework. We were concerned by some of the assumptions used by KZ.
In particular, the critical dynamics and the phase ordering dynamics in the ordered phase are not
taken into account in their arguments. We have proposed a new scaling, which includes the effect
of both process. We have tested our scaling with an analytical calculation in the O(N) model, for
N → ∞ and Monte Carlo simulations in the 2d Ising model. This work will be published soon [29].

1.3.2 Geometrical properties of critical parafermionic spin models

The understanding of critical phenomena has been one of the central issues in statistical mechanics
for the last decades. A prominent role has been played by the investigation of 2d systems, because
they are believed to enjoy conformal symmetry. Conformal Field Theory (CFT ) provides tools
for the exact computation of all the critical exponents [30, 31]. In spite of its fundamental role,
conformal invariance of 2d critical systems remains a conjecture. Rigorously proving that scale
invariance implies conformal invariance has been a long-standing challenge in modern mathematics.
The recent introduction of the so-called Schramm-Loewner-Evolution (SLE) has allowed the proof
of conformal invariance in some models [32].

Another issue that arises in the study of 2d conformal invariant theories is the role played
by additional symmetries. The so-called, non-minimal CFTs obey conformal symmetry but also
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additional symmetries. These additional symmetries are for example the SU(2) spin-rotational
symmetry in spin-chains [33] or replica permutational symmetry in disordered systems [34, 35].
By now, the connexion between SLE and minimal CFT s is completely understood [36]. Some
attempts have been made recently to extend the connexion to non-minimal CFT s [37, 38], but the
geometrical properties of non-minimal CFT s are still poorly understood.

In collaboration with Marco Picco (LPTHE, Paris) and Raoul Santachiara (LPT ENS Paris,
now at Orsay) we studied the geometrical properties of spin models with an additional ZN symmetry
under the cyclic-permutation of the spin states.

For N = 2 and N = 3 these models correspond to the well known Ising and three-states
Potts models, whose critical points are described in the continuum limit by minimal CFT s. All
the physical properties of these models are known to be encoded in the percolation properties of
geometrical objects known as FK clusters [39, 40, 41, 42, 43, 44, 45].

ZN models with N ≥ 4 admit critical points described by non-minimal CFT s [46, 47, 48]. In
the cases N = 4 and N = 5, we showed numerically that the FK construction is no longer valid,
since these objects do not percolate at the critical point of the ZN model. We also computed the
fractal dimension for spin clusters that do percolate at criticallity. The results obtained point out
important differences in the behavior of the geometrical clusters between the cases N = 2 and
N = 3 and non-minimal CFT s. This can be traced back to the fact that, for N ≥ 4, the internal
ZN degrees of freedom play a fundamental role. Our results have been published in [49].

1.3.3 Relaxation in spatially extended chaotic systems

It is believed that statistical mechanics has its origins in the fundamental equations of motion of
many body systems. For classical systems, equations of motion are deterministic and statistical
ensembles are expected to be effective descriptions of the system. But it still remains an open
problem to rigorously prove that the solutions of the fundamental equations really yield the same
results as the statistical mechanics ones.

In principle, the deterministic equations of motion should describe not only the equilibrium
properties of a system but also the dynamical ones. As discussed in Sect. (1.1.6), in statistical
mechanics, dynamics is often given by some effective stochastic equation of motion, e.g., Langevin
equations or Monte Carlo algorithms. So the question is up to what point the chaotic deterministic
equations of motion are equivalent to Langevin equations. Chaos is suggested to be responsible
of the way microscopic deterministic laws of motion lead to non-equilibrium phenomena, such as
transport and entropy production.

In collaboration with Eytan Katzav (LPS ENS Paris, now at King’s College, London), we ana-
lyzed the relaxation dynamics of coupled map lattices [50, 51, 52, 53]. Our results show that these
deterministic chaotic systems share many properties with their stochastic counterparts. Various
links with out of equilibrium statistical mechanics problems can be drawn to understand this type
of extensively chaotic regimes. A preprint is in the course of preparation [54].

1.3.4 Coarsening in the Potts model

In collaboration with Marcos Loureiro (Porto Alegre), Jeferson Arenzon, Alan Bray and Leticia
Cugliandolo, we studied the coarsening dynamics of the Potts model. The Potts model out of
equilibrium presents rich applications in soft-condensed matter, since it describes the dynamical
properties of a variety of complex materials such as foams and cellular tissues [55].

From a theoretical point of view, the study of the Potts model allowed us to understand how
the coarsening proceeds when dealing with more than two competing ground states. In [56], we
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showed that although the underlying dynamical process is the same as the one for the systems with
only two competing states, the geometrical properties are quite different in both kinds of systems.

1.3.5 Equilibrium and Out-of-Equilibrium dynamics of the Blume-Capel Model

To better understand the effects of the different kinds of phase transitions in the relaxation dynam-
ics, we have also started the study of the Blume-Capel model [57, 58]. Introduced to mimic phase
transitions in magnetic mixtures, the phase diagram of this model shows both first and second order
transition lines, separated by a tricritical point. It is therefore possible to explore the interplay be-
tween coarsening (crossing the second order phase transtion) and nucleation and growth (crossing
the spinodal lines).

Before starting the study of the out of equilibrium dynamics, we needed to obtain a precise
knowledge of the equilibrium phase diagram. We performed first an analytical mean field analysis
which gave us a rough but very useful idea of the properties of the model. Then, by using powerful
simulation techniques such as the Wang-Landau algorithm [59] and finite size scaling [60], we were
able to reconstruct very precisely the phase diagram of the Blume Capel model.

This work is being done in collaboration with Camille Aron (LPTHE), Leticia Cugliandolo and
Marco Baitsy-Jessi, student at the Master in Theoretical Physics at Ecole Normale Superieur and
whom I co-supervised during his stage. The project is still in progress and we hope to publish our
results at some time in the future.



Chapter 2

Coarsening: introduction and state of

the art

2.1 Phenomenology of coarsening

Let us suppose that we instantaneously quench a system initially in equilibrium at a high tem-
perature T0, to a temperature T equal or lower than the critical one. Due to symmetry breaking,
the order parameter must choose one between the new possible equilibrium free energy minima.
Because of the instantaneous quench, different parts of the system cannot communicate to each
other which minima they choose. The order parameter will then take different values in different
regions of the space and topological defects will appear. This mosaic of ordered phases will evolve
in time, since distinct broken-symmetry phases compete with each other in the quest to select the
low-temperature thermodynamic equilibrium state. As a result of this competition, equilibrium is
never reached for an infinite system. This out-of-equilibrium process is known as “coarsening” or
“phase ordering dynamics”.

The simplest example of a system exhibiting phase ordering kinetics is a ferromagnet quenched
from a temperature above its critical temperature to a temperature below it. After the quench
such a system is brought into a thermodynamically unstable state. The two possible phases are
characterized by a positive and a negative magnetization respectively. Since both of the coexistent
(positive and negative) phases are equally likely to appear, the system consists of domains of these
two phases. During the phase ordering towards one of the two equilibrium states, the domains
coarsen and the system orders over larger and larger length scales.

Note that phase ordering is typical of second order phase transitions. In the course of a first
order phase transition, a new broken symmetry phase nucleates after the temperature falls some
distance below the transition temperature. Separated islands of the new phase form independently
and expand, resulting in a local selection of the broken symmetry vacuum. Second order phase
transitions are different. Here, the phase transition occurs simultaneously throughout the volume,
because there is no energy barrier to overcome. The resulting broken symmetry phase will contain
many distinct regions with different choices of the vacuum.

A central feature of this out-of-equilibrium evolution is the experimental observation that the
system “looks statistically the same” at different times. Only its overall length scale changes. This
observation is the origin of the so-called dynamical scaling hypothesis. The hypothesis states that
a system in the late stages of coarsening is described by a single characteristic length scale R(t)
that grows with time. As a result, for any observable, all time-dependencies in are encoded in R(t)
and all length-dependencies appear scaled by this typical length. The growth law R(t) depends

15
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critically on the nature of the order parameter and the spatial dimensionality of the system as well
as the presence of conservation laws.

The empirically observed scaling behaviour, involving the single length scale R(t), suggests
that a renormalization group (RG) treatment might be fruitful [61]. The foundations of RG treat-
ments of coarsening are however not as robust as for equilibrium critical phenomena. This is
due to the nonperturbative character of the dynamical problem: there is not an upper critical
dimension for this dynamical process [8]. Although an approach based fully on the RG is not
available, complementing RG techniques with a physically motivated ansatz can give a lot of useful
information. These kind of procedures suggest that there are basically two different coarsening
scenarios [8, 62, 61, 63, 64, 65, 66]:

• For T < TC , phase ordering proceeds essentially as for T = 0 (appart from some T -dependent
prefactor).

• For T = TC , phase ordering is different (usually referred as “critical coarsening”).

Note that when quenching to a temperature T > Tc, the dynamics is trivial because the system
relaxes exponentially fast to thermal equilibrium, even in the thermodynamic limit. In the following
we will only discuss the T < TC case.

The dynamical scaling hypothesis supports the idea of a universal character of the phase ordering
dynamics, that would allow for a definition of non-equilibrium universality classes where quantities
would be the same in the whole low temperature phase. The observables will be independent of
microscopic details and only associated with the Hamiltonian symmetries, dimension or equations
of motion. For example, it has been long understood that the results depend crucially on whether
the order parameter is conserved or not.

The existence of a T = 0 temperature fixed point agrees with the physical idea that T only
determines the size of the thermal islands inside the domains, leaving unchanged large-scale long-
time properties of the interface motion. When domains are large, their bulk is in quasi-equilibrium in
one of the broken symmetry phases, while the motion of the boundaries keeps the system globally
out of equilibrium. At a given time t, non-equilibrium effects can be detected by looking over
distances larger than R(t), because in this case one or more interfaces will be observed. In terms of
time, non-equilibrium effects can be observed for times t and s separated enough t− s > t, because
in this time scale at least one interface has typically crossed the observation region [67].

A lot of interest in the study of coarsening has been recently generated because of its close
relation with the dynamics of structural and spin glasses. Coarsening problems are the first step
in the long-standing quest for a coherent theoretical picture of glassy dynamics. Just like glassy
systems, coarsening systems show slow dynamics. One of the defining features of slow dynamics is
ageing : observables that depend on two times (t and s, where t > s) do not depend on t−s, even for
long times. Furthermore, their decay as a function of s is slower for larger t. Ageing behaviour has
been experimentally observed in a variety of systems [68]. An important aspect of ageing systems
is that the fluctuation-dissipation theorem (FDT) does not hold. Such violations of FDT have been
the starting point for the introduction of fruitful ideas in the field of glassy systems such as non-
equilibrium fluctuation-dissipation relations and effective temperatures [4, 5, 6, 7]. These ideas are
under experimental investigation in glassy and granular materials [69, 70, 71, 72]. Violations of the
FDT are not peculiar to glassy or disordered systems: a magnetic material undergoing coarsening
displays non-trivial fluctuation-dissipation relations.

The study of defect dynamics is another important issue. As explained before, topological
defects are formed when crossing the symmetry breaking transition because the order parameter
chooses different equilibrium states in different regions of the space. If the order parameter is a
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scalar field, the topological defects are domain walls. Domain walls are surfaces on which the order
parameter vanishes and which separate domains of different equilibrium phases. In the case of a
vector field, depending on its number of components and the dimension of the space, topological
defects can be vortices, strings, monopoles or textures. A physical approach to coarsening is based
on studying the structure and dynamics of the topological defects. In some cases, ordering occurs
by mutual defect-antidefect annihilations, such as in the Ising chain, where the up and down
domains are separated by point-like interfaces performing random walks. In other cases, such as in
curvature-driven coarsening, domain walls shrink and disappear.

2.2 Mathematical formalism

Now that the phenomenology of phase ordering has been discussed, let us introduce the mathemat-
ical framework used to study it.

In view of the universality properties supported by experimental data, it is possible to study
this collective behaviour in a formal Landau approach to phase transitions. Indeed, as long as one
is interested in the behaviour at mesoscopic lengths and time scales, an effective Hamiltonian which
reflects the internal symmetries of the underlying microscopic system can be used.

In the following, we will consider a scalar order parameter φ(~x, t), short range interactions and
a second-order phase transition to an ordered state with two possible equilibrium phases. The
Hamiltonian is then given by,

H[φ] =

∫

ddx

[

1

2
(∇φ)2 +

r

2
φ2 +

g

4
φ4

]

(2.1)

with r < 0 and g > 0.
Because of the additional universality of the dynamics, effective equations of motion can be

introduced as well. A classification of several dynamical universality classes was done in the early
seventies and is reviewed in the classical paper of Hohenberg and Halperin [73]. These universality
classes have been named with capital letters, from A to J . In the following we introduce the two
dynamical universality classes that we will consider in our work.

• Model A is constructed phenomenologically by asserting that the order parameter changes at
a rate that is proportional to the local thermodynamical force δH[φ]

δφ(~x,t) . The system flows down
the free energy gradient until one of the potential minima is reached. The dynamics is then
dissipative: the equation of motion contains only a first derivative on time

∂φ(~x, t)

∂t
= − δH[φ]

δφ(~x, t)
+ η(~x, t) (2.2)

The white noise η(~x, t) represent the thermal agitation generated by a thermal bath at tem-
perature T . This noise is a Gaussian distributed random scalar field with zero mean and
correlation,

〈 η(~x, t)η(~x′, t′) 〉 = 2T δd(~x− ~x′) δ(t− t′) . (2.3)

Equation (2.2) without the noise term is the well known time-dependent Ginzburg Landau
equation. A system described by a nonconserved scalar field in d > 2 coarsens by curvature
domain growth. The domain growth law in this case is R(t) ∼ t1/2. At the basis of this result
is the so called curvature driven mechanism: the existence of a surface tension implies a force
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per unit of boundary area proportional to the mean curvature, which, in turn, is proportional
to the inverse of L(t). For model A this readily gives the t1/2 growth law independent of
dimensionality. Real systems belonging to this dynamical universality class are for example
anisotropic alloys and magnets [73].

• Model B. In some cases model A is not suited to describe the dynamics of physical systems.
For instance, when the order parameter is related to the density of particles in a fluid, as it
is the case when studying the liquid-gas transition, one expects a continuity equation to be
obeyed. The simplest model in which such a local conservation law is implemented is known
as model B, according to the classification of [73]. At a phenomenological level, we seek a
dynamical equation that ensures that the flux of atoms of each element of the alloy can be
expressed in the form of a conserved continuity equation

∂φ(~x, t)

∂t
+ ∇ ~J(~x, t) = 0 . (2.4)

We have considered again dissipative dynamics so that the equation of motion is first order
in time. The simplest choice for ~J that involves gradient descent in the free energy landscape
is ~J(~x, t) ∝ −∇ δH[φ]

δφ(~x,t) . The equation of motion for model B is then

∂φ

∂t
= ∇2

(

δH[φ]

δφ(~x, t)

)

+ η(~x, t) . (2.5)

The stochastic field η(~x, t) represents a thermal Gaussian noise of zero average and correlator
given by

〈η(~x, t)η(~x′, t′)〉 = −2T ∇2δd(~x− ~x′)δ(t − t′) (2.6)

Equation (2.5) without the noise term is called the Cahn-Hilliard equation.

2.3 State of the art

The scaling hypothesis has been well-verified experimentally and numerically. But it has only
been analytically proven in a small number of solvable simple cases, such as the one-dimensional
ferromagnetic chain or the O(N) model in the large N limit. Verifying the scaling hypothesis, and
computing the scaling functions, has been a longstanding challenge. Let us mention some of the
strategies used to study phase ordering dynamics:

• Scaling arguments. Imposing the scaling hypothesis (without proving it) allows one to find
useful results. One example we already mentioned is the determination of the t1/2 growth law
for model A.

• Exact results. There are a few exactly solvable models of phase ordering dynamics. They
are far from experimentally interesting systems, but give us some ideas that survive in more
relevant models. In particular, they are the only cases where the dynamical scaling hypothesis
has been proven. Examples of these models include the O(N) model with N → ∞ for both
conserved and non-conserved dynamics [74], the one-dimensional Ising model with Glauber
dynamics [75, 76] or the 1d-XY model [77].

• Field theoretical approach. A number of field-theoretical approaches to find an approximate
form of the scaling functions of two-point and two-time correlations have been proposed but
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none of them is fully successful [8]. Some of them rely on a path-integral description of
stochatic processes. The procedure that allows the construction of the path integral asso-
ciated with a given Langevin equation was developed by Martin, Siggia and Rose [78] and
De Dominicis and Peliti [79] (a very useful review is [80]). From there, non-perturbative
approaches like 1/N expansions can be used [8].

• Simulations in spin models. Most of the analytical results are based on continuous models
where the usual tools of differential analysis can be used. But other useful information can
be obtained from Monte Carlo simulations in discrete spin models. The equivalence between
both approaches relies on the fact that at a coarse-grained level, the order parameter of spin
models take a continous character and can be well described in terms of partial differential
equations. Monte Carlo techniques are, in principle, well suited to study equilibrium proper-
ties but not out-of-equilibrium ones. Note that the power of Monte Carlo simulations relies
on the ability to explore the phase space by performing non-physical movements. But due
to the dynamical universality of coarsening, some Monte Carlo algorithms also belong to the
dynamical universality classes discussed previously. In particular, kinetic spin models on the
lattice with Glauber dynamics belongs to model A, and with Kawasaki dynamics, to model
B.

