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Preface

Exploring the intricate dynamics of quantum many-body systems, especially in non-
equilibrium settings, remains a cornerstone research goal in the realms of condensed
matter and statistical physics. The focus has recently turned to isolated systems, at-
tracting theoretical research due to the possibility to manipulate them within advanced
experimental platforms. These platforms empower researchers with an unprecedented
level of control over quantum matter, ushering in an era where novel phases of matter
can be engineered and examined. This progress not only advances our understand-
ing of the fundamental principles governing quantum mechanics but also raises vital
questions about how quantum many-body systems approach thermal equilibrium. Un-
derstanding the nuances of thermalization is indeed critical for two compelling reasons.
Firstly, it poses a fundamental research question, seeking to establish the intricate links
between microscopic dynamics and macroscopic thermodynamic behavior. Moreover,
thermalization represents a significant impediment in realizing non-equilibrium phases
of matter, as it results in the loss of coherence among microscopic degrees of freedom.
This issue becomes particularly relevant in periodically driven systems. In many in-
stances, the heating caused by the external drive enables the observation of non-trivial
dynamical phases only during a preliminary prethermal stage of the dynamics. Since
the foundations of statistical mechanics, thermalization has been also intertwined with
the emergence of chaotic properties in dynamics. Given these connections and the chal-
lenges posed by non-equilibrium scenarios, also the quantum generalization of chaos
has recently emerged as an active research field. Yet, despite the efforts put into both
theoretical understanding and experimental exploration over the past two decades, a
complete understanding of how chaos, thermalization and their breakdown emerge from
the intricate microscopic structure of a many-body system has not been fully achieved.

This thesis represents an attempt to progress in this direction. We adopt a semi-
classical perspective, which allow us to investigate the out of equilibrium dynamics
by employing tools from classical dynamical systems. In pursuit of this goal, we ex-
plore two distinct classes of systems. The first class encompasses long-range inter-
acting spins, whose coherent dynamics is effectively classical in the thermodynamic
limit. These models often emerge as effective descriptions of experimental setups, as
in atomic, molecular and optical systems. The second class of models involves sys-
tems with continuous degrees of freedom, where the Planck constant can be tuned as a
continuous parameter, thereby controlling the system’s "quantumness". According to
the quantum-to-classical correspondence principle, much of the quantum dynamics in
these systems can be understood through their corresponding classical counterparts.
For systems within each of these classes, the scope of this thesis is twofold. First, it
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aims to investigate the connections between the emergence of chaos in semi-classical
dynamics and their underlying energy landscape. Second, it delves into the dynamics
of thermalization and its breakdown in periodically driven systems. Consequently, this
thesis is divided into two parts, each addressing one of these objectives and encom-
passing two chapters.

This thesis work is organized as follows. In Chapter 1, we give a concise historical
overview of classical and quantum chaos. We review two key models, which will turn
useful for a comparative analysis in later chapters. Additionally, this chapter estab-
lishes fundamental concepts of thermalization in quantum systems, offering essential
background for the subsequent presentation of our findings. Chapters 2 to 5 house
the original contributions of this thesis. In Chapter 2 we study the out of equilibrium
dynamics of a long-range p-spin model. In the thermodynamic limit, its dynamics
is effectively classical and the corresponding energy landscape exhibits few stationary
points. We show how tuning a transverse field leads to a transition between two distinct
dynamical phases, whose order is connected with the topology of the landscape. We
also show that the effect of fluctuations, acting as a self-generated dissipation on top
of the classical dynamics, is to either generate an asymptotically stable dynamics or to
induce chaos, depending on the stability of the fixed points in the energy landscape.
In Chapter 3 we study a p-spin glass system. Its complex energy landscape features
an exponentially increasing number of stationary points as the system size grows. We
show that the chaos emerging in its classical dynamics mirrors the corresponding quan-
tum behavior. Moreover, we show that the degree of classical chaos is correlated with
the number of unstable stationary configurations in the landscape. We also discuss
the ergodicity of the model. Despite the entirely classical nature of the dynamics,
we show that the onset of slow dynamics is detected by an observable traditionally
employed to detect ergodicity breaking in quantum spin systems, namely the fidelity
susceptibility. In Chapter 4 we shift our focus to periodically driven systems. Here,
we observe that the introduction of a smooth periodic driving atop an ergodic system
with an unbounded energy spectrum leads to signatures of an emergent conservation
law in late-time dynamics. Through an analytical perturbation scheme, we compute
the corresponding conserved quantity in specific asymptotic limits. We show that our
results apply across different systems, both classical and quantum, without depen-
dency on specific forms of the driving force. Chapter 5 delves into the periodically
driven dynamics of long-range interacting systems. We focus on their time-translation
symmetry-breaking phases, also known as Floquet time crystals. Here, we introduce
a novel order parameter, able to detect the transition from a time crystalline phase
to chaos. In this thesis, each chapter is accompanied by a dedicated section providing
a concise summary and outlook. In the last Chapter 6 we summarize the key ques-
tions that remain unanswered within this work, paving the way for potential future
investigations.

ii



List of publications

[1] L. Correale and A. Silva. Changing the order of a dynamical phase transition
through fluctuations in a quantum p-spin model, arxiv:2110.13524.
Chapter 2.

[2] L. Correale, A. Polkovnikov, M. Schirò and A. Silva, Probing chaos in the
spherical p-spin glass model, SciPost Phys. 15, 190 (2023).
Chapter 3.

[3] G. Giachetti, A. Solfanelli, L. Correale and N. Defenu, Fractal nature of high-
order time crystal phases, Phys. Rev. B 108, L140102 (2023), (editor’s sugges-
tion).
Chapter 5.

[4] L. Correale, L.F.C. Cugliandolo, M. Schirò and A. Silva, Heating to finite tem-
perature in periodically driven ergodic systems (in preparation).
Chapter 4.

iii

https://arxiv.org/e-print/2110.13524
https://scipost.org/SciPostPhys.15.5.190
https://doi.org/10.1103/PhysRevB.108.L140102




Contents

1 Introduction 1
1.1 An historical note on classical chaos . . . . . . . . . . . . . . . . . . . . 1
1.2 From classical to quantum thermalization in closed systems . . . . . . . 5
1.3 Thermalization in periodically driven isolated many-body systems . . . 7

I Semi-classical dynamics and chaos in presence of multiple
equilibria 9

2 Dynamical phase transitions in long-range spin systems 11
2.1 The classical limit of fully connected models . . . . . . . . . . . . . . . 12

2.1.1 Dynamics of permutationally invariant models . . . . . . . . . . 12
2.1.2 Fully connected spin models . . . . . . . . . . . . . . . . . . . . 14

2.2 Mean -field dynamical transitions in p-spin model . . . . . . . . . . . . 15
2.2.1 Classical dynamics following a quench . . . . . . . . . . . . . . 15
2.2.2 The dynamical phase transition . . . . . . . . . . . . . . . . . . 18

2.3 First order transitions driven by non-equilibrium fluctuations . . . . . . 20
2.3.1 Non-equilibrium spin-wave theory . . . . . . . . . . . . . . . . . 21
2.3.2 Modified non-equilibrium phase diagram . . . . . . . . . . . . . 23
2.3.3 The mechanism behind the localization of the magnetization . . 28

2.4 Summary and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Probing chaos in a p-spin glass 31
3.1 Tools for probing chaos in classical and quantum systems . . . . . . . . 33

3.1.1 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Fidelity susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Classical dynamics of the p-spin spherical model . . . . . . . . . . . . . 37
3.3 Results: Chaos indicators . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Chaos, Ergodicity and Energy Landscape . . . . . . . . . . . . . . . . 43
3.5 The fidelity susceptibility against the dynamical slowing down . . . . . 47
3.6 Summary and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Periodically-driven dynamics of ergodic and long-range
systems 53

4 Heating to finite temperature in periodically driven ergodic systems 55

v



CONTENTS

4.1 A multiple scale approach to the classical driven Duffing oscillator . . . 56
4.2 The lattice ϕ4 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Periodically driven dynamics in a large-N system: the p-spin spherical

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Summary and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 From chaos to discrete Floquet time crystals in long-range systems 71
5.1 Review of discrete Floquet time crystals . . . . . . . . . . . . . . . . . 72
5.2 The order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 The dynamical phase diagram of the Lipkin-Meshkov-Glick model . . . 75

5.3.1 A stroboscopic map for the mean-field dynamics . . . . . . . . . 75
5.3.2 Dynamical phase diagram . . . . . . . . . . . . . . . . . . . . . 77

5.4 Floquet eigenstates at finite size . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Beyond mean-field: spin-wave fluctuations . . . . . . . . . . . . . . . . 79
5.6 Summary and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Outlook 83

Acknowledgements 85

A Details on the p-spin model without disorder 89
A.1 The period of classical orbits and its relation with dynamical singularities 89
A.2 Details on the first-order transition line . . . . . . . . . . . . . . . . . . 91

B Review of the non-equilibrium spin-wave theory 95
B.1 Rotating frame of reference coordinates . . . . . . . . . . . . . . . . . . 95
B.2 Holstein-Primakoff transformation . . . . . . . . . . . . . . . . . . . . . 96
B.3 Equations of motion for weak spin-wave excitation . . . . . . . . . . . . 97

C Supplemental details about chaos in the p-spin spherical model 101
C.1 The Truncated Wigner approximation for the p-spin spherical model . 101
C.2 Correlation function on a longer time-scale . . . . . . . . . . . . . . . . 102
C.3 Details on the fidelity susceptibility . . . . . . . . . . . . . . . . . . . . 102
C.4 Calculation of the complexity . . . . . . . . . . . . . . . . . . . . . . . 105

D Derivation and details about the Mode-Coupling equations 113
D.1 Derivation of the mode-coupling equations . . . . . . . . . . . . . . . . 113

D.1.1 System-Bath Coupling . . . . . . . . . . . . . . . . . . . . . . . 114
D.1.2 Disorder Averaging . . . . . . . . . . . . . . . . . . . . . . . . . 114
D.1.3 Transformed Order Parameters . . . . . . . . . . . . . . . . . . 115
D.1.4 Saddle-Point Equations . . . . . . . . . . . . . . . . . . . . . . . 115
D.1.5 Dynamical Equations . . . . . . . . . . . . . . . . . . . . . . . . 117

D.2 The evolution equation for the Lagrange multiplier . . . . . . . . . . . 117
D.3 Predictor-corrector scheme for the Mode-Coupling equations . . . . . . 118

vi



Chapter 1

Introduction

In this chapter, we provide a brief historical overview on chaos and thermalization,
focusing on the specific aspects we will delve into in the rest of this thesis. Specifically,
in Section 1.1 we review the foundations of classical chaos and ergodicity, established
between the 18th and 19th century. In Section 1.2 we review the modern approach
to the description of thermalization in isolated, time-independent quantum systems.
Finally, in Section 1.3, we explore the extension of the notion of quantum thermalization
to periodically driven isolated systems.

1.1 An historical note on classical chaos

The exploration of many-body physics has posed a complex challenge since the early
days of classical mechanics. As far back as the 17th century, astronomers recognized
the intricate nature of celestial motion; for instance, predicting the trajectories of three
celestial bodies like the Moon, Earth, and Sun in terms of an explicit solution proved
a formidable task. The complexity deepened in the late 19th century, when the math-
ematician H. Poincaré made a groundbreaking discovery [4]. He found that in the
classical dynamics of a three-body problem, there were no analytic conserved quanti-
ties, apart from energy. From his discovery, he conjectured that the evolution of three
interacting bodies could exhibit a chaotic behavior. Chaos, in this context, means that
small perturbations in initial conditions could lead to qualitatively different outcomes
in the system’s future states. Poincaré’s revelation carried a profound implication:
even within a deterministic framework, a system’s dynamics could be unpredictable.

Despite their relevance, Poincaré’s discoveries remained relatively overlooked by
physicists for several decades. The spotlight returned to chaotic behavior only in the
1960s, thanks to meteorologist Edward Lorenz’s rediscovery of deterministic chaos in
a simplified model for convection [5], a topic we will briefly review in the following. In
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1. Introduction
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Figure 1.1: Two representative orbits, in blue and red, of the Lorenz model from
Eqs. (1.1). The black dots represent the fixed points of the dynamics. We fix σ = 15
and β = 8/3. (a) ρ = 10. The dynamics converges towards a stable fixed point. (b)
ρ = 28. The dynamics is erratic and encompasses the three unstable fixed points.

a nutshell, the Lorenz model consists of a set of three coupled differential equations:

dX

dt
= σ(Y −X)

dY

dt
= X(ρ− Z)− Y

dZ

dt
= XY − βZ .

(1.1)

Here, σ, ρ, and β represent three dimensionless, positive, and constant parameters.
The dynamics of the Lorenz model crucially depends on the interplay among its sta-
tionary points. Notably, two different choices of these parameters can lead to distinct
outcomes: a configuration with a single stable fixed point or another with three un-
stable ones1. In Fig. 1.1-(a), it is evident that under the first scenario, the dynamics
consistently converge toward the only stable and stationary configuration. Conversely,
Fig. 1.1-(b) demonstrates that when all fixed points are unstable, the system’s behavior
becomes chaotic, exhibiting erratic motion encompassing all stationary configurations.
This intriguing phenomenon, characterized by the unpredictable and sensitive depen-
dence on initial conditions, was named later on as the butterfly effect [6] due to the

1It is worth mentioning that these two choices do not encompass all possible stationary point
configurations. For a comprehensive analysis, we refer to Ref. [5].
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1. Introduction

peculiar shape of the subset of phase space where trajectories asymptotically converge.
To summarize, the transition to chaos in the Lorenz model is due to a drastic change
in the stability properties of its fixed points. This phenomenon, rather general in dy-
namical systems, is said Hopf bifurcation [7]. In Chapters 2 and 3, we will explore how
the presence of unstable fixed points is similarly connected to the emergence of chaos
in many-body systems.

The establishment of chaos theory alone cannot resolve the paradox that logically
arises from Poincaré’s studies: the dynamics of a system like the Moon-Earth-Sun sys-
tem should theoretically be chaotic, yet it is experimentally observed to be regular. In
particular, the motion of the Moon-Earth-Sun system appears qualitatively similar to
that of integrable Hamiltonian systems, where trajectories form regular tori due to the
presence of a conservation law for each body. The paradox was resolved between the
1950s and 1960s by Kolmogorov, Arnold, and Moser [8–10]. They rigorously proved
that most of the tori that foliate phase space in an integrable system persist under the
inclusion of a small, non-integrable perturbation. Their theory was named KAM, an
acronym combining their names.

Due to its complexity, we will not delve into the mathematical details of KAM
theory here and refer the interested reader to more comprehensive reviews on the
topic, such as the ones found in Refs. [11, 12]. Instead, to provide a practical intuition
of the KAM theory, we will discuss its application to a prototype model: the kicked
rotor. The kicked rotor is a periodically-driven, one dimensional Hamiltonian system,
whose time-dependent Hamiltonian is given by

H(ϕ, I, t) =
I2

2
+ h(t) cos(ϕ) . (1.2)

Here, ϕ and I constitute a pair of canonically conjugated angle-action variables, while
the field h(t) is expressed as a series of "kicks":

h(t) = K

N∑
n=1

δ(t− nT ) . (1.3)

The parameter K controls the strength of the kicks, while their period is T . At
stroboscopic times tn = nT , the dynamics becomes equivalent to the Chirikov standard
map [13]: {

In+1 = In +K sin(ϕn)
ϕn+1 = ϕn + In+1 .

(1.4)

We show the phase portrait of the map in Fig. 1.2, for several values of the kick
strength K. In the absence of kicks (K = 0), the model is integrable, and the phase
space is filled with unperturbed tori, represented by straight lines. When a small
nonzero kick strength K is introduced, we observe the survival of two types of tori.
The first type, known as "separating tori" [14], are smooth KAM deformations of the
unperturbed ones. These tori are characterized by the variable ϕ(t) covering the entire
interval [0, 2π]. The second type, termed "non-separating", manifests as isolated regions
of the phase space. Non-separating tori exhibit finite oscillations of ϕ(t) around a fixed
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1. Introduction

Figure 1.2: Phase portraits of the Chirikov map, defined in Eq. (1.4),for several values
of the kick strength K. Each portrait is composed by 100 different trajectories, evolving
from distinct, randomly sampled initial configurations (ϕ0, I0). The evolution of each
trajectory spans 200 iterations of the Chirikov map.

value. The boundary distinguishing separating and non-separating tori is referred to as
a separatrix. The presence of island of non-separating tori can not be explained from
KAM theory, as they are topologically distinct from the unperturbed ones. Instead,
these islands find their origins in the Poincaré-Birkhoff theorem [15, 16]. According
to this theorem, every torus with a rotation frequency commensurate with the driv-
ing period disintegrates, under the influence of the non-integrable perturbation, into
smaller resonant islands. For the Chirikov map, these islands correspond precisely to
the non-separating tori. By further increasing the kick strength K the tori are progres-
sively swallowed by a chaotic sea. As K exceeds a critical value, the last separating
torus dissolves, and the system, initiated from any arbitrary state, displays a diffusive
dynamics throughout the entire phase space. When this happens, the corresponding
kinetic energy I2n/2 is expected to grow diffusively, without upper bound.
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1. Introduction

1.2 From classical to quantum thermalization in
closed systems

In addition to its inherent complexity, chaos plays a central role in the field of statisti-
cal mechanics, serving as the bridge connecting the microscopic behavior of individual
particles to the macroscopic thermodynamic properties of closed systems. In classical
systems, a chaotic orbit resulting from a time-independent Hamiltonian dynamics is
expected densely explore the entire energy manifold over long times2. This behavior
leads to the convergence of time-averages of local observables toward their microcanon-
ical averages, forming the foundation of the renowned "ergodic hypothesis" [17]. In the
transition from classical to quantum dynamics, these classical concepts can not be ap-
plied anymore, due to the unitary nature of quantum dynamics. More recently, it has
been suggested [18] that the correspondence between ergodicity and chaos in classical
systems can be understood through the evolution of observables, specifically local ones,
rather than focusing on the evolution of states.

