# Ergodicity Breaking in Disordered Matter: Novel Methods Across Physical Systems

#### Greivin Antonio Alfaro Miranda

Thesis director

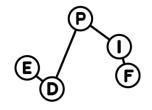
Leticia F. Cugliandolo

Thesis co-director

Marco Tarzia

October 10th, 2025







# Summary of contents

#### 1. Theoretical framework

The ergodic hypothesis and its breakdown

- 2. The Critical Clusters for Frustrated Spin Systems
  The Fortuin-Kasteleyn-Coniglio-Klein (FK-CK) clusters and extensions
- 3. The SWAP Method for Frustrated Spin Systems
  Annealing the disorder to sample equilibrium configurations
- 4. The Importance of Rare Events in Many-Body Localization (MBL)

  The fate of localization with the effect of long-range resonances

Conclusions and Outlook

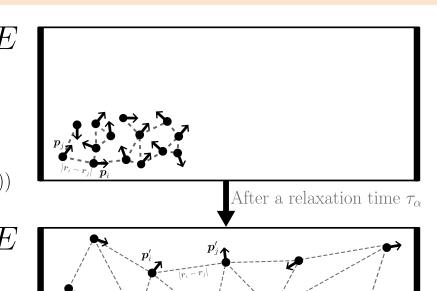
# Theoretical Framework

# Statistical Mechanics and the Ergodic Hypothesis

Microscopic models

Macroscopic observables

$$P = k_B T \left( \frac{\partial \ln \Omega_N}{\partial V} \right)_{E,N}$$

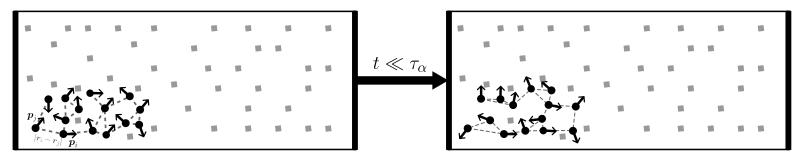


Observables characterized by  $\langle \mathcal{O} \rangle_{eq}$ 

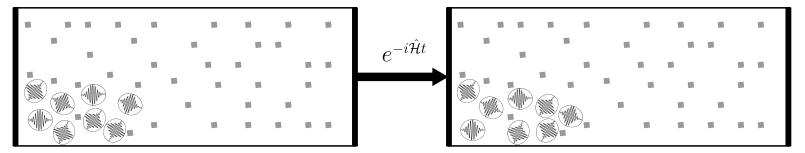
# Ergodicity breaking

We can have out-of-equilibrium situations when...

 $\tau_{\alpha}$  is very large

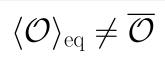


...or purely quantum effects

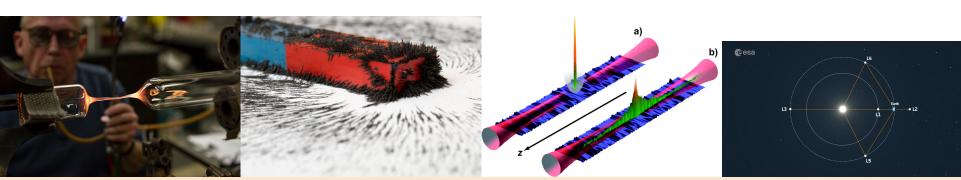


Theoretical Framework 2/5

# Ergodicity breaking



Ergodicity breaking signals the emergence of rich, interesting and complex phenomena (Phase transitions)



Theoretical Framework

# Ergodicity breaking

 $\langle \mathcal{O} 
angle_{ ext{eq}} 
eq \overline{\mathcal{O}}$ 

...but it comes with its fair share of complications when we attempt to study it

Slow relaxational dynamics

Finite-size effects

Long-range correlations and persistent memory

Sensitivity to rare-events

Metastability

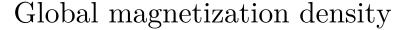
The Critical Clusters for Frustrated Spin Systems

# The main classical model - Ising spins

$$\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} \sigma_i \sigma_j - h_{\mathrm{ext}} \sum_{i=1}^N \sigma_i$$

with  $\sigma_i = \uparrow$  or  $\sigma_i = \downarrow$  with  $i = 1, \dots, N$ 