2.4 Our work

The goal of our work is to compute the observables which describe the geometry of the coarsening
dynamics of a 2d system with a scalar order parameter. In particular, we will compute the scaling
functions for the distributions of domain areas and boundary lengths. We will also describe the
evolution of the morphology of the domains.

In the next chapters we will address the following issues:

• Prove the dynamical scaling hypothesis in d = 2 curvature-driven coarsening.

• Discuss the role played by different initial conditions T0.

• Discuss the role played by the working temperature T .

• Discuss the effects of weak disorder.

• Disuss the role played by conservation laws (model A vs. model B).

• Discuss the experimental applications of our results.
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Chapter 3

Non-conserved dynamics

3.1 Introduction: Hull-enclosed areas and domain areas

In this chapter we present some exact results for the coarsening dynamics of a non-conserved

scalar field in two dimensions. Furthermore, these results provide the first demonstration of the
dynamical scaling hypothesis for this system. We will discuss the phase ordering dynamics from a
geometrical point of view. The geometrical observables which we will study are the distributions of
two characteristic areas, the domain area and the hull enclosed area, and their associated lengths,
the domain perimeter and the hull perimeter.

In a spin system, a domain is defined as a connected region where the spins are aligned. The
domain area is the number of spins belonging to the domain. In a continuous model, a domain is
defined as a connected region where the order parameter φ(~x, t) takes the same sign, the domain
area being the surface of this region. Note that a domain can have holes. Hulls are the domain
boundaries. A hull enclosed area is defined as the full interior of a domain boundary, irrespective of
there being other interfaces and thus regions of the opposite phase within. A hull enclosed area has

no holes. The number of hulls is always equal to the number of domains because one can associate
a hull to each domain: the hull corresponding to the external border of the domain. See Fig. 3.1
for a sketch explaining these definitions.

Naively, one may imagine that coarsening is basically due to the coalescence of small domains
that form larger ones. However, in two dimensional curvature driven coarsening, coalescence pro-

cesses are avoided. All the interfaces move with a velocity that is proportional to the local curvature.
This velocity points in the direction of decreasing the curvature; therefore, interfaces disappear in-

dependently of one another. This is the reason why we first focused on the statistics of hull enclosed
areas, quantities that depend on the motion of a single interface, and not on the statistics of the
more natural domain areas.

Hull enclosed and domain areas have distributions that, at late times after the quench exhibit,
according to the scaling hypothesis, the scaling form n(A, t) = t−2f(A/t), where n(A, t)dA is the
number of hulls (domains) per unit area with area in the range (A,A + dA). The argument of
the scaling function arises from the fact that the characteristic length scale is known to grow as
t1/2, so the characteristic area (of hulls and domains) grows as t. The scaling function f(x) will be
different for domains and hulls. The prefactor t−2 follows from the fact that there is of order one
hull (or domain) per scale area. In this chapter we derive these scaling forms from first principles
(i.e. without recourse to the scaling hypothesis), and determine explicitly the scaling functions. We
will also discuss the domain-perimeter and hull lengths, which are themselves distributed quantities
related in a non-trivial manner to their corresponding areas.
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R1

R2

Figure 3.1: A sketch of a configuration with two concentric and circular interfaces with radius R1

and R2 is shown to illustrate the definition of hull enclosed and domain areas as well as hull and
domain-wall perimeters. This configuration has two hull enclosed areas A
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(1)
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(2)
d = 2πR2.

The structure of this chapter is as follows. In Sect. 3.2 we present the equation which governs
the dynamics of the interfaces after a quench to T = 0. In Sect. 3.3 we obtain the exact evolution
equation for each hull enclosed area, Ah(t), and the exact distribution nh(A, t) at any time during
the coarsening dynamics. In Sect. 3.4 we focus on the distribution of domain areas nd(A, t). The
evolution of domain areas is much more complicated than the hull enclosed ones, because domains
areas do not evolve independently one from each other. An approximate analytical result is obtained
for nd(A, t) and its accuracy is checked using numerical simulations. In Sect. 3.5 we discuss the
effects on the area distributions of quenching the system to a temperature T 6= 0. Section 3.6 is
devoted to the analysis, both analytical and numerical, of the geometry of hulls and domain walls
during the dynamics. We conclude in Sect. 3.7.

Along the discussion we will present in parallel analytical results with their simulations counter-
parts. Let us present briefly the details of the simulations. We carried out Monte Carlo simulations
on the 2d square-lattice Ising model (2dIM) with periodic boundary conditions using a heat-bath
algorithm with random sequential updates. All data have been obtained using systems with size
L2 = 103 × 103 and 2 × 103 runs using independent initial conditions. Domain areas are identified
with the Hoshen-Kopelman algorithm [81]. In order to identify the hull-enclosed ones, we developed
an algorithm which performs a directed walk along each domain wall of the system. The detailed
description of this algorithm is given in Apendix A.

3.2 Coarsening at T = 0. The Allen-Cahn equation.

As explained in the previous chapter, the coarsening dynamics following a quench to any temper-
ature lower than the critical one is essentially the same than in a quench to T = 0. It is therefore
natural to start our discussion with the case T = 0.

Our analytical results are obtained using a continuum description of domain growth in which
the non conserved order parameter is a scalar field, φ(~x, t), defined on a d-dimensional space. Its
evolution is determined by the time-dependent Ginzburg-Landau equation or model A dynamics
(see Sect. 2.2):

∂φ(~x, t)

∂t
= ∇2φ(~x, t) − δV (φ)

δφ(~x, t)
+ ξ(~x, t) . (3.1)

where the potential V is a symmetric double well, with V (φ→ ±∞) = ∞ and two minima at ±φ0.
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ξ is a Gaussian distributed random scalar field with zero mean and correlation

〈 ξ(~x, t)ξ(~x′, t′) 〉 = 2T δd(~x− ~x′) δ(t− t′) . (3.2)

The low-temperature ordering dynamics from a disordered initial condition corresponds to the
growth of ordered domains of the two equilibrium states, φ(~x, t) = ±φ0, separated by interfaces.

Using the evolution equation (3.1) at zero temperature, Allen and Cahn [82] showed that in
any dimension d the velocity, v, of each element of a domain boundary is proportional to the local
interfacial mean curvature, κ (for a pedagogic derivation of the Allen-Cahn result see [8]),

v = −λh
2π

κ . (3.3)

λh is a material constant with the dimensions of a diffusion constant, and the factor 1/2π is for
later convenience. The velocity is normal to the interface and points in the direction of reducing
the curvature. The dynamics is then purely curvature driven at zero temperature. Note that the
advantage of the Allen-Cahn construction is to pass from Eq. (3.1), which describes the dynamics

of the order parameter to Eq. (3.3) which describes the dynamics of the interfaces.

3.3 Exact result for the distribution of hull-enclosed areas

3.3.1 Equation of evolution for hull-enclosed areas

In two dimensions we can quickly deduce the time-dependence of the area contained within any
finite hull. Integrating Eq. (3.3) around a hull:

dAh
dt

=

∮

v dl = −λh
2π

∮

κdl (3.4)

where dl is the element of length.

We need to compute the integral in the last member of Eq. (3.4). But that is an easy task using
the Gauss-Bonnet theorem, which states the following: suppose M is a compact two-dimensional
manifold with boundary ∂M . Let Kg be the Gaussian curvature of M , and let κ be the geodesic
curvature of ∂M . Then

∫

M
Kg dS +

∮

∂M
κ dl = 2πχ(M), (3.5)

where χ(M) is a topological invariant called the Euler characteristic of the manifold. As we are
interested in a 2d flat surface without any internal hole (remember than we are studying the hull
enclosed area), Kg = 0 and χ(M) = 1. Then, the integral of the curvature over the interface is just

∮

∂M
κ dl = 2π . (3.6)

Equation (3.4) reduces to
dA

dt
= −λh (3.7)

Integrating over time, with initial time ti, we find

Ah(t, Ai) = Ai − λh(t− ti) . (3.8)
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Therefore the distribution of hull-enclosed areas at any time during the evolution is

nh(A, t) =

∫ ∞

0
dAi δ(A −Ai + λh(t− ti))nh(Ai, ti)

= nh(A+ λh(t− ti), ti) . (3.9)

In deriving this result we have implicitly assumed that a single domain cannot split into two,
and that two domains cannot coalesce. A little thought shows that neither process is possible for
two-dimensional curvature-driven growth since both processes require that two parts of a single
domain boundary (for splitting) or parts of two different domain boundaries (for coalescence) come
together and touch. But it is clear that the curvature driven dynamics always acts to prevent
this happening, since the velocities of the domain boundaries at the incipient contact point are in
opposite directions.

From Eq. (3.9) it is clear that if we know the distribution nh(A, ti) at the initial time, we will

know the distribution nh(A, t) at any time during the evolution.

3.3.2 Initial distributions of hull-enclosed areas

Right before the quech, the system is in equilibrium at some initial temperature T0. We will consider
quenches to T = 0 from two different equilibrium initial states: T0 = Tc and T0 → ∞. While the
equilibrium distribution for hull enclosed areas at Tc has been already exactly computed by Cardy
and Ziff [83], there are no exact results available for T0 → ∞. But, as we will discuss later, we
can exploit the fact that the infinite temperature equilibrium state is closely related to the critical
percolation point, for which the distribution of hull enclosed areas was also exactly computed in [83].

The equilibrium hull enclosed area distributions at percolating criticality and Ising criticality
in two dimensions are [83]:

nh(A, 0) ∼
{

2ch/A
2 , critical percolation,

ch/A
2 , critical Ising.

(3.10)

These results are valid for A0 ≪ A ≪ L2, with A0 a microscopic area and L2 the system size.
nh(A, 0) dA is the number density of hulls per unit area with enclosed area in the interval (A,A+dA)
(we keep the notation to be used later and set t = 0). The adimensional constant ch is a universal
quantity that takes a very small value: ch = 1/(8π

√
3) ≈ 0.022972. The smallness of ch plays an

important role in the analysis of Sect. 3.4.
Let us discuss now the relation between T0 → ∞ and the percolation critical point, first numer-

ically and then with a physical argument.
We mimicked an instantaneous quench from T0 → ∞ by using random initial states with spins

pointing up or down with probability 1/2. Assigning site occupation to up spins and vacant sites
to down spins the infinite temperature initial condition can be interpreted as a percolation problem
at p = 0.5 and thus below the percolation transition pc = 0.5927 in a square bi-dimensional lattice.
Even if initially away from criticality, in a few MC steps the hull enclosed area distribution becomes
the one in Eq. (3.10), as shown in Fig. 3.2. The initial distribution lacks large areas, there being
almost none with A > 103, and the tail of nh falls off too quickly well below the critical percolation
curve. In a few time steps large structures appear and the tail of the distribution approaches the
expected form at critical percolation. Simultaneously, the weight at small areas diminishes and the
curve progressively gets flatter.

It is intuitively clear why this must be so. Soon after the quench, the characteristic length
scale R(t) becomes substantially larger than the lattice spacing. If the system is coarse-grained on
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Figure 3.2: Early evolution of the infinite temperature initial condition. In a few MC steps the hull
enclosed area distribution reaches the one of critical percolation (3.10), whose slope, -2, is shown
by the straight line.

the domain typical scale, R(t), it will look completely disordered. When R(t) is large compared
to the lattice spacing, the disorder will be that of continuum percolation, for which the critical
density is one half by symmetry in two dimensions [84, 85, 86, 87]. It follows that the coarsening
system will be asymptotically at percolative criticality, i.e. the dynamics self-tunes the system to

percolative criticality in two dimensions [provided R(t) remains much smaller than the system size].
The data show that, as far as the hull area distributions are concerned, this only takes a few Monte
Carlo steps in practice. During these few steps many small domains coalesce to form larger ones
meaning that the dynamics is dominated by processes that are not taken into account by Eq. (3.3).
The physical argument explained in this paragraph has also been used very recently in [88] to
analytically determine the probability to reach a metastable strip state in the two-dimensional
Ising ferromagnet.

We can look at this from another perspective in the context of the continuum model. Consider
a random field φ(~x), symetrically distributed with respect to zero, with bounded variance and
two-point correlator C(r) = 〈φ(~x)φ(~x + ~r) 〉 with r = |~r|. The zero contour lines of this field can
be imagined to divide the plane into regions of black and white with each contour line forming a
boundary between black and white regions. Provided that C(r) falls off faster than r−3/4 for large
r, this problem is known to belong to the standard percolation universality class [85]. If we now
identify φ(~x) with the order parameter field when well-defined domain walls (the zero contour lines)
have formed, we see that the resulting domain structure corresponds to critical percolation.

3.3.3 Distribution of hull-enclosed areas during the dynamics

Inserting the initial distributions (3.10) into Eq. (3.9) for t≫ ti one immediately recovers:

nh(A, t) =
2ch

(A+ λht)2
, T0 → ∞ , (3.11)

nh(A, t) =
ch

(A+ λht)2
, T0 = Tc , (3.12)

in the limit A0 ≪ A≪ L2, i.e. for hull enclosed areas much larger than microscopic areas but much
smaller than the area of the system.
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Equations (3.11) and (3.12) have the expected scaling forms nh(A, t) = t−2f(A/t) corresponding
to a system with characteristic area proportional to t or characteristic length scaleR(t) ∼ t1/2, which
is the known result if scaling is assumed [8]. Here, however, we do not assume scaling – rather, it
emerges from the calculation. Furthermore, the conventional scaling phenomenology is restricted
to the ‘scaling limit’: A→ ∞, t→ ∞ with A/t fixed. Equations (3.11) and (3.12), by contrast, are
valid whenever t is sufficiently large and A ≫ A0. This follows from the fact that, for large t, the
forms (3.11) and (3.12) probe, for any A≫ A0, the tail (i.e. the large-A regime) of the Cardy-Ziff
results, which is just the regime in which the latter is valid. The restriction A ≫ A0 is needed
to justify the use of Eq. (3.3), which breaks down when the reciprocal of the curvature becomes
comparable with the width of a domain wall.

The averaged area enclosed by a hull is then given by

〈A〉(t) =

∫

dA′A′nh(A′, t)
∫

dA′nh(A′, t)
(3.13)

∼ λht (3.14)

with a time-independent prefactor that behaves as (A2
0 lnL2) for large system sizes. The reason for

the divergent prefactor in the infinite size limit is that a site can belong to several hulls.
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Figure 3.3: Number density of hull enclosed areas per unit system area for the zero-temperature
dynamics of the 2dIM at seven times evolving from an infinite temperature initial condition. The
lines represent Eq. (3.11) with ch = 1/8π

√
3 and λh = 2.1.

In Fig. 3.3 we show the time-dependent hull enclosed area distribution in double logarithmic
scale, at seven different times, following a quench from T0 → ∞. The figure shows a strong time
dependence at small areas and a very weak one on the tail, which is clearly very close to a power
law. The curves at small areas move downwards and the breaking point from the asymptotic power
law decay moves towards larger values of A for increasing t.

In Fig. 3.5 (right) we zoom on the small area region (A < 103) where the time-dependence is
clearer and we scale the data by plotting (λht)

2nh(A, t) against A/λht with λh = 2.1. We tried
other time-dependent factors but λht with this particular value of λh is the one yielding the best
collapse of data at small areas, A0 ≪ A < λht. For A larger than the ‘typical’ value λht the time
and λh dependence becomes less and less important. In Fig. 3.4 we show the data in their full
range of variation in log-log form to test the prediction nh(A, t) ∼ A−2 for large A. The data are in
remarkably good agreement with the prediction (3.11) – shown as a continuous curve in the figure
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Figure 3.4: Number density of hull enclosed areas per unit system area for the zero temperature
dynamics of the 2dIM evolving from an infinite temperature initial condition. The full line is the
prediction (3.11) with ch = 1/8π

√
3 and λh = 2.1.

– over the whole range of A and t. The downward deviations from the scaling curve are due to
finite-size effects. The latter are shown in more detail in Fig. 3.6, where we display the t = 16 MCs
results for several linear sizes. Finite size effects appear only when the weight of the distribution
has fallen by many orders of magnitude (7 for a system with L = 103) and are thus quite irrelevant.
In the tail of the probability distribution function (pdf) the numerical error is smaller than the size
of the data points. The nearly perfect agreement between the analytical theory and the data is all
the more impressive given that the curvature-driven growth underlying the prediction (3.11) only
holds in a statistical sense for the lattice Ising model [89]. Indeed, even at small values of A/λht,
where the lattice and continuous descriptions are expected to differ most, the difference is only a
few percent.