To illustrate this framework practically, consider a non-integrable Hamiltonian op-
erator Ĥ with N degrees of freedom. Assuming there are no degeneracies in the spec-
trum, each eigenvalue En is associated with a unique eigenstate |En⟩. Then, the time
evolution of the system in isolation, starting from an initial state |ψ0⟩, can be expressed
as follows:

|ψ(t)⟩ =
∑
n

cne
−iEnt/h̄ |En⟩ . (1.5)

Here, cn = ⟨En|ψ0⟩ represents the overlap between the n-th eigenstate and the initial
state. Throughout our discussion, we assume that the initial state |ψ0⟩ is associated
with an extensive energy and sub-extensive energy fluctuations, satisfying the condi-
tions:

⟨ψ0|Ĥ|ψ0⟩ = E ∝ N (1.6)√
⟨ψ0|Ĥ2|ψ0⟩ − ⟨ψ0|Ĥ|ψ0⟩

2
∝

√
N

for large N . The corresponding evolution of an observable Ô from |ψ0⟩ can be expressed
as

⟨Ô(t)⟩ =
∑
nm

cnc
∗
me

i(Em−En)t/h̄ ⟨Em|Ô|En⟩ . (1.7)

As in classical mechanics, the ergodic hypothesis in quantum systems can formulated
by requiring that the infinite-time average of ⟨Ô(t)⟩,

O ≡ lim
T→∞

1

T

∫ T

0

dt ⟨Ô(t)⟩ , (1.8)

coincides with the microcanonical average:

O = Tr[ρ̂MCÔ] ≡
1

N (E)∆

∑
|En−E|<∆

⟨En|Ô|En⟩ , (1.9)

2One exception to this behaviour is observed in glasses, a class of system we will delve into in
Chapter 3.
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1. Introduction

representing a uniform average over all states within an energy shell around E, where
the shell width is ∆ ≪ E. Here, N (E) denotes the density of states at energy E.

We observe that Eq. (1.9) is not satisfied by all quantum systems. In fact, the time
average O can in general be rewritten as

O = ⟨Ô⟩DE ≡
∑
n

|cn|2 ⟨En|Ô|En⟩ (1.10)

and is expected to depend on the specific form of the initial state, through the square
amplitudes |cn|2. Instead, Eq. (1.10) coincides with a microcanonical average for
a generic initial state satisfying Eqs. (1.6) only if all the diagonal matrix elements
⟨En|Ô|En⟩ match the corresponding microcanonical averages at energy En. This re-
quirement is nowadays accepted as a quantum extension of ergodic hypothesis and lies
at the core of eigenstate thermalization hypothesis (ETH) [19, 20]. In its more refined
version, ETH provides an ansatz for the matrix elements of any local observable Ô in
the energy basis of an Hamiltonian Ĥ, given by

⟨En|Ô|Em⟩ = O(E)δnm + e−S(E)/2fO(E, ω)Rnm , (1.11)

where E = (En + Em)/2, ω = (En − Em)/2 and S(E) = logN (E) is the thermody-
namic entropy. The coefficients Rnm are random numbers, with a vanishing average
and unit variance. More precisely, the ETH ansatz conjectures that the off-diagonal
matrix elements ⟨En|Ô|Em⟩ are pseudo-random numbers. In the thermodynamic limit
N → ∞, their occurrence frequency is set by the statistics of Rnm. It is important to
note that the joint distribution of the variables Rnm is non-trivial and and is currently
under active investigation in the literature [21–23].

ETH has been verified for a wide range of non-ergodic systems and has many
implications on the thermodynamics of the ergodic systems which will not discuss
here. We refer the interested reader to the review in Ref. [24]. Here we limit ourselves
to mention that the central connection between Eq. (1.11) and the ergodic hypothesis
lies in the assumption that the function O(E) smoothly depends on E. In this case, it
is straightforward to show that O(E) also coincides with the microcanonical average
of Ô and that Eq. (1.9) is satisfied. Interestingly, ETH also implies that the typical
deviations in time of ⟨Ô(t)⟩ from the microcanonical average are exponentially small
from the system size. Quantitatively, this property is obtained from by bounding the
time average fluctuations as

O2 −O
2
=

∑
n

∑
m ̸=n

|cn|2|cm|2|Omn|2 ≲ exp[−S(E)] , (1.12)

where E is again the energy density of the initial state. Thus, the ETH ansatz implies
ergodicity in a strong sense.
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1. Introduction

1.3 Thermalization in periodically driven isolated
many-body systems

The main assumption underlying both the ergodic hypothesis and ETH is that the
asymptotic state is determined by the total energy. However, there are case where
even the energy is not a conserved quantity. This occurs, for instance, in periodically
driven systems, characterized by a time-dependent Hamiltonian with a period denoted
as T . In the quantum domain, the dynamics of an isolated periodically driven system
is governed by the Schrodinger equation. Over one cycle, the corresponding unitary
evolution operator is given by:

ÛF = T
{

exp
[
− i

h̄

∫ T

0

dsĤ(s)
]}

= e−iĤF T . (1.13)

Here, T represents the time ordering. We will refer to the operator ÛF as Floquet
operator. The last equality in Eq. (1.13) arises from the unitarity of ÛF and the Her-
mitian operator ĤF at the exponent is commonly known as Floquet Hamiltonian [25].
Notably, the Floquet operator can be decomposed as

ÛF =
∑
m

|ηm⟩ e−imϕm ⟨ηm| , (1.14)

where the phases ϕm are defined modulo 2π. We will use the term Floquet eigenstates
to refer to the states |ηm⟩.

For an interacting and ergodic many-body system, one might expect that its ther-
malization properties can be obtained by using an ansatz akin to ETH, applied to
the Floquet Hamiltonian ĤF . However, as observed in previous studies [25–27], this
is generally not the case. To understand why, let us consider a system evolving from
an initial state |ψ0⟩. The long time average of any local observable Ô, as given from
Eq. (1.8), is still associated with an average over a diagonal ensemble, expressed as:

O =
∑
m

| ⟨ηm|ψ0⟩ |2 ⟨ηm|Ô|ηm|⟩ . (1.15)

The crucial observation from Refs. [25–27] is that the elements ⟨ηm|Ô|ηm⟩ are com-
pletely independent from the phases ϕm, except for finite size fluctuations, instead of
being a smooth function of ϕm. Specifically, these studies revealed that each diag-
onal matrix elements approximately coincide with a featureless, infinite-temperature
average:

⟨ηm|Ô|ηm⟩ ≃
1

D
∑
m

⟨ηm|Ô|ηm|⟩ , (1.16)

where D is the size of the many-body Hilbert space. Remarkably, it was observed
that the time evolution of a local observable, Ô(t), consistently relaxes at long time to
this infinite temperature state. Additionally, these studies consistently ruled out the
possibility that ĤF could be a well-defined conserved quantity of the dynamics, as its

7



1. Introduction

spectral properties did not align with the typical ones of a local Hamiltonian.

The observations outlined above have been justified through numerical simulations
on specific spin-1/2 chains. Subsequently, similar results where retrieved for a larger
class of quantum [28–32] and classical [31, 33, 34] systems. These investigations en-
compassed systems characterized by either a bounded energy spectrum [28, 32–34] or
cases where the driving force consisted of a series of kicks acting upon an otherwise
integrable dynamics. In the latter scenario, akin to the many-body version of the
kicked rotor defined in Eq. (1.2), the relaxation to infinite temperature manifested as
an unbounded growth in the system’s energy density over time. In Chapter 4, we will
consider a third scenario, by exploring the behavior of an ergodic many-body system
possessing an unbounded energy spectrum when subjected to a smooth periodic force.
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Part I

Semi-classical dynamics and chaos
in presence of multiple equilibria
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Chapter 2

Dynamical phase transitions in long-
range spin systems

As we discussed in Chapter 1, an ingredient that often recurs in the generation of
dynamical chaos is the presence of multiple equilibrium configurations. In statisti-
cal mechanics, this aspect holds significant interest, especially from a thermodynamic
perspective, as the presence of more energy minima is often linked to the symmetry-
breaking phenomena fundamental to equilibrium phase transitions [35]. Moreover,
equilibrium criticality is known to leave a signatures in the non-equilibrium dynamics
of a quantum many-body system [36–42]: one example is given by dynamical phase
transitions (DPTs). In this chapter, we will investigate the occurrence of these transi-
tions in long-range models, as well as their possible disruption due to the emergence
of chaos once fluctuations are included.

A dynamical quantum criticality can be observed for example as singular temporal
patterns in the Loschmidt echo (LE), particularly following a quench across a quan-
tum phase transition [43–45]. This phenomenon occurs even when long-range order
cannot be maintained in stationary states. However, in systems with long-range in-
teractions, a distinctive Landau-type critical behavior emerges, intertwined with the
singular characteristics of the LE [46]. This behavior is characterized by the depen-
dence of a time-averaged order parameter on the quench parameters [47, 48]. Peculiar
to the dynamical transitions occurring in long-range models is their association with
critical trajectories characterized by a divergent time scale in the dynamics, marking
the separation between revivals with a finite order parameter [46]. When fluctuations
are introduced, these critical trajectories become unstable, and second-order dynamical
critical points widen up into chaotic dynamical phases [49–52].

The previously discussed DPTs are primarily second-order transitions, like their
equilibrium counterparts occuring within the same models. The concept of dynamical
criticality has been overall less explored in systems exhibiting first-order equilibrium
transitions, with few exceptions [53, 54]. In this chapter, we delve into this underex-
plored area by investigating possible dynamical phase transitions and their stability
against fluctuations in a system displaying a first-order equilibrium transition: a spin
system featuring infinite-range p-spin interactions and coupled to a global transverse
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2. Dynamical phase transitions in long-range spin systems

field. At the mean-field level, its dynamics is effectively classical [47]. We show that the
system undergoes a DPT following a quench of the transverse field g. The order of this
DPT is determined by the parity of p, despite its equilibrium counterpart always being
of the first order. In particular, we show that the order of the dynamical transition can
be deduced entirely from the interplay between the various equilibria present in the
underlying energy landscape. We then perturb the model by a short-range two-body
interaction, enabling spin fluctuations [49, 50, 55]. While for p = 2 a chaotic dynamical
region opens up near mean-field criticality [49, 50], we show that for p > 2 dynami-
cal chaos is almost entirely replaced by a new prethermal regime, which we define as
"dynamical paramagnetic phase", appearing for sufficiently large short-range coupling.
This is due to the emission of energy in the form of spin-waves, which predominantly
drive the system into a paramagnetic minimum even in the presence of other minima
in the energy landscape.

The chapter is structured as follows. In Section 2.1, we provide an overview of
the general theory governing the dynamics of fully connected models, introduced in
Ref. [47]. Then, in Section 2.2, we apply this theory to explore dynamical transitions
in the fully connected p-spin model. Finally, in Section 2.3, we discuss the impact of
fluctuations on the mean-field dynamics.

2.1 The classical limit of fully connected models

Whenever a system displays infinite-range interactions, mean-field theory is intuitively
expected to become exact in the thermodynamic limit. In the context of equilibrium
statistical mechanics, this assertion is well-established and can be found in standard
textbooks [35]. The extension of this notion to the non-equilibrium quantum dynamics
has been formulated much later, in the general theory developed from B. Sciolla and
G. Biroli in Ref. [47]. The key result of the theory is that when the Hamiltonian of
a quantum system remains invariant under arbitrary permutations of its elementary
degrees of freedom, the corresponding quantum dynamics, when initialized in the to-
tally symmetric subspace, becomes effectively low-dimensional. Quantum fluctuations
are controlled by an effective Planck constant h̄eff ∼ h̄/N , where N is the number of
the original degrees of freedom. In the following, we will first describe general theory
of Ref. [47], then we will specialize our discussion to spin systems, which will be our
subject of interest in the rest of this chapter.

2.1.1 Dynamics of permutationally invariant models

To set the stage, we consider a quantum system made of N identical q-level systems,
each of them defining a microscopic degree of freedom. A basis of the many-body
Hilbert space can then be constructed as the tensor product of identical single-unit
bases {|α⟩}, with α = 1, . . . , q. We also define a binary permutation as any unitary
transformation P̂ij exchanging to a pair of degrees of freedom in the tensor product
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2. Dynamical phase transitions in long-range spin systems

basis, that is

P̂ij |α1, . . . , αi, . . . , αj, . . . , αN⟩ = |α1, . . . , αj, . . . , αi, . . . , αN⟩ , (2.1)

for every pair i, j, with i < j. Any more general permutation can then be obtained by
arbitrary combination of binary permutations operators. Within this framework, an
Hamiltonian is said to display full permutational symmetry if it commutes with P̂ij for
any choice of i and j. Although binary permutations do not all commute with each
other, it is in general possible to find a nontrivial subspace of the full many-body Hilbert
space which is simultaneously invariant under all permutations. We call this subspace
as the totally-symmetric subspace (TSS). A basis for the TSS can be straightforwardly
obtained by symmetrization of the tensor product basis |α⟩ = |α1, . . . , αN⟩. The
corresponding symmetrized states can then be univoquely labelled by the occupation
numbers N1, . . . , Nq of each orbital, with

∑
iNi = N . Such states can be expressed as

|N1, . . . , Nq⟩ ∝
∑

α∈[N1,...,Nq ]

|α⟩ (2.2)

where the sum is restricted to the configurations of α1, . . . , αN compatible with the
chosen occupation numbers. The dimension of the TSS is equal to the number of
partitions of N into q non-negative integers, given by [56]

dim TSS =

(
N + q − 1

q − 1

)
∼

N→∞

N q−1

(q − 1)!
, (2.3)

and scales only polynomially in N , allowing for a numerical analysis even for large
values of N .

The main result of Ref. [47] is that the dynamics of intensive observable into the TSS
is effectively classical in the thermodynamic limit. To prove it, we straightforwardly
project the Schrodinger dynamics into the TSS. We first consider two generic states
belonging to the TSS, |N1, . . . , Nq⟩ and

|N1 +m1, . . . , Nq +mq⟩ (2.4)

where m = (m1, . . . ,mq) ∈ Zq, and compute the matrix elements of the Hamiltonian
between two such states. For convenience, we also replace the occupation numbers Nα

with the fractions xα = Nα/N , with 0 ≤ xα ≤ 1 and
∑q

α=1 xα = 1, and denote the basis
states as |x⟩ = |x1, . . . , xq⟩. With this notation, a matrix element of the Hamiltonian
can in general be expressed as

⟨x| Ĥ |x′⟩ = V (x)δx,x′ −
∑
m̸=0

Tm(x)δx,x′+m/N , (2.5)

where we separated the diagonal part from the off-diagonal one. We also assume time-
reversal symmetry of the problem, implying that Tm(x) is real. In the rest of this
chapter, we will focus on physical Hamiltonians which are extensive and local. The
first property implies that both V (x) and Tm(x) are extensive quantities, so we may
rewrite them as

V (x) ∼ Nv(x) , Tm(x) ∼ Ntm(x) . (2.6)
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2. Dynamical phase transitions in long-range spin systems

In the thermodynamic limit N → ∞, the extensivity of Ĥ also guarantees that v(x)
and tm(x) are smooth functions of x [47]. Moreover, the locality of the Hamiltonian
implies that it can be decomposed as a sum of operators involving up to k elementary
units, where k is some finite number, so that the sum on the right-hand side of Eq. (2.5)
can limited to indices m such that |m| = |

∑
αmα| ≤ 2k. Finally, decomposing the

wave-function into the TSS as |ψ(t)⟩ =
∑

x ψ(x, t) |x⟩, we can rewrite the Schrodinger
equation as

ih̄

N

∂

∂t
ψ(x, t) =

v(x)− 2
∑

0≤|m|≤2k

tm(x) cosh
(

m
N

· ∂
∂x

)ψ(x, t) , (2.7)

where we used the identity ψ(x + m) = exp(m · ∂/∂x)ψ(x).

In the thermodynamic limit, x becomes an effectively continuous variable, so that
the dynamics generated from Eq. (2.7) is effectively governed by the effective Hamil-
tonian

Heff (x̂, p̂) = v(x̂)− 2
∑

0≤|m|≤2k

tm(x̂) cosh
(
i
m · p̂
h̄eff

)
(2.8)

and quantum fluctuations are governed by an effective Planck constant

h̄eff =
h̄

N
. (2.9)

In Eq. (2.8) we also identified the momentum operator p̂ = −ih̄eff∂/∂x, canonically
conjugate to x̂. As h̄eff vanishes in the thermodynamic limit, the original dynamics
becomes effectively classical and described by the Hamilton equations generated by the
Hamiltonian Heff (x, p) from Eq. (2.8). We also observe that, due to the constraint∑q

α=1 xα = 1, x is an effectively q − 1 dimensional variable.

2.1.2 Fully connected spin models
For systems whose elementary degrees of freedom are spin-s, the semi-classical descrip-
tion described in Section 2.1.1 can be rephrased in a more intuitive way [57]. We begin
by considering a general, extensive Hamiltonian:

Ĥ = −N
∑
p≥1

∑
µ1...µp=x,y,z

Jµ1,...,µp
Np−1

∑
i1,...,ip

ŝµ1i1 . . . ŝ
µp
ip

= −N
∑
p≥1

Jµ1,...,µpŜ
µ1 . . . Ŝµp . (2.10)

where in the last equality we defined the collective spin components Ŝα =
∑

j ŝ
α
i . The

operators ŝαi represent the microscopic, spin-s degrees of freedom.

For the Hamiltonian in Eq. (2.10), the TSS is the maximal spin sector, where

Ŝ2 =
∑

α=x,y,z

(Ŝα)2 = Ns(Ns+ 1) . (2.11)
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2. Dynamical phase transitions in long-range spin systems

A fundamental observation is then that the collective spin variables satisfy the algebra[
Ŝα

N
,
Ŝβ

N

]
= i

h̄

N

∑
γ

ϵαβγ
Ŝγ

N
(2.12)

controlled once again by an effective Planck constant h̄eff = h̄/N . In the thermody-
namic limit, the commutators from Eqs. (2.12) vanish and the modulus of the effectively
continuous, average spin S⃗ = ⟨Ŝ⟩ /N is given by

|S⃗| ∼
√

⟨Ŝ2⟩ ∼ Ns . (2.13)

Furthermore, as h̄eff vanishes, the Ehrenfest dynamics of S⃗ is asymptotically given by
the Hamilton equations

d

dt
S⃗ = {Hcl(S⃗), S⃗} , (2.14)

obtained through the Poisson bracket {Sα,Sβ} =
∑

γ ϵ
αβγSγ. Here, Hcl(S⃗) is com-

puted by replacing the components of the operator Ŝ with the ones of S⃗, in Eq. (2.10).