- $h_{\text{ext}}$  external magnetic field

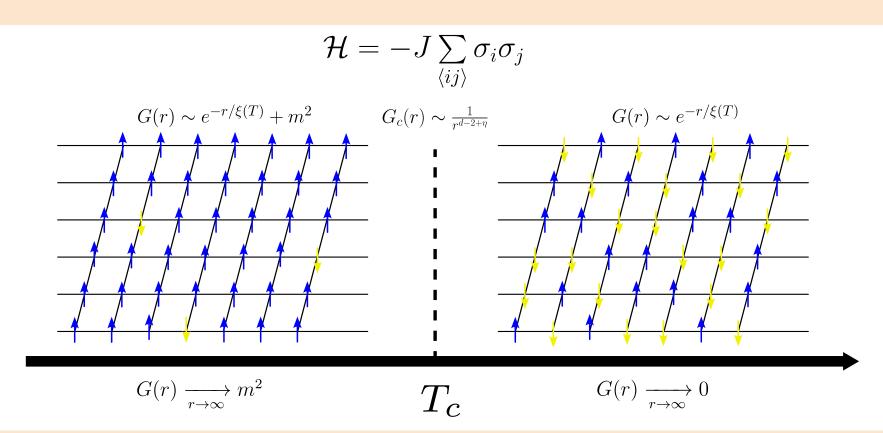


$$m = \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i \rangle$$

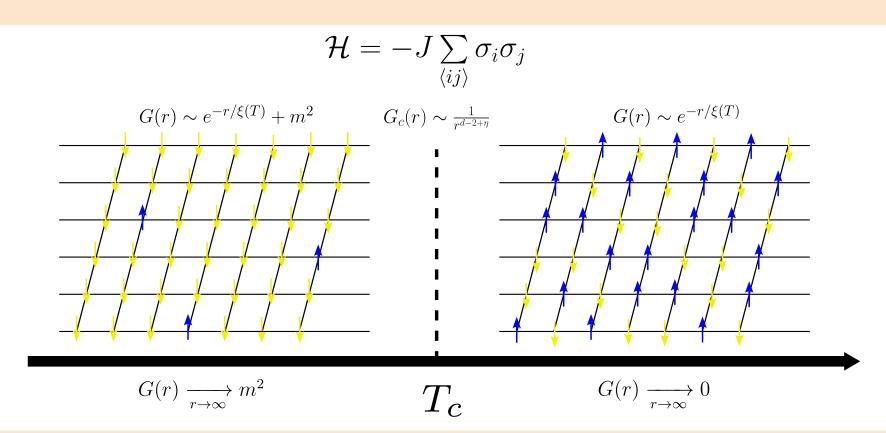
Correlation function

$$G(r) = \langle \sigma_i \sigma_j \rangle_{|\mathbf{r}_i - \mathbf{r}_j| = r}$$

## The Ferromagnetic Ising model



# The Ferromagnetic Ising model



# Critical slowing down

At the critical point

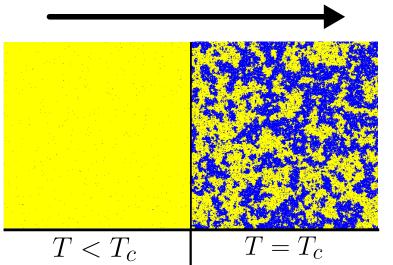
$$G_c(r) \sim rac{1}{r^{d-2+\eta}}$$

Relaxation time

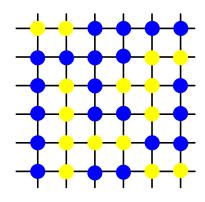
$$au_{lpha} \sim L^{z_c}$$

with  $z_c \simeq 2.17$  for d=2

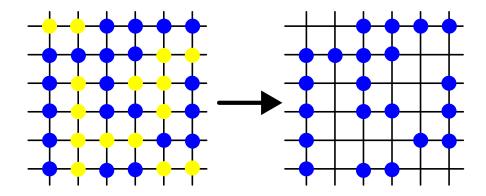
In a numerical simulation, an initial random configuration acquires the spatial correlations slowly



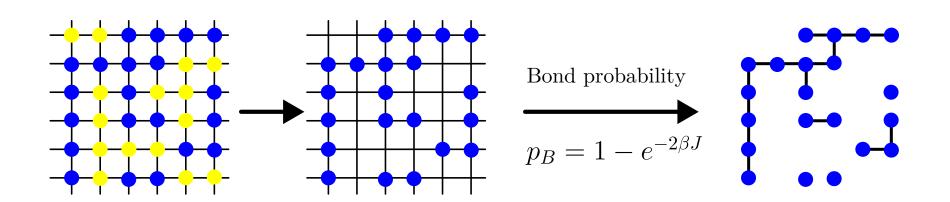
# The critical clusters of the Ising model



# The critical clusters of the Ising model



# The critical clusters of the Ising model



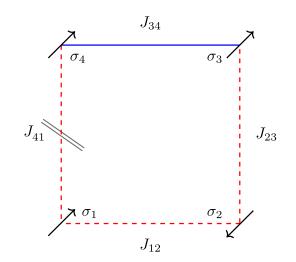
$$\langle \sigma_i \sigma_j \rangle \sim \mathbb{P}(i \leftrightarrow j)$$

[Fortuin, Kasteleyn (1969); Coniglio, Klein (1980)]

They serve as the basis of efficient Monte Carlo algorithms!