It is clear that the evolution of the hull-enclosed area distribution follows the same ‘advection
law’ (3.9), with the same value of λh, for other initial conditions. The evolution from a critical
temperature initial condition is shown in the left panel of Fig. 3.5. A fit of the data at small areas
yields the value of the parameter λh that, consistently with the analytic prediction, takes the same
value λh = 2.1. In the right panel of Fig. 3.5, we compare the time-dependent hull enclosed area
distributions for the initial conditions T0 → ∞ and T0 = Tc and we zoom on the behaviour of
nh(A, t) at small areas, A/λht ≤ 10. The two solid lines correspond to the numerator in nh being
equal to 2ch for infinite temperature initial conditions and ch for critical Ising initial conditions.
The difference between the numerical data for the two initial states is clear and it goes in the
direction of the analytic prediction (a factor 2 difference in the constant).

Moreover, Eq. (3.11) applies to any T0 > Tc equilibrium initial condition asymptotically. Equi-
librium initial conditions at different T0 > Tc show only a different transient behaviour: the closer
they are from Tc, the longer it takes to reach the asymptotic law, Eq. (3.11). Fig. 3.7 shows the
evolution of initial distributions, for Tc < T0 < ∞. Both analytic predictions, for T0 = Tc and
T0 = ∞, are shown as solid lines along with data for increasing times after a zero-temperature
quench from T0 = 2.5. In the first steps, the curve follows the one for critical initial conditions at
small A/λht and then departs to reach the one for infinite temperature initial conditions at large
A/λht. At longer times, the deviation from the critical initial condition line occurs at a smaller
value of A/λht. Initially the system has a finite, though relatively small, correlation length ξ(T ).
Thermal fluctuations with linear size of the order of ξ and also significantly larger than ξ exist
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Figure 3.5: Number density of hulls per unit area for the zero-temperature 2dIM evolving from
critical initial conditions. The initial states are obtained after running 103 Swendsen-Wang algo-
rithm steps. Left panel: the full (red) line is Eq. (3.12) with λh = 2.1 which again yields the best
fit of the data at small areas. For comparison we include with a dotted (blue) line the analytic
prediction for an infinite temperature initial condition, i.e. Eq. (3.11). Right panel: more details
on the influence of the initial conditions. The two data sets correspond to configurations taken at
several times after a quench from T0 → ∞ and T0 = Tc. The solid lines are the analytic predictions
(3.11), blue line, and (3.12), red line.

(see the discussion on the effect of thermal fluctuations in Sect. 3.5). Notice that ξ(T ) does not
correspond exactly to the size of geometric domains: thermal fluctuations are not perfectly de-
scribed by domains of aligned spins, since not all of them are correlated. At any given temperature
above Tc, fluctuations smaller than ξ(T ) have the same statistics than those occurring at Tc and
are thus described by Eq. (3.12), while domains larger than ξ(T ) are not made of correlated spins
and thus are described by the infinite temperature distribution, Eq. (3.11). As time increases, the
system loses memory of the finite-size fluctuations and the asymptotic state does not differ from the
infinite temperature one. Only when fluctuations exist over all spatial scales does the asymptotic
state differ. This behaviour can be interpreted as follows. At fixed A/t, shorter times correspond
to small areas while longer times are related to larger areas. Very small areas correspond to short
linear sizes, of the order of the domains in the initial configurations, and thus reminiscent of critical
ones. Instead large areas correspond to long linear sizes that are much longer than the correlation
length and closer to the ones reached from the infinite temperature initial condition.

3.4 Distribution of domain areas

In the last section we have shown that the distribution of hull enclosed areas can be exactly
computed, because the area enclosed by a hull depends only on the motion of one single boundary.
This is no longer the case for the areas of the domains, for which the area will depend not only on
the motion of its external wall but also on the motion of its internal walls. The computation of the
domain area distribution is therefore much more difficult.

We will develop a similar strategy that the one used to obtain the hull-enclosed area distri-
butions. First we try to write an equation of evolution for the domain areas and then we use
equilibrium distributions, for which analytical results are also available.
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Figure 3.6: Finite size effects at t = 16 MCs; four linear sizes of the sample are used and indicated
by the data-points.

3.4.1 Initial condition for the distribution of domain areas

The distribution of domain areas at critical percolation is given by [42],

nd(A, 0) ∼
2cdA

τ ′−2
0

Aτ ′
, with τ ′ =

187

91
≈ 2.055 . (3.15)

The quantity A0 can be interpreted as a microscopic area, and will be introduced at various points as
a small-area cut-off. The quantity Aτ

′−2
0 in Eq. (3.15) sets the units in such a way that [nd] = A−2

0 .
This result is also valid in the limit A0 ≪ A ≪ L2. Of course, the constants cd and A0 are not
separately defined, only the ratio cdA

τ ′−2
0 . In practice it is convenient to choose cd to be the value

appearing in the domain area distribution at general times (see discussion later).
In equilibrium at Tc, Stella and Vanderzande [90] computed the number density of domains

with area A

nd(A, 0) ∼
cdA

τ−2
0

Aτ
, with τ =

379

187
≈ 2.027 (3.16)

in the large A limit. Janke and Schakel [91] confirmed this claim numerically finding τ ≈ 2.0269.
The constants cd were not computed in these works. Motivated by the Cardy-Ziff result for hull
enclosed areas, we conjecture that the prefactor cd in (3.16) is the same cd (up to terms of order
c2h) as that appearing in the prefactor 2cd for critical percolation. We discuss this point in detail
in the next section where we will also check it numerically.

For the following discussion is useful to include the small-area cut-off, A0, in the initial number
densities, transforming the denominators to (A+A0)

2 or (A+A0)
τ,τ ′ for hull enclosed and domain

areas, respectively.
We now present two exact sum rules. The first sum rule follows from the fact that the total

domain area, per unit area of the system, is unity since each space point (or lattice site) belongs
to one and only one domain. This gives

∫ ∞

0
dA A nd(A, 0) = 1 . (3.17)

This sum rule yields (for T0 = Tc),

cd = (τ − 2)(τ − 1) . (3.18)
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Figure 3.7: Effect of the initial condition temperature on the hull enclosed area distribution. The
continuous lines are the analytic results for equilibrium initial conditions at T0 = ∞ and T0 = Tc,
bottom (red) and top (blue) lines, respectively. In between, we present numerical data for two
different times given in the key after the quench from an initial state equilibrated at T0 = 2.5.

The second sum rule follows from the fact that the total number of hulls Nh(0), is equal to the
total number of domains, Nd(0), since each domain can be associated with a unique hull, namely
the hull that forms its external boundary. This yields

Nd(0) ≡
∫ ∞

0
dA nd(A, 0)

=

∫ ∞

0
dA nh(A, 0) ≡ Nh(0) . (3.19)

From there,
ch = cd/(τ − 1) . (3.20)

3.4.2 Evolution equation for domain areas during coarsening

We need to write an evolution equation to derive, at least approximately, the area Ad(t, Ai) at time
t of a domain with initial area Ai.

Our strategy is to exploit the smallness of the parameter ch ≈ 0.023. Although ch is a constant,
we can exploit a formal expansion in ch in the following sense. Since the total number of hulls per
unit area is proportional to ch, the number of interior hulls within a given hull is also proportional to
ch, and so on. This means that, in dealing with domains we need consider only the first generation of
interior hulls, since the number of “hulls within hulls” is smaller by a factor ch. With this approach,
only one approximation – a kind of mean-field one on the number of first-generation hulls within a
parent hull (see below) – is necessary.

The same line of reasoning shows that, in a hypothetical theory in which ch can be treated as
variable, the distinction between hulls and domains will disappear in the limit ch → 0. In this
limit, therefore, the exponents τ and τ ′ must both approach the value 2, i.e. we can formally write
τ = 2 + O(ch) and τ ′ = 2 + O(ch). Furthermore, due to the factor 2 that appears in (3.11) but
not in (3.12), the ratio (τ ′ − 2)/(τ − 2) must approach the value 2 in the limit ch → 0. The actual
value of this ratio is 187/91 = τ ′ = 2.055, not very far from 2. Indeed the difference is of order ch
as expected.
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We can use the same line of argument to discuss cd and ch. Since in the (hypothetical) limit
ch → 0, hulls and domains become identical, it follows that in this limit one must have cd → ch,
i.e. cd = ch +O(c2h).

Take a hull with enclosed area Ah at time t. This hull is also the external border of a domain,
which may itself contain one or more ‘first level’ sub-domains whose external borders form the
internal border (which may be disconnected) of the original domain. These external borders of the
first level sub-domains are themselves ‘first generation’ hulls lying within the parent hull. These
interior hulls can themselves have interfaces in their bulk separating domains of the reversed phase
(higher generation hulls), see Fig. 3.8 where we show a sketch with this structure.

R1

R2

R3

R4

Figure 3.8: Sketch of a configuration with four circular hulls and domains. The parent hull has
radiusR1. There are two first generation hulls with radius R2 and R3 and one second generation hull
with radius R4. ν = 2 in this example. The interior border of the external domain is disconnected
and has two components.

Let us call ν(t) the number of first-generation hulls within the parent one. It is clear that ν(t) is
non-negative definite, monotonically decreasing as a function of time and reaching zero at a given
instant tmax, when all interior hulls disappear and Ad = Ah thereafter. One can estimate tmax from
0 = Ainth (tmax) = Ainth (ti)− λh(tmax − ti), which yields tmax − ti = Ainth (ti)/λh where the index int
indicates that we are studying here the first generation hull with maximal initial area (all others
having already disappeared). It is clear that tmax− ti is smaller but of the order of Ah(ti)/λh where
we replaced Ainth (ti) by the initial area of the parent hull:

(tmax − ti)
<∼ Ah(ti)

λh
. (3.21)

We wish to write a differential equation for the time-evolution of the parent domain area. It is
clear that, at first order in dt:

Ad(t+ dt) = Ad(t) − λhdt+ ν(t)λhdt (3.22)

where the second term in the right-hand-side represents the loss in area due to the inward motion
of the external domain-wall while the last term is the gain in area due to the outward motion of
the first-generation internal domain-walls. This gives

dAd(t)

dt
= −λh [1 − ν(t)] . (3.23)

Differently from hull enclosed areas, that always decrease in size as time passes, domain areas
can either diminish (ν = 0), increase (ν > 1) or remain constant (ν = 1) in time.
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We cannot, of course, know the exact number of first generation hulls falling within a selected
hull with enclosed area Ah. We can, however, estimate it with an upper bound obtained by counting
all interior hulls and averaging over all parent hulls using nh(A, t) derived in Sect. 3.3.3. Thus, we
expect

ν(t) < 〈 ν(t) 〉Ah(t)

〈 ν(t) 〉Ah(t) ∼ Ah(t)

∫ Ah(t)

0
dA nh(A, t)

=
chA

2
h(t)[λh(t− ti) +A0]

−1

[Ah(t) + λh(t− ti) +A0]
, (3.24)

where we include a small area cut-off, A0, in the denominator of nh and, for concreteness, we use
the hull enclosed area distribution for critical Ising initial conditions. This equation can be further
simplified if one uses that at time t the hull enclosed area we are interested in is given by

Ah(t) = Ah(ti) − λh(t− ti) . (3.25)

We have called here Ah(ti) the initial area of the hull. Then

〈 ν(t) 〉Ah(t) =
ch[Ah(ti) − λh(t− ti)]

2

[λh(t− ti) +A0] [Ah(ti) +A0]
. (3.26)

Note that, although we over-counted the interior hulls by including second-generation, third-
generation, etc. hulls, the number of these is of order c2h, c

3
h, . . . respectively, so this treatment is

exact to leading order in ch except for the replacement of ν(t) by its average over all first-generation
hulls of the same area.

The most interesting cases are such that Ah(ti) ≫ A0, otherwise the hull and domain areas are
just identical or very similar. In these cases 〈 ν(ti) 〉Ah(ti) ∼ chAh(ti)/A0. Expression (3.26) has the
following limiting values

〈 ν(t) 〉Ah(t) ∼























ch Ah(ti)

λh(t− ti) +A0
, Ah(ti) ≫ λh(t− ti) ,

ach, Ah(ti) ∼ λh(t− ti) ,

we used Ah(ti) ≫ A0 in the last case, and a is a numerical constant of order unity. The result is
a very small quantity, of the order of ch, in both cases. The remaining mathematical possibility,
Ah(ti) < λh(t− ti) is not realized because Ah(t) cannot be negative.

While ν(t) vanishes at tmax, see Eq. (3.21), 〈 ν(t) 〉Ah(t) is different from zero at all times. Thus,
Eq. (3.26) cannot be used beyond the limit tmax when all internal hulls have already disappeared
and it is no longer correct to replace ν(t) by 〈 ν(t) 〉Ah(t).

The analysis of infinite temperature initial conditions is identical to the one above with ch
replaced by 2ch. Thus, 〈 ν(t) 〉Ah(t) is expected to take twice the value it takes for critical Ising
initial configurations.

We have checked the accuracy of this approximation numerically by counting the number of
first generation internal hulls falling within each parent hull at different times. Figure 3.9 shows
the results for the zero temperature evolution of the 2dIM starting from T0 → ∞ and T0 = Tc
initial conditions. While at very short times one sees deviations between the numerical data and
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Figure 3.9: Comparison between ν(t) and 〈 ν(t) 〉Ah(t) for the T = 0 evolution of the 2dIM with
T0 → ∞ and T0 = Tc initial conditions. The measuring time is t = 64 MCs. The curves are given
by Eq. (3.24) in the limit t ≫ ti and Ah(t) ≫ A0, leading to the functional form 〈 ν(t) 〉Ah(t) =
chx

2/(1 + x) ∼ chx when x≫ 1, with x = Ah(t)/λht and λh = 2.1.

analytic prediction, the agreement between the two becomes very satisfactory for times of the order
of t = 64 MCs and longer, as shown in the figure.

If we now replace ν(t) by 〈 ν(t) 〉Ah(t) given in Eq. (3.26), it is quite simple to integrate the
differential equation (3.23). One finds

Ad(t) = Ad(ti) − λh(1 + 2ch)(t− ti)

+
chA

2
0

2[Ah(ti) +A0]

{

[

1 +
λh(t− ti)

A0

]2

− 1

}

+ ch[Ah(ti) +A0] ln

[

1 +
λh(t− ti)

A0

]

.

Setting t = ti one recovers Ad(t) = Ad(ti) as required. In the natural cases in which Ah(ti) ≫ A0

and for long times such that λh(t− ti) ≫ A0 this expression can be rewritten as

Ad(t) = Ad(ti) − λh

[

1 + 2ch −
ch
2

λh(t− ti)

Ah(ti)

]

(t− ti)

+ chAh(ti) ln

[

1 +
λh(t− ti)

A0

]

. (3.27)

The factor in the second term

λd(t) ≡ λh

[

1 + 2ch −
ch
2

λh(t− ti)

Ah(ti)

]

(3.28)

is a very weakly time-dependent function. Since t can take values between the initial time, t = ti,
and the maximum time before the first generation hull itself disappears, tmax = ti + Ah(ti)/λh,
λd(t) varies within the interval:

λh

(

1 +
3ch
2

)

≤ λd(t) ≤ λh(1 + 2ch) . (3.29)
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These bounds are indeed very close. λd takes a slightly higher value than λh; it equals λh plus a
small correction of order ch (in practice, 1.035λh ≤ λd ≤ 1.046λh using the analytic value for ch).

The coefficient in front of the logarithm, chAh(ti), is O(ch). The sum rules, imply ch = cd +
O(c2h). Neglecting the higher order correction we can then replace ch by cd. The same applies to
Ah(ti), which equals Ad(ti) plus a term O(ch) that we can equally neglect. Thus Ah(ti) ≈ Ad(ti) ≡
Ai. In this way we obtain

Ad(t, Ai) ≃ Ai − λd(t− ti) + cdAi ln

[

1 +
λh(t− ti)

A0

]

. (3.30)

3.4.3 Distribution of domain areas during coarsening

The distribution of domain areas will be given by

nd(A, t) =

∫ ∞

0
dAi δ(A −Ad(t, Ai))nd(Ai, ti) . (3.31)

Introducing in Eq. (3.31) the evolution equation for the domain area (3.30) and the initial domain
distributions (3.15)-(3.16) with the microscopical area A0 as a small-area cut-off in the denominator
of these initial distributions,

nd(A, t) ≃ cdA
τ−2
0

{

1 + cd ln

[

1 +
λd(t− ti)

A0

]}τ−1

×
[

A+ λd(t− ti) +A0

{

1 + cd ln

[

1 +
λd(t− ti)

A0

]}]−τ
(3.32)

where we have replaced λh by λd inside the logarithm, which is correct to leading order in ch. Using
the fact that cd is very small and of the order of (τ − 2)(τ − 1) = (τ − 2)+O(c2h), as implied by the
sum rules, we can now exponentiate, correct to leading order in cd, the logarithm in the numerator.
The term containing cd and A0 in the denominator is very small compared to A. We then obtain,

nd(A, t) ≃
cd [A0 + λd(t− ti)]

τ−2

[A+A0 + λd(t− ti)]τ
. (3.33)

Finally we set the initial time, ti, to zero and write the microscopic area, A0, as λdt0 to obtain, for
the time-dependent number density of domain areas,

nd(A, t) ≃
cd [λd(t+ t0)]

τ−2

[A+ λd(t+ t0)]τ
, (3.34)

The same sequence of steps for infinite-temperature initial conditions leads to the same form
but with cd replaced by 2cd and τ replaced by τ ′. The effects of temperature are expected to appear
only through the parameters λd and λh once thermal fluctuations are extracted from the analysis.