2.2 Mean -field dynamical transitions in p-spin model
In this section, we apply the theory described in Section 2.1 to a system of N spins 1/2
subject to all-to-all p-body and a global transverse field g. Its Hamiltonian is defined
as

Ĥ0 = − λ

2Np−1

N∑
i1...ip=1

σ̂xi1 . . . σ̂
x
ip −

g

2

∑
i

σ̂zi , (2.15)

where σ̂αi are the Pauli matrices at site i and coincide with the rescaled spin operators
on each site, 2ŝi. The fully connected p-spin model in Eq. (2.15), which was origi-
nally introduced in the context of spin glasses [58, 59], plays a central role for studies
on quantum annealing [60, 61]. Its zero-temperature phase diagram can be derived
analytically [60–63] and displays a quantum phase transition driven by g, continuous
for p = 2 and of the first-order for p > 2 [60, 63]. In this section we will address its
dynamics and dynamical phase transitions.

2.2.1 Classical dynamics following a quench

We aim to study the dynamics of the average magnetization S⃗(t) = ⟨
∑

j σ⃗j(t)⟩ /N ,
following a quench in the transverse field g. More precisely, we fix the initial state as
a ferromagnetic ground state of the Hamiltonian in Eq. (2.15) at g0 = 0, represented
as |ψ0⟩ = |→ · · · →⟩. As discussed in Section 2.1.2, the Ehrenfest dynamics of S⃗(t),
evolving from |ψ0⟩, is effectively classical in the thermodynamic limit N → ∞ and can
be described by the Hamilton equations [54, 64]:

dS⃗
dt

= {Hcl(S⃗), S⃗} =
∂Hcl

∂S⃗
∧ S⃗ , (2.16)
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2. Dynamical phase transitions in long-range spin systems

Figure 2.1: Energy profiles described by the equation (2.17), for several values of g > 0
and for p = 2 (left), p = 2n+1 (center) and p = 2n+2 (right), respectively, with n ≥ 1
integer. All the three profiles lie in the plane Sy = 0 (black cut on the Bloch spheres,
where Sz =

√
1− (Sx)2). Depending on the post quench values of the transverse

field g, orbits starting from S⃗ = x̂ display qualitatively different behaviours: they are
either confined in a single well (a) or explore the whole landscape (b), for values of g
respectively below and above a dynamical critical point gdyn. Exactly at g = gdyn, the
system lies on a separatrix (c) with diverging period. See also the orbits in Fig. 2.2 (a)
and (d) for a comparison.

with initial condition S⃗(0) = x̂. The effective classical Hamiltonian Hcl(S⃗, g) appearing
on the right-hand side of Eq. (2.16) is given by

Hcl(S⃗, g) = −λ(Sx)p − gSz . (2.17)

We remind that the Poisson bracket are given by {Sα,Sβ} = ϵαβγSγ. From Eq. (2.17)
is straightforward to see that the modulus of the spin |S⃗|2 is a constant of motion,
so that the effectively classical dynamics is constrained on the Bloch sphere |S⃗|2 = 1.
The dynamics in Eq. (2.16) is out of equilibrium, as all microscopic spins perform a
coherent, undamped precession under the dynamics described by Eq. (2.16).

The dynamics described by Eq. (2.16) is also strongly influenced by the shape of the
effective Hamiltonian Hcl(S⃗, g). Depending on the value of p and for sufficiently small
values of g, the profile Hcl(S⃗, g) on the sphere exhibits various topologies, characterized
by the number and positions of its maxima and minima. Such stationary point can
be quantitatively characterized by parameterizing the magnetization with the spher-
ical angles (θ, ϕ) ∈ [0, π/2] × [0, 2π], as S⃗ =

(
sin θ cosϕ, sin θ sinϕ, cos θ

)
. Then, the

equations for the stationary points of Hcl(S⃗, g) are given by:
∂Hcl

∂ϕ
= −λp(sin θ)p(cosϕ)p−1 sinϕ = 0

∂Hcl

∂θ
= −λp(sin θ)p−1(cosϕ)p cos θ + g sin θ = 0 .

(2.18)

In the following we will focus on the case where g > 0. Moreover, we will focus only
on stationary points falling in the in the Northern hemisphere(Sz > 0) of the Bloch
sphere, where we will show a posteriori that the dynamics takes place, for the initial
condition S⃗(0) = x̂. One possible solution of the system of Eqs. (2.18) is given by θ = 0
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(the North Pole of the Bloch sphere), being a maximum for p = 2 and a minimum for
p > 2. All the other solutions are obtained by solving the system: sinϕ = 0

(sin θ)p−2 cos θ(cosϕ)p = g

λp

(2.19)

From the first equation, we get that stationary points lie in the plane Sy = 0 for every
p, while the number and the precise location of the solutions depend on the value of
p. Specifically, for p = 2, we observe two symmetric minima separated by a maximum
at the North pole (S⃗ = ẑ). For p ≥ 3 odd, the same topology persists, but the profile
becomes asymmetric with respect to the North pole. Conversely, for p ≥ 4 even, the
potential features three minima: one at the North pole and two symmetric minima with
respect to it. Consequently, the projection of Hcl(S⃗, g) in the plane Sy = 0 displays
three possible shapes, each corresponding to a different value of p:

- a symmetric double-well for p = 2;

- an asymmetric double-well for p ≥ 3 (odd), with one paramagnetic and one
ferromagnetic minimum:

- a symmetric triple-well for p ≥ 4 (even), with one paramagnetic minimum and
two opposite ferromagnetic minima.

These profiles undergo qualitative changes when g exceeds the critical value gsp =
p(p − 2)(p−2)/2/(p − 1)(p−1)/2. Beyond this point, the second of Eqs. (2.18) no longer
has a solution, and the North pole S⃗ = ẑ becomes the sole stationary point, coinciding
with a minimum. gsp is commonly referred to as the spinodal point [61].

The presence of multiple local minima in the profile has a strong impact on the
dynamics of S⃗(t), which exhibits qualitatively different orbits, depending on the value
of the post-quench transverse field g1, as depicted in Fig. 2.1:

1. Below a certain threshold, gdyn (trajectory (a)), such that gdyn < gsp, the dy-
namics starts from a ferromagnetic well, and the initial energy is insufficient to
surmount the nearest maximum at S⃗ = S⃗m(g). Consequently, the magnetization
oscillates around the ferromagnetic minimum, with Sx(t) > Sxm(g) at every time
t.

2. For g > gdyn (trajectory (b)), the system possesses enough energy to explore the
entire landscape.

3. At precisely g = gdyn (trajectory (c)), the system has sufficient energy to reach the
top of the barrier but is unable to surpass it. Here the period of the oscillations,
Tcl(g), diverges and the magnetization approaches the local maximum infinitely
slowly. The resulting orbit forms a separatrix.

1Our discussion can also be generalized to non-vanishing pre-quench values of the transverse field,
g0 > 0, following the approach of Ref. [47].
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The three cases listed above correspond to three different possible topologies for the
underlying orbits at large times. We classify each distinct topology as a dynamical
phase [65]. Consequently, the singular dynamics at g = gdyn leads to a dynamical phase
transition (DPT). The dynamical critical point gdyn is obtained by equating the energy
of the initial configuration S⃗(0) = x̂ to that of the local maximum S⃗c = S⃗m(gdyn),
which in terms of the variables θ and ϕ reads:

−λ(sin θ)p − g cos θ = −g. (2.20)

More precisely, simultaneous solutions of Eqs. (2.19) and (2.20) determine both gdyn
and the spherical coordinates of the corresponding maximum in S⃗c.

From a practical point of view, the DPT can be studied also in terms of a "dynamical
order", such as the time-averaged longitudinal magnetization,

Sx = 1

T
lim
T→∞

∫ T

0

dtSx(t) . (2.21)

As discussed also in Appendix A.1, the two indicators are equivalent to each other: as
g approaches gdyn, the change of topology in the orbits is signalled by a divergence of
their period Tcl(g), in turn creating a non-analiticity in the function Sx(g). In partic-
ular, both Tcl(g) and Sx(g) display a log-singularity while approaching the dynamical
transition, a feature already known for other mean-field models driven away from equi-
librium [47, 66].

In the following, we show that for the nature of the the mean-field DPT is quali-
tatively influenced by the interplay between various stationary points, which depends
solely on the parity of p (for p > 2). Therefore, we will study Eq. (2.16) for p = 3
and p = 4. These cases, together with p = 2, are paradigmatic and represent the three
possible shapes of the landscape listed above, respectively.

2.2.2 The dynamical phase transition
The first observation we make is that the order of the DPT is not necessarily the same
of the thermal equilibrium phase transition displayed by the p-spin model for the same
value of p.

The case p = 2 is special, as it displays a thermal phase transition [67] and a dy-
namical phase transition which are both of the second order [46, 47, 62]. The dynamical
one is detected by Sx which, for a symmetry breaking initial condition S⃗(0), is finite
for g < λ and vanishes for g > λ (due to the symmetry of the two wells), correspond-
ing respectively to dynamical ferromagnetic and dynamical paramagnetic phases. The
continuity of this DPT is not a consequence of the symmetry of Hcl(S⃗, g) under the
reflection Sx → −Sx, but it is rather a general property related to the topology of
the effective potential. Indeed, when g approaches gdyn both from above and below,
the energy of the orbit gets close to the one of the separatrix, which has a crossing at
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Figure 2.2: From left to right, we plot the orbits of the magnetization on the Bloch
sphere, described after a quench starting in Sx(0) = 1 ((a) and (d)), the corresponding
time-averaged magnetization Sx ((b) and (e)) and the behaviour of Sx(t) near the
critical point (((c) and (f)). The plots on the upper row corresponds to the case of
p = 3, the ones below to p = 4. (Left) For both values of p, the system evolves on
trajectories which either are confined in a ferromagnetic well (green), for g < gdyn, or
enclose all the local minima (orange), for g > gdyn. The two regions are divided by a
critical trajectory (white), corresponding to g = gdyn. (Center) Plot of the dynamical
order parameter Sx as a function of g. At the critical point (red dot), this is continuous
for p = 3 only. (Right) Behaviour of the longitudinal magnetization for g ≃ gdyn:
for p = 3, Sx(t) exhibits a pleateau at the only maximum in Sxm(gdyn) = Sxc (of the
landscape Hcl(S⃗, gdyn)), both above and above the transition; for p = 4, the dynamics
is characterized by a single plateau above gdyn and two, symmetric plateaus below gdyn.

the only local maximum of Hcl(S⃗, gdyn), located in S⃗c = ẑ. At g = gdyn, the dynamics
starts on the separatrix and approaches asymptotically S⃗c i.e.

lim
t→∞

S⃗(t) = S⃗c . (2.22)

The orbits asymptotically close to the separatrix, retrieved for g → g±dyn, develop a
plateau at S⃗c whose length diverges with the period Tcl(g), so that

lim
g→g±dyn

Sx(g) = Sxc = 0 (2.23)

and the dynamical transition is continuous.

For p > 2, the results summarized Fig. 2.2 always show the emergence of a DPT at
some g = gdyn (such that gdyn < gsp for every p), whose qualitative features depend on
the parity of p, unlike its static counterpart. For p = 3 the topology of the phase space
is the one of a double well, like in the case of p = 2 (though without Z2 symmetry),
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hence the transition is continuous. In particular, a dynamical ferromagnetic phase is
again retrieved for some g < gdyn, where all the orbits are confined in a ferromagnetic
well (green trajectories, Fig. 2.2-(a)), while for g > gdyn the to oscillations of the orbits
between the two wells (orange trajectories, Fig. 2.2-(a)) lead to the emergence of a
dynamical bistable phase, where Sx is a weighted average of the values of Sx at the
two minima. Thus, Sx varies continuously with g and exhibits a cusp at g = gdyn.
The validity of the argument relating the continuity of Sx to the presence of a single
unstable stationary point is proven in Fig. 2.2-(c), which shows that Sx(t) displays
plateaus, whose length diverges as g approaches gdyn either from above or below, in
proximity of the local maximum at Sxc > 0.

The situation changes, due to a drastic change in the phase space topology, for
p = 4. While approaching the critical point from below, the dynamics is confined in
the rightmost ferromagnetic sector and Sx still tends to a local maximum (green tra-
jectories, Fig. 2.2-(d)), whose longitudinal coordinate Sxc is non-vanishing. Conversely,
moving even slightly above the transition point the trajectories become symmetric with
respect to the y− z plane (orange trajectories, Fig. 2.2-(d)), like the stationary points
of Hcl(S⃗, g), hence Sx = 0. In a more general perspective, we see that the important
topological feature here is the presence of two maxima of Hcl(S⃗, gdyn) with the same en-
ergy, at Sx = ±Sxc , where the separatrix (white trajectory in Fig. 2.2-(d)) has crossings.
As a consequence, slightly below or above the transition, Sx(t) respectively exhibits
plateaus of diverging length in proximity of the positive maximum or symmetrically
near the two maxima (see respectively green and orange plot in Fig. 2.2 (f)), creating
a discontinuity in Sx.

2.3 First order transitions driven by non-equilibrium
fluctuations

The dynamical transitions studied in Section 2.2 arise from the out of equilibrium co-
herent dynamics performed by the local spins in the N → ∞ limit, where they are
effectively decoupled from each other due to the all-to-all interaction among them.
This phenomenon is expected to be unstable with respect to the inclusion of fluctu-
ations in the dynamics, which lead the system to eventually thermalize. However,
if the coupling between the magnetization and fluctuations is not too large, the am-
plitude of fluctuations is expected to be small for a parametrically long time, leaving
possible instances of dynamical phases in the prethermal stage of the dynamics [68–70].

This possibility was investigated in Ref. [49] using the non-equilibrium spin-wave
theory (NEQSWT). Therein it was shown that, for p = 2, the dynamical critical point
retrieved at the mean-field level is melted into an entire chaotic region of the phase
diagram when fluctuations are included. In this section, we use the NEQSWT to
perform the same analysis in the more general case of p > 2, considering the post-
quench dynamics of the p-spin model under the influence of an extra, short-range term
in the Hamiltonian. We assume that our system is on a one-dimensional lattice with
periodic boundary conditions, and the short-range interaction term is expressed in real
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space as [49]

Û = −J
∑
i

σ̂xi σ̂
x
i+1 +

J

N
(
∑
i

σ̂xi )
2 . (2.24)

In momentum space, Eq. (2.24) can be rewritten as:

Û = − J

N

∑
k ̸=0

cos k σ̃xk σ̃x−k (2.25)

where k is an integer multiple of 2π/N , N being the system size. We leave out the term
with k = 0, given by J(

∑
i σ̂

x
i )

2/N , which does not create fluctuations and just mod-
ifies the mean-field component of the Hamiltonian from Eq. (2.15). Equation (2.25)
give us the easiest perturbation that breaks the permutation symmetry in Eq. (2.15).
Nevertheless, as we shall discuss later, all our results are expected to be independent
of the range of interaction and of the dimensionality of the lattice.

In Section 2.3.1, we first provide a concise summary of the essential steps required
for the implementation of NEQSWT, reserving a more comprehensive derivation and
technical details for Appendix B. Subsequently, in Section 2.3.2, we discuss the effect
of fluctuations, induced by the short-range perturbation, on the mean-field dynamical
transitions of the p-spin model.

2.3.1 Non-equilibrium spin-wave theory
The fundamental hypothesis underlying NEQSWT is that, at least as long as J is
sufficiently small, the net effect of the term from Eq. (2.25) is to give rise to small
spin-wave excitations on top of the collective classical spin S⃗(t). In particular, when
the magnetization length is close to its maximal value, |S⃗(t)| ≃ 1, the dynamics
of S⃗(t) can still be effectively described in terms of trajectories close to the Bloch
sphere, perturbed by fluctuations induced by the finite k degrees of freedom. Thus,
we implement NEQSWT by first rewriting the spin operators in Eq. (2.15) in a time-
dependent, rotating reference frame R =

(
X(t),Y(t),Z(t)

)
, by applying the rotation

V
(
θ(t), ϕ(t)

)
= exp (−iϕ(t)

∑
i σ̂

z
i /2) exp (−iθ(t)

∑
i σ̂

y
i /2), where the spherical angles

θ(t) and ϕ(t) are fixed such that the magnetization S⃗(t) is aligned with the Z-axis in
the new frame, for any t > 0. Then, assuming that the fluctuations transverse to Z(t)
are small, we expand the spin variables in the new frame R using the HolsteinPrimakoff
(HP) transformation [71]:

σ̂Xi ≃ q̂i/
√
s, σ̂Yi ≃ p̂i/

√
s,

σ̂Zi = 1− q̂2i + p̂2i − 1

2s
,

(2.26)

where s = 1/2 for the current case. We retain perturbative terms in the spin-wave
modes (q̃k, p̃k), i.e., the Fourier transform of (q̂i, p̂i), at the leading order only. In our
case, this amounts to retain only terms in Eq. (2.15) that are quadratic in q̃k and p̃k.
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2. Dynamical phase transitions in long-range spin systems

The evolution of the spherical angles is consequently determined by the self-consistent
equations SX(t) = SY (t) = 0, which in our analysis read as:

sϕ̇ =pλ(sin θ)p−2(cosϕ)p cos θ
{
1− (p− 1)ϵ(t)

}
− g

− 2Jδqq(t) cos θ cos2 ϕ+ 2Jδqp(t) sinϕ cosϕ
sθ̇ =pλ(sin θ cosϕ)p−1 sinϕ{1− (p− 1)ϵ(t)}+

− 2Jδpp(t) sin θ sinϕ cosϕ
+ 2Jδqp(t) sin θ cos θ cos2 ϕ .

(2.27)

The term
δαβ(t) ≡

∑
k ̸=0

∆αβ
k (t) cos k/(Ns) , (2.28)

for α, β ∈ {p, q}, is a "quantum feedback" by which the classical spin gets coupled to
the corresponding spin-wave correlation functions, defined by

∆qq
k (t) ≡ ⟨q̃k(t)q̃−k(t)⟩ , ∆pp

k (t) ≡ ⟨p̃k(t)p̃−k(t)⟩ ,
∆qp
k (t) ≡ ⟨q̃k(t)p̃−k(t) + p̃k(t)q̃−k(t)⟩ /2 .