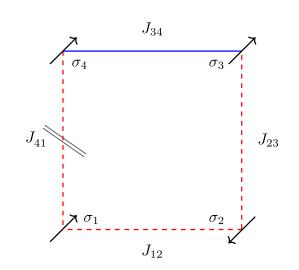
[Swendsen, Wang (1986); Wolff (1989)]

$$\mathcal{H} = -\sum_{\langle ij 
angle} J_{ij} \sigma_i \sigma_j$$
  $\mathcal{P}(J_{ij}) = 
ho \delta(J_{ij} - J) + (1 - 
ho) \delta(J_{ij} + J)$  \_\_\_\_\_ AFM bond



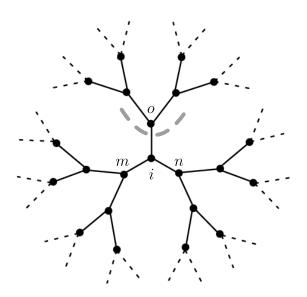
$$\mathcal{H} = -\sum_{\langle ij\rangle} J_{ij} \sigma_i \sigma_j$$
 
$$\mathcal{P}(J_{ij}) = \rho \delta(J_{ij} - J) + (1 - \rho) \delta(J_{ij} + J)$$
 ---- AFM bond ---- AFM bond [Coniglio et al. (1991)] [Houdayer et al. (2001)] [Chayes, Redner, Machta (1998)] [Newman, Stein (2007)]

Can become negative!



#### Percolation on the Bethe lattice

Analytically continued  $p_B^{(ij)} < 0$ 

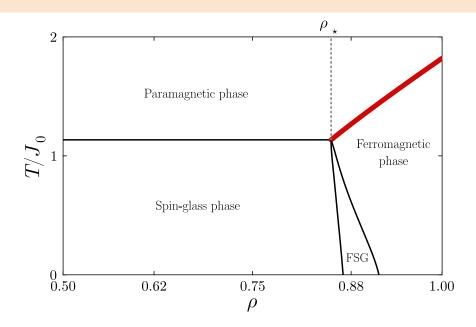


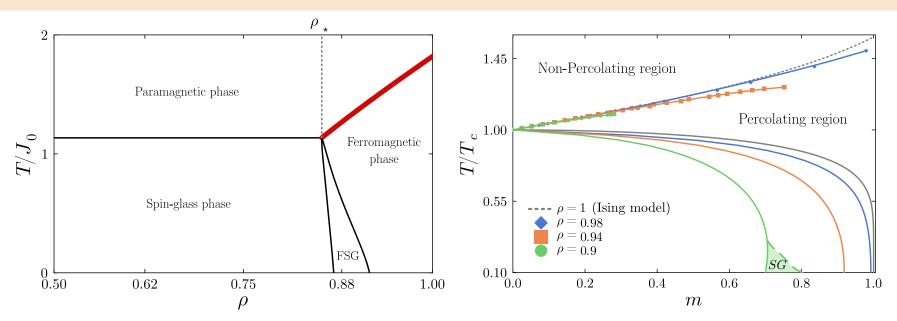
fixed connectivity  $\kappa + 1 = 3$ 

Exact solution via the cavity method:

$$\pi_{i \to o} = \eta_{i \to o}(\uparrow) \frac{\pi_{n \to i} \psi_{in} [\eta_{m \to i}(\uparrow) \psi_{im} + 1] + \pi_{m \to i} \psi_{im} [\psi_{in}(\eta_{n \to i}(\uparrow) - \pi_{n \to i}) + 1]}{[\eta_{m \to i}(\uparrow) \psi_{im} + 1] [\eta_{n \to i}(\uparrow) \psi_{in} + 1]}$$

 $\pi_{i\to o}$  probability that spin i belongs to the percolating cluster in absence of o, with  $\eta_{i\to o}$  the configuration probability that i is up in absence of o, and  $\psi_{im}=e^{2\beta J_{im}}-1$ .





The critical transition and the exponents coincide! ... also for other frustrated models

$$\langle \sigma_i \sigma_j \rangle \sim \mathbb{P}(i \leftrightarrow j)$$

Percolation and criticality of systems with competing interactions on Bethe lattices: limitations and potential strengths of cluster schemes

Greivin Alfaro Miranda, Mingyuan Zheng, 2, 3, \* Patrick Charbonneau, 2, 4

Antonio Coniglio, Leticia F. Cugliandolo, and Marco Tarzia 7



The critical transition and the exponents coincide! ... also for other frustrated models

...but probabilities are negative!

Percolation and criticality of systems with competing interactions on Bethe lattices: limitations and potential strengths of cluster schemes

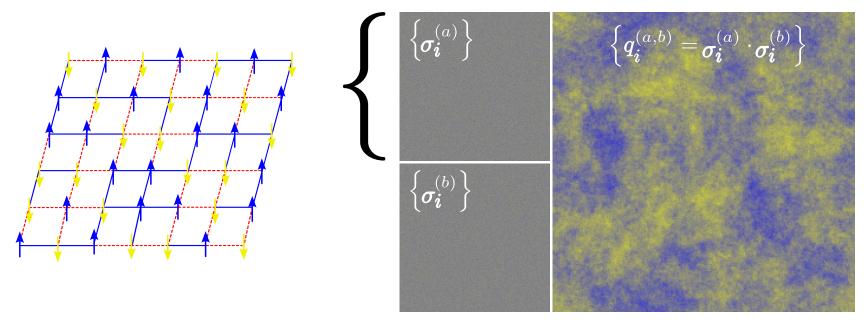
Greivin Alfaro Miranda, Mingyuan Zheng, 2, 3, \* Patrick Charbonneau, 2, 4

Antonio Coniglio, 5 Leticia F. Cugliandolo, 6 and Marco Tarzia 7

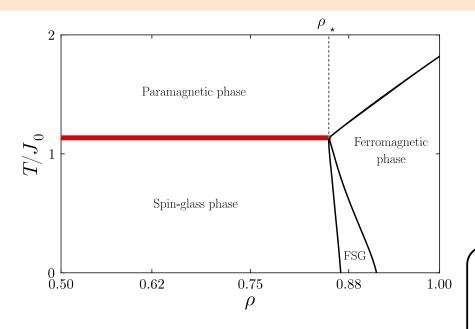
# The spin glass phase

There is no (trivial) symmetry breaking field!