The averaged domain area is then given by

〈A〉(t) =

∫

dA′A′nd(A′, t)
∫

dA′nd(A′, t)
=

1

Nd(t)
(3.35)

∼ λdt . (3.36)

Let us now check numerically the prediction for the distribution of domain areas Eq. (3.34). In
Fig. 3.10 we display the number density of domain areas in the scaled form for two initial conditions,
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Figure 3.10: Number density of domains per unit area for the zero-temperature 2dIM evolving from
T0 → ∞ (left) and T0 = Tc (right) initial conditions. In both figures the spanning clusters have
been extracted from the analysis (compare with Fig. 3.11 where we include them). The full (red)
line represents Eq. (3.34), with cd = 0.025 and τ ′ = 2.055 (left), cd → cd/2 and τ = 2.027 (right),
and λd = 2.1 in both cases.

T0 → ∞ and T0 = Tc, after removing any spanning domain from the statistics. For comparison,
in Fig. 3.11, the same distributions with the spanning domains are shown. As done for the hull
enclosed areas we fit the parameter λd by analysing the behaviour at small areas, A < λdt, and we
find, once again that λd = 2.1 yields the best collapse of data (as predicted from Eq. 3.29).

Both sets of figures, 3.10 and 3.11, exhibit finite size effects in the tail of the distributions, where
the number of domain areas has already decreased by several orders of magnitude. As for the hull
enclosed areas, the point where these finite size effects cause the deviation from the collapsed curve
moves towards the right as the system size increases, becoming less and less relevant. In Fig. 3.10,
large domain areas (violating the limiting condition A≪ L2) that would nonetheless be accounted
for in an infinite system are here removed since they span the system in one of the directions, leading
to the downward bending of the distribution. On the other hand, in Fig. 3.11, when counting these
domains, they are chopped by the system boundaries, thus contributing to the distribution in a
region shifted to the left, accounting for the bumps seen in the figure.

3.5 Effect of the working temperature

Up to now we have considered quenches to a zero working temperature. In this section we investigate
the effect of having a finite temperature on the dynamics.

The arguments in previous sections rely on the T = 0 Allen-Cahn equation (3.3). Temperature
fluctuations have a two-fold effect. On one hand they generate equilibrium thermal domains that

are not related to the coarsening process. On the other hand they roughen the domain walls thus

opposing the curvature driven growth and slowing it down.

As explained in Sect. 2.1, renormalization group treatments of domain growth dynamics have
led to the idea that a T = 0 fix point controls the domain growth for all T < Tc, i.e. that thermal
fluctuations are irrelevant to the asymptotic dynamics of the ordering system, their contribution
being limited primarily to the renormalization of temperature-dependent prefactors. For the dis-
tribution of domain areas and hull enclosed areas, one may expect that once equilibrium thermal

domains are subtracted (hulls and domains associated to the coarsening process are correctly iden-
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Figure 3.11: The same as Fig. 3.10, but with the spanning domains included in the statistics. Notice
that due to the finiteness of the lattice, the actual area of these spanning domains are smaller than
the value they would have on an infinite system, generating the overshoot of the distribution for
values of A close to L2. The larger is the system, the more to the right these peaks are localized.

tified) the full temperature dependence enters only through the values of λh and λd, which set the

time scale.

Let us discuss the particular case of domain areas. The first step is to identify the temperature
dependence of the parameter λd. The simplest and most direct way to do this is to use the scaling
hypothesis and analyze the behaviour of the spatial correlation

C(r, t) ≡ 1

N

N
∑

i=1

〈 si(t)sj(t) 〉||~ri−~rj |=r

∼ m2(T ) f

(

r

R(t)

)

, (3.37)

where m(T ) is the equilibrium magnetization density and a≪ r ≪ L and t0 ≪ t. The correlation
is defined in such a way that C(0, t) = 1. Using R(t) ∼ [λd(T )t]1/2, the T -dependence of λd can
be estimated either by collapsing all curves or by studying the value of r at which C(r, t) = 1/2.
The resulting λd(T ) obtained using these two prescriptions is shown in Fig. 3.12. λd(T ) is a
monotonically decreasing function of temperature, starting at λd(T = 0) = 2.1 and falling-off to
zero at Tc. These results are consistent with the evaluation of λd,h(T ) from the analysis of nd,h(A, t),
see below.

Assuming that λd vanishes at Tc one can derive the way in which it does with a simple argument.
We require that the coarsening law for coarsening below Tc, namely R(t) ∼ [λ(T )t]1/2, match critical
coarsening at Tc, viz. R(t) ∼ t1/z with z the dynamic exponent, for T → Tc. Near (but just below)
Tc the coarsening length grows as ξ−a(T )t1/2 as long as R(t) ≫ ξ(T ) with ξ(T ) the equilibrium
correlation length. For R(t) comparable with ξ(T ), this has to be modified by a function of R(t)/ξ
and, since R(t) ∼ t1/z at Tc, we can write

R(t) ∼ ξ−a(T )t1/2f

(

t

ξz(T )

)

. (3.38)

In the limit ξ(T ) → ∞, the ξ - dependence must drop out. In order to cancel the time dependence
at large times, one needs f(x) ∼ x1/z−1/2 for x → ∞. This yields R(t) ∼ t1/z , which fixes the
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Figure 3.12: Left panel: spatial decay of the equal-time correlation, Eq. (3.37), at fixed T = 0 and
several different times t. Right panel: the T dependence of the parameters λd,h. Two sets of data
points are extracted from the analysis of the correlations shown in the left panel. The data named
half-value are obtained from C(r, t) = 1/2 and the data named collapse from collapsing the curves
on the range r ≫ a. The two other sets are obtained from fitting nd,h(A, t) with λd,h(T ) as free
parameters.

exponent ‘a’ as a = (z − 2)/2, giving λ(T ) ∼ ξ−2a(T ) ∼ (Tc − T )ν(z−2). Inserting the exact value
ν = 1 and the numerical value z = 2.15(2) [92] implies

λd(T ) ∼ (Tc − T )0.15 . (3.39)

Note that we are matching two nonequilibrium growth laws (the one below Tc and the one at Tc)
not an equilibrium and a nonequlibrium one. The data in Fig. 3.12 are still far from the critical
region where this small power-law decay should show up.

We have already discussed the effects of temperature on the coarsening domains. But, as ex-
plained before, another effect of the temperature is to create small islands of reversed spins inside

the coarsening domains, which correspond to thermal equilibrium fluctuations. In Fig. 3.13 the raw
data at t = 128 MCs is shown for four working temperatures. Upward deviations with respect
to the result of zero working temperature are prominent in the small areas region of the figure,
and increase with temperature. In Fig. 3.14 (left) we display the raw data at the working tem-
perature T = 1.5, for several times. Notice that although the curves move downwards, the small
area region becomes time independent. This region also fails to collapse (right) with the proposed
scaling using the temperature dependent values of λd(T ). The reason is that the distribution counts
thermal equilibrium domains, that is to say, fluctuations that are present in an equilibrated sample
at the working temperature, but are not due to the coarsening process. Thus, these fluctuations
should be identified and eliminated from the statistics. We tried to apply the method introduced
by Derrida [93], and extended by Hinrichsen and Antoni [94], to eliminate thermal domains, but
the results were not satisfactory, as not all of them could be eliminated. Thus, instead of removing
each thermal domain, we tried to directly remove their contribution to the distributions by simu-
lating samples in equilibrium at the working temperature, starting with a fully magnetized state,
and computing the number density of thermal domain areas. These data are shown with a black
line in Fig. 3.15 and 3.16. Surprisingly enough, thermal fluctuations generate areas that are larger
than one would have naively expected. Equilibrium arguments suggest that the averaged area of
thermally generated domains scale as AT ∼ ξ2(T ) with ξ(T )/p0 ∼ f−(1 − T/Tc)

−ν , ν = 1 and
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Figure 3.13: The number density of hull enclosed areas after t = 128 MCs at the working temper-
atures T = 0.5, 1.5, 2 and T = Tc.
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Figure 3.14: The number density of hulls for T = 1.5 after different times (left) and the scaling of
these data points (right)
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f− = 0.18 [95]. This estimate yields, for example, AT ∼ 4A0 at T = 1.5 (p0 and A0 are respectively
the length and area associated to the lattice step). In equilibrium at this temperature the average
size of the domains found numerically is 〈AT 〉 ∼ 1.5A0. However, the probability distribution of
thermal areas has a non-negligible weight – as compared to the one of coarsening domains – that
goes well beyond this value. For example, in Figs. 3.15 and 3.16 we see that the crossover between
the thermal area distribution and the coarsening area distribution occurs at A ∼ 10A0.

In Fig. 3.15 we also present data for the dynamic distribution at three different times, and
compared with the analytic prediction using λd(T ) estimated from the analysis of the global spa-
tial correlation, see Fig. 3.12. We conclude that the agreement between analytic prediction and
numerical results is very good in the region in which the thermal domains are subdominant.
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Figure 3.15: The contribution of ‘thermal domains’ obtained by simulating an equilibrated sample
at the working temperature T = 1.5, along with the evolution of the distribution of domain sizes
after a quench to the same temperature.
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Figure 3.16: Zoom on the number density of domain areas at t = 128 MCs at three working
temperatures given in the key. The black lines are the equilibrium distributions at T = 1.5 and
T = 2 and the other lines (pink, blue and green) represent our analytic prediction for the coarsening
areas.

One can also use the results in Fig. 3.16 to estimate the value of λd(T ). Indeed, a fit of
the numerical data for areas larger than the value at which the equilibrium thermal contribution
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deviates from the dynamic one, yields the values of λd(T ) [and λh(T )] shown in Fig. 3.12. This
analysis allows us to extract independent predictions for λd(T ) and λh(T ). We find that the
qualitative T -dependence is the same. As regards the absolute values, the numerical data yield
λh(T ) ≤ λd(T ) on the whole range. Note that the analytic prediction alredy suggested λd =
λh + O(ch).

3.6 Statistics of perimeters and fractal properties

The analytical arguments described in the previous sections can be extended to study the distribu-
tions of boundary lengths. In this section we present the analytical predictions for these functions
together with numerical results that confirm them. We study two types of domain boundaries:
those associated to the hulls and those associated to the domains. The perimeter of a domain is
given by the sum of its external perimeter (hull perimeter) plus the perimeter of its internal borders.

3.6.1 Initial conditions

In equilibrium at T0 = Tc, we find numerically (see the left panel of Fig. 3.17) that the domain
areas and their corresponding boundaries are related by

Ah ∼ pα
i
h , with αih ≈ 1.47 ± 0.1,

Ad ∼











pα
i>
d , αi>d ≈ 1.14 ± 0.1 for p

>∼ 50 ,

pα
i<
d , αi<d ≈ 1.47 ± 0.1 for p

<∼ 50 ,

in the whole range of variation. The superscript i is used to stress that these values are measured
in equilibrium, we will study the dynamical ones in the next section. Note that the longest lengths,
p ≈ 103 −104 may be affected by finite size effects given that the linear size of the simulating box is
L = 103. The spanning clusters are not counted because their perimeters would be severely under
estimated due to the periodic boundary condition. The exponent αi<d ≈ 1.47 ± 0.1 is consistent
with the numerical result in [96]. The difference between the small and large p regimes in the
relation between areas and perimeters for the domains is due to the existence of holes in the large
structures. The small domains and hulls are just the same objects because the former do not have
holes within.

Numerically, (see the right panel of Fig. 3.17), we find that the number densities of hull and
domain lengths at critical Ising conditions are

nh(p, 0) ∼ p−ζ
i
h with ζih ≈ 2.48 ± 0.05.

nd(p, 0) ∼











p−ζ
i>
d , ζi>d ≈ 2.17 ± 0.05 for p

>∼ 50 ,

p−ζ
i<
d , ζi<d ≈ 2.48 ± 0.05 for p

<∼ 50 ,

The numerical estimation of ζih ≈ 2.48 is to be compared with its exact value computed by Stella and
Vanderzande [97], ζih = 27/11 ≈ 2.454. It is interesting to notice that the equilibrium distribution

of domain lengths is not a single power law in constrast to the equilibrium distribution of domain

areas.
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Figure 3.17: Relation between areas and perimeters (left) and distribution of domain and hull
lengths, both in equilibrium at T0 = Tc.

T0 = Tc αih ζih αi>d ζi>d αi<d ζi<d
1.47 ± 0.1 2.48 ± 0.05 1.14 ± 0.1 2.17 ± 0.05 1.47 ± 0.1 2.48 ± 0.05

T0 → ∞ αi
′

h ζ
′i
h α

′i>
d ζ

′i>
d α

′i<
d ζ

′i<
d

1.12 ± 0.1 2.12 ± 0.05 1.01 ± 0.1 2.01 ± 0.05

Table 3.1: Exponents describing the equilibrium geometry of both hulls and domain perimeters. It
was not possible to obtain numerically α

′i>
d and ζ

′i>
d , because in order to reach critical percolation

after a quench from T → ∞ we need to wait some Monte Carlo steps and this creates too much
noise in the small area region.

In the case T0 → ∞, after a few time-steps we reach the critical percolation conditions. A
numerical analysis similar to the one already performed for the critical temperature can also be
done in this case. In the following, primed quantities are used to indicate T0 → ∞. The results
for T0 → ∞ are summarized in table (3.1). Note the good agreement between our numerical
estimation of ζ

′i
h ≈ 2.12 and the hull exponent in critical percolation computed analytically by

Saleur and Duplantier [98] ζ
′i
h = 15/7 ≈ 2.14.

It is interesting to note that, for both initial conditions, the exponents characterizing the number
density of perimeter lengths are significantly different. They are approximately equal to 2.5 at Tc
and 2 at T0 → ∞. This is to be contrasted with the behaviour of the area number densities for
which the exponents were identical for hull enclosed areas and very close indeed for domains.

The exponents α and ζ are linked by the fact that each hull-enclosed area or domain area is in
one-to-one relation to its own boundary. Thus, nh(A, 0)dA = nh(p, 0)dp, which implies

ζh = 1 + αih , (3.40)

These conditions are also satisfied for the primed (T0 → ∞) quantities. Within our numerical
accuracy these relations are respected, see table (3.1).

For domain areas and domain boundaries one obtains

ζd = 1 + (τ − 1)αid , (3.41)

These relations are also satisfied for α
′i>
d . The numerical estimation of these values satify these

equations, see table (3.1).
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T0 = Tc α>h η>h α<h η<h
1.37 ± 0.2 0.26 ± 0.15 1.83 ± 0.2 0.06 ± 0.02

T0 → ∞ α′
h
> η′h

> α′
h
< η′h

<

1.12 ± 0.2 0.38 ± 0.15 1.83 ± 0.2 0.06 ± 0.02

Table 3.2: Parameters describing the geometrical structure of the hulls for coarsening at T = 0

The main sources of error in the determination of the exponents in the study of the initial
conditions are the following: (i) statistical errors, although we have a rather good sampling; (ii)
the choice of the large area-perimeter limit that is not perturbed by finite size effects, and (iii)
the fact that the T0 → ∞ initial condition is not exactly at critical percolation. We estimated
the magnitude of the error to be ±0.1 in the α exponents, and ±0.05 in the ζ exponents, which
correspond to, roughly, less than 10% in both cases. Within this level of accuracy, the relations
between exponents (3.41) and (3.40) are satisfied.

3.6.2 Time evolution at zero temperature

In this section we study the time evolution of the geometrical structure for both domains and hull
perimeters after a quech to T = 0. Let us first discuss the hull perimeters. After a quench from
T0 = Tc (see left panel of Fig. 3.18), the hull enclosed areas and their corresponding perimeters,
obey, during the dynamics, the scaling relations

A

λht
≈ ηh

(

p√
λht

)αh

, (3.42)

with
α>h ≈ 1.37 ± 0.2
η>h ≈ 0.26

}

for
A

λht

>∼ 50 , (3.43)

and
α<h ≈ 1.83 ± 0.2
η<h ≈ 0.06

}

for
A

λht
<∼ 10 , (3.44)

For T0 → ∞ (see right panel of Fig. 3.18) this scaling is also valid if one replaces ηh and αh by the
primed quantities summarized in table (3.2).

We note that the relation between area and perimeter exhibits two distinct regimes. During the
coarsening process a characteristic scale A∗(t) ≈ λht develops such that hulls with enclosed area
A > A∗ have the same exponent as in the initial condition (structures that are highly ramified with
α smaller than 2) and domains with A < A∗ are regular (α close to 2). As shown in the right panel
of Fig. 3.18, the structure of these small domains does not depend on the initial condition. This
phenomenon is reminiscent of an unroughening transition occurring at a velocity λh. Note that we
estimated the error in the exponents α to be ±0.2 and thus more important than in the analysis
of the initial conditions. The reason is that the crossover from the small area to the large area
regime is not sufficiently sharp and the choice of the fitting interval introduces an additional source
of error. Indeed, note that in Eq. (3.42) we did not use the intermediate regime 10 ≤ A

λht
≤ 50 to

fit the power laws.