These evolve according to the linear differential equations of motion

s
d

dt
∆qq
k = (4J cos k cos θ sinϕ cosϕ)∆qq

k

+ {2pλ(sin θ)p−2(cosϕ)p − 4J cos k sin2 ϕ}∆qp
k

s
d

dt
∆qp
k = −{pλ(sin θ)p−2(cosϕ)p

− 2J cos k cos2 ϕ cos2 θ}∆qq
k

+ {pλ(sin θ)p−2(cosϕ)p − 2J cos k sin2 ϕ}∆pp
k

s
d

dt
∆pp
k = −{2pλ(sin θ)p−2(cosϕ)p

− 4J cos k cos2 ϕ cos2 θ}∆qp
k

− (4J cos k cos θ sinϕ cosϕ)∆pp
k ,

(2.29)

defined for each value of k = 2πn/N , where n = 1, . . . , N − 1. We notice that, in the
limit of J → 0, the Eqs. (2.27) decouple from the quantum feedback and reduce to
a representation of the mean-field dynamics in Eq. (2.16) in the spherical coordinates
θ(t) and ϕ(t).

Our expansion is expected to be valid as long as the density of spin-wave excitations
is small, that is

ϵ(t) =
1

Ns

∑
k ̸=0

∆qq
k (t) + ∆pp

k (t)− 1

2
≪ 1 . (2.30)

In this case, the modulus of the magnetization |S⃗(t)| = 1− ϵ(t) is close to one, so that
the dynamics can still be described in terms of classical trajectories. In this regime,
spin waves behave as free bosonic excitations, which interact with the macroscopic
collective spin only, corresponding to the k = 0 mode. Higher-order terms appearing
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2. Dynamical phase transitions in long-range spin systems

in Eq. (2.15), which account for nonlinear scattering among the spin waves, can be
neglected: they are expected to contribute significantly to the dynamics only at longer
times and to drive the system away from the prethermal regime relevant for the DPT
discussed here.

2.3.2 Modified non-equilibrium phase diagram
The presence of spin-waves opens a channel for internal dissipation: the magnetization
S⃗(t) is damped by the emission of spin waves. For p = 2, the energy damping leads the
orbits close to the mean-field separatrix to localize asymptotically down one of the two
wells, with equal probability. The corresponding prethermal dynamics becomes thus
unpredictable and the mean-field dynamical critical point melts into an entire chaotic
region of the phase diagram [49, 50]. It is natural to ask if spin-wave emission is going
to have the same effect in the first-order case p > 2.

To understand the effects of fluctuation on the mean-field dynamical transition, we
study the post-quench dynamics of the system at J ̸= 0, by simultaneously integrating
equations (2.27) and (2.29), for a range of values of the couplings g and J . We verify
that, for each choice of g and J and at the time-scales explored, the spin wave density
ϵ(t) is small (some examples are shown in Fig. 2.3), so that the dynamics we study is
consistently in a prethermal regime. Before the quench, we again prepare the system
in the fully polarized state along the x-direction, so that θ(0) = π/2 and ϕ(0) = 0, and
assume that no spin-wave mode is excited, by imposing that ∆qq

k (0) = ∆pp
k (0) = 1/2

and ∆qp
k (0) = 0. Below we will reconstruct the various dynamical phases by looking at

Sx as a function of g and J and at individual trajectories. As we study the dynamics
for values of g below the spinodal point gsp(p), defined in Section 2.2.2, the new dy-
namics is still equivalent to the one of a particle moving in a multi-well shaped energy
profile, like the mean-field one. The effect of the short-range perturbation is thus to
generate additional damping due to the exchange of energy with the spin-wave degrees
of freedom, the latter acting as a self-generated bath, as we will discuss in greater detail
in Section 2.3.3.

The exchange of energy between the magnetization and the spin-waves opens the
route for the appearance of new dynamical phases. In particular, for the dynamical
protocol we described and generic values of g and J , ϵ(t) grows from zero saturat-
ing to a typical small value (see Fig. 2.3), while the magnetization is correspondingly
damped from its initial mean-field orbit to another one where the unperturbed energy
Hcl(S⃗(t), g) is slightly different, possibly even localizing in a single well. We define
the new dynamical phases in terms of the topology of the trajectories asymptotically
reached after the damping. Once again, we stress that such new dynamical phases are
prethermal and are expected to be disappear at long-times as soon as the non-linear
interaction among the spin-waves degree of freedom is taken into account, leading to
the eventual thermal relaxation of the system.

If spin waves were emitted at a constant rate in time, the orbits encompassing all
the minima (that is, orange trajectories in Fig. 2.2-(a) and (d) ) would localize down
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Figure 2.3: Plots of two examples of the profile of the function ϵ(t), defined in Eq. (2.30)
and computed by within the NEQSW described in the main text, by fixing either p = 3,
J = 0.25, g = 1.15 (red plot) or p = 4, J = 0.2, g = 1.12 (blue plot). In both plots we
fix N = 100 and λ = 1.

one the wells of the effective potential on the Bloch sphere, either the paramagnetic
minimum or one of the ferromagnetic minima ( a single one for p ≥ 3 odd or a pair
for p ≥ 4 even), with approximately equal probability. The plot obtained for p = 3 in
Fig. 2.4 shows that this is not the case: the dynamical ferromagnetic phase is of course
always robust against fluctuations, while the dynamical bistable one is not and for
sufficiently large values of J the trajectories asymptotically localize inside the param-
agnetic minimum, associated with asymptotically stable oscillations, thus identifying a
new dynamical paramagnetic phase. Quantitatively, in Fig. 2.4 we observe three typical
asymptotic behaviour for the trajectories (either encompassing all the wells or orbiting
around one of the two minima): to each of them corresponds to a narrow interval of
values for Sx, being greatest in the dynamical ferromagnetic phase and smallest in the
paramagnetic one (although non vanishing due to the asymmetry of the energy profile).
The dynamical order parameter Sx also exhibits a discontinuity when crossing the bor-
der line Jdyn(g) (discussed in greater detail A.2), between the dynamical bistable and
paramagnetic regions, giving rise also to a new first-order transition driven by J . The
predominance of localization around Sx = 0 is softened close to the mean-field critical
point g = gdyn, where the asymptotic localization within the ferromagnetic basin be-
comes more frequent and the line limiting the dynamical ferromagnetic phase is melted
in a narrow chaotic crossover region, equivalent to the one observed for p = 2 [49].

As shown in Fig. 2.5, a similar phenomenon is observed for p = 4, where the
collective spin S⃗(t), initially oscillating in the mean-field paramagnetic region, suddenly
falls into the well around the North pole of the Bloch sphere, as soon as J is moved above
a critical threshold Jdyn(g). Unfortunately, this discontinuity in the time-evolution can
not be appreciated by looking at the average Sx, displayed in Fig. 2.5 (left), which
vanishes for orbits either surrounding all the minima or localizing in the paramagnetic

24
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Figure 2.4: Non-equilibrium phase diagram of the p-spin model, for p = 3, obtained
integrating simultaneously equations Eqs. (2.27) and (2.29) and for a quench, starting
from the fully polarized state S⃗(0) = x̂ and several values of g and J . The maximum
integration time is tmax = 2000. Here we posed N = 100 and λ = 1. The color of each
point on the phase diagram corresponds to a value of the time-averaged magnetization
Sx, as specified in the interval shown on the right of the diagram. In particular, the
yellow and the orange regions correspond to dynamical ferromagnetic and paramagnetic
phases, respectively, where the orbits are either confined in the ferromagnetic well
(plot T1) or encircle both the two minima (plot T2). The blue region corresponds
to the dynamical paramagnetic region where the magnetization revolves around the
minimum on the North pole (plot T3); here Sx is closer to 0 than in any other phase,
though non-vanishing, and increases discontinuously when moving across the border
with the orange zone. The crossover region is a narrow chaotic phase, reminiscent of
the one found in Ref. [49], where collective spin can localize at large times in either the
paramagnetic or the ferromagnetic minima (plot T4).

well, while showing once again the stability of the dynamical ferromagnetic phase
(where Sx > 0) against fluctuations. Thus, we also examine the behaviour of the
time-averaged fluctuation [54], defined as

(δSx)2 = lim
T→∞

1

T

∫ T

0

dt
(
Sx(t)− Sx

)2
. (2.31)

The value of (δSx)2 depends on the integration parameters g and J and decreases
discontinuously as J is again raised above a threshold Jdyn(g) (distinct from the thresh-
old found for p = 3), as it can clearly observed Fig. 2.5 (right). From the correspond-
ing phase diagram, we see that the dynamical paramagnetic phase, corresponding to
Sx = 0, can be divided in two sub-phases:

- a dynamical paramagnetic phase 1, where the orbits surround all the minima, like
in the corresponding mean-field phase ;
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Figure 2.5: Simultaneous plot of the time-averaged magnetization Sx (left) and time-
averaged fluctuations (δSx)2 (right), for p = 4. These are obtained integrating equa-
tions Eqs. (2.27) and (2.29) for the same parameters of N ,λ and the same maximum
integration time tmax listed in the caption of Fig. 2.4. For both the plots, each color
corresponds to a value of the observable we plot, as specified in the respective legends.
(Left) Plot of Sx. We identify two main regions: one corresponds to a dynamical fer-
romagnetic phase(yellow), where Sx > 0 (plot T1), while the other is a paramagnetic
phase (orange) where Sx = 0. Between the two, we occasionally find chaotic (blue and
yellow) spots, signalling that the magnetization eventually falls in one of the other two
symmetric, ferromagnetic minima (plot T4). (Right) Plot of the time-averaged fluc-
tuations (δSx)2. The in dynamical paramagnetic phase, corresponding to the non-blue
region of the phase diagram, can be split in a sub-phase 1 (yellow), where the dynam-
ical trajectories either surround symmetrically all the three minima of the landscape
(plot T2) and a sub-phase 2 (blue), where the magnetization localizes (predominantly)
in a paramagnetic well (plot T3). The border between the two identifies the transition
line J = Jdyn(g).

- a dynamical paramagnetic phase 2, where the trajectories localize around the
minimum at Sx = 0, confined in the paramagnetic well.

Specifically, smaller values of (δSx)2 correspond to localization inside the paramagnetic
well.

At the transition line Jdyn(g) between the two dynamical paramagnetic phases,
(δSx)2 is discontinuous (see also Appendix A.2) and thus we can identify a dynamical
transition for p ≥ 4 even, driven by J , being of the first-order like the one retrieved
in the mean-field case. In passing we also observe that, close to the mean-field critical
point g = gdyn, the dynamical paramagnetic phase 2 is filled with few "chaotic" spots,
where the orbits eventually localize instead in one of the two ferromagnetic wells (each
of them associated to a different sign of Sx). These spots become more frequent as we
cross over to the dynamical paramagnetic phase retrieved at smaller values of g.
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Figure 2.6: Dynamics of two trajectories, parametrized by θ(t) and ϕ(t) and computed
respectively for p = 3, g = 1.09, J = 0.26 (black plots) and p = 4, g = 1.13, J = 0.15
(green plots). (Left) Spherical plots of the magnitude of the couplings C1(θ, ϕ) and
C2(θ, ϕ), against the dynamical evolution of the two trajectories on the Bloch Sphere.
(Center) Time evolution of the couplings C1(θ(t), ϕ(t)) (blue) and C2(θ(t), ϕ(t)) (red)
along the trajectory obtained at p = 3, each compared against the longitudinal mag-
netization Sx(t) = (1 − ϵ(t)) sinϕ(t) cosϕ(t) (black). (Right) Same plots represented
at the center, this time for the trajectory computed at p = 4.
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2.3.3 The mechanism behind the localization of the magneti-
zation

Our results are very different from the ones found in Ref. [49] for the case of p = 2,
where the same fluctuations lead to dynamical chaos. In this section we show that,
despite the apparent difference, the dynamical phases retrieved both for p = 2 and
p > 2 share a common origin, which can be related to the predominant emission of
spin waves when the classical trajectory traverses the paramagnetic well.

Intuitively, the inhomogeneous emission is due to the specific form of the short-
range perturbation in Eq. (2.25), which induces fluctuations in the collective dynamics
when the local spins are not aligned with the x-axis: as the maximal misalignment in
the dynamics is reached when the magnetization is close to the North pole S⃗ = ẑ, and
in particular close to the plane Sx = 0, spin-waves are expected to be mostly emitted
there. From a quantitative point of view, it is useful to investigate the spin-wave
density rate, which using Eq. (2.30) reads as

dϵ(t)

dt
=

1

2Ns

∑
k ̸=0

(d∆qq
k (t)

dt
+
d∆pp

k (t)

dt

)
. (2.32)

Plugging Eqs. (2.29) into Eq. (2.32), we obtain

dϵ(t)

dt
= −4

J

s
(X · x̂)(Y · x̂) (δqq(t)− δpp(t)) + 4

J

s

(
(X · x̂)2 − (Y · x̂)2

)
δqp(t) (2.33)

= 4
J

s
cos θ sinϕ cosϕ (δqq(t)− δpp(t)) + 4

J

s
(cos2 θ cos2 ϕ− sin2 ϕ) δqp(t) ,

where the quantum feedback terms δαβ(t) are defined in Eq. (2.28). From Eq. (2.33),
we observe that the emission rate dϵ/dt is determined by the coefficients

C1(θ, ϕ) = (X(t) · x̂)(Y(t) · x̂) = cos θ sinϕ cosϕ (2.34)
C2(θ, ϕ) = (X(t) · x̂)2 − (Y(t) · x̂)2 = cos2 θ cos2 ϕ− sin2 ϕ

which couple dϵ/dt to the quantum feedback. C1(θ, ϕ) and C2(θ, ϕ) are independent
of p and depend only on the projection of the time-dependent frame R on the x-axis,
along which the local spins interact through the perturbation introduced in Eq. (2.25).
More precisely, in Appendix B.3, we show explicitly that the expression for the coeffi-
cients C1(θ, ϕ) and C2(θ, ϕ) in Eq. (2.34) depends only on the form of the perturbation
in Eq. (2.25). Moreover, from Eq. (2.34) we can see explicitly that dϵ/dt = 0 when the
magnetization is along the x-axis (θ = π/2), while the magnitude of both C1(θ, ϕ) and
C2(θ, ϕ) is maximised around the North Pole (see Fig. 2.6, left panels). This observa-
tion confirms our intuition that the maximum spin-wave emission occurs concomitantly
with the maximal misalignment between S⃗(t) and x̂. Our intuition is further confirmed
by the plots in Fig. 2.6 (central and right panels), where we show the time-evolution of
C1(θ, ϕ) and C2(θ, ϕ), along two generic classical trajectories, respectively for p = 3, 4:
when the magnetization visits the ferromagnetic well, both the couplings vanish and
no spin-wave is excited, while their magnitude is maximised when the magnetization
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is close to the plane Sx = 0.

As the predominant emission around the North pole is determined only by the short-
range perturbation, the different phenomena observed for p = 2 and p > 2 respectively
can be addressed to the different stability properties of the stationary point θ = 0 of
the energy landscape in Eq. (2.17): while, for p = 2, θ = 0 is unstable and symmetric
fluctuations in the two wells2 induce dynamical chaos [49, 50], for p > 2 θ = 0 becomes
a stable minimum so that the magnetization moves on stationary orbits after being
damped, giving birth to the dynamical paramagnetic regions shown in Fig. 2.4 (left)
and Fig. 2.5 (right). This phenomenon is reminiscent of Hopf bifurcations [7] occurring
in classical dynamical systems.

It is also worth noticing that the way by which the fluctuations induce the local-
ization of the collective spin is slightly more subtle than a simple dissipation mech-
anism. In particular, we observe that when ϵ(t) > 0, the magnetization length is
|S⃗(t)| = 1 − ϵ(t) decreases, so that the dynamics in Eq. (2.27) takes place in the
time-dependent modified potential

Hϵ(t)(θ, ϕ) = −(1− ϵ(t))p
[
λ(sin θ cosϕ)p − g

(1− ϵ(t))p−1
sin θ

]
. (2.35)

As shown in the animated plots3, the profile of the Hϵ(t)(θ, ϕ) is squeezed towards zero
energy when ϵ(t) grows: this eventually leads the magnetization to be trapped in the
paramagnetic region, where ϵ(t) exhibits large spikes, while the spin-wave dynamics is
nearly stationary across the ferromagnetic wells.

Our results are expected to be independent of the range of interaction of the pertur-
bation in Eq. (2.25) and of the dimensionality of the lattice: replacing the k-dependent
couplings J cos(k) with generic J̃k

4 leaves Eq. (2.33) invariant5 and spin-waves are still
expected to be emitted around θ = 0, as explicitly shown for the case of p = 2 [50]. On
the other hand, introducing a short-range interaction along a direction not coinciding
with the x-axis changes the couplings in Eq. (2.34) and spin-wave emission may occur
in different regions on the Bloch sphere, possibly leading to different non-equilibrium
phases.

2.4 Summary and perspectives
In conclusion, in this chapter we have studied the the post-quench dynamics of a fully
connected p-spin model (for p > 2) perturbed by a short-ranged interaction, controlled
by the coupling J , generalizing to arbitrary values of p the system studied in previous

2Notice that the right-hand side of Eq. (2.33) is invariant under reflection ϕ → ϕ+ π with respect
to the z-axis, so that spin-wave emission are symmetric in the two wells for p = 2.

3See the ancillary files at https://arxiv.org/e-print/2110.13524, in the folder "anc".
4Here k is a d-dimensional vector if the lattice has dimensionality d > 1.
5Up to replacing all the terms in the form of Jδαβ(t) with the more generic expression Jδαβ(t) ≡∑

k̸=0 ∆
αβ
k (t)J̃k/(Ns).
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works [46, 47, 49].

In the mean-field limit of J = 0, the dynamics is equivalent to the one of a particle
in a classical energy landscape: a DPT emerges, driven by the transverse field g, whose
order depends on the parity of p, which determines the qualitative shape of the effec-
tive potential. In particular, we have found a second order dynamical transition for
odd p (where the potential is an asymmetric double-well) and first order one for even
p (where the profile is made by three basins). The nature of this transition is modi-
fied by the presence of a short-range perturbation, treated within the non-equilibrium
spin-wave theory. Spin waves generate an effective damping in the dynamics which is
maximal in a region close to the paramagnetic North pole: this changes the nature
of the dynamical phases, now being defined by the behaviour of the magnetization in
a prethermal regime. In the phase diagram, the short-range coupling drives a new
first-order transition for p ≥ 3.