[Baity-Jesi et al. (2019)]



# The critical clusters for the spin glass transition



Two replica clusters

$$p_B^{(ij)} = \left(1 - e^{-\beta|J_{ij}| - \beta\sigma_i\sigma_j J_{ij}}\right)^2$$
[Newman, Stein (2007)]

Multiple replica clusters

$$p_B^{(ij)} = (1 - e^{-\beta|J_{ij}| - \beta\sigma_i\sigma_j J_{ij}})^I$$
[Münster, Weigel (2023)]

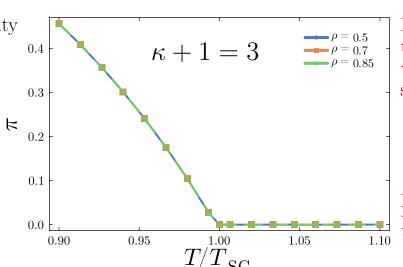
[69] Note that using more replicas in Eq. (15) notably reduces the occupation probability and thus lowers the onset temperature for percolation. As a consequence, it might be interesting to see if for a certain I the percolation transition is directly linked to the finite temperature spin-glass transition for d > 2.

# The critical clusters for the spin glass transition

#### Multiple replica clusters

$$p_B^{(ij)} = (1 - e^{-\beta|J_{ij}| - \beta\sigma_i\sigma_j J_{ij}})^I$$

 $\pi$ : average percolation probability



 $I \approx 2.86$ 

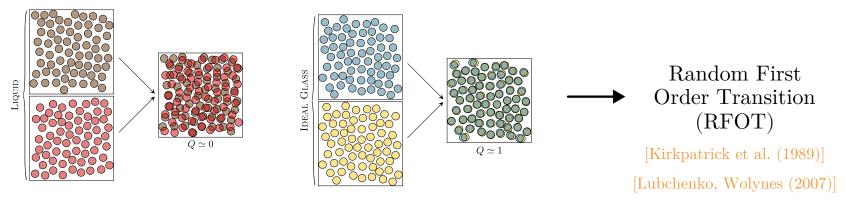
Percolation and thermodynamic transitions coincide, for all  $\rho$  within the paramagnetic to spin glass transition

Is this parameter "I" physical? Does "I" depend on  $\kappa$ ?

The SWAP Method for Frustrated Spin Systems

# Structural glasses

Is there a underlying growing correlation?



Or is it just a dynamical effect?
(No thermodynamics)

[Guiselin, Tarjus, Berthier (2022)]

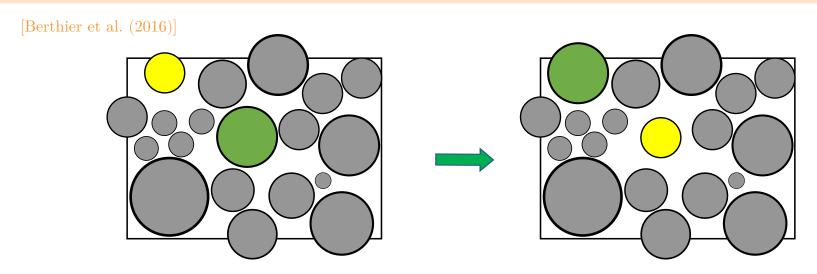
Kinetically
Constrained

Models (KCM)

Dynamical
Facilitation

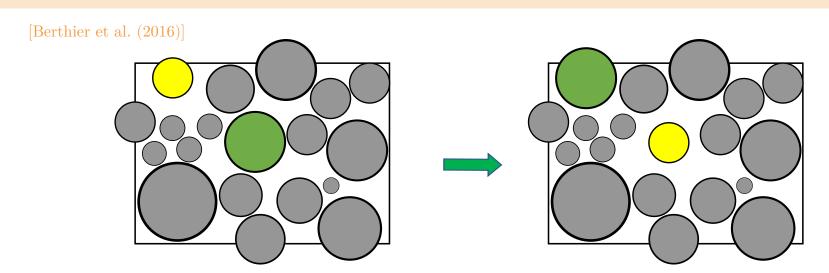
[Garrahan, Chandler (2003)]

# The SWAP method for particle systems



For some models there is a tremendous acceleration!

# The SWAP method for particle systems

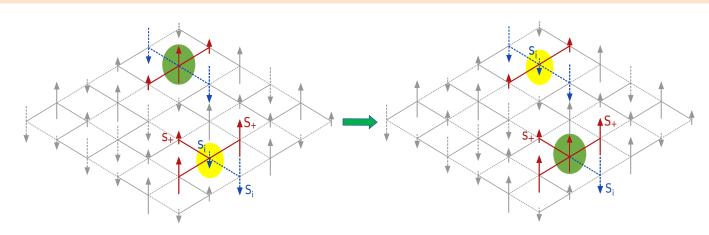


For some models there is a tremendous acceleration!