For the domains, we studied the relation between domain areas and their corresponding perime-
ters finding the same results with λh → λd and the parameters given in table (3.3).
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Figure 3.18: Left, time evolution of the hull enclosed area vs. perimeter relation for T0 = Tc and
different times indicated in the legend. Right, hull enclosed area vs. perimeter relation at time
t = 32 MCs from two different initial conditions.

In analogy with the derivation for the time-dependent number density of domain areas, the
time-dependent number densities of hull and domain wall lengths are given by

nh,d(p, t) =

∫

dpi δ(p − p(t, pi))nh,d(pi, ti) (3.45)

with nh,d(pi, ti) the initial condition and p(t, pi) the perimeter length of a boundary at time t that
had initial length pi at time ti.

Let us here discuss the hull lengths. In this case one can simply use the exact number density
of hull enclosed areas, nh(A, t) = ch/(A+λht)

2 for T0 = Tc and Eq. (3.42) to relate time-dependent
areas to their perimeters on the two regimes of large and small areas. After a little algebra one
derives

(λht)
3/2 nh(p, t) ≈

α<h η
<
h ch

(

p√
λht

)α<
h
−1

[

1 + η<h

(

p√
λht

)α<
h

]2 (3.46)

for small areas, A/λht < 10, and

(λht)
3/2 nh(p, t) ≈

α>h η
>
h ch

(

p√
λht

)α>
h
−1

[

1 + η>h

(

p√
λht

)α>
h

]2 (3.47)

for large areas A/λht > 50. Note that these expressions satisfy scaling. Interestingly, the scaling
function, f<(x) = xα

<
h
−1/(1 + η<h x

α<
h )2 with x = p/

√
λht reaches a maximum at

xmax =

(

α<h − 1

η<h (α<h + 1)

)1/α<
h

(3.48)

and then falls-off to zero as another power-law. There is then a maximum at a finite and positive
value of p as long as α<h > 1, that is to say, in the regime of not too large areas. The numerical
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evaluation of the right-hand-side yields xmax = pmax/(
√
λht) ≈ 3 which is in the range of validity

of the scaling function f<. The behaviour of the time-dependent perimeter number density for long
perimeters is controlled by Eq. (3.47) that falls-off as a power law f>(x) ∼ x−(1+α>

h
). Although

the function f> also has a maximum, this one falls out of its range of validity. Above we used
the critical Ising parameters. The results after a quench from T0 → ∞ follow the same functional
form with the corresponding primed values of α and η and ch → 2ch. The power law describing
the tail of the number density of long perimeters is the same as the one characterising the initial

distribution, since α>h = α
(i)
h and then 1 + α>h = ζh. Therefore, the decay of the time-dependent

number density at long perimeters after a quench from T0 = Tc and T0 → ∞ are distinguishably
different with ζh ≈ 2.5 and ζ ′h ≈ 2. This is to be contrasted with the small difference in the area
number densities that fall with two power laws that are so close (powers of 2 and 2.05) that are
impossible to distinguish numerically.
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Figure 3.19: Scaling of the time-dependent number density of hull lengths evolving at T = 0
from an initial condition at T0 = Tc (left) and T0 → ∞ (right). The solid black lines represent the
theoretical prediction valid for A/λht < 10 and for A/λht > 50. The agreement between theory and
numerical data is again very impressive. The small grey line in the left plot represents the slope
in the right plot, showing that in contrast with domain size distribution, perimeter distribution
is very sensitive to initial conditions. The isolated data points that lie above the scaling function
correspond to reversed, isolated spins within a bulk of the opposite sign that give rise to a perimeter
length p = 4 (four broken bonds). The area number densities also showed this anomalous behaviour
for A = 1.

In Fig. 3.19 we display the scaling plot of the number density of hull lengths and we compare it
to the analytic prediction (3.46) and (3.47). The data are in remarkably good agreement with the
analytic prediction; the lines represent the theoretical functional forms for long and short lengths,
and describe very well the two limiting wings of the number density. The maximum is located at
a value that is in agreement with the prediction, Eq. (3.48).

With the same line of argument exposed above for the perimeters of the hulls, we can analyse
the statistics of the domain walls, that is to say, including external and internal perimeters. For
critical Ising initial conditions:

(λdt)
3/2 nd(p, t) ≈

α<d η
<
d cd

(

p√
λdt

)α<
d
−1

[

1 + η<d

(

p√
λdt

)α<
d

]τ (3.49)
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T0 = Tc α>d η>d α<d η<d
1.16 ± 0.2 0.63 ± 0.15 1.83 ± 0.2 0.05 ± 0.01

T0 → ∞ α′
d
> η′d

> α′
d
< η′d

<

1.01 ± 0.2 0.52 ± 0.15 1.83 ± 0.2 0.06 ± 0.01

Table 3.3: Parameters describing the geometrical structure of the domains for coarsening at T = 0

for small areas and its obvious modification for large areas. For T0 → ∞ one replaces ηd and αd
by the primed quantities and cd → 2cd. The scaling analysis of the number density of domain
wall lengths is displayed in Fig. 3.20 for both initial conditions. Once again we find a very good
agreement between the analytic predictions and the numerical data.

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

t = 2
t = 4
t = 8

t = 16
t = 32
t = 64

(λ
d
t)

3
/
2
n
d
(p

)

p/
√

λdt

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

t=2
t=4
t=8

t=16
t=32
t=64

(λ
d
t)

3
/
2
n
d
(p

)

p/
√

λdt

Figure 3.20: Scaling of the time-dependent number density of domain wall lengths evolving at T = 0
from an initial condition at T0 = Tc (left) and T0 → ∞ (right). The solid black lines represent the
theoretical prediction valid for A/λht < 10 and for A/λht > 50. The origin of the isolated data
points is the same as in Fig. 3.19.

3.6.3 Finite temperature evolution

Once we analysed the statistics of perimeters in the zero temperature dynamics, we focus on the
effects of a finite working temperature. We briefly list the results below without presenting the
data.

Area-perimeter relations: for large areas we find the same exponent as for zero temperature
coarsening that is also the initial condition exponent (T0 → ∞ or T0 = Tc). This is reasonable
since the large structures are still ‘unaware’ of the coarsening process and thus retain the form they
had in the initial configuration. For small areas, instead, we see domain walls roughening due to
thermal agitation but it is hard to extract the value of the exponent α< with sufficient accuracy.
For instance, after a quench from T0 = Tc to T = 1.5 the exponent becomes αh

< ≈ 1.70 (to be
contrasted with the T = 0 value αh

< ≈ 1.83) and after a quench from T0 → ∞ to T = 1.5 the
exponent becomes α′

h
< ≈ 1.74 (to be contrasted with the T = 0 value α′

h
< ≈ 1.83).

The scaling of the perimeter number densities and the functional form for the scaling function
predicted analytically describe the numerical data with high precision once the values of the expo-
nents α, the prefactors η, and the parameter λ are modified to take into account thermal agitation
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(for absolute area values larger than A ≈ 10A0, this value limits the range of areas where the effect
of thermal fluctuations is larger than the ones of coarsening). The analytic prediction is very accu-
rate in the region of small coarsening domains, A/λd,ht < 10 and A > 10A0 where the maximum
is located, and in the region of large coarsening domains, A/λd,ht > 10 and A > 10A0, for both
domains and hulls and the two initial conditions.

3.7 Conclusions

In this chapter we studied the statistics of hull enclosed areas, domain areas and interfaces during
the non-equilibrium dynamics of curvature driven coarsening in two dimensions. The analytical
part of our work relies on the Allen-Cahn equation derived from the continuous Ginzburg-Landau
field-theory in two-dimensions while the numerical part of it deals with Monte Carlo simulations of
the 2dIM. Our main results are:

• We proved scaling of the various number densities studied.

• We derived the exact number density of hull enclosed areas; we obtained approximate expres-
sions for the number density of domain areas, hull lengths and domain perimeter lengths.

• The geometrical properties and distribution of the time dependent large structures (by large
we mean much larger than the average ones) are the ones of critical continuous percolation
(for all initial conditions equilibrated at T0 > Tc) and critical Ising (for T0 = Tc). The long
interfaces retain the fractal geometry imposed by the equilibrium initial condition and the
scaling function of all number densities decay as power laws.

• Instead, small structures progressively become regular and the area-perimeter relation is A ∼
pα, with α close to 2.

• We took into account the effects of a finite working temperature by eliminating purely thermal
fluctuations and thus correctly identifying the coarsening structures. The temperature effect
thus amounts to introducing the temperature dependence in the prefactor in the growth law,
R(t) ∼ [λ(T )t]1/2. λ(T ) is a monotonically decreasing function of T that vanishes at Tc.

It is important to stress that our analytic results rely on the use of the Allen-Cahn result
for the velocity of an almost flat interface. Thus, they would be expected to hold only in
a statistical sense and for large structures in the lattice model. Surprisingly, we found with
numerical simulations that the number density area distributions in the 2dIM match the
analytic predictions for very small structures, and even after a few MC steps evolution of a
critical Ising initial condition for which rather rough interfaces exist.



Chapter 4

Effects of the disorder: test of the

super-universality hypothesis

4.1 Introduction

In the previous chapter we analyzed the coarsening process in pure (not disordered) two-dimensional
systems with non-conserved order parameter. Here we extend the results obtained to the coarsening
dynamics of two-dimensional models with non-conserved order parameter under the effect of weak

quenched disorder. By ‘weak disorder’ we mean randomness that does not modify the character of
the ordered phase (see [99] for a recent review).

An important property of domain-growth in systems with weak disorder is the so-called super-

universality hypothesis. This hypothesis states that once the correct growing length scale (which
will depend on the disorder strength) is taken into account, all scaling functions are independent of
the disorder strength. As a consequence, these scaling functions are the same than in the pure case.
This conjecture was first enunciated by Fisher and Huse in [100]. The idea is that the length scale
at which the effects of quenched disorder are important is much smaller than the domain scale R(t).
The latter dominates the elastic energy. Thus the dynamics of large structures is approximately
curvature driven. Pinning at small scales modifies the scale factor, that is to say the growth law
R(t), but not the scaling functions. The validity of super-universality for the scaling function of
the equal-time two-point correlation of several disordered systems including the random bond Ising
model was checked numerically in [101, 102, 103, 104]. The stringest test proposed in [105] that
includes higher order correlations was also passed numerically in [106]. The goal of this chapter is
to test the super-universality hypothesis using the exact results for the hull-enclosed areas obtained
in chapter 3.

4.2 Hull enclosed area distribution

We have already derived an analytic expression for the hull enclosed area distribution in the non-
disorder case,

nph(A, t) =
2ch

(A+ λht)2
. (4.1)

The superscript p stands for pure. Equation (4.1) can be recast in the scaling form

nph(A, t) =
1

(λht)2
f

(

A

λht

)

(4.2)
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with f(x) = 2ch
(x+1)2 . In this way, scaling with the characteristic length scale, Rp(t) =

√
λht, for

coarsening dynamics with non conserved order parameter in a pure system was demonstrated.
The effects of a finite working temperature are fully encoded in the temperature dependence of the
parameter λh while the same scaling function f(x) describes nph as suggested by the zero temperature
fixed point scenario.

When quenched disorder is introduced the growing phenomenon is no longer fully curvature
driven and domain-wall pinning by disorder becomes relevant. At early times, the system avoids
pinning and evolves like in the pure case. Later, barriers pin the domain walls and the system
gets trapped in metastable states from which it can escape only by thermal activation over the
corresponding free-energy barriers. In spite of these differences, coarsening in ferromagnetic systems
with quenched disorder also satisfies dynamic scaling [101, 102, 103, 104, 106, 105] and a single
characteristic length, R(t, T, ε), can be identified (ε is a measure of the disorder amplitude). As
a result of the competition between the curvature driven mechanism and pinning by disorder,
the coarsening process is slowed down and the characteristic radius of the domains depends on
the disorder strength and it is smaller than the pure one, R(t, T, ε) < Rp(t, T ). Moreover, the
super-universality hypothesis applied to the scaling function of the equal-time two-point correlation
function in random ferromagnets was verified numerically in a number of works [101, 102].

The scaling and super-universality hypotheses suggest that Eq. (4.2) remains valid with the same
scaling function f(x) = 2ch/(1 + x)2 and (λht)

1/2 replaced by R(t, T, ε) for all 2d non-conserved
order parameter coarsening processes in which the low-temperature ordered phase is not modified.
More precisely, we expect that

nh(A, t, T, ε) = R−4(t, T, ε) f

[

A

R2(t, T, ε)

]

(4.3)

should be valid in all these cases. In this chapter we test the superuniversality hypothesis by
following the dynamic evolution of the two-dimensional random bond Ising model (2d RBIM)
defined by the Hamiltonian,

H = −
∑

〈i,j〉
Jijσiσj (4.4)

where the Jij are random variables uniformly distributed over the interval [1−ε/2, 1+ε/2] with 0 <
ε ≤ 2. This model has a second-order phase transition between a high-temperature paramagnetic
phase and a low-temperature ferromagnetic phase. We simulate the dynamic evolution of a model
defined on a square lattice with linear size L = 103, using a single-flip Monte Carlo technique
and the heat-bath algorithm. Data are averaged over 103 samples. We show results for a random
initial condition, σi = ±1 with equal probability to mimic an infinite temperature equilibrium state,
T0 → ∞. At the initial time t = 0 we set the working temperature to a low value and we follow the
evolution thereafter. We are interested on the effect of quenched randomness and we thus focus
on a single working temperature, T = 0.4, at which the ordered equilibrium phase is ferromagnetic
for all 0 ≤ ε ≤ 2. In what follows we drop the T dependence from R and nh, so we simply denote
them R(t, ε) and nh(A, t, ε).

We determine the growth law, R(t, ε), from a direct measure of the spatial correlation function
C(r, t, ε):

C(r, t, ε) ≡ 1

N

N
∑

i=1

〈 si(t)sj(t) 〉||~ri−~rj |=r (4.5)
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Figure 4.1: Log-log plot of the characteristic length extracted from the collapse of the equal-time
two-point correlation function against time after the quench. Different curves correspond to different
values of the quenched disorder strengths. For comparison we include the not disordered limit law
R(t, ε = 0) ∝

√
t.

which also obeys dynamical scaling,

C(r, t, ε) ∼ m2(T, ε) f

(

r

R(t, ε)

)

, (4.6)

with m(T, ε) the equilibrium magnetisation density. In Fig. 4.1 we show R(t, ε) as a function of t for
several values of the quenched disorder strength along with the pure case. We extracted R(t, ε) by
collapsing the equal-time correlations data using Eq. 4.6. After a few time-steps all curves deviate
from the pure R(t, ε = 0) ∝

√
t law and the subsequent growth is the slower the stronger the

disorder strength ε. For strong disorder the characteristic length reaches relatively modest values
during the simulation interval, for instance, R(t = 1024, ε = 2) ∼ 7 (measured in units of the
lattice spacing). It is then quite hard to determine the actual functional law describing the late
time evolution of R(t, ε) and it comes as no surprise that this issue has been the matter of debate
recently [107, 108, 109, 110, 111, 112, 113, 114]. Using arguments based on the energetics of domain-
wall pinning Huse and Henley [107] proposed the law R(t) ∝ (ln t)1/ψ with ψ = 1/4 for the random
bond Ising model. More recently, powerful Montecarlo simulations [108, 109, 110, 111, 112, 113, 114]
suggest a power law R(t) ∝ tθ with a exponent θ that depends on T and ε. We are not concerned
here with predicting the time-dependence of R. Instead, we use the numerical values in Fig. 4.1 to
scale our data for the distributions of hull enclosed areas and hull lengths as explained below.

In Fig. 4.2 we display data for one disorder strength, ε = 2, taken at several times after the

quench. Using the scaling form, the data collapse for Ah/R
2(t, ε)

>∼ 1 over 8 decades in the vertical
axis and 4 decades in the horizontal axis. Deviations are seen for small areas and we discuss their
possible origin below. This analysis confirms the dynamical scaling hypothesis in the region of large
areas.

In Fig. 4.3 we test the super-universality hypothesis as applied to the hull-enclosed area dis-
tribution by presenting data for a single instant, t = 256 MCs, and several values of the disorder

strength, ε = 0, 0.5, 1, 1.5, 2. Again, for areas such that Ah/R
2(t, ε)

>∼ 1 there is a very accurate
data collapse while for smaller areas deviations, that we discuss below, are visible. The solid black
line represents the analytic prediction for the pure case that yields, under the super-universality
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Figure 4.2: Number density of hull enclosed areas for one value of the disorder strength, ε = 2, at

several times. The data are shown in the scaling form and they collapse for Ah/R
2(t, ε)

>∼ 1.

hypothesis, the analytic prediction for all ε. The curve falls well on top of the data. In the tail of
the distribution we see downward deviations that are due to finite size effects already discussed in
detail in the last chapter.