The analysis discussed here can be straightforwardly generalized to a wider class
of fully connected spin models with generic integrability breaking terms: the profile of
the energy landscape and the direction where interaction induced by the integrability
breaking perturbation is oriented are the only two ingredients which fully determine
the features of the non-equilibrium phase diagram.
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Chapter 3

Probing chaos in a p-spin glass

In Chapter 2, we demonstrated that within an effectively low-dimensional system, the
delicate balance between dissipation and the underlying energy landscape leads to two
markedly distinct outcomes of the dynamics: the emergence of either an asymptotic
localization or chaotic behavior. However, the situation becomes more intricate as we
shift our attention to high-dimensional systems, as we will show in this chapter. In
these systems, the number of stationary configurations increases rapidly with the sys-
tem size, possibly revealing a new and more complex phenomenology.

Among high-dimensional systems displaying a large number of equilibria, a promi-
nent role is played by spin glasses, a class of models originally introduced to describe
magnetic alloys [72, 73]. The dynamics of spin glasses is a longstanding problem: it
has been estabilished that, at low temperature, the dynamics is trapped into one of the
exponentially many possible metastable states [74–77] for a long-time and explores the
phase space through rare, activated jumps between different states [78–80], leading to
ergodicity-breaking phenomena [81–84]. The inclusion of quantum fluctuations usually
opens up a new route for thermalization in the equilibrium dynamics due to tunnelling
between metastable states [85–88], even though counter-intuitive effects of quantum
fluctuations inducing glassiness has been found in quantum quench protocols [89] or
more recently in presence of more complex energy landscapes [90]. Within such a rich
variety of phenomena, the recent theoretical [91–95] and experimental [96] observation
of many-body chaos in quantum spin-glasses has drawn particular attention. Specif-
ically, in Refs. [93, 94] chaos was detected in the dynamics of a quantum spherical
p-spin glass model [87], from the exponential growth of an out-of-time-order correlator
(OTOC) [97–103]: the corresponding Lyapunov exponent λL exhibits a single broad
peak at a temperature scale where the dynamics is still ergodic, but at the onset of
slow relaxation.

The behaviour of the Lyapunov exponent λL extracted from the OTOCs was con-
nected in Ref. [93] to a dynamical crossover between two step and one step time re-
laxation in the spin-spin correlation functions. This behaviour suggests a deeper con-
nection between this dynamical feature and the structure of the underlying stationary
configurations of the model. In particular, if such relation exists other features asso-
ciated to the peak in other chaos indicators would be observed. Among these chaos
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indicators, one example is the Kolmogorov-Sinai (KS) entropy [8, 14, 104], that is the
sum of all the positive Lyapunov exponents describing growth of the sub-leading terms
appearing either in the OTOC for quantum systems [105, 106] or in the distance be-
tween nearby trajectories for classical chaotic systems [107]. The KS entropy would
indeed provide a deeper insight on the emergence on the strength of chaos and to the
entanglement production in a wide range of quantum systems [105, 106, 108–110]. A
second, example of indicator focusing on the transition from integrability to chaos in
genuine quantum spin systems is the fidelity susceptibility [111, 112]. Such quantity,
despite being closely connected to the magnetic response obtained in quantum spin-
glass experiments [85], has never been investigated in the context of spin-glasses.

The purpose of this chapter is to develop a qualitative understanding of the chaotic
behavior in the p-spin spherical model, in the classical limit. Specifically, we com-
pute λL as function of the energy density, using phase-space methods and find a broad
peak around E = 0, while λL vanishes in the low and high-energy limits. We observe
that the maximum in λL occurs when the energy landscape has the maximum possible
number of stationary points, as characterized by the complexity [113]. We find that
the profile of the Kolmogorov-Sinai entropy is qualitatively identical to that of λL. To
further investigate the dynamical features of our model, we also introduce a quantity
classically equivalent to the fidelity susceptibility χ in the ergodic phase finding that,
as a function of E, it has a single peak aligning with the onset of non-ergodic be-
havior in the dynamics. We give a physical interpretation of our results in terms of
the behaviour of the underlying trajectories at different energy scales: while the low
and high-energy limits respectively correspond to regular trajectories, either oscillating
around a local minimum or performing a uniform circular motion around the N -sphere,
for intermediate energies the nontrivial interplay between the saddles of the landscape
enhance dynamical chaos. Our method can be straightforwardly generalized to other
spin-glass models, for example describing spins 1/2 in a transverse field [92], where a
similar behaviour for the trajectories is expected both for the low and high-energy limit.

The chapter is organized as follows. In Section 3.1 we review the indicators of chaos
and ergodicity that we will use in the rest of this chapter. In Section 3.2 we describe
the model and its dynamics we focus on. In Section 3.3 we will present our results
for λL and ΛKS and in Section 3.4 we will discuss their connection with the properties
of the underlying energy landscape. We also discuss the relation between dynamical
relaxation and the fidelity susceptiblity in Section 3.5. Finally, we summarize our
results and perspectives in Section 3.6.
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3.1 Tools for probing chaos in classical and quan-
tum systems

3.1.1 Lyapunov exponents
Classical Lyapunov spectrum

In Chapter 1, we highlighted that the defining trait of chaotic systems is their inher-
ent unpredictability, especially in the presence of uncertainty in the initial condition.
Quantitatively, this instability can be characterized by the system’s Lyapunov expo-
nents, which we will briefly review in this section. For a more detailed exploration,
readers are encouraged to consult the comprehensive Reference [14].

Consider dynamical system with arbitrary dimensionality d, described by the equa-
tions: {

ẏ = f(y, t)
y(0) = y0 .

(3.1)

To study the stability of a reference trajectory ỹ(y0, t), evolving from y0, we examine
the evolution of a nearby trajectory ỹ(y0+ δy, t), originating from a slightly perturbed
initial condition y0+δy. Assuming that the initial separation ∆(0) = |δy|2 between the
two trajectories is infinitesimally small, we define the reference trajectory as chaotic if
the square distance ∆(t) = |ỹ(y0 + δy, t)− ỹ(y0, t)|2 grows exponentially over time. In
more precise terms, this condition means that the corresponding maximum Lyapunov
exponent

λL = lim
t→∞

lim
∆(0)→0

1

t
log ∆(t)

∆(0)
, (3.2)

is positive. In practice, for ∆(0) → 0, we can approximate the difference between
ỹ(y0 + δy, t) and ỹ(y0, t) as:

ỹ(y0 + δy, t)− ỹ(y0, t) ∼
∂ỹ(y0, t)

∂y0

· δy +O(δy2) . (3.3)

Thus, the positive λL is also reflected in the exponential growth over time of the matrix
elements of the derivative matrix, denoted as M(y0, t) = ∂ỹ(y0, t)/∂y0.

The maximum Lyapunov exponent alone does not fully characterize the instability
of a high-dimensional dynamical system. Actually, by perturbing the initial condition
y0 in d orthogonal directions, it is possible to obtain a set of hierarchically ordered
exponents, defined as λL = λ1 ≥ λ2 ≥ · · · ≥ λd [107, 114, 115]. This is set is often
referred to as the Lyapunov spectrum. Mathematically, it can be defined by inspecting
the dynamics of the derivative matrix in the tangent space, expressed as:

d

dt
M = A(y, t) · M . (3.4)

The corresponding evolution operator is defined as the time-ordered exponential:

U(y0, t) = T exp
{∫ t

0

dsA
[
ỹ(y0, s), s

]}
. (3.5)
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Then, according to the Odeselec theorem [116], the matrix

V(y0) = lim
t→∞

[
UT (y0, t)U(y0, t)

] 1
t (3.6)

exists for almost all initial conditions in phase space. The Lyapunov exponents are
then straightforwardly defined from the (positive) eigenvalues νj(y0) of the matrix in
Eq. (3.6), as

λj(y0) = log νj(y0) . (3.7)
In the most general case, the exponents depend on the initial condition y0, although
this dependence can be neglected when the system is ergodic. We notice that our def-
inition for the Lyapunov exponents might differ by a factor of 2 from the conventional
one found in the literature.

An essential consequence of the Oseledec theorem pertains to the expansion rate of
k-dimensional oriented volumes Volk(t) = Vol[w1(t), w2(t), . . . , wk(t)], enclosed by the
k linearly independent vectors w1, w2, . . . , wk in tangent space. Under the influence
of the dynamics, this k-parallelepiped undergoes distortion, and its rate of expan-
sion/contraction is determined by the sum of the first k Lyapunov exponents:

k∑
j=1

λj = lim
t→∞

log Volk(t)2

Volk(0)2
. (3.8)

In the next sections, our focus will primarily be on Hamiltonian systems, whose sym-
plectic structure leads to the pair rule λ2N+1−j = −λj, where N = d/2 represents the
system size. In such systems, the deformation of the volumes is often quantified by the
Kolmogorov-Sinai (KS) entropy [8, 104], whose density ΛKS is the average of the first
non-negative N exponents

ΛKS =
1

N

N∑
j=1

λj . (3.9)

Quantum Lyapunov exponent and 4-point correlators

In this section, we briefly explore how the definition of Lyapunov exponents discussed
earlier can be readily extended to quantum systems with a well-defined classical limit.
However, as our primary focus shifts to classical chaos from Section 3.2 onwards, we
will not delve deeply into the specifics of these definitions or the associated calcula-
tions. For a comprehensive understanding, we recommend consulting the respective
references for further insights.

We begin by considering an Hamiltonian system, whose degrees of freedom y =
(q, p) are canonically conjugate variables, which can be straightforwardly quantized by
imposing the equal-time commutation relations [q̂j(t), p̂l(t)] = ih̄δjl, in the Heisenberg
picture. Then, a quantum generalization of the Lyapunov exponent can be defined
from the exponential growth of the average square commutators [97]

F(t) = − 1

N2h̄2

∑
ij

⟨[q̂i(t), p̂j(0)]2⟩ , (3.10)
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3. Probing chaos in a p-spin glass

retrieved also in the corresponding out of time order correlator (OTOC)

C(t) = 1

N2h̄2

∑
ij

⟨q̂i(t)p̂j(0)q̂i(t)p̂j(0)⟩ , (3.11)

often studied in its regularized form [101]. Such a generalization comes from the ob-
servation that, in the limit of small h̄, the commutator [q̂i(t), p̂j(0)]/ih̄ can be replaced
by the corresponding Poisson bracket:

F(t) ≃ 1

N2

∑
ij

⟨{qi(t), pj(0)}2⟩ =
1

N2

∑
ij

⟨
∣∣∣ ∂qi(t)
∂qj(0)

∣∣∣2⟩ , (3.12)

where the quantum average ⟨·⟩ is replaced by a suitable average over the classical tra-
jectories. Then, for h̄→ 0, F(t) is expected to grow with the same Lyapunov exponent
λL characterizing the underlying classical Hamiltonian system.

In the same spirit, by replacing the tangent space dynamics in Eq. (3.4) with the
one of the commutators [q̂i(t), p̂j(0)] one can also define a quantum generalization of the
full Lyapunov spectrum [106] and of the KS entropy [105]. In particular, the quantum
KS entropy is believed to be a stronger indicator of quantum chaotic dynamics than
the single λL [106] and to accurately predict the entanglement growth, at early times
and in a semi-classical limit, for a wide range of systems [108–110].

3.1.2 Fidelity susceptibility
The OTOC, defined in the previous section, is an effective probe for quantum chaos
in systems possessing a well defined semi-classical [117] or large-N [92, 98] limit. In
general, this is not the case for spin-1/2 systems, where it has been proven that the
OTOCs grow at most polynomially in time [118]. However, in the absence of any
local conserved quantity beyond the Hamiltonian, spin-1/2 chains can still be ergodic,
if they adhere to the eigenstate thermalization hypothesis (ETH), defined Eq. (1.11).
The ETH ansatz has profound implications for the scaling of matrix elements of local
operators. For instance, consider a quantum many-body system with a finite Hilbert
space dimension D and a bounded spectrum. In this scenario, for two eigenstates
|En⟩ and |Em⟩ whose eigenvalues lie in the middle of the energy spectrum, the matrix
elements of any local observable Ô are expected to scale to as

⟨En|Ô|Em⟩ ∝ D−1/2 , (3.13)

for large D1 [19, 20]. Equation (3.13) has been confirmed by numerous numerical ex-
periments [119–121]. This behaviour is opposed to the one displayed by integrable
systems [122–126], where the matrix ⟨En|Ô|Em⟩ is sparse, featuring only few large off-
diagonal matrix elements [120, 121].

It is therefore intriguing to explore whether, based on the scaling from Eq. (3.13),
the notion of sensitivity to an external perturbation can be extended to quantum

1It is worth noting that, in the thermodynamic limit, we also expect the scaling D ∝ exp[S(E∞)].
Here, S(E) is the thermodynamic entropy and E∞ is the average energy at infinite temperature.
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3. Probing chaos in a p-spin glass

chaotic systems. This question has been recently addressed by M. Pandey [127],
T. LeBlond [112] and their collaborators, who explored the potential sensitivity of
a chaotic system’s eigenstates to external perturbations. More precisely, they consid-
ered a generic Hamiltonian Ĥλ, depending on an external parameter λ, whose spectrum
is defined by the equation

Ĥλ |En(λ)⟩ = En |En(λ)⟩ . (3.14)

To investigate the response of an eigenstate with respect to a small shift λ → λ + δλ,
they analyzed the overlap

⟨En(λ+ δλ)|En(λ)⟩ ∼ 1− 1

2
χnδλ

2 + o(δλ2) (3.15)

between the perturbed and the original states. The average response χ = D−1
∑

n χn
of the eigenstates is referred to as the is also known as fidelity susceptibility [111] and
was used in Refs. [112, 127] as a means to probe for chaos. More precisely, a standard
calculation from non-degenerate perturbation theory [128] reveals that

χ =
1

D
∑
n

∑
m ̸=n

| ⟨En|∂λĤλ|Em⟩ |2

(En − Em)2
. (3.16)

Employing the scaling properties from RMT for the matrix elements ⟨En|∂λĤλ|Em⟩
and substituting the denominator with the average inverse level spacing denoted as
ωL ∝ D−1, the authors established that the fidelity susceptibility scales as χ ∼ ω−1

L ∼
D, growing exponentially with the system size L. This exponential scaling, indicative
of quantum chaos, was corroborated through extensive numerical simulations. In con-
trast, the studies on integrable models in the same works revealed a polynomial scaling
behavior of χ with L. An even more surprising situation emerged when the Hamilto-
nian Ĥλ was close to an integrable one, with integrability spoiled by the perturbation
in λ. In this scenario, the fidelity susceptibility diverged even faster with the system
size, following a scaling law χ ∼ ω−α

L , for α close to 2. Pandey and his collaborators
also proved that the scaling of χ corresponding to α = 2 was the fastest possible, high-
lighting the utmost fragility of eigenstates near the boundary between integrable and
non-integrable regimes. Such scaling was observed in a region around the integrable
point being exponentially small in the system size, when taking the thermodynamic
limit. The same scalings for χ were retrieved by studying the approach to a disorder-
localizated [126, 129–131] Hamiltonian, instead of the transition to an integrable one.

In summary, the fidelity susceptibility has been recently estabilished a sensitive
probe for chaos and ergodicity breaking in quantum systems. In this chapter, in par-
ticular in Section 3.5 we will try to extend this results to the classical limit, where the
dynamics is again asymptotically defined in terms of classical trajectories. Within the
classical framework we can not directly study Eq. (3.15), as ωL is expected to vanish
and χ to diverge. Instead, we will study a regularized version of the fidelity, given by
[127]:

χµ =

∫
dω

2π

ω2

(ω2 + µ2)2
C̃(ω) , (3.17)

36



3. Probing chaos in a p-spin glass

where
C̃(ω) =

∑
m ̸=n

| ⟨En|∂λĤλ|Em⟩ |2δ(ω − En + Em) (3.18)

is the spectral function. In a genuinely quantum system, the scaling χ ∼ ω−α
L would

correspond to a divergence χµ ∼ µ−α at small µ of the integral in Eq. (3.17) [127].
Thus, we will compute C̃(ω) classically and inspect the profile of χµ for µ→ 0.

3.2 Classical dynamics of the p-spin spherical model
Throughout the rest of this chapter, we will focus on the isolated dynamics of the
p-spin glass Spherical Model (PSM), whose Hamiltonian

ĤJ =
1

2M

N∑
i=1

Π̂2
i + VJ(σ̂), (3.19)

with
VJ(σ̂) = −

∑
1≤i1<···<ip≤N

Ji1,...,ip σ̂i1 · · · σ̂ip , (3.20)

describes a system of N spins interacting through random, all-to-all couplings Ji1,...,ip ,
independently sampled from a Gaussian distribution with zero mean and variance
J2 = 2p!J2/Np−1. Here the spins σ̂i are treated as continuous variables, obeying the
spherical constraint

∑
i ⟨σ̂2

i ⟩ = N [132], and quantum fluctuations are implemented by
the canonical quantization relations [σ̂i, Π̂j] = ih̄δij. The term "spin glass" is attributed
to the quantum PSM model, despite its use of position and momentum operators, due
to historical reasons. The introduction of the quantum PSM can be traced back to
Ref. [87], where it was revealed to manifest a thermodynamic phase transition from
a paramagnetic to a spin glass state, driven by the temperature T and by a dimen-
sionless parameter Γ =

√
h̄2/MJ , which quantifies the strength of quantum fluctu-

ations. The transition line Γc(T ) that separates these two phases shares qualitative
features with the glass transition line experimentally observed in disordered spin 1/2
systems [85, 133], coupled to quantum fluctuations through an homogeneous transverse
field. The nomenclature "spin glass" was then associated to the quantum PSM due to
these observed similarities. The thermodynamic phase transition in the PSM is either
of the first or second order depending on the strength of Γ [87, 88] and its correspond-
ing transition line can be parametrized also in terms of by a critical temperature Tc(h̄).
At temperature Td(h̄) ≳ Tc(h̄), a dynamical, ergodicity-breaking transition is also ob-
served [86], whose properties are sensitive to quenches in h̄ in a non-trivial way [89]. In
Refs. [93, 94], many-body chaos in the quantum PSM was studied using an OTOC in
the large-N limit and for a unitary evolution of the system from a thermal initial state.
The OTOC grows exponentially at any temperature T , with a quantum Lyapunov ex-
ponent λL(T ), which displays qualitatively the same profile for a wide range of fixed
values of h̄ and in particular in the classical limit h̄→ 0, having a single maximum at
Tm(h̄) > Td(h̄) and vanishing in the low and high-temperature limits. In contrast to its
fermionic counterpart, the Sachdev-Ye-Kitaev (SYK) model [98, 134, 135], in the PSM
the bound on chaos λL ≤ 2πT/h̄, proven for a general quantum many-body system in

37



3. Probing chaos in a p-spin glass

Ref. [101], is never saturated. A similarity between the Lyapunov exponent of the SYK
model and that of the PSM only arises for h̄→ 0, where the bound becomes trivial. In
this case, the λL(T ) grows linearly with temperature T at low T for both cases [93, 136].