[Wyart, Cates (2017)] Then the slowing down is mainly a dynamical effect

[Gutiérrez, Garrahan, Jack (2019)] — It also accelerates a KCM!

# The SWAP method for spin systems



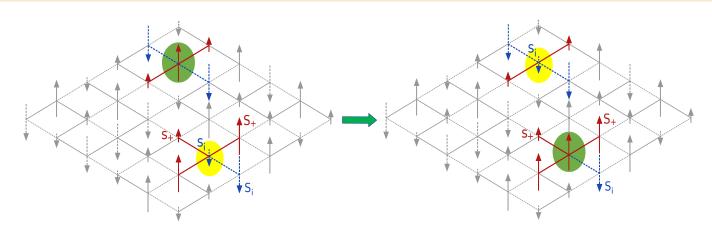
#### The 2d (soft) Edwards-Anderson model

$$\mathcal{H} = -\sum_{\langle ij\rangle} J_{ij} s_i s_j = -\sum_{\langle ij\rangle} J_{ij} \tau_i \tau_j \sigma_i \sigma_j \qquad \tau_i \in [1 - \Delta/2, 1 + \Delta/2]$$

$$\mathcal{P}(J_{ij}) = \frac{1}{2} \delta(J_{ij} - J) + \frac{1}{2} \delta(J_{ij} + J)$$

$$\Delta \in [0, 2)$$

# The SWAP method for spin systems



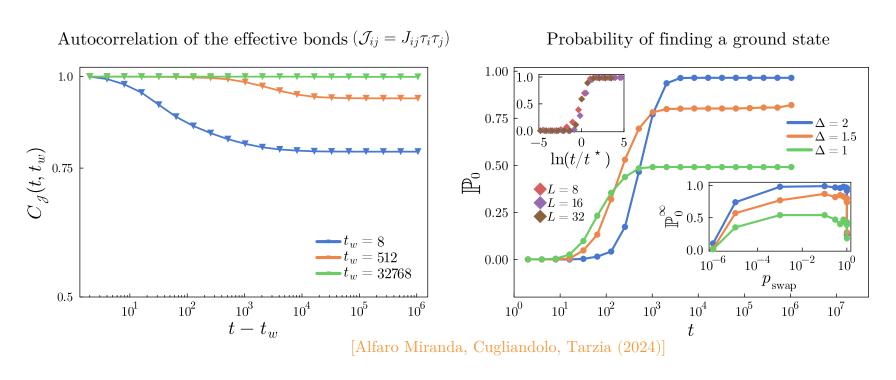
#### The 2d (soft) Edwards-Anderson model

$$\mathcal{H} = -\sum_{\langle ij \rangle} \mathcal{J}_{ij} \sigma_i \sigma_j$$

partially annealed controlled by the parameter  $p_{\text{swap}}$ 

with probability  $p_{\text{swap}} \to N$  (non-local) exchange attempts  $(\sigma_i, \tau_i) \leftrightarrow (\sigma_j, \tau_j)$  with probability  $1 - p_{\text{swap}} \to N$  single spin flip attempts  $\sigma_i \to -\sigma_i$ 

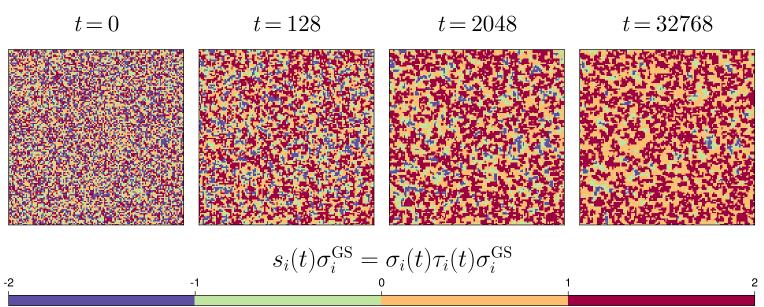
# 2d spin glass ground state sampling



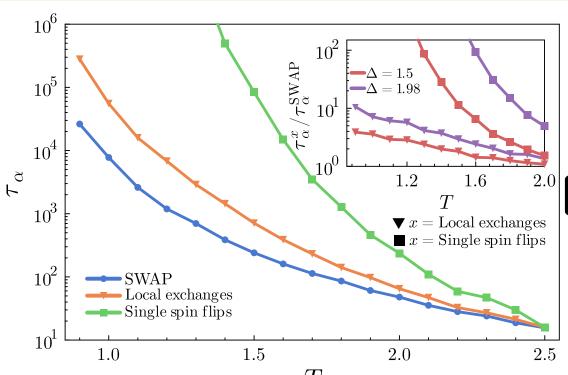
#### How does it work?

Zero temperature quench for  $\Delta = 2$ ,  $p_{\text{swap}} = 0.1$  and L = 128

[Alfaro Miranda, Cugliandolo, Tarzia (2024)]



## Relaxation time speed up



We define this  $\tau_{\alpha}$  as the time for which the self-correlation has become age independent (i.e.  $C(t,t_w) = \hat{C}(t-t_w)$ ) and has decayed to 20% of its original value (i.e.  $\hat{C}(\tau_{\alpha}) = 0.2 \ \hat{C}(0)$ )

2-3 orders of magnitude acceleration!