Let us now examine several possible origins for the deviation of the numerical data from the

analytic prediction at small areas, Ah/R
2(t, ε)

<∼ 1, in Figs. 4.2 and 4.3. The first source of
problems could be the fact that we need to use a finite working temperature in the disordered case
to depin the walls while the analytic results are derived at T = 0. In the pure case the effect
of temperature is to create thermal domains within the genuinely coarsening ones. Based on this
observation, in section 3.5 we explained that the small area probability distribution may have an
excess contribution coming from these thermal fluctuations. By extracting the contribution of the

equilibrium distribution of thermal domains, that became important for temperatures T
>∼ 1, we

showed that the number density of hull-enclosed areas at T > 0 is given by the zero temperature
result once scaled by R(T, t). In the present disordered case, the working temperature we use is
too low to generate any thermal domains and thus temperature cannot be the source of deviations
from the analytic form.

Another possible origin of the difference between numerical data and theoretical prediction is the
fact that the analytic results are derived using a continuum field-theoretic description of coarsening
while numerical simulations are done on a lattice. In the presence of quenched randomness one
can expect the effects of the lattice discretization to be more important than in the pure case,
especially for relatively small structures. Moreover, disorder induces domain-wall roughening and
the Allen-Cahn flat interface assumption is not as well justified.

Finally, the super-universality hypothesis is argued for large structures only [100] and thus the

small hull enclosed areas are not really forced to follow it strictly when Ah
<∼ R2(t, ε).

4.3 Geometrical structure

In order to better characterise the geometric structure of the coarsening process we study the
relation between hull-enclosed areas and their perimeters. In Fig. 4.4 we present the scatter plot of
the scaled hull enclosed area, Ah/R

2(t, ε), against the corresponding scaled perimeter, ph/R
2(t, ε),
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Figure 4.3: Number density of hull enclosed areas at t = 256 MCs and several values of the disorder

strength. The collapse of all data for Ah/R
2(t, ε)

>∼ 1 supports the validity of super-universality.
The black solid line represents the analytic result for the pure case.

in a log-log plot for several values of the disorder strength at t = 256 MCs. We observe a separation
into two regimes at the breaking point p∗h/R(t, ε) ∼ 10 and A∗

h/R
2(t, ε) ∼ 2. In the upper and lower

regime areas and perimeters are related by two power laws that do not depend on the disorder
strength. As in Sect. 3.6,

Ah
R2(t, ε)

∼
[

ph
R(t, ε)

]α

(4.7)

with

α> ≈ 1.12 ± 0.20 for
ph

R(t, ε)

>∼ 10 ,

α< ≈ 1.83 ± 0.20 for
ph

R(t, ε)

<∼ 10 . (4.8)

The upper exponent also characterises the highly ramified structures of the initial condition. Note
that the small value of α> is not related to the existence of holes in these large structures, since
hull-enclosed areas do not have holes in them. The crossover between upper and lower regimes
depends on time when observed in absolute value. In other words, during the coarsening process a
caracteristic scale p∗ ∼ R(t, ε) develops such that hull-enclosed areas with perimeter p > p∗ have
the same exponent α0 ∼ 1.12 as in the initial condition before the quench (see Sect. 3.6), while
hull-enclosed areas with smaller perimeter are more compact as indicated by the larger value of the
exponent α<.

4.4 Hull length distribution

We now examine the hull length distribution that is expected to follow the scaling and super-
universality hypotheses. In Fig. 4.5 we display the number density of hull lengths at t = 256 MCs
and ε = 0, 0.5, 1, 1.5, 2. We show the data in the form suggested by the scaling hypothesis

nh(p, t, ε) = R−3(t, ε) g

[

p

R(t, ε)

]

. (4.9)
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Figure 4.4: Averaged scatter plot of the scaled areas against perimeters for several values of the
strength of the quenched randomness.

The data collapse on a master curve for all lengths satisfying ph/R(t, ε)
>∼ 2 a value that is roughly

the location of the maximum in the distribution. The super-universality hypothesis holds in this
regime of lengths.

Relating the distribution functions of areas and perimeters through a change of variables, as
explained in Sect. 3.6, we find

R3(t, ε) nh(p, t, ε) ∼
α

>
<ch

(

p
R(t,ε)

)α
>
<−1

[

1 +
(

p
R(t,ε)

)α
>
<

]2 . (4.10)

The scaling function is thus the same as in the pure system with two branches characterized by
the exponents α> and α<. As in the pure case the maximum in the distribution is described by
Eq. (4.10) with α< while the maximum found with α> falls outside its range of validity.

In Fig. 4.6 we display the number density of hull lengths scaled with the typical radius R for one
value of the disorder strength at several times after the quench. The upper and lower predictions
are shown with solid black lines.

4.5 Conclusions

In this chapter, we have analysed the statistics of hull-enclosed areas and hull lengths during the
coarsening dynamics of the 2d RBIM with a uniform distribution of coupling strengths. We found
that the number densities of these observables satisfy scaling and super-universality for structures

with Ah/R
2(t, ε)

>∼ 1 and ph/R(t, ε)
>∼ 2.

We showed that the analytic prediction for the number density of hull enclosed areas derived
for pure systems also describes the statistics of these quantities in the presence of quenched ferro-
magnetic disorder. The geometrical properties of the boundaries between phases are, in principle,
more sentitive to quenched randomness than their interior. We showed, however, that the relation
between areas and interfaces and, in consequence, the distribution of hull lengths are independent
of the disorder strength also satisfying super-universality.
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Figure 4.5: Number density of hull lengths at t = 256 MCs and several values of the disorder

strength given in the key. The collapse of all data for ph/R(t, ε)
>∼ 2 supports the validity of

super-universality in this regime of lengths.

In previous works all numerical tests of the super-universality hypothesis in the RBIM have
focused on the study the equal time two-point correlation function [101, 102, 103, 104, 106], for
which no exact results were available. The geometric approach that we have presented enables us
to test the super-universality hypothesis using exact results.

We also studied a number of related problems on which we report below.

• We verified that analogous results are obtained for different probability distributions of the
coupling strengths as long as these remain ferromagnetic.

• We observed that the scaling plots do not depend on the working temperature while the latter
is below the critical point.
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Figure 4.6: Scaling plot of the number density of hull lengths for a disorder with strength ε = 1.0
at different times. The solid black lines are the analytic prediction in Eq. (4.10) and explained in
the text. The part around the maximum is characterized by the exponent α< while the tail of the
distribution is well-described by the exponent α>.



Chapter 5

Conserved dynamics

5.1 Phase separation: Introduction and state of the art

In the last two chapters, we have studied coarsening in systems where the order parameter is not

conserved by the dynamics. We have obtained the distributions of different geometrical observables,
and, by now, we understand which are the effects of the initial temperature, the working temper-
ature and the disorder strength. To complete our geometrical picture of phase ordering dynamics,
it would be interesting to understand what happens if the order parameter is conserved by the
dynamics. This process, also known as phase separation is the topic of this chapter.

Phase separation is the process whereby a binary mixture of components A and B, initially in
a homogeneous phase, demix leading to the coexistence of two phases, one rich in A and the other
in B. The system, initially in an unstable spatially uniform state, performs a coarsening process to
approach its thermodynamically stable phase-separated state [8].

In the case of fluids, hydrodynamic effects may be important to the demixing process [115];
these interactions are hard to treat analytically and the results of numerical simulations are some-
times controversial. Some studies even claim that dynamical scaling is broken by hydrodynamic
transport [116]. In the following we focus on the phase separation process in systems without
hydrodynamics. A typical realization is phase separation in binary alloys, high-viscosity fluids or
polymer blends.

The time-dependent order parameter characterising the phase separation phenomenon is a con-
tinuous scalar field, φ(~x, t), that represents the local difference in concentration of the two phases,
normalized by the sum of the averaged concentrations. Its evolution is described by a phenomeno-
logical Langevin-like equation:

∂φ

∂t
= −→

▽ ·
[

M(φ)−→▽
(

δH[φ]

δφ

)]

+ η . (5.1)

H[φ] is a Ginzburg-Landau type ‘free-energy’ with an elastic term and a double-well potential. The
stochastic field η(~x, t) represents a thermal noise of zero average and correlator given by

〈η(~x, t)η(~x′, t′)〉 = −2T ∇2δ(~x− ~x′)δ(t− t′) (5.2)

while the mobility M(φ) is in general a function of the field φ, as indicated. When M(φ) = 1,
Eq. (5.1) is known as the Cahn-Hilliard equation [117], or model B in the Hohenberg-Halperin
classification of critical dynamics [73] (see Sect. 2.2). Several discrete models to study the phase-
separation process in binary alloys have also been proposed and studied in the literature. These are

55



56 CHAPTER 5. CONSERVED DYNAMICS

lattice gases that are themselves mapped onto Ising models with locally conserved order parame-
ter [118]. The dynamics follows stochastic rules for the interchange of nearest neighbour A and B
molecules or, in the spin language, the reversal of a pair of neighbouring antiparallel spins.

Two microscopic processes contribute to phase ordering dynamics with locally conserved order
parameter, namely bulk and surface diffusion. In bulk diffusion a molecule separates (evaporation)
from the surface of a domain, diffuses within the neighbouring domain of the opposite phase, and
finally attaches to its original domain or another one. In the context of an Ising model simulation,
there is an activation energy for this process and one can check that the dominant growth mechanism
is the transport of material through the bulk from domain boundaries with large curvature to
domain boundaries with small curvature. In surface diffusion molecules “walk” on the interface.
This mechanism leads to the motion of whole domains in the sample and thus the possibility
of merging two domains together when they collide. In the usual Kawasaki [118] spin-exchange
dynamics or in model B’s evolution [119], the early dynamics is surface diffusion driven and at later
time the dominant process becomes bulk diffusion. There exist, however, modified versions where
either bulk or surface diffusion are suppressed [119, 120, 121]. For deep temperature quenches,
M(φ) → 0, bulk diffusion is effectively eliminated, and domain growth proceeds by surface motion.
In quenches to moderate subcritical temperatures, on the other hand, the mobility does not play
an important role, M(φ) ≃ const., and the domain growth is bulk-driven.

Let us now review in some detail the main features of coarsening with locally conserved order
parameter. Using the Cahn-Hilliard equation, it can be easily shown that the radius, R(t), of a
single spherical domain of negative phase (φ = −1) in an infinite sea of positive phase (φ = +1),
evolves from time t = 0 to time t as,

R3(t) = R3(0) − 3

2
σt. (5.3)

with σ a parameter that quantifies the surface tension (for a pedagogical derivation of this equation,
see [8]). A domain with initial radius Ri thus evaporates in a time t ∼ R3

i in contrast to the non-
conserved order parameter dynamics in which the area within a boundary simply shrinks under the
curvature force in a time t ∼ R2

i [82].
Lifshitz-Slyozov [122] and Wagner [123] studied, for a three-dimensional system, the growth and

shrinkage of domains of one phase embedded in one large domain of the other phase in the limit of
small minority phase concentration, c → 0. In their celebrated papers they realized that domain
growth at the late stages is limited by matter diffusion through the majority domain. In this case
the evolution of a domain of the minority phase with radius Ri immersed in a sea of the majority
phase that is “supersaturated” with the dissolved minority species [122, 8] can follow two paths:
the domain evaporates by diffusion if Ri < Rc, or it grows by absorbing material from the majority
phase if Ri > Rc, where Rc is a time-dependent“critical radius”. This critical radius turns out to be
the only characteristic length-scale in the system, R(t), and serves to scale all correlation functions
according to the dynamic scaling hypothesis. It grows as R(t) = Rc(t) ∼ t1/3. Lifshitz-Slyozov [122]
also derived an expression for the density of droplets of the minority phase with linear size R in
d = 3. Three important properties of the Lifshitz-Slyozov distribution are:

• The distribution of droplet radii has an upper cut-off, Rmax(t), where Rmax(t) ∼ t1/3 is a
constant, equal to 3/2, times the critical radius Rc(t).

• The decay close to the cut-off is exponential.

• The density of small objects, R ∼ 0, satisfies scaling and behaves as n(R, t) ∼ Rc(t)
−4 (R/Rc(t))

2,
where n(R, t)dR is the number of droplets per unit volume with radius in the interval
(R,R + dR).
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Later simulations established that the scaling functions depend on the minority concentration [124,
125]. The Lifshitz-Slyozov calculation can easily be extended to any space dimension d > 2 [126].
However, the limit d→ 2 is singular, and does not commute with the limit c→ 0. Rogers and Desai
[127] showed, however, that the usual scaling forms apply in d = 2, with R(t) ∼ t1/3, for large t
at small non-zero volume fraction c. More recently, Huse used scaling and energetic arguments to
generalize the Lifshitz-Slyozov growth law and argued that it should also apply to critical quenches
with equal volume fractions of the two phases [128]. Numerical simulations [128, 75], suggest that
the typical domain radius scales in time as R(t) ∼ t1/3 for any value of c, even in the 50:50 case.
The scaling function for the distribution of domain areas has not been analyzed in this case.

If we take also into account the competition between bulk and surface diffusion the growth law
is modified at early times. The former process is the one responsible for the scaling of global ob-
servables with a typical domain length R(t) ∼ t1/3 while the latter yields a slower time-dependence,
R(t) ∼ t1/4, that is important only at relatively short times after the quench [129, 130]. The
temperature-dependent crossover can be seen, for example, in numerical simulations with Kawasaki
dynamics [119]. The crossover time diverges when T → 0. This observation has been used to de-
velop accelerated algorithms to simulate discrete models in which only bulk diffusion processes are
considered, which should describe phase-separation correctly at late times after the quench. Phase-
separation in the Kawasaki spin-exchange dynamics is equivalent to a Cahn-Hilliard equation with
order parameter dependent mobility. In [120], a model with M(φ) = 1 − αφ2 was studied. The
time dependent structure factor exhibits dynamical scaling, and the scaling function is numerically
indistinguishable from the Cahn-Hilliard one, consistent with what was expected from numerical
studies with Kawasaki dynamics.

In this chapter we study the morphology of domain and perimeter structures in the spinodal
decomposition of a two dimensional system with equal concentrations of the two phases. In par-
ticular, we analyse the distributions of the domain areas and their associated perimeters, and the
relation between areas and perimeters during the evolution. We consider both bulk-and-surface
diffusion and just-bulk diffusion processes. Extending the formalism previously developed for the
study of domain growth in the non-conserved case in chapters 3 and 4, we propose an analytic form
for the domain size distribution function in its full-range of variation, and we test it with simula-
tions on the two-dimensional Ising model (2dIM). Our analytic prediction for the distribution of
small areas is the result of one hypothesis: that interfaces move independently. This assumption
is valid for domains of any size in curvature driven dynamics: the fission of a big domain into two
smaller ones or the coalescence of two domains to form a bigger one are forbidden in the continuous
Allen-Cahn description (remember discussion in Sect. 3.3.1). In the conserved order parameter
case, even with c→ 0, this assumption does not strictly hold and corrections must, in principle, be
included. Indeed, already Lifshitz and Slyozov made an attempt to go beyond their simple model
and account for coalescence when c → 0. Later, it became clear that in locally conserved order
parameter dynamics, the dominant effect not accounted for in the simple description that takes
domain-boundaries as independent objects was interdomain correlations rather than coalescence.
For a discussion of the limit c→ 0 considering interactions between droplets see [131].

Therefore, our analytical results are just a “first order” approximation. Still, as we shall see,
this approximation yields a very good description of numerical data obtained with Monte Carlo
simulations. The main properties of the distributions that we will derive are:

• The number density of domain and hull-enclosed areas satisfy scaling: nh,d(A, t) = t−4/3fh,d(A/t
2/3).

The argument of the scaling functions arises from the fact that the characteristic area of hulls
and domains grows as t2/3. The prefactor t−4/3 follows from the fact that there is of order
one domain per scale area.
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• The scaling functions, fh,d(x), do not have any cut-off and extend to infinite values of x falling-
off as (2)ch,dx

−τ , with x = A/(λh,dt)
2/3. The constants ch,d are the ones in the initial (or

quasi-initial – see below) area distribution, nh,d(Ai) ∼ (2)ch,d/A
τ
i , for Ai → ∞. The prefactor

ch is known exactly, ch = 1/8π
√

3 (Sect. 3.3.2). The factor 2 is present when quenching from
high temperature, T0 > Tc, and is absent when the initial condition is the critical Ising one,
T0 = Tc. The exponent τ depends on whether we consider hull-enclosed (τ = 2) or domain
areas, and in the latter case on the initial condition, i.e. infinite or critical temperature. In
both cases it is very close to 2.

• After a quench from high temperature to a sufficiently low working temperature, T ≪ Tc, the
small-argument behaviour of the scaling function is f(x) ∝ √

x, in agreement with the Lifshitz-
Slyozov-Wagner prediction for the small concentration limit. At higher working temperature
and for critical initial conditions the behaviour is modified in a way that we describe in the
text.