In this chapter we aim to gain physical insight on the behaviour of λL, by investi-
gating the dynamics of the PSM in the classical limit h̄→ 0 and at fixed energy-density
E, a framework usually used for classical dynamical systems [14]. This goal can be
achieved in the framework of Truncated Wigner Approximation (TWA) [137, 138],
briefly reviewed in the following (see Refs. [139, 140] for further details). We begin by
observing that, for a generic system with N -dimensional position and momentum-like
degrees of freedom, like σ and Π, the Heisenberg dynamics from an initial state ρ̂ of
any operator Ô = O(σ̂, Π̂) can be represented as

⟨Ô(t)⟩ = Tr[ρ̂ Ô] =
∫

dσdΠ

(2πh̄)N
Wρ(σ,Π)OW (σ,Π, t) , (3.21)

where

OW (σ,Π, t) =

∫
dξ

〈
σ − ξ

2

∣∣∣O(σ̂(t), Π̂(t))
∣∣∣σ +

ξ

2

〉
exp

[
i
Π · ξ
h̄

]
, (3.22)

is called Weyl symbol of the operator Ô, while the Wigner function Wρ(σ,Π) is the
Weyl symbol of the density matrix ρ̂. The TWA is then a classical approximation for
the dynamics of OW (σ,Π, t), summarized as

OW (σ,Π, t) ≃ O(σ(t),Π(t)) (3.23)

where (σ(t),Π(t)) is the classical trajectory evolving from the initial condition (σ,Π)
and determined by the following Hamilton equations:

∂tσi = Πi/M

∂tΠi = −
N∑
j=1

(
δij −

σiσj
N

)∂VJ
∂σj

−
∑

iΠ
2
i

MN
σi .

(3.24)

The Eqs. (3.24) are essentially derived by adding to the Hamiltonian a Lagrange mul-
tiplier term z(t)(σ2 − N), where z(t) is determined in a self-consistent way so that
the dynamics satisfies the spherical constraint at any time t (see Appendix C.1 for
more details). The TWA is believed to be valid at least up to an Ehrenfest time
tEhr ∼ log h̄−1 [97] diverging for small-h̄. In what follows, we will always fix M = J = 1.

To investigate the dynamics at fixed energy density E, the ideal setup would be
to fix ρ̂ as a micro-canonical state and compute the corresponding Wigner function,
which is in general a formidable task. Instead, we fix an initial condition

ρ̂ =
1

Ns

Ns∑
l=1

|α(l)⟩ ⟨α(l)| , (3.25)

as an ensemble of coherent states |α(l)⟩ = ⊗N
j=1 |α

(l)
j ⟩ [141]. These are eigenstates of

the operators âj = σ̂j/(
√
2l) + ilΠ̂j/(

√
2h̄), for j = 1, . . . , N and a free parameter l.
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3. Probing chaos in a p-spin glass

Their respective eigenvalues are α(l) = {α(l)
1 , . . . , α

(l)
N }. For each state |α⟩, the Wigner

function is the Gaussian wave-packet

Wα(σ,Π) = 2N
∏
j

exp
{
− (σj − σαj)

2

l2
− l2(Πj − Παj)

2

h̄2

}
. (3.26)

In the following, we fix l =
√
h̄, to have the same uncertainty in the variables σ

and Π. The centers (σα,Πα) of the various wave-packets are chosen in a way that
⟨α|ĤJ |α⟩ /N = E. For the small values of h̄ we are interested in, it can be easily
shown that such choice is equivalent to fix the classical energy density

1

N
Hcl(σα,Πα) =

Π2
α

2MN
+
VJ(σα)

N
≃ E , (3.27)

so that we can determine the centers of the wave-packets in Eq. (3.26) using the fol-
lowing "classical annealing" algorithm.

1. First extract a random configuration (σ0,Π0) in phase space, with σ0 uniformly
sampled on the N -sphere and Π0 sampled from the normal distribution with zero
mean and unit variance.

2. To bring the system in a configuration at the desired energy density E, we inte-
grate the dynamics starting from (σ0,Π0) and defined by the equations

∂tσi = Πi/M

∂tΠi = −
N∑
j=1

(
δij −

σiσj
N

)(∂VJ
∂σj

+ γΠj

)
−

∑
iΠ

2
i

MN
σi ,

(3.28)

where a dissipative term of strength γ > 0 has been added. Notice that γ > 0 if
Hcl(σ0,Π0) > NE and γ < 0 otherwise.

3. Finally stop the integration as soon as the system reaches a configuration (σ1,Π1)
such that Hcl(σ1,Π1) = NE. Afterwards we may set γ = 0 and integrate the
Hamilton dynamics (Eq. (3.24)) from (σ1,Π1) for a time teq, to let the system
reach a typical configuration on the corresponding classical microcanonical mani-
fold, which we finally take as the center (σα,Πα) of the wave-packet in Eq. (3.22).
Throughout the rest of this chapter, we fix γ = 0.5 and teq = 5.

In practice, the Wigner function for the initial state in Eq. (3.25) is obtained tak-
ing the average over Ns different wave-packets, sampled from the classical annealing
algorithm for the same fixed configuration of the disorder {Ji1,...,ip}, as

Wρ(σ,Π) =
1

Ns

Ns∑
l=1

Wα(l)(σ,Π) . (3.29)

We repeat the algorithm for each of the Ns states: the resulting set of points
{(σ(l)

c ,Π
(l)
c )}l=1...Ns is then a non-uniform sampling of the classical microcanonical man-

ifold at energy density E. As long as h̄ is very small, TWA enables us to sample orbits
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evolving from a neighborhood of each of each configuration (σα,Πα), a feature which
we will use in Section 3.3 to investigate classical chaos in the PSM from the average
growth of the width of the wave-packets. We compute all the observables we are inter-
ested in by averaging over an ensemble of trajectories, evolving according to Eq. (3.24)
from an initial condition (σ,Π) sampled from the distribution in Eq. (3.29). In the rest
of this chapter, we will denote by ⟨ · ⟩ the average over the sampled trajectories and
by ( · ) the one over the disorder configurations {Ji1...ip}. We fix h̄ = 10−8, N = 100
and we focus on the paradigmatic case of p = 3.

We conclude this section with two technical remarks. First, it is worth noting
that the classical annealing algorithm described above allows us to sample energies
that are arbitrarily high, but not arbitrarily low. Specifically, in the PSM, the lo-
cal minima of the potential VJ(σ) are situated below a characteristic energy scale of
Eth = −

√
2(p− 1)/p [74] (also discussed in Section 3.4 and detailed in Appendix C.4).

Due to this limitation, our classical annealing approach cannot explore phase space
configurations with energies E < Eth, as the dissipative dynamics of Eq. (3.28) be-
comes trapped in the vicinity of the first encountered local minimum. As a result of
this constraint on sampling low-energy configurations, we are unable to investigate the
relationship between λL and E in the vicinity of the ground state. Consequently, we
are also unable to make a comparison against the linear dependence of λL on T , for
small T , observed in Ref. [93]. The second remark is that our definition of the Wigner
function is not rigorous for the degree of freedom σ lying on a compact configuration
space (see also Ref. [142]). Specifically, the configurations σ sampled from the distri-
bution in Eq. (3.29) are not confined to the N -sphere. Although our approximation
fails in capturing precise quantum dynamics at finite h̄, it is expected to be reliable
in the limit of h̄ → 0. For our investigative purposes, it serves merely as a tool to
examine the classical trajectories evolving from nearby initial configurations sampled
at low h̄ (thus testing classical chaos). Furthermore, for h̄ → 0, the configurations we
extract are expected to asymptotically lie with the N -sphere. This is true as long as
the center σc of each sampled wave-packet Wα(l)(σ,Π) also resides on the N -sphere,
a condition consistently met within the classical annealing algorithm.

3.3 Results: Chaos indicators
We present here our results for the chaos estimators of the PSM, starting from the Lya-
punov exponent λL. In principle, λL can be obtained as a function of E by computing
the Weyl symbol, defined in Eq. (3.22), of the OTOC [92]. However, in the h̄→ 0 limit
we are interested in, λL becomes the exponential rate of divergence of pairs of nearby
orbits of the emerging classical dynamics and can be computed from

dJ(t) =
1

2Nh̄

1

Ns

Ns∑
l=1

2N∑
i=1

⟨α(l)|
[
ŷi(t)− ⟨α| ŷi(t) |α⟩

]2 |α(l)⟩ , (3.30)

where ŷ = (σ̂1, . . . , σ̂n, Π̂1, . . . , Π̂N) is the set operators corresponding to a classical
phase space configuration. The quantity dJ(t) is easier to compute than the OTOC in
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Figure 3.1: (Left) Time-evolution of the log-average over the disorder of the distance
dJ(t) in Eq. (3.30), reported for few paradigmatic energy densities . The average over
the initial condition is performed extracting 25 random configurations from each of
the Ns = 20 wave-packets, defined in Eq. (3.26) and obtained through the classical
annealing algorithm. The dynamics is integrated up to a time tmax = 80. The log-
average over the disorder is taken over Nd = 30 configurations. (Right) Lyapunov
exponent λL, defined in Eq. (3.35), obtained through a linear fit of log dJ(t) over a time
window [tI , tF ], defined in such a way that, for each E, tI is beyond the oscillations at
early times displayed by log dJ(t) and tF is smaller than the saturation time-scale.

the TWA framework and its exponential growth rate is given by λL, in the classical
limit, as we show in the following. First we rewrite each term in the right-hand side of
Eq. (3.30) within the TWA framework, as

⟨α|
[
ŷi(t)− ⟨α| ŷi(t) |α⟩

]2 |α⟩ = ∫
d2Ny

(2πh̄)N
Wα(y)

[
ỹi(y, t)− ⟨ỹi(y, t)⟩α

]2
. (3.31)

The average ⟨·⟩α on the right-hand side of Eq. (3.31) is itself performed over the
coherent wave-packet

Wα(y)
(2πh̄)N

=
1

(πh̄)N
exp

{
− (y − yα)

2

h̄

}
. (3.32)

For h̄ → 0, Wα(y) becomes a δ-function of 0 width. To investigate the behaviour of
Eq. (3.31) in this limit, it is useful to perform the change of variable y = yα +

√
h̄x.

Then we have:

ỹ(yα +
√
h̄x, t) ∼ ỹ(yα, t) +

√
h̄
∂ỹ(yα, t)

∂y · x +O(h̄) ,

⟨ỹ(yα +
√
h̄x, t)⟩α ∼ ỹ(yα, t) +O(h̄) .

(3.33)

Then, plugging Eqs. (3.33) into Eq. (3.31), averaging over the sites and performing a
little algebra, we obtain

1

Nh̄

2N∑
i=1

⟨α|
[
ŷi(t)− ⟨α| ŷi(t) |α⟩

]2 |α⟩ ∼ 1

2N

2N∑
i,j=1

∣∣∣∂ỹi(yα, t)
∂yj

∣∣∣2 +O(h̄) . (3.34)
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As argued in Section 3.1, the terms in the sum on the right-hand side of Eq. (3.34)
grow exponentially in time, for a chaotic system. Equation (3.34) reproduces the dy-
namics of the derivative matrix only for a finite time-window: the noise produced by
the fluctuations of order h̄ eventually lead to a saturation of the typical distance be-
tween trajectories evolving from a neighbourhood of yα, on time scales longer than
tEhr ∼ log h̄−1.

Small fluctuations on top of the exponential growth appear also at early times: to
get rid of them, we compute the average over the disorder of the logaritm of dJ(t),
denoted as log dJ(t), and retrieve a smooth linear growth

log dJ(t) ∼ λLt (3.35)

on intermediate time scales, as shown Fig. 3.1 (left). The corresponding Lyapunov ex-
ponent λL, shown in Fig. 3.1 (right) against the energy density E, has a clear peak close
to E = 0, while it asymptotically vanishes at low and high energies. In Refs. [93, 94],
it was shown that λL has the same qualitative profile as a function of T , displaying
for small h̄ a single maximum around Tm(h̄) ≃ 1: this maximum is consistent with
the one we find at E = 0, since in the paramagnetic phase the classical energy density
E and the temperature T are related by the equation E = T/2 − 1/(2T ) (as shown
in Ref. [143]). Our computed results are also in close numerical agreement with those
obtained in Refs. [93, 94], where the estimated maximum for the Lyapunov exponent
was around λL ≃ 0.6, like in our findings. However, it is important to note that the
order of operations in Eq. (3.35), involving a logarithm and an average over disorder,
is reversed compared to previous studies (see Ref. [117] for a more general discussion).
Consequently, we do not expect a perfect match between the λL we compute here and
results from Refs. [93, 94]. In summary, the exponent λL we calculate is essentially
classical, and the introduction of small fluctuations in the initial conditions is merely
a tool we use to sample nearby trajectories starting from the same wave-packet. It
is worth mentioning that, while we use quantum fluctuations to sample nearby con-
figurations in phase space, classical chaos can also be probed using different kind of
fluctuations (see Ref. [144] for an example).

In the classical limit, the strength of chaos at different energy densities can be also
connected to entropy generation by looking at the Kolmogorov-Sinai (KS) entropy [8,
104]. As already discussed in Section 3.1, its density can be expressed as the average
ΛKS =

∑N
i=1 λi/N over the positive elements of the ordered Lyapunov spectrum. As

shown in Refs. [108, 110], the eigenvalues of the symmetric fluctuation matrix

Gjl(t) =
1

2h̄Ns

Ns∑
l=1

〈[(
ŷj(t)− ⟨ŷj(t)⟩

)(
ŷl(t)− ⟨ŷl(t)⟩

)
+ (3.36)

+
(
ŷl(t)− ⟨ŷl(t)⟩

)(
ŷj(t)− ⟨ŷj(t)⟩

)]〉
α(l) .

diverge as exp(λit) in the limit h̄ → 0. Then, the KS entropy density is straightfor-
wardly extracted from the growth rate of the quantity

SKS(t) =
1

N
log det[Gij(t)]1≤ij≤N ∼ ΛKSt , (3.37)
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Figure 3.2: (Left) Time-evolution of the quantity SKS defined in Eqs. (3.36) and (3.37),
reported for few paradigmatic energy densities. The average over the initial condition
is performed extracting 30 random configurations from each of the Ns = 30 wave-
packets, defined in Eq. (3.26) and obtained through the classical annealing algorithm.
The dynamics is integrated up to a time tmax = 80. The log-average over the disorder
is taken over Nd = 96 configurations. (Right) Kolmogorov-Sinai entropy ΛKS, defined
in Eq. (3.37), obtained through a linear fit of SKS over a time window [tI , 10], where tI
is beyond the scale of oscillations at early time displayed by SKS, for each E.

on intermediate time-scales. We observe that, within our framework, Eq. (3.37) can
also be derived by a straightforward generalization of Eq. (3.34). We plot SKS(t) in
Fig. 3.2 (left) and, in Fig. 3.2 (right), its corresponding slope ΛKS, showing that the
maximal chaos located at E = 0 can be detected also by the KS entropy. Notably, a
similar result was recently derived also for a classical spin system without disorder [145].

3.4 Chaos, Ergodicity and Energy Landscape

In this section we elaborate further on the results of the previous section and try to pro-
vide a qualitative interpretation for the observed maximal chaos around energy E = 0
in the PSM. In particular, a natural question is whether this result can be understood
from the relaxation dynamics of the PSM at fixed energy density, as probed for exam-
ple from the spin correlation function, or related to properties of the energy landscape.
As we are going to show, the maximal chaos around E = 0 in the PSM occurs when
the spin relaxation is the fastest and when the complexity of the underlying energy
landscape is maximal.