Maybe dynamical facilitation plays an important role in the efficiency of the SWAP algorithm for particles [Alfaro Miranda, Cugliandolo, Tarzia (2024)]

# The Importance of Rare Events in Many-Body Localization

#### Anderson localization

Non-interacting quantum particles in a disordered potential

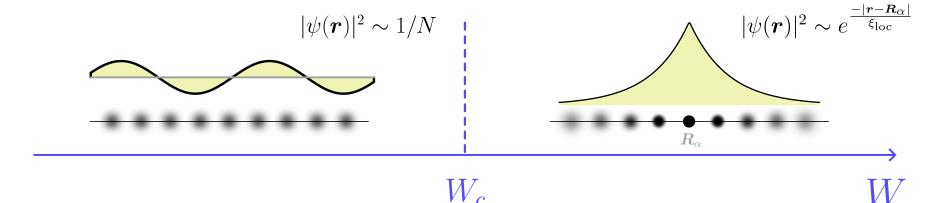
[Anderson (1958)]

#### Anderson localization

Non-interacting quantum particles in a disordered potential

$$\hat{\mathcal{H}} = -J \sum_{\langle ij \rangle} \left( \hat{c}_i^{\dagger} \hat{c}_j + \text{h.c.} \right) + \sum_{i=1}^{N} \varepsilon_i \hat{c}_i^{\dagger} \hat{c}_i \qquad \qquad \varepsilon_i \in [-W/2, W/2]$$

For d > 2, there is a  $W_c$  such that



Interacting quantum particles in a disordered potential

$$\hat{\mathcal{H}} = -J \sum_{i=1}^{L} \left( \hat{c}_i^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) + \sum_{i=1}^{L} \varepsilon_i \, \hat{c}_i^{\dagger} \hat{c}_i + \Delta \sum_{i=1}^{L} \hat{n}_i \hat{n}_{i+1}$$

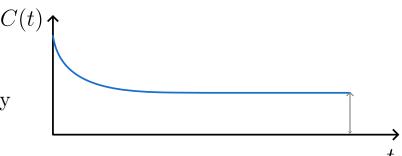
Can the localized phase survive interactions?

[Fleishman, Anderson (1980); Gornyi, Mirlin, Polyakov (2005); Basko, Aleiner, Altshuler (2006)]

$$C(t) = \frac{4}{L} \sum_{i=1}^{L} \left\langle \left( \hat{n}_i(t) - \frac{1}{2} \right) \left( \hat{n}_i(0) - \frac{1}{2} \right) \right\rangle$$

Ergodicity breaking transition:

In the MBL phase the system retains memory of the initial condition after infinite time



The XXZ spin-1/2 chain with a random field

$$\hat{\mathcal{H}} = \frac{1}{2} \sum_{i=1}^{L} \left( \hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} + 2\Delta \hat{n}_{i} \hat{n}_{i+1} + 2h_{i} \hat{n}_{i} \right)$$
nearest-neighbor interactions disorder hopping
$$h_{i} \in [-W, W]$$
Oganesyan, Huse (2007)]

The XXZ spin-1/2 chain with a random field

$$\hat{\mathcal{H}} = \frac{1}{2} \sum_{i=1}^{L} \left( \hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} + 2\Delta \hat{n}_{i} \hat{n}_{i+1} + 2h_{i} \hat{n}_{i} \right)$$

nearest-neighbor interactions disorder hopping  $h_i \in [-W, W]$ 

[Oganesyan, Huse (2007)]

For any generic quantum state

$$|\Psi
angle = \sum\limits_{I=1}^{\mathcal{N}} \psi_I |I
angle$$

where  $\mathcal{N}$  is the dimension of the Hilbert space, and  $|I\rangle$  is a basis state (i.e. particle configuration)

The XXZ spin-1/2 chain with a random field

$$\hat{\mathcal{H}} = \frac{1}{2} \sum_{i=1}^{L} \left( \hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} + 2\Delta \hat{n}_{i} \hat{n}_{i+1} + 2h_{i} \hat{n}_{i} \right)$$

nearest-neighbor interactions disorder hopping  $h_i \in [-W, W]$ 

[Oganesyan, Huse (2007)]

#### Hilbert space picture:

Recast the many-body quantum dynamics into the diffusion of a single fictitious particle on the Hilbert (or Fock) space graph

[Altshuler, Gefen, Kamenev, Levitov (1997)]

$$\hat{\mathcal{H}} = \sum_{I} E_{I} |I\rangle\langle I| + \sum_{\langle I,J\rangle} T_{IJ} (|I\rangle\langle J| + |J\rangle\langle I|)$$