The chapter is organised as follows. In Sect. 5.2 we describe an approximate analytic derivation
of the time-dependent hull enclosed and domain area distributions. These arguments do not rely on
any scaling hypothesis but rather support its validity. We compare our approach to the celebrated
Lifshitz-Slyozov-Wagner theory [122, 123]. In Sect. 5.3 we show our numerical results for the
statistics of areas in the 2dIM evolving with locally conserved dynamics. We use variants [121] of
the Kawasaki algorithm [118] that we briefly explain in this section. The use of different algorithms
allows us to switch surface diffusion on and off, and pinpoint the relative importance of these
processes. Section 5.4 is devoted to the analysis, both analytical and numerical, of the geometry
of domain walls during the dynamics and their relation to the corresponding areas. Finally, in the
conclusion we summarize our results.

5.2 Statistics of areas: analytic results

In this section we analyze the number density of hull-enclosed and domain areas.

5.2.1 Initial distribution

We study the coarsening dynamics after a quench from T0 → ∞. Equilibrium infinite temperature
initial conditions (fraction of up spins = 1/2) are below the critical random percolation point
(pc ≈ 0.59) for a square lattice in d = 2. After a few MC steps, however, the system reaches
the critical percolation condition, e.g. the expected A−2 tail is observed in the distribution of hull
enclosed areas. We have checked that this is so from the analysis of several correlation functions as
well as the distribution of structures. This fact justifies the use of the Cardy-Ziff exact result for
the distribution of hull-enclosed areas at critical percolation [83] as our effective initial condition
from T0 → ∞.

In Chapter 3 we have already introduced the equilibrium distribution of hull-enclosed and
domain areas, domain walls and their geometrical relation to their associated areas at critical
percolation. We do not repeat the description of these properties here, but just list the initial
distributions, nh,d(Ai, ti), of hull-enclosed and domain areas [83, 42]:

nh(Ai, ti) = 2ch
A2

i

nd(Ai, ti) =
cdA

τ−2

0

Aτ
i

, τ =
379

187
(5.4)
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5.2.2 Characteristic domain length

It is by now well-established [122, 128] that the spatial equal-time correlation function in demixing
systems is correctly described by the dynamic scaling hypothesis with a characteristic length R(t) ∼
t1/3 in agreement with the Lifshitz-Slyozov-Wagner prediction [122, 123] and the extension beyond
the small concentration limit derived by Huse [128]. The effect of temperature fluctuations is
expected to be described by a T -dependent prefactor, R(t, T ) = [λ(T )t]1/3. In the following we do
not write the T dependence explicitly.

5.2.3 Large structures

It is natural to assume that at time t, as for non-conserved order parameter dynamics, large
structures, characterized by a long linear dimension R ≫ R(t), have not changed much with
respect to the initial condition. We shall support this claim with the numerical results. Thus, for
sufficiently large hull-enclosed areas such that the time-dependence can be neglected we expect

nh(A, t) ≈ 2ch
A2

, A≫ t2/3 . (5.5)

Similarly, for large domains, the area dependence of their distribution follows that of the initial
condition, Eq. (5.4).

5.2.4 Small structures

Small structures, such that R ≪ R(t), are mostly embedded in very large domains. To a first
approximation we shall assume that they are independent. Moreover, they are not expected to have
holes of the opposite phase within, implying the equivalence between hull-enclosed and domain
areas at these scales. Indeed, any smaller structure placed within must have evaporated by time t.
We then propose that the number density of small hull-enclosed or domain areas at time t can be
written as a function of the initial distribution,

n(A, t) ≈
∫ ∞

0
dAi δ(A −A(t, Ai))n(Ai, ti) , (5.6)

with Ai the initial area and n(Ai, ti) their number density at the initial time ti. A(t, Ai) is the
area of a domain at time t that had area Ai at time ti. In writing this equation we have implicitly
assumed that an area cannot split into two, and that two such areas cannot coalesce, which is not
strictly true in conserved order parameter dynamics. Note that for sufficiently large areas so that
the time-dependence is not important and A ∼ Ai Eq. (5.6) immediately yields n(A, t) = n(Ai, ti)
and Eq. (5.5) is recovered. It has to be stressed, however, that Eq. (5.6) does not strictly apply in
this case.

Assuming that the small areas are circular

A3/2(t, Ai) = A
3/2
i − λh(T )(t− ti) , (5.7)

see Eq. (5.3), and after a straightforward calculation using Eq. (5.4) for the initial distribution one
finds

(λht)
4/3 nh(A, t) =

2ch

[

A

(λht)2/3

]1/2

{

1 +

[

A

(λht)2/3

]3/2
}5/3

(5.8)



60 CHAPTER 5. CONSERVED DYNAMICS

for hull-enclosed areas. This prediction has the expected scaling form nh(A, t) = t−4/3f(A/t2/3)
corresponding to a system with characteristic area A(t) ∼ t2/3 or characteristic length scale R(t) ∼
t1/3. At very small areas, A≪ (λht)

2/3, where our approximations are better justified, one has

(λht)
4/3 nh(A, t) ≈ 2ch

[

A

(λht)2/3

]1/2

. (5.9)

As expected, taking the limit A/(λht)
2/3 ≫ 1 in Eq. (5.8) one recovers Eq. (5.5). Although this

limit goes beyond the limit of validity of Eq. (5.8) we shall propose that Eq. (5.9) actually holds,
at least approximately, for all values of A/(λht)

2/3.
In Chapter 3 we have studied non-conserved order parameter dynamics and we derived the

number density of domain areas from the one of hull-enclosed areas. The key fact in this case was
that we could treat the distribution of hull-enclosed areas exactly and then use a small ch ≃ 0.023
expansion to get the statistical properties of domains. In the case of phase separation our results
for hull-enclosed areas are already approximate. Still, the relation between hull-enclosed area
distribution and domain area distribution obtained in chapter 3 should remain approximately true,
as a first order expansion in small ch, since small domains are not expected to have structures
within. In conclusion, for large areas and long times such that a regularizing microscopic area
A0 = λdt0 can be neglected, we expect the same functional form as the one given in Eq. (5.8) with
cd = ch +O(c2h), λd = λh[1+O(ch)] and the power 5/3 in the denominator replaced by (2τ ′ +1)/3:

(λdt)
4/3nd(A, t) ≃

2cd

[

A

(λdt)2/3

]1/2

{

1 +

[

A

(λdt)2/3

]3/2
}(2τ

′
+1)/3

≡ g(x) (5.10)

with x = A/(λdt)
2/3, and

(λdt)
4/3nd(A, t) ≃ 2cd

[

A

(λdt)2/3

]1/2

(5.11)

for A ≪ (λdt)
2/3. This expression can be compared to Eq. (3.34), valid for non-conserved order

parameter dynamics.
Let us emphasize again the main approximation of our analytical approach: we are considering

each domain boundary as an independent entity. This is strictly true for the non-conserved order
parameter treated in chapter 3, but is an approximation in the conserved order parameter problem.

5.2.5 Super universality

All the results above are valid for the bulk diffusion driven case. What happens if we consider
the case in which bulk and surface diffusion are in competition, or whether we include quenched
disorder in the couplings? If we suppose that all these systems belong to the same dynamical
universality class, the scaling functions being the same, then Eq. (5.8) can be generalized in the
form

R4(t) nh(A, t) =

2ch

[

A

R2(t)

]1/2

{

1 +

[

A

R2(t)

]3/2
}5/3

(5.12)
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and similarly for the domain area distribution. The time-dependence in R(t) should include all
regimes (e.g. t1/4 and t1/3 in the clean case with surface and bulk diffusion) and can be extracted
from the dynamic scaling analysis of the correlation functions. We shall check numerically the
super-universality hypothesis.

5.3 Statistics of areas: numerical tests

To test our analytic results we carried out numerical simulations on the 2d square-lattice Ising
model (2dIM) with periodic boundary conditions.

H = −
∑

〈i,j〉
Jijσiσj (5.13)

where σi = ±1. We will start considering the pure model, Jij = J > 0 ∀ij, and then the random
bond model in which the Jij are random variables uniformly distributed over the interval [1/2, 3/2].
We used several versions of conserved order parameter dynamics that switch on and off surface
diffusion. These are Kawasaki dynamics at finite temperature including both surface and bulk
diffusion, and accelerated bulk diffusion in which surface diffusion is totally suppressed. Bulk
diffusion needs to overcome energy barriers; thus this variant runs at finite temperature only. In
all cases we implemented the continuous time method and the algorithms become rejection free.
A detailed description of these algorithms appeared in [121]. Domain areas are identified with the
Hoshen-Kopelman algorithm [81].

Figure 5.1: Snapshots of the 2d Ising model evolving with locally conserved order parameter at
t = 1000 and t = 16000 equivalent MC steps using the accelerated bulk algorithm explained in
Sect. 5.3. The initial condition is a random configuration of ±1 spins taken with probability one
half, that is to say an infinite temperature state. Evolution occurs at T = 1.0.

All data have been obtained using systems with size L2 = 103 × 103 and 103 runs using in-
dependent initial conditions. We ran at different temperatures specified below. We considered
equilibrium at infinite temperature as initial condition, T0 → ∞.
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5.3.1 Domain areas

In Fig. 5.2 (left) we show the time-dependent domain area distribution in double logarithmic scale,
at three different times, following a quench from T0 → ∞ to T = 1.0. The working temperature is
very low compared to the critical value, Tc = 2.269.

The figure shows a strong time dependence at small areas and a very weak one in the tail, which
is clearly very close to a power law. The curves at small areas move downwards and the breaking
point from the asymptotic power law decay moves towards larger values of A for increasing t. We
include the spanning domain in the statistics: the bumps on the tail of the distribution is a finite
size effect visible only when the number of domain areas has already decreased by several orders of
magnitude. In the tail of the probability distribution function (pdf) the numerical error is smaller
than the size of the data points. The discussion of finite size effects given in previous chapters also
applies to this case.
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Figure 5.2: Left panel: Number density of domains areas per unit area for the 2dIM evolving at
T = 1.0 after a quench from T0 → ∞ using the accelerated algorithm. The dotted line represents
the analytical prediction. Right panel: rescaled data using the typical domain area time-dependence
A ∼ t2/3. The dotted line is the theoretical prediction Eq. (5.10).

We test the analytic prediction: the very good agreement between the analytical theory and the
data is quite impressive. In Fig. 5.2 (right) we scale the data by plotting (λdt)

4/3nd(A, t) against
A/(λdt)

2/3 with λd = 0.0083. For areas A larger than the ‘typical’ value (λdt)
2/3 the time and λd

dependence become less and less important. We fit the parameter λd(T ) by analysing the behaviour
at small areas, A3/2 < λd(T )t, and we find, that λd(T = 1.0) = 0.0083 yields the best collapse of
data. The full line is our prediction Eq. (5.10).

In Fig. 5.3 we present the domain area distribution for the evolution using the Kawasaki algo-
rithm both for the clean and the disordered system. The agreement with the analytical prediction
is as good as with the bulk-diffusion algorithm, suggesting the validity of super universality between
both dynamics.

We extract the growing length R(t) from the analysis of the spatial correlation function and
we find very good agreement between the numerical data and the scaling function suggesting that
super-universality with respect to the inclusion of disorder in the interactions also holds.

Up to now we showed results obtained using a rather low working temperature. We now study
whether and how our results are modified when using higher values of T . Figure 5.4 shows the
numerical data and proves that the scaling is well-satisfied at all times and for all areas. The large
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Figure 5.3: Simulations with the Kawasaki algorithm, without and with disorder. The solid lines
represent the analytic prediction with cd = 0.025, τ ′ = 2.055 and λd = 0.3. For the disordered case,
the growth law R(t) is extracted from the spatial correlation function. Even if there is deviations
from the theoretical curve, the data seems to show super-universality.

scale behaviour of the distribution is not modified by T and all data are well-described by the initial
condition form. Instead, the small scale behaviour depends strongly on temperature fluctuations.
The anomalous up-rising part of the distribution at small areas is time-independent, suggesting
that it can be associated with equilibrium fluctuations of the domain-walls. As shown in Fig. 5.4,
it is possible to extract the interface thermal fluctuations as was done in Sect. 3.5.
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Figure 5.4: Number density of domains areas per unit area for the 2dIM evolving at T = 1.5 after
a quench from T0 → ∞ using the accelerated bulk algorithm. The prefactor λd(T ) in the growing
length is chosen to be λd(T ) = 0.0060. Compare to the results shown in Fig. 5.2 obtained for a
lower working temperature.

5.4 Statistics of perimeters and fractal properties

The analytic argument described in Sect. 5.2 can be extended to study the distribution of domain
wall perimeters. The domain perimeter is the total length of the interface between the chosen
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domain and the neighbouring ones – including the hull and internal borders. In this section we
present the analytic prediction for this function together with numerical results that confirm it. We
concentrate on T0 → ∞ and low-working temperature. In the simulations we define the length of
the boundary as the number of broken bonds.

After a quench from T0 → ∞, the domain areas, A, and their corresponding perimeters, p, obey
the scaling relations (see Fig. 5.5)

A

(λdt)2/3
∼ η′d

(

p

(λdt)1/3

)α′

d

, (5.14)

with

α′>
d ∼ 1.00 ± 0.1

η′>d ∼ 0.75

}

for
A

(λdt)2/3
>∼ 10 , (5.15)

and

α′<
d ∼ 2.00 ± 0.1

η′d
< ∼ 0.045

}

for
A

(λdt)2/3
<∼ 10 . (5.16)

The relation between areas and perimeters exhibits two distinct regimes with a quite sharp crossover
between them. During the coarsening process a characteristic scale R(t) ∼ (λdt)

1/3 develops such
that domains with area A > R2(t) have the same exponent as in the initial condition (structures
that are highly ramified with α′< ≃ 1) and domains with A < R2(t) become regular (α′< ≃
2). Interestingly, the small structures in the non-conserved order parameter dynamics are not
completely circular, as demonstrated by the fact that their α′< ≃ 1.8, see Fig. 5.5.
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Figure 5.5: The time-dependent relation between the area and the domain boundary evolving at
T = 1.0 after a quench from T0 → ∞ using conserved and non-conserved order parameter dynamics.
The lines are fits to the data points. For the large structures the fit yields α′> ≃ 1 in both cases
while for the small structures it yields α′> ≃ 2 for conserved order parameter dynamics (circular
domains) and α′> ≃ 1.8 for non-conserved order parameter dynamics. Here z = 2 and 3 for
non-conserved and conserved dynamics respectively.

In analogy with the derivation in Chap. 3 for the time-dependent number density of domain
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areas, the time-dependent number density of domain-wall lengths, nd(p, t), is given by

(λdt) nd(p, t) ≈
α′<
d (η′<d )3/2 2cd

(

p

(λdt)
1

3

)

3α<
d

−2

2






1 + (η′<d )3/2

(

p

(λdt)1/3

)

3α′<
d

2







2τ ′+1

3

(5.17)

for small areas, A/(λdt)
2/3 < 10, and the same expression with η′<d and α′<

d replaced by η′>d and α′>
d

for large areas A/(λdt)
2/3 > 10. Note that these expressions satisfy scaling. The scaling function,

f<(x), with x = p/(λdt)
1/3, reaches a maximum at

xmax =

(

3α′<
d − 2

2(η′<d )
3

2 [α′<
d (τ ′ − 1) + 1]

)2/(3α′<
d )

(5.18)

and then falls-off to zero as another power-law. There is then a maximum at a finite and positive
value of p as long as α′

d
< > 1, that is to say, in the regime of not too large areas. The numerical

evaluation of the right-hand-side yields xmax = pmax/(λdt)
1/3 ∼ 3 which is in the range of validity

of the scaling function f<. The time-dependent perimeter number density for long perimeters falls-
off as a power law f>(x) ∼ xα

′>
d (1−τ ′)−1. Although the function f> also has a maximum, this one

falls out of its range of validity. The power law describing the tail of the number density of long
perimeters is the same as the one characterising the initial distribution.

In Fig. 5.6, left and right, we display the time-dependent perimeter number densities for a system
evolving at T = 1.0 after a quench from T0 → ∞. The data are in remarkably good agreement
with the analytic prediction; the lines represent the theoretical functional forms for long and short
lengths, and describe very well the two limiting wings of the number density. The maximum is
located at a value that is in agreement with Eq. (5.18).

5.5 Conclusions

In this paper we studied the statistics and geometry of hull-enclosed and domain areas and interfaces
during spinodal decomposition in two dimensions.

The analytical part of our work is an extension of what we presented in Chapt. 3 and 4 for the
non-conserved order parameter case. The numerical part of it deals with Monte Carlo simulations
of the 2dIM with locally conserved magnetization. Our main results are:

• We derived the scaling functions of the number density of domain areas and perimeters
with an approximate analytic argument. The expression that we obtained has two distinct
limiting regimes. For areas that are much smaller than the characteristic area, R2(t), the
Lifshitz-Slyozov-Wagner behaviour is recovered. These structures are compact with smooth
boundaries, close to circular, since the area-perimeter relation is A ∼ p2.

• At higher T the small area behaviour departs from the Lifshitz-Slyozov-Wagner prediction.
As for non-conserved order parameter dynamics, once we subtracted the contribution from
thermal domains within the growing structures, the universal prediction is recovered.
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Figure 5.6: The time-dependent number density of perimeters evolving at T = 1.0 from an initial
condition at T0 → ∞. Left panel: raw data; note that the time-dependence is visible in the whole
range of values of p (while in the area number densities the large area tails were very weakly
dependent on time). Right panel: scaled data and analytic predictions for the small and large area
regimes.