The relaxation dynamics for both classical [81, 82] and quantum [86] spin glasses
is most often studied in presence of a finite temperature bath. Relaxation is usually
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defined in terms of the (symmetric) correlation function

C(t, t′) =
1

2N

N∑
i=1

⟨σ̂i(t)σ̂i(t′) + σ̂i(t′)σ̂i(t)⟩ . (3.38)

At high temperatures, the function C(tw, tw+τ) becomes approximately time-translation
invariant for moderately high values of tw, and decays to zero for large τ , indicat-
ing that the underlying dynamics of the system is ergodic. However, at sufficiently
low temperatures, the system may exhibit the so-called ’weak ergodicity breaking sce-
nario’ [81, 86, 146] (see Ref. [82] for a review), meaning that

lim
tw→∞

C(tw, tw + τ) = q1 + Cst(τ) , (3.39)

with a finite dynamical overlap q1 > 0 and where again Cst(τ) vanishes for τ → ∞,
determining a non-ergodic dynamics. In spin glasses, ergodicity breaking is usually ac-
companied by a breaking of time-translation invariance in C(tw, tw+τ), a phenomenon
usually referred to as aging [82, 147]: C(tw, tw+τ) has a plateau around q1, whose finite
length increases as tw grows (and diverging for tw → ∞), before eventually decaying to
zero for longer time-scales. Here we are interested instead in the Hamiltonian relaxation
dynamics, starting from fixed energy initial conditions. We note that the Hamiltonian
dynamics of both classical and quantum PSMs starting from a finite temperature state
has been studied recently [89, 143]. To this extent we compute C(tw, tw + τ) in the
TWA formalism at finite energy density E, making use of Eq. (3.21) and of the identity

1

2
{σ̂i(t)σ̂i(t′) + σ̂i(t

′)σ̂i(t)}W = σi(t)σi(t
′) . (3.40)

The results in Fig. 3.3-(a) show that the correlation function undergoes a temporal
crossover from high energies, where it displays wide oscillations, to low energies, where
the dynamics slows down. Quite interestingly, at the maximally chaotic point E = 0
we observe the fastest relaxation of the correlation function, decaying to zero with few
oscillations, again compatibly with Refs. [93, 94]. Upon decreasing further the energy
below E = 0, the dynamics slows down and we expect a finite plateau around q1 to to
appear. Detecting this intermediate plateau within the given simulation time-window
is challenging. Consequently, we compute q1 as the value of the correlation function
at tw = τ = tmax/2: our results are expected to converge to the ones predicted by
Eq. (3.39) in the limit of tmax → ∞. In Figure 3.3-(b) we show that q1 becomes
nonzero below a certain energy threshold, estimated to be around Ed ≃ −0.38, and
that q1 also increases as E further decreases below the threshold. At the same time, the
profiles of the correlation function shown in Fig. 3.3-(c) lose time-translation invari-
ance again below E ≃ −0.38. Notably, these findings are also compatible with the ones
obtained from the same simulations performed for a larger tmax, which are reported
in Appendix C.2 and highlight that both a finite q1 and a loss of time-traslational
invariance are retrieved at the same energy scale. The results discussed above indicate
signs of ergodicity breaking below the energy Ed ≲ −0.38. However, we recognize that
our findings, including our estimated value for Ed, might undergo quantitative changes
with a more extensive analysis using a significantly larger tmax than the values consid-
ered in this manuscript. Therefore, the ergodicity breaking we observe here should be
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Figure 3.3: (a) Time-dependence of the correlation function, at fixed tw = 40. (b)
Asymptotic value q1 of the correlation functions C(tw, tw + τ) reported in panel (a),
obtained through the time-average of the latter over τ ∈ [39, 40]. (c) Comparison
between the profiles of C(tw, tw = τ) obtained fixing different values of tw. Each panel
corresponds to a different energy density E. (d) Time-evolution of three typical orbits,
whose initial conditions are obtained extracting one configuration from the distribution
in Eq. (3.29), at different energy densities E and for the same configuration of the
disorder. The orbits evolve in a 200-dimensional phase space and are projected over
the two axes defined by the initial spin configuration σ(0) and the initial momentum
Π(0).

interpreted as a regime where dynamics is sufficiently slow for the thermalization time
to extend beyond tmax.

We now argue that both maximal chaoticity and fastest spin relaxation emerge
alongside maximal complexity in the topology of the potential VJ(σ), from Eq. (3.20),
at the E = 0 level surface. To understand this connection, we first observe that
the profile of the correlation function in Fig. 3.3-(a) can be associated to the typical
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3. Probing chaos in a p-spin glass

behaviour of the underlying trajectories, as sketched in Fig. 3.3-(d). While the regular
oscillations at high energies are due to an underlying uniform circular motion on the
N -sphere, in the limit of low energies the trajectories oscillate in a well around a local
minimum of VJ(σ), whose amplitude can be roughly estimated as the typical distance
between two configurations of the same trajectory, observed at large times separation
τ :

N∑
i=1

[σi(tw + τ)− σi(tw)]
2 = 2N − 2

N∑
i=1

σi(tw + τ)σi(tw) ≃ 2N(1− q1) . (3.41)

Chaos and relaxation emerge in between these two trivial limits, where the trajectories
are scattered in neighbors of the unstable stationary configurations of the dynamics in
Eq. (3.24) and explore the whole configuration space. The stationary configurations
can be defined as solutions of the equations (see also Ref. [148])

−∂VJ
∂σi

+ p
VJ(σ)

N
σi = 0∑

i

σ2
i = N

Πi = 0 ,

(3.42)

where in the first equation we used the identity
∑

j σj∂VJ/∂σj = pVJ(σ), holding for
the potential VJ(σ) defined in Eq. (3.20). As discussed in Appendix C.4 the average
number of solutions of Eq. (3.42), lying on the microcanonical manifold at energy
density E =

∑
iΠ

2
i /2MN + VJ(σ)/N , is in a one-to-one correspondence with the

stationary points of the potential VJ(σ) on the N -sphere. The average number of such
stationary points can then be expressed as (see again Appendix C.4):

N (E) =

∫
Dσ

∏
i

δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

)∣∣∣ det
(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij

)∣∣∣ .
(3.43)

For the classical potential V (σ) in Eq. (3.20) and in the large-N limit, the number of
stationary points scales exponentially as N (E) ≃ exp{NΣ(E)} [74, 113], where Σ(E)
is usually referred to as complexity. At the same time, the stability of such stationary
points is characterized by the index k(E), where Nk(E) is the average number of
unstable directions around every stationary points. In Appendix C.4, we also derive
the analytical expressions for both Σ(E) and k(E) as functions of E, finding that:

Σ(E) =
Re[z(E)]2 − Im[z(E)]2

p(p− 1)
+
1

2
log

{
(Re[z(E)]2−pE)2+Im[z(E)]2

}
−E2−1

2
log p

2
+
1

2
,

(3.44)
where

z(E) =

{
p
(
E +

√
E2 − 2(p− 1)/p

)
/2 , if |E| < |Eth| ≡

√
2(p− 1)/p

p
(
E −

√
E2 − 2(p− 1)/p

)
/2 , if |E| > |Eth|

, (3.45)
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Figure 3.4: Plots of the complexity function Σ(E) (left) and of the average stability
index k(E) (right), defined respectively in Eqs. (C.42) and (C.43), for p = 3.

and

k(E) =


0 , if E < Eth

p
2π(p−1)

E
√
E2
th − E2 + 1

π
arctan(

√
E2

th−E2)

E
) , if |E| < |Eth|

1 , if E > |Eth|
. (3.46)

Intuitively, the value Eth = −
√
2(p− 1)/p appearing in the previous formulas repre-

sents the threshold energy density below which the stationary points are typically local
minima of V (σ), so that k(E) = 0 (similarly, −Eth is the energy density above which
all stationary points of V (σ) are typically local maxima). Both Σ(E) and k(E) are
plotted in Fig. 3.4. The first observation that we make is that the complexity Σ(E)
has a maximum on the E = 0 surface, where stationary points are predominantly sad-
dles of VJ(σ), surrounded on average by half stable and half unstable directions, as
k(E = 0) = 1/2. Second, we notice that the complexity Σ(E) vanishes at two points
E = ±E0, with E0 > |Eth|. Beyond E0, we have Σ(E) < 0, which implies a vanishing
number of stationary configurations, so we interrupt the plot at E0. Intuitively, −E0

(E0) can be interpreted as the typical value of the absolute minimum (maximum) of
VJ(σ)/N [148], which is always finite for σ lying on the N -sphere. We observe that our
results for the complexity at fixed energy are compatible with the ones in the literature
obtained using different methods [113, 149]. The maximum of Σ(E) at E = 0 unveils
a correlation between the number of saddles in the energy landscape and the maximal
chaos, detected by λL. This observation suggests that the scattering of trajectories
against a maximal number of saddles could offer a potential explanation for the emer-
gence of maximal chaos at E = 0.

3.5 The fidelity susceptibility against the dynami-
cal slowing down

The results presented in Section 3.4 suggest a strong increase of the classical thermal-
ization times below the threshold at Ed ≃ −0.38, possibly corresponding to ergodicity
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breaking for a diverging simulation time and determined by the long-time behavior
of the correlation function. Such slowdown in the dynamics is analogous to the ones
observed in Refs. [112, 127] and discussed in Section 3.1.2, for a quantum Hamiltonian
close to a non-integrable point (either integrable or disorder-localized), which corre-
sponds to a fast divergence in the fidelity susceptiblity χ.

In this section we test the possible emergence of such scaling for the classical dy-
namics we are interested in in this chapter. Specifically, we perturb the Hamiltonian
in Eq. (3.19) with local magnetic fields Bi, summarized in the extra term

Ĥ1 = −
∑
i

Biσ̂i . (3.47)

Then, by perturbation theory, the sensitivity χ(i)
n of the n-th eigenstate to the magnetic

field Bi (posing Bj = 0 on every other site j), is defined by

⟨n(0)|n(Bi)⟩ = 1− 1

2
χ(i)
n B

2
i +O(B3

i ) . (3.48)

We define the fidelity susceptibility as its average χ over the initial condition in
Eq. (3.25) and the disorder configurations:

χ =
1

N

N∑
i=1

∞∑
n=0

⟨n|ρ̂|n⟩χ(i)
n . (3.49)

As outlined in Section 3.1.2, the vanishing of the average level spacing ωL represent
an obstruction to study Eq. (3.49) in the classical limit. Instead, we will study its
regularized version,

χµ =

∫
dω

2π

ω2

(ω2 + µ2)2
C̃av(ω) , (3.50)

where the spectral function C̃av(ω) is obtained as the Fourier transform of the time-
averaged correlation function

Cav(τ) = lim
T →∞

1

T

∫ T

0

dtwC(tw, tw + τ) . (3.51)

Equation (3.50) is proven in Appendix C.3. The cutoff µ suppresses the contribution
to the integral from frequencies |ω| ≲ µ and plays a role equivalent to the one played
by ωL in genuinely quantum systems. We determine the asymptotic profile of χµ by
analyzing its behaviour as µ→ 0. We observe that an obstruction to this procedure is
that in our simulations we do not have access to infinite-time average, so that the in-
tegral in Eq. (3.51) is performed over a finite time-window [0, T ]. While in the ergodic
phase this is a good approximation of the long-time average, due to time-translation
invariance, in the non-ergodic one χ always depends on choice of the time-window and
converges to the definition in Eq. (3.49) only in the limit T → ∞. However, as shown
in Appendix C.3, the qualitative profile we retrieve for χµ is the same for a wide range
of T between 0 and the maximum integration time tmax, so that here we can focus on
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the specific case of T = tmax/2.

We plot χµ, as a function of E and for several values of µ, in Fig. 3.5-(a): its profile
has a peak close to the estimated "ergodicity breaking" energy scale E ≃ −0.38 and the
maximum point has a little drifting to the left approaching small values of µ. We also
observe that a natural low-frequency cutoff ∆ω ∼ 2π/tmax emerges when discretizing
the integral in Eq. (3.50) in our finite-time simulations, so that the asymptotic be-
haviour of χµ can be studied only up to µ ≳ ∆ω. Thus, to refine our analysis, we
compute χµ for a dynamics integrated for a larger tmax so that ∆ω < 3µ for all the
values of µ we investigate: the new results, shown in Fig. 3.5-(b), are qualitatively the
same of the one shown in Fig. 3.5-(a), further validating our analysis. To complete the
comparison between our classical analysis and the one performed in Ref. [112], we also
analyze the scaling behavior of χµ against µ and find that the fidelity susceptibility
scales as χµ ∼ µ−α in the range of values of µ explored, as shown in Fig. 3.5-(c). We
compute the corresponding exponent α as a function of the energy density E and plot
it in Fig. 3.5-(d): in the ergodic phase, we find that α is slightly greater than 1 (see
inset in Fig. 3.5-(d)), resulting in a scaling approximately consistent with random ma-
trix theory2, while α exhibits a maximum of α ≃ 1.8 at E ≃ −0.4, close to the point
where the thermalization time exceeds the simulation time window. Further insight is
gained when investigating the profiles of the rescaled fidelities µχµ against E, as done
in the inset Fig. 3.5-(d): at high energy densities, the profiles collapse in a region which
expands toward lower energies as we decrease µ. This collapse will in general break
down at low energies, in particular where the maximum of χµ is expected to occur. It
is also worth mentioning that, from a deeper inspection collapse of the various profiles,
we could in principle extract the Thouless time [150], defined as the typical relaxation
time-scale τth(E) of the correlation function at fixed energy density E, using the fol-
lowing prescription. First we define the cut-off µE as the largest number such that the
profiles of χµ collapse for all energy densities greater than E and for all µ < µE; then
the Thouless time can be easily obtained as τth(E) ∼ µ−1

E [127]. We expect that τth(E)
diverges as we the dynamics approaches the ergodicity breaking point from above.

As the cutoff µ plays the same role of the lowest level spacing for our analysis,
these findings are consistent with those in Refs. [112, 127], which show that the fidelity
exhibits the strongest divergence with µ when the corresponding spin relaxation dy-
namics slows down. We therefore conclude that the fidelity susceptibility could be a
good indicator of ergodicity even in classical systems, which warrants further investi-
gation.

3.6 Summary and perspectives
In this chapter we probed chaos in a p-spin glass spherical model. Within a classical
framework, we found that classical chaos was maximised at energy density E = 0, as

2As our analysis is limited by the finite simulation times, we do not exclude that an even better
agreement with random matrix predictions may be reached considering a larger tmax and consequently
a larger set of values for tw
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shown by two estimators: the maximal Lyapunov exponent λL and the the Kolmogorov-
Sinai entropy density ΛKS. We observed that the fastest spin relaxation coincided with
maximal chaos. We gave a physical interpretation of all our results in terms of the typ-
ical behaviour of the underlying trajectories, which either perform a uniform circular
motion at asymptotically high energies or oscillate, at low energies, around a local
minimum of the energy landscape. In between these two limits, we suggest that chaos
emerges as the trajectories are scattered over the exponentially many saddles of the
underlying landscape. Indeed a calculation of the number of stationary configurations
shows that the complexity is also maximal at the same energy.

We also investigated the relaxation dynamics of the correlation function at low
energies, uncovering a peculiar connection with the regularized fidelity susceptibility,
χ. Intriguingly, we observed that a slowdown in dynamics coincided precisely with
the fastest divergence of χ. This finding suggests a possible parallelism between the
fragility of quantum eigenstates near a non-ergodic point, leading to a rapid scaling of
χ, and the fragility inherent in the topology of classical trajectories during the onset
of slow dynamics in classical systems.

The results presented here hold true in the h̄→ 0 limit, where the TWA faithfully
reproduces the dynamics for the initial condition defined in Eq. (3.29). Our find-
ings can be potentially extended beyond the realm of small h̄, by utilizing a Wigner
state that reproduces the same fluctuations of a realistic quantum micro-canonical or
canonical state. In this context, the quantum Lyapunov exponent λL can be com-
puted even at finite h̄, derived from the exponential growth of a classical analog of
the OTOC [92, 97]. A similar rationale applies to the correlation function and subse-
quently to the fidelity susceptibility, where the latter can be computed using Eq. (3.50)
for both classical and quantum dynamics. Our analysis can also be extended to the
transverse-field counterpart of the p-spin glass model, where chaos has been recently
observed experimentally [96] and where the energy minima exhibit a more complicate
structure [151].
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Figure 3.5: Fidelity susceptibility χµ from Eq. (3.50). (a) χµ is shown as a function of
E and fixing several values of the cut-off µ. The data are obtained from a dynamics up
to time tmax = 80, with the same parameters described in Fig. 3.3. The average time
window for the correlation function in Eq. (3.51) is set to [0, T ], with T = tmax = 40.
(b) Same plot of panel (a), for a dynamics integrated up to time tmax = 320. Here the
average over the initial condition is performed over 5 random configurations extracted
from each the Ns = 10 wave-packets constructed by the classical annealing algorithm.
We average over Nd = 42 disorder configurations. (c) Same data of panel (b). χµ
is shown as a function of the cutoff µ, on a log-log scale, for some fixed values of the
energy density E. (d) Exponent α(E) obtained by a linear fit of logχµ against − logµ,
at several fixed values of the energy density E. For each E, the data used for the fit
are the ones from panel (b).
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Part II

Periodically-driven dynamics of
ergodic and long-range systems

53





Chapter 4

Heating to finite temperature in pe-
riodically driven ergodic systems

In Part I of this thesis, we explored the dynamics of conservative many-body systems,
where energy remains constant over time. In contrast, this Part II focuses on situations
where an external periodic drive induces energy oscillations or heats the system.

Periodically-driven systems, also known as Floquet systems, have revealed a plethora
of non-trivial phenomena since their initial exploration. For instance, as discussed in
Section 1.1, the simple Chirikov standard map from Eqs. (1.4) demonstrates how a pe-
riodic force can trigger a transition from integrable to chaotic dynamics. In the chaotic
regime, the particle diffuses across the entire phase space. Interestingly, subsequent
studies revealed that quantum fluctuations counter-intuitively suppress diffusion in the
Chirikov map [152]. Another seminal contribution to this field came from P. Kapitza,
who discovered that an inverted pendulum can be stabilized by an external force os-
cillating at a sufficiently high frequency [153].

While single-particle system have been the focus of research in the past decades,
recently attention has shifted towards many-particle ones, which have proven to be valu-
able tools for reproducing a wide array of novel phases of matter experimentally [154–
158]. This line of research usually is commonly referred to as Floquet engineering [159]
and it encompasses various applications, including prominent ones like Floquet time
Crystals [160], which we will explore in Chapter 5.

A major obstacle to the practical realization of Floquet systems has however been
the fact that isolated many-body systems under a periodic drive tend to quickly
heat up to a featureless infinite-temperature state due to the absence of conservation
laws [25, 26, 161], as already discussed in Section 1.3. Heating to infinite-temperature
can be either avoided by many-body localization [160, 162, 163] and integrability [164–
167], or for generic short-range interacting systems subject to a high frequency drive
in the prethermal stage of the dynamics. Prethermalization has been observed both in
classical [31, 33, 34] and quantum Floquet systems [28, 168–172].

To date, heating due to driving has been predominantly explored in systems dis-
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playing a bounded energy spectrum or phase space. For continuous degrees of freedom,
relaxation to an infinite-temperature state has been conjectured to be a generic out-
come as the driving frequency Ω tends to infinity, where the system is expected to first
relax to a prethermal thermal state, whose temperature will afterwards slowly grow
indefinitely [173]. Other studies of this phenomenon have been limited to systems ei-
ther driven by kicks [29–31], where a non-linear impulsive force leads to a never-ending
energy absorption even at finite Ω, or systems coupled to an external noise [174].

In this chapter we address another aspect of this problem i.e. what happens when
a system with an unbounded energy spectrum is subjected to a smooth periodic force.
Our investigation covers a range of three models: a single-particle system, the Duffing
oscillator, the p-spin spherical model (PSM), already introduced in Section 3.2 and
a lattice ϕ4 model. The last two are many-body models, whose dynamics is ergodic
at sufficiently high energies. For the Duffing oscillator, we observe that at moderate
amplitudes of the driving field, the system exhibits behavior indicative of an emergent
conservation law, in contrast to the unbounded diffusion observed in the kicked rotor
system discussed in Section 1.1. Moving to the many-body systems, our numerical sim-
ulations reveal that both the PSM and the ϕ4 model reach a finite-temperature state
within the simulated time scales. The finite temperature state is again determined
by an emergent conservation law. We are able to compute the associated conserved
quantity in specific, but not necessarily high frequencies, limit for both the Duffing
oscillator and the ϕ4 model. The dynamics of the PSM exhibit a similar behavior,
alongside the emergence of an approximate fluctuation-dissipation relation.