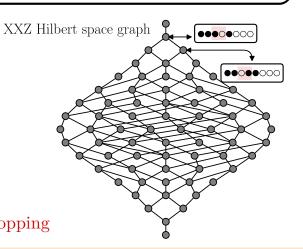
$$E_{I} = \langle I| \sum_{i=1}^{L} (\Delta \hat{n}_{i} \hat{n}_{i+1} + h_{i} \hat{n}_{i}) |I\rangle \quad \text{correlated energies}$$

$$T_{IJ} = \langle I| \frac{1}{2} \sum_{i=1}^{L} (\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \hat{c}_{i+1}^{\dagger} \hat{c}_{i}) |J\rangle \quad \text{nearest-neighbor hopping}$$

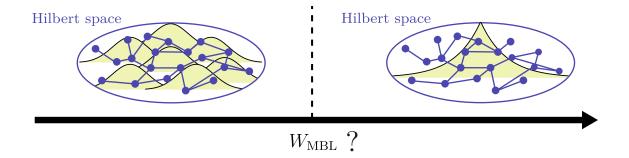
For any generic quantum state

$$|\Psi
angle = \sum\limits_{I=1}^{\mathcal{N}} \psi_I |I
angle$$

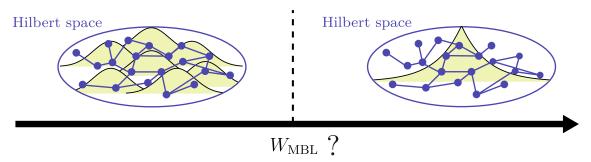
where  $\mathcal{N}$  is the dimension of the Hilbert space, and  $|I\rangle$  is a basis state (i.e. particle configuration)



## Is it a bona fide phase transition?

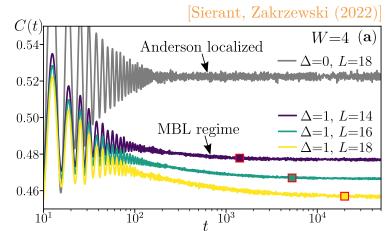


### Is it a bona fide phase transition?

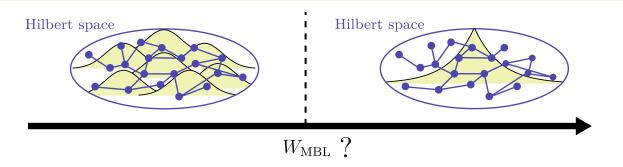


#### It is hard to draw conclusions!

- Numerics are constrained to small systems  $L \sim 20$  [Luitz, Laflorencie, Alet (2015)]
- Avalanche instability in the thermodynamic limit? [De Roeck, Huveneers (2017); Szołdra et al. (2024)]
- Rare many-body resonances [Morningstar et al. (2022); Ha et al. (2023)] [Colbois et al. (2024)]



## Is it a bona fide phase transition?



#### • Rare many-body resonances

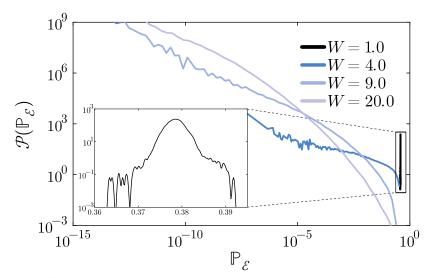
[Morningstar et al. (2022); Ha et al. (2023)] [Crowley, Chandran (2020)] [Garret, Roy, Chalker (2021)] [Colbois et al. (2024, 2025)] [Long et al. (2022)] [Villalonga, Clark (2020)] [De Tomasi et al. (2021)]

A resonance occurs when (broadly speaking)

$$|E_I - E_J| \lesssim |\langle I|\hat{\mathcal{H}}|J\rangle|$$

The eigenstate hybridizes i.e. has a finite support in both  $|I\rangle$  and  $|J\rangle$ 

### Delocalization probability



[Alfaro Miranda et al. (2025)]

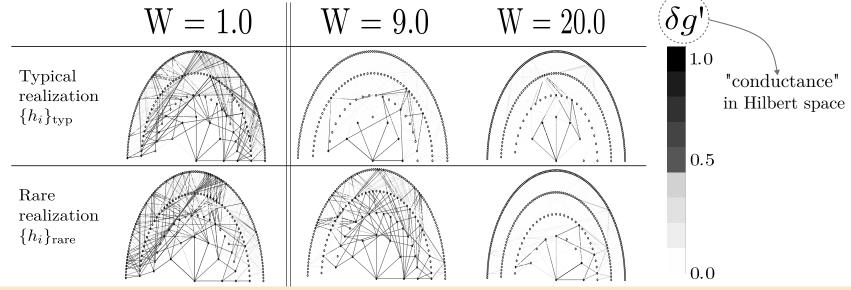
### The large deviation method

 $\mathbb{P}_{\mathcal{E}}$  receives contributions from exponentially many terms

$$\mathbb{P}_{\mathcal{E}} = \sum_{f \in \mathcal{E}} \mathbb{P}_{0 \to f}$$

[Biroli, Hartmann, Tarzia (2024)] [Alfaro Miranda et al. (2025)]

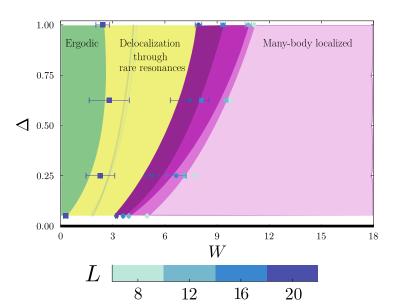
 $\mathbb{P}_{\mathcal{E}}$  receives contributions from O(1) large probabilities  $\mathbb{P}_{0\to f}$ 