• The geometrical properties and distribution of the time-dependent areas that are larger than
R2(t) are the ones of critical continuous percolation. The long interfaces retain the fractal
geometry imposed by the equilibrium initial condition.



Chapter 6

Experiments in the coarsening

dynamics of liquid crystals

6.1 Introduction

In this chapter, we present an experimental application of our results. We performed an experiment
on the coarsening dynamics of liquid crystals in collaboration with the group lead by Ingo Dierking
(Manchester).

When applying an electric field to the liquid crystal studied (details below), we observe phase
separation through the formation and coarsening of chiral domains (i.e. domains of opposite hand-
edness). It is proposed that deracemization (phase ordering) in this system is a curvature-driven
process. We will test this prediction using the exact result for the distribution of hull-enclosed areas
in two-dimensional non-conserved phase ordering dynamics obtained in chapter 3.

We will show that the experimental data are in good agreement with the theory. We thus
demonstrate that deracemization in such liquid crystal belongs to the Allen-Cahn universality
class, and that the exact formula, which gives us the statistics of the hull enclosed areas during
coarsening, can also be used as a strict test for this dynamic universality class.

In the next section we describe the experimental setup, and then we present a detailed analysis
and discussion of the data.

6.2 Experimental setup

Liquid crystals (LCs) are substances that exhibit phases of matter that have properties between
those of a conventional liquid, and those of a solid crystal. A LC may flow like a liquid, but have
the molecules in the liquid arranged in a crystal-like way. The optical and electrical properties of
LCs make them very interesting for technological purposes, e.g. in display devices.

Most LCs are formed by rod-like molecules or disc-shaped molecules. In the last decade, a lot
of attention has been devoted to a new type of LCs: the so-called banana shape LCs. These LCs,
formed by bent-core molecules, show physical properties not present in traditional LCs. The new
macroscopic properties have their microscopical origin in the steric constraints on the packing of
bent-core molecules (for a review on these peculiar LCs, see [132]).

In particular, we are interested in the ability of some banana-shape LCs to form helical structures
of different chirality. Since the discovery of Louis Pasteur, more than 150 years ago, that chiral
crystals can form from an achiral solution [133], deracemization has been a fundamental question
in the investigation of chirality. Deracemization in an achiral fluid system is very unusual and a
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topic of only recent interest [134]. It can occasionally be observed in liquid crystalline systems
[135, 136, 137] formed by bent-core molecules. The most likely microscopical reason for chiral
conglomerate formation are the complicated steric interactions. This is also evidenced by computer
simulations which indicate chiral conformations of on the average achiral molecules [138]. Electric
field induced switching between chiral domains was demonstrated in Refs. [139, 140].

The liquid crystal employed in our investigation is comprised of bent-core molecules. The stud-
ied cell has a gap of 5µm filled with the LC, while lateral dimensions are much larger, approximately
1cm in each direction. We are thus effectively investigating a 2d system. The liquid crystal was
synthesised by the group of M. B. Ros in Zaragoza, Spain. The cell itself is prepared by Extebarria
group in Bilbao, but is just a standard, commercially available liquid crystal cell. The cell prepara-
tion conditions at its chemical properties are discussed in detail in Ref. [141]. Domain coarsening
was followed by temperature controlled polarizing microscopy (Nikon Optiphot-Pol microscope in
combination with a Linkham TMS91 hot stage), with a control of relative temperatures to 0.1K.
Digital images were captured at a time resolution of 1s. with a pixel resolution of N = 1280× 960,
corresponding to a sample size of 520 × 390µm2 (JVC KY-F1030). Note that the imaging box is
approximately 1/200 of the whole sample. The imaging dimension is limited by the apparatus and
microscope objectives we can use. Electric square-wave fields of amplitude E = 14V µm−1 and
frequency f = 110Hz were applied by a TTi-TG1010 function generator in combination with an
in-house built linear high voltage amplifier.

The experimental procedure is straight forward: the cell, lying over the hot stage, is placed
in a polarizing microscope, equipped with the digital camera for image acquisition. The inner
substrates of the cell are coated with a transparent layer of Indium tin oxide to act as electrodes.
Electric fields are applied to the cell (effectively a plate capacitor filled with a dielectric) via the
function generator and broad frequency range linear amplifier. Cooling from the isotropic liquid,
an optically isotropic fluid liquid crystal phase is formed, which exhibits no birefringence and thus
appears dark between crossed polarizers. On electric field application, chiral deracemization occurs
with domains of opposite handedness growing as a function of time. This coarsening process can
easily be followed when the polarizers are slightly de-crossed by a few degrees. Big chiral domains
of opposite handedness get larger and larger and smaller structures disappear.

6.3 Analysis of the images

We performed 10 runs lasting 10 min. each with pictures taken at intervals of 10 s. on a single
sample. Each run is initialized by heating the sample above the transition temperature and sub-
sequently cooling below it before applying the electric field that starts the phase ordering. The
coarsening process is visualized in terms of domains, i.e., connected regions of the same handedness.
In Fig. 6.1 we show a series of snapshots taken at times t = 0, 60, 120, ..., 300s. These pictures are
then thresholded and an Ising spin si is assigned to each pixel, where si(t) = ±1 for pixels that
belong to left or right handed domains, respectively. There are many spurious small domains that
are related to the image analysis. The induced graininess is also reflected in the small r behavior
of the pair correlation function C(r, t) and the small A behaviour of nh(A, t) as we shall see below.
Still, at first view, the snapshots 6.1 look very similar to the ones obtained in simulations of the
2dIM with non conserved dynamics.

The initial “magnetization density” in the imaging window of the liquid crystal, defined as the
average of the spin variables over the box, m(0) = N−1

∑N
i=1 si(0), is not zero. This initial value

is only approximately conserved by the dynamics, m(t) ≈ m(0) = 0.2 ± 0.1, but the actual value
depends on the thresholding operation.
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Figure 6.1: The first snapshot displays the configuration right after the quench, t = 0s. The others
are snapshots during the evolution t = 60, 120, ..., 300s.

We determine the growth law for the size, R(t), of typical domains from a direct measure of the
spatial correlation function,

C(r, t) ≡ 1

N

N
∑

i=1

〈 si(t)sj(t) 〉||~ri−~rj |=r, (6.1)

The angular brackets indicates an average over the 10 runs. The distance dependence of the pair-
correlation at five equally spaced times, t = 100, . . . , 500s is displayed with thin (red) lines in the
left panel of Fig. 6.2. As a consequence of the non-zero magnetization, C(r, t) does not decay to

zero at large r. More strikingly, the curves are time-independent at distances r
<∼ 5 (C

>∼ 0.55)
and they clearly depend on time at longer distances with a slower decay at longer times. Here
and in what follows we measure distances in units of the lattice spacing. The time-independence
at short-distances and the long-distance decay are atypical, as can be seen by comparing to the
spatial correlation in the 2dIM displayed in the inset to Fig. 6.2 (left). We ascribe the lack of
time-dependence at short scales and the further slow decay to the graininess of the experimental
system. Indeed, in the main panel of Fig. 6.2 (left) we also show, with thick dashed (black) lines,
the correlation in the 2dIM where we have flipped, at each measuring instant, 10% of spins taken at
random over the sample (the system dynamics are not perturbed and between measurements we use
the original spins). By comparing the two sets of curves we see that the effect of the random spins
is similar to the one introduced by the graininess of the system. This effect will also be important
for the analysis of the hull-enclosed area distribution.

The function C(r, t) obeys dynamical scaling,

C(r, t) ≃ g[r/R(t)]. (6.2)

We define the characteristic length-scale R(t) at time t by the condition C(R, t) = 0.2 but other
choices give equivalent results. The good quality of the scaling is shown in the right panel of
Fig. 6.2. The time-dependence of the growing length R(t) is shown in the inset to Fig. 6.2 (right)
with points. The error bars are estimated from the variance of the values obtained from the 10
independent runs. We measure the growth exponent 1/z by fitting the long-time behavior of R(t),
say for t > 30 s, and we find 1/z ≃ 0.45 ± 0.10. The exponent thus obtained is close to the
theoretically expected value 1/2 for clean non-conserved order parameter dynamics [8]. The data
suggest that for times longer than t ≃ 30 s the system is well in the scaling regime.

We now turn to the analysis of the distribution of hull enclosed areas. In chapter 3 we derived
an exact analytical expression for the hull enclosed area distribution of curvature driven two-
dimensional coarsening with non-conserved order parameter:

nh(A, t) = 2ch/(A+ λht)
2 . (6.3)
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Figure 6.2: Spatial correlation function at different times after the quench. Left: experimental data
at five equally spaced times, t = 100, . . . , 500s with thin (red) lines, and numerical simulation data
in the 2dIM with 10% randomly flipped spins at five equally spaced times, t = 100, . . . , 500 MCs

with dashed (black) lines. We clearly notice the effect of graininess at very small scales (r
<∼ 5 in the

experiment and r
<∼ 1 in the simulation), where there is no time-dependence in either case. Inset: the

actual spatial correlation in the 2dIM. Right: Study of the scaling hypothesis, C(r, t) ≃ g[r/R(t)]
in the liquid crystal, at the same times as in the left panel. Inset: the time-dependence of the
growing-length scale. The slope of this line is 1/z ≃ 0.45 ± 0.10.

Using the digital images, we counted the number of hull-enclosed areas in [A,A+dA] to construct
nh(A, t). It is important to note that the experimental data are taken using a finite imaging window
and, in each sample and at each measuring time, many domains touch the boundaries (in contrast
to the numerical simulations in chapters 3, 4 and 5 in which we used periodic boundary conditions).

In the left panel of Fig. 6.3 we show the hull-enclosed area distribution in the liquid crystal at
three different times. In the main panel we included in the statistics the chopped areas that touch
the border of the image. The upward deviation of the data with respect to the asymptotic power
law A−2 is due to the finite image size. Indeed, domains that touch the border are actually larger
but get chopped and contribute to bins of smaller A’s and this induces a bias in the data. The
inset displays nh removing from the statistics the areas that touch the border. The same anomaly
appears in the 2dIM if one uses a finite imaging box within the bulk. To show this we simulated
a system with L = 1280 and periodic boundary conditions and we measured nh in a finite square
window with linear size ℓ = 1000 using 100 independent samples. In the right panel of Fig. 6.3
we show two sets of data for the 2dIM; in both cases we exclude the spanning cluster over the
full system size. One set of data includes areas touching the border and lies above the theoretical
curve. In the other set we eliminated these areas from the statistics and the data points fall on the
analytic curve recovering the A−2 tail.

The data in Fig. 6.4 do not show any noticeable time-dependence at either small or large A. In
the small area limit the time-independence can be traced back to the lack of time-dependence in the

correlation function at distances r
<∼ 5 (which corresponds to A ≃ πr2

<∼ 80), roughly the scale of the
spatial graininess (see Fig. 6.2). In the large area limit the time-dependence naturally disappears;
structures with A ≫ R2(t) are basically the ones already present in the initial condition and have
not had time to evolve yet. In between these two limits the curves show a shoulder with a systematic
time-dependence that is the most relevant part of our experimental data and it is well described by
the analytic prediction (6.3) shown with solid lines. To conclude we show that the random spins
introduced by the measuring method are not only responsible for the time-independence of nh at
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Figure 6.3: Scaling plot of the number density of hull-enclosed areas in: (a) the experiment; (b)
the 2dIM with linear size L = 1280 and periodic boundary conditions evolving with non-conserved
order parameter at T = 0. In the latter the measurements are done on a box with linear size
ℓ = 1000. The lines are the prediction in Eq. (6.3). In the 2dIM case we exclude the spanning
clusters from the statistics. In the insets we exclude all domains that touch the border while in the
main panels we include them in the statistics.

small areas but also for the excess weight of the distribution in this region. In the inset to Fig. 6.4
we show the hull-enclosed area distribution in the 2dIM where we introduced 10% random spins at
each measuring time. There is indeed a strong similarity with the experimental data in the main
panel that could even be improved by choosing to flip spins in a fine-tuned correlated manner.

6.4 Conclusion

In summary, our experimental results for the hull-enclosed area distribution in the coarsening
dynamics of the liquid crystal are in very good agreement with the exact analytic prediction for 2d
non-conserved scalar order parameter dynamics presented in Chap. 3. We thus demonstrate that
deracemization in such bent-core liquid crystals belongs to the Allen-Cahn universality class, and
that our theoretical results can be useful in interesting experimental situations.
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Chapter 7

Geometry of 2d coarsening: a final

picture emerging

Let us summarize in this final chapter the picture that emerges from all these studies in the geometry
of 2d coarsening:

• The dynamical scaling hypothesis describes very accurately the evolution of all of the systems
considered. In the case of phase ordering dynamics with non conserved order parameter, we
were able to obtain a proof of the dynamical scaling hypothesis.

• The growth law R(t) appearing in the scaling hypothesis, not only determines the average size

of the geometrical structures in the system, but also a dynamical cross-over between large

and small coarsening structures. This cross-over can be well characterized when studying
geometrical observables, but it is “hidden” in non-geometrical observables such as correlation
or response functions.

• Large structures, with an area at time t larger than the typical one A(t) > R2(t), keep
the ramified geometry they had initially. The areas or perimeters distributions for large
structures are the ones corresponding to the equilibrium state before the quench. Even in
the non-conserved case, where we obtained the distributions in the whole range of areas or
perimeters, the time dependence is negligible for structures with area A(t) > R2(t). The
difference between the coarsening from the two extreme initial states, T0 = Tc and T0 → ∞,
can be clearly seen in the distribution of perimeters, where the power-law decay is different
enough (the distribution of areas presents a power-law decay too close for both initial cases).

• Small structures do not keep the initial geometry but become more regular. The reason is
because structures with typical area A(t) < R2(t) “know” that the coarsening process has
already started. For a clean system with conserved order parameter, small domains are
indeed circular while for non-conserved order parameter they become close to circular. The
difference between the T0 = Tc and T0 → ∞ cases can be clearly seen, in the small area region,
by the extra factor 2 appearing in the latter. For small structures, when exact analysis are
not possible, one can infer their time-evolution under the assumption of independence. These
small coarsening structures should not be confused with the equilibrium thermal fluctuations,
which display time-independent distributions. Thermal fluctuations can also be characterized
by studying correlation or response functions.
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• The scaling functions depend on the type of dynamics considered (e.g., conserved or non-
conserved order parameter) but they do not depend on the presence of weak disorder or finite
temperature once scaled by the pertinent growth law R(t).

The results presented along this manuscript can be useful in experiments, as shown in chapter 6
for the coarsening dynamics of liquid crystals.



Appendix A

Algorithm to obtain the hull enclosed

area

In this appendix, we present the algorithm we developed to identify the hull-enclosed area in the
2dIM.

In order to obtain the size of each hull in an L × L system, a biased walk along the interior
border of each domain is performed, with the hull enclosed area being updated at each step.

Labelling. The N = L × L sites are initially indexed from 0 to N − 1 (top-left=0) while the
domains are identified and labelled by the Hoshen-Kopelman algorithm [81]. By construction, all
sites in each domain receive the (unique) label corresponding to the smaller index among its spins.

Starting point. The putative starting site for the walk is the spin whose index identifies the
cluster. In some cases (for example, when the cluster crosses a border), it may not be the left-
most/top-most site, as it should in order to be counted correctly by the implementation of the
algorithm below. Although such domains may be excluded from the statistics, for finite sizes the
introduced bias is unacceptable. Thus, before starting, we try to find another site in the same
cluster above or to the left of the original spin, where a new starting site may be found. Once this
first site is correctly identified, we assign a height y0.

The walk. From the starting point, we try to turn clockwise around the domain border. Viewed
from the incoming direction, the attempted move is performed in the sequence: left, front, right
and backwards. For the sake of notation, we label the four directions with the indices shown in the
table A. Thus, for example, if the previous step was 0, the attempted order will be 1, 0, 3 and 2.

The area. The first step sets the area to the value A1 = y0 + 1. As the walk proceeds, both
and area and the height are updated, Ai+1 = Ai + ∆A and yi+1 = yi + ∆y (in this order), where
∆A and ∆y depend also on the former direction (see table A). At the end of the walk, when the
departure site in reached, if the last direction is 1, we increase A by −y. Care should be taken
when the starting point has right and bottom neighbours belonging to the same cluster (but not
the bottom right diagonal), because in this case the walk should only be finished after the second
time the starting point is visited.
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t− 1 t ∆A ∆y

0 0 0 1
0 1 0 0
0 2 y + 1 −1
0 3 y + 1 0
1 0 −y 1
1 1 −y 0
1 2 0 −1
1 3 1 0
2 0 −y 1
2 1 −y 0
2 2 0 −1
2 3 0 0
3 0 0 1
3 1 1 0
3 2 y + 1 −1
3 3 y + 1 0

2

31

0

Table A.1: Incremental area contribution for each step during the oriented walk along the domain
border. The values depend both on the present (t) and former steps (t− 1). On the right we show
the labelling of the four possible directions.
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