### The phase diagram

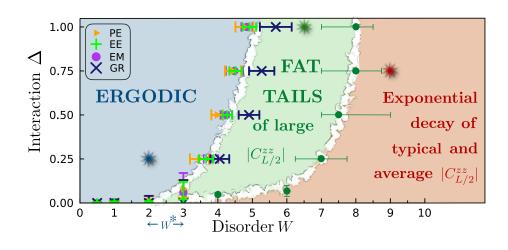
### Large deviations in the many-body localization transition: The case of the random-field XXZ chain

Greivin Alfaro-Miranda, <sup>1</sup> Fabien Alet, <sup>2</sup> Giulio Biroli, <sup>3</sup> Leticia F. Cugliandolo, <sup>1</sup> Nicolas Laflorencie, <sup>2</sup> and Marco Tarzia <sup>4</sup>

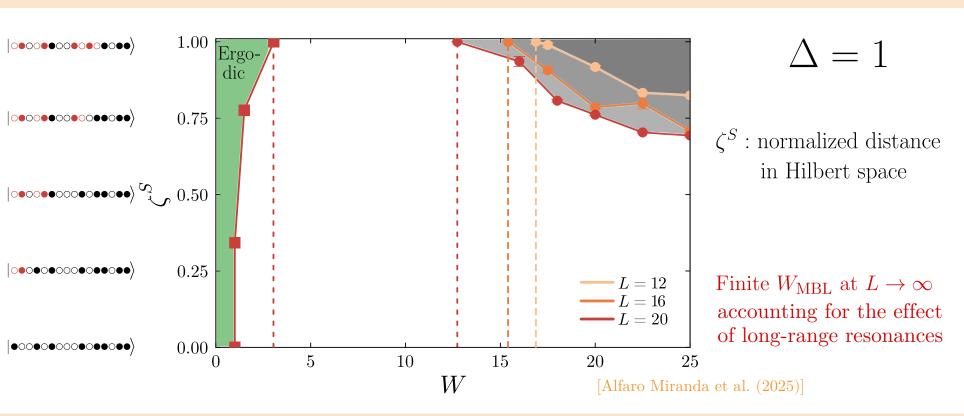


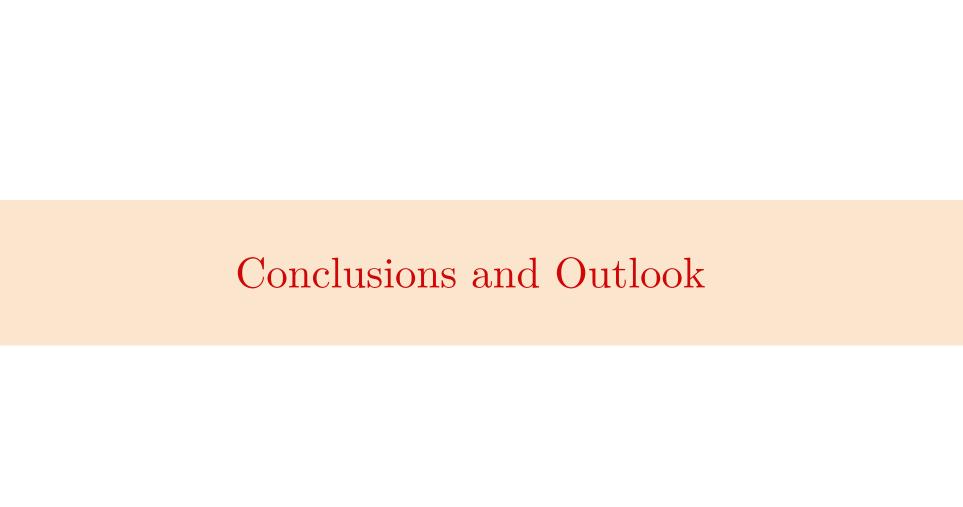
#### Statistics of systemwide correlations in the random-field XXZ chain: Importance of rare events in the many-body localized phase

Jeanne Colbois, 1,2,3,\* Fabien Alet, 1,† and Nicolas Laflorencie 1,‡



# The 'size' of the many-body resonances





#### The Critical Clusters for Frustrated Spin Systems

- Is there another way of generating the clusters with  $p_B < 0$ ?
- ullet For the paramagnetic to spin glass transiton: Is the tuned I physically relevant?

#### The SWAP Method for Frustrated Spin Systems

- What happens within a spin glass phase with  $T_{SG}$  non-zero?
- Do a similar spatially-correlated pattern emerge in the structural case?

#### The Importance of Rare Events in Many-Body Localization

- Characterize the statistics of disorder realizations (importance sampling)
- Coupling to a thermal bath, can we see avalanches?
- Quasi-periodic potentials?

Percolation — Frustrated spin systems → Spin glasses Glasses Many-body Rare events localization classical disordered systems

## Thank you!

Percolation — Frustrated spin systems Spin glasses Glasses Many-body Rare events localization classical disordered systems