This chapter is organized as follows. In Section 4.1 we introduce the periodically
driven Duffing oscillator and the multiple-scale analysis we will use to compute the
conserved quantity in the classical limit. In Section 4.2 we extend our analysis to the
lattice ϕ4 model. In Section 4.3 we discuss the periodically driven dynamics of the
PSM in the thermodynamic limit and its possible thermalization from the two-point
correlators. Finally, we summarize our results and perspectives in Section 4.4.

4.1 A multiple scale approach to the classical driven
Duffing oscillator

In this section we discuss the dynamics of the simplest non-linear system, that is the
single-particle quartic oscillator. When coupled to an external oscillating field, the
dynamics is given by the Duffing equation [175]:

ẍ+ ω2
0x+ λx3 = B0 sin(Ωt) . (4.1)

In the following, we will denote by E(t) the energy of the system,

E(t) =
1

2
ẋ(t)2 +

ω2
0

2
x(t)2 +

λ

4
x(t)4 . (4.2)

When the non-linearity is absent, λ = 0, Eq. (4.1) describes a simple harmonic oscil-
lator and two scenarios are possible: if Ω ̸= ω0, the system oscillates at the driving
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frequency Ω; on the other hand, when Ω = ω0, a resonance occurs and E(t) grows
unbounded [176]. However, as illustrated in Fig. 4.1-(a), even a small λ > 0 is suf-
ficient to prevent indefinite absorption of energy in the case where Ω = ω0: in this
scenario, E(t) exhibits bounded fluctuations, occurring on a timescale generally slower
than the driving period, around a fixed time-averaged value E, dependent on both
the model parameters and the initial condition x(0), ẋ(0). This phenomenon is qual-
itatively independent of the choice of the other parameters, as long as λ > 0, and of
the initial condition (see Fig. 4.1-(b)). Additionally, we observe that trajectories corre-
sponding to such finite energy oscillations are regular. This regularity is demonstrated
in Fig. 4.1-(d), where we plot the Poincaré sections of the dynamics in phase space,
at stroboscopic times tn = 2πn/Ω for positive integer n, which exhibit the shape of a
closed orbit.

From a physical perspective, the outcomes we obtain for a positive λ contradict
thermalization to infinite temperature, which necessitates the system to explore the
entire phase space and undergo unbounded growth of E(t). To gain analytical insight
into our results, we study Eq. (4.1) in the limit of small non-linearity by rescaling
λ = ϵλ̃, B0 = ϵB̃0, for some ϵ≪ 1. We also assume that

ω2
0 = Ω2 − ϵ∆ω2 , (4.3)

so that the underlying harmonic motion is either in resonance or close to a resonance
with the periodic driving. As the parameters we chose are close to the ones of a
resonant harmonic oscillator, Eq. (4.1) can not be studied by standard perturbation
methods, due to the proliferation of secular terms at each perturbative order [4]. These
secularities do not manifest in the numerical simulations, which predict a bounded so-
lution. We circumvent this issue by employing a multiple-scale analysis (MSA), which
we briefly review in the following (see Ref. [177] for a pedagogical introduction).

The starting point of the multiple-scale analysis consists in introducing a redundant
time variable τ = ϵt. τ defines a long time scale, since it becomes significant only when
t is of order ϵ−1 or larger. Although we expect that the actual solution x(t) to Eq. (4.1)
is a function of t alone, MSA seeks solutions which are functions of both variables t
and τ , treated as independent from each other. Such expression of x(t) as a function
of two variables is an artifice to remove secular effects; the actual solution has t and τ
related by τ = ϵt. The formal procedure consists of assuming a perturbative expansion
in powers of ϵ:

x(t) = x0(t, τ ) + ϵ x1(t, τ ) + . . . , (4.4)

for small ϵ. We use the chain rule d/dt = ∂t+ ϵ∂τ for partial differentiation to compute
the derivatives of x(t), obtaining

dx

dt
=
∂x0
∂t

+ ϵ
(∂x1
∂t

+
∂x0
∂τ

)
+O(ϵ2) (4.5)

and
d2x

dt2
=
∂2x0
∂t2

+ ϵ
(∂2x1
∂t2

+ 2
∂2x0
∂t ∂τ

)
+O(ϵ2) . (4.6)
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Figure 4.1: Dynamics of the Duffing oscillator, defined in Eq. (4.1). (a-c) Plots of the
energy E(t) from Eq. (4.2), for different initial conditions and integration parameters.
(a) We chose a generic initial condition such that E(0) = 1, and fixed the parameters
ω0 = Ω = B0 = 1. (b) The initial conditions are chosen in order to fix E(0) to the
values reported in the legend, other parameters are fixed to ω0 = ω = B0 = λ = 1. (c)
Comparison of the plot between the real dynamics of E(t), obtained from Eqs. (4.2)
and (4.1), and the effective one obtained from Eqs. (4.13) and (4.15), for ϵ = 0.1. Other
parameters are fixed to Ω = ∆ω2 = B̃0 = λ̃ = 1. (d) Poincaré section of the dynamics
in phase-space, for several initial conditions and at stroboscopic times tn = 2πΩ−1, for
n = 1 . . . 5000. We fix Ω =

√
2 and ω0 = B0 = λ = 1.
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Substituting Eq. (4.6) in Eq. (4.1) and collecting powers of ϵ, we obtain

∂2x0
∂t2

+ Ω2x0 = 0 , (4.7)

∂2x1
∂t2

+ Ω2x1 = −2
∂2x0
∂t ∂τ

+∆ω2x0 − λ̃x30 + B̃0 sin(Ωt) . (4.8)

The general solution of Eq. (4.7) is

x0(t, τ ) = A(τ)eiΩt + A∗(τ)e−iΩt . (4.9)

The slowly varying amplitude A(τ) and its complex conjugate A∗(τ) are determined
by imposing that secular terms, proportional either to eiΩt or e−iΩt, do not appear in
the next order, that is on the right-hand-side of Eq. (4.8), as these would predict a
divergence which we do not observe numerically. After some algebra, one can show
that the contribution of such terms to the right-hand-side of Eq. (4.8) is given by the
expression

2 Re
[
eiΩt

(
− 2iΩ

dA

dτ
+∆ω2A− 3λ̃A2A∗ − i

2
B̃0

)]
.

The vanishing of secular terms thus leads to the following equation of motion for A(τ):

dA

dτ
=

1

2iΩ

[
∆ω2A− 3λ̃A2A∗ − i

2
B̃0

]
. (4.10)

We can rewrite Eq. (4.10) in terms of the coordinates u(τ) = A(τ)+A∗(τ) and v(τ) =
[A(τ)− A∗(τ)]/i, to obtain:

du

dτ
=

1

2Ω

[
∆ω2 v − 3

4
λ̃(u2 + v2)v − B̃0

]
dv

dτ
=

1

2Ω

[
−∆ω2 u+

3

4
λ̃(u2 + v2)u

]
.

(4.11)

In terms of u(τ) and v(τ), the solution to Eq. (4.1) reads, at the leading perturbative
order

x(t) ∼ u(τ) cos(Ωt) + v(τ) sin(Ωt) +O(ϵ) . (4.12)

The system of Eqs. (4.11) is Hamiltonian, as it can be rewritten as
du

dτ
= −∂HF

∂v
dv

dτ
=
∂HF

∂u
,

(4.13)

with an effective Hamiltonian given by

HF (u, v) =
1

2Ω

[
− ∆ω2

2
(u2 + v2) +

3

16
λ̃(u2 + v2)2 + B̃0v

]
. (4.14)

We observe that Eqs. (4.14) were also derived in Ref. [178], by using a method equiv-
alent to the one we employ here. However, unlike MSA used in our approach, the
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method presented in Ref. [178] does not permit a systematic refinement of the asymp-
totic analysis through the inclusion of higher-order perturbative terms.

The multiple scale analysis allows also for a quantitative pertubative prediction of
E(t). Specifically, by plugging Eq. (4.9) into Eq. (4.2), we obtain

E(t) ∼ Ω

2

(
u(τ)2 + v(τ)2

)
+O(ϵ) , (4.15)

evaluated at τ = ϵt. In Eq. (4.15) we omitted the order ϵ terms in g and λ. In Fig. 4.1-
(c), we compare the estimate of E(t) from Eq. (4.15), calculated using Eq. (4.15), with
the original computation obtained from Eq. (4.1) for small ϵ. We observe excellent
agreement between the two quantities for the small value of ϵ = 0.01. We do not ex-
clude that our prediction may be quantitatively accurate also for larger values of ϵ, once
we include also higher-order perturbative terms. Within the MSA, the existence of a
finite time-averaged value of E(t) can be deduced from the conservation of HF (u, v):
the system can not explore the whole phase space, but only configurations within a
microcanonical manifold of HF (u, v) = EF , EF being fixed by the choice of the initial
condition. As a consequence of the conservation law, E(t) can not grow indefinitely and
oscillates around a microcanonical value predicted within the emergent microcanonical
ensemble. The agreement between the original dynamics and the perturbative analysis
hints the possible existence of an emergent conservation law even in the driven Duffing
equation, which instead is absent in the kicked rotor discussed in Section 1.1.

We conclude by stressing that the multiple-scale analysis is a more general approach
than the Floquet-Magnus expansion often employed for periodically driven systems in
their high-frequency limit [168]. For Duffing oscillator, the high-frequency limit would
correspond to Ω ∼ O(1) and ω2

0 ∼ ϵ, rather than the scaling Ω2 ∼ ω2
0+O(ϵ) considered

here. For single-particle Floquet systems, the validity of the MSA in the high-frequency
limit was tested in Ref. [179].

4.2 The lattice ϕ4 model
The muliple-scale analysis discussed in the previous section can be generalized to a
classical many-body system composed of interacting, non-linear oscillators. In partic-
ular, in this section we investigate the dynamics of a driven ϕ4 model on the lattice,
generated by the Hamiltonian

H(x, p) = Hϕ4(x, p)− B0 sin(Ωt)
∑
i

xi (4.16)

where x = (x1, . . . , xn), p = (p1, . . . , pn) and

Hϕ4(x, p) =
∑
i

[
p2i
2

+
ω2
0

2
x2i +

λ

4
x4i +

g

2
(xi+1 − xi)

2

]
. (4.17)

When λ = 0, the Hamiltonian (4.17) describes a set of independent Harmonic oscillators
in momentum space, whose characteristic frequencies are given by

ωk =
√
ω2
0 + 2g[1− cos(2πk/N)] (4.18)
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Figure 4.2: Results for the periodically driven dynamics of the lattice ϕ4 model, defined
in Eq. (4.19). In all the panels, the dynamics is averaged over 300 initial conditions,
randomly on a manifold Hϕ4(x0, ẋ0) = E0. We fix N = 100, B0 = g = λ = ω2

0 = 1.
(a-c) Plot of the average density E(t) = ⟨Hϕ4(x,p)⟩, for the dynamics generated by
Eqs. (4.19), for Ω = 0.6, 2.4, 3.0 (respectively from left to right). (d) Estimate of the
prethermal time t∗ defined in the main text, for a threshold fixed to E1 = 8 and initial
energy E0 = 0.5. (e-f) Time-evolution of E(t) generated by the dynamics of the lattice
ϕ4 model, driven by different non-linear pertubations, as expressed in Eqs. (4.20) and
(4.21) (respectively from left to right). We fix Ω = 2.4 and α = 1 for both plots.

for k = 1 . . . N . The Hamilton dynamics evolving from a generic configuration at fixed
energy displays ergodicity [180, 181] and chaos [182, 183]. A possible exception to
the chaotic behaviour has been observed only for fine-tuned initial conditions at low-
energies (see Ref. [182] for a discussion). Several experimental realization have been
proposed for the quantum version of this model [184–186]. Given these characteristics,
it is an intriguing subject to explore its behavior when subjected to periodic driving.

Specifically, we aim to investigate its driven dynamics given by the equations of
motion

ẍi + ω2
0xi + λx3i = B0 sin(Ωt) + g (xi+1 − 2xi + xi−1) , (4.19)

for i = 1 . . . N . We use an ensemble of N initial configurations (x0, ẋ0) randomly
sampled on the manifold Hϕ4(x0, ẋ0) = NE0, for different values of E0 and different
choices of the driving frequency Ω. In Fig. 4.2-(a-c), we plot the evolution of the average
energy density E(t) = ⟨Hϕ4(x(t), ẋ(t)⟩0 /N . For all the values of Ω and E0 and within
the maximum time-scale reached in the integration, we find no signature of infinite-
temperature heating, as E(t) always tends to a finite value E∞. Specifically, we observe
that no energy is absorbed at low driving frequencies Ω, possibly due to the gap in the
absorption spectrum. For intermediate values of Ω, E∞ remains independent of the
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initial energy state E0 as long as the condition E0 ≲ E∞ holds. For large Ω, the growth
of E(t) slows down. We quantitatively estimate the slowdown from the time-scale t∗ at
which E(t) crosses a threshold E1 ∈ [0, E∞], as a function of Ω. In Fig. 4.2-(d) we show
that t∗ ∼ exp(cΩ) for sufficiently large Ω. This dependence is reminiscent of the ones
observed for the prethermalization time in classical and quantum spin chains [33, 172].
Our investigation also reveals that the relaxation of E(t) to the finite value E∞ is not
contingent on the specific form of the chosen driving mechanism. To prove it, we repeat
the same analysis for different driven equations of motion, respectively given by:

ẍi + ω2
0xi + λx3i + α sin(Ωt) cos(xi/l0) = g(xi+1 − 2xi + xi−1) , (4.20)

ẍi + ω2
0xi + α sin(Ωt)x2i + λx3i = g(xi+1 − 2xi + xi−1) . (4.21)

and we set the dimensional scale l0 to 1. The result, shown in Fig. 4.2-(e) and (f), is
that the average energy density E(t) again displays relaxation to a finite asymptotic
value.

In a many-body system such as the one described by the ϕ4 model, the relaxation
of the total energy density E(t) to a finite value is consistent with the emergence of a
conservation law, for an observable distinct from Hϕ4(x, ẋ). As we did for the Duffing
oscillator in Section 4.1, here we attempt to compute the corresponding conserved
quantity in the limit of small driving and small interaction, rescaling g = ϵg̃, λ = ϵλ̃
and B0 = ϵB̃0 and develop a multiple scale analysis for ϵ ≪ 1. In particular, we fix
ω2
0 = Ω2 − ϵ∆ω2, to enable absorption through parametric resonances [187] even when

Eqs. (4.19) are close to the ones of non-interacting harmonic oscillators at frequency
ω0. We define once again the slow time-scale τ = ϵt and assume the validity of the
expansion

xi(t) = x0,i(t, τ ) + ϵ x0,i(t, τ ) + . . . , (4.22)

on every site i = 1 . . . N . Following the same recipe illustrated in Section 4.1, we obtain
that, at the leading order, the solution to the equations of motion has the form

xi(t) = ui(τ) cos(Ωt) + vi(τ) sin(Ωt) . (4.23)

The slowly varying amplitudes ui(τ) and vi(τ) obey the Hamilton equations
dui
dτ

= −∂HF

∂vi
dvi
dτ

=
∂HF

∂ui
,

(4.24)

generated by the many-body effective Hamiltonian

HF (u, v) =
1

2Ω

∑
i

{
− ∆ω2

2
(u2i + v2i ) +

g̃

2

[
(ui+1 − ui)

2 + (vi+1 − vi)
2
]
+ (4.25)

+
3λ̃

16
(u2i + v2i )

2 + B̃0vi

}
.
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Within this perturbative analysis, we can also estimate E(t). In particular, by plugging
Eq. (4.23) into Hϕ4(x(t), ẋ(t)), we obtain at the leading order

E(t) ∼ 1

N
⟨Hϕ4 [x0(t, τ ), ∂tx0(t, τ )]⟩0

∣∣∣
τ=ϵt

(4.26)

=
1

N
⟨H0[u(τ), v(τ)]⟩0

∣∣∣
τ=ϵt

+O(ϵ) .

where H0(u, v) = Ω2
∑

i(u
2
i + v2i )/2, in analogy with Eq. (4.15). Here the brackets

⟨·⟩0 indicates again that the average is performed over the micro-canonical manifold
H0(x0, ẋ0) = NE0. We test the approximation for a fixed Ω, as depicted in Fig. 4.3-(a):
the MSA quantitatively reproduces the original dynamics and its saturation to a finite
plateau at E∞. In particular, we compute the time-average

∆E = lim
T →∞

1

NT

∫ T

0

dt|E(real)(t)− E(eff)(t)|2 , (4.27)

where E(real)(t) is the energy density computed from the original dynamics, from
Eq. (4.19), while E(eff)(t) is estimated from Eq. (4.26). We plot ∆E in Fig. 4.3-
(b), showing that it is a monotonically increasing function of ϵ. Thus, the accuracy of
the MSA improves for smaller values of ϵ. The accuracy of the perturbative predictions
may further improve by including contributions which are higher order in ϵ.

The primary advantage of using the MSA in this many-body context is that we can
explain the existence of a finite plateau at E∞ using a thermodynamic argument. In
particular, we observe that a finite E∞ is naturally expected from the conserved-energy
dynami cs in Eqs. (4.24) and E(t) from Eq. (4.26) is expected to saturate to the average

E∞(EF ) = ⟨H0(u, v)⟩eff /N , (4.28)

over an effective microcanonical ensemble defined by HF (u, v) = NEF . The corre-
sponding conserved effective energy density EF is determined by the initial conditions,

EF (E0) = ⟨HF (u, v)⟩0 /N . (4.29)

Combining Eqs. (4.28) and (4.29), we obtain E∞ as a function of E0 from the per-
turbative MSA. We test such relation against its dynamical counterpart, obtained by
estimating E∞ from the long-time average

E∞(E0) = lim
T →∞

1

NT

∫ T

0

dt ⟨Hϕ4 [x(t), ẋ(t)]⟩0 (4.30)

of the original dynamics, in Eq. (4.19), evolving from an initial ensemble on the mani-
fold Hϕ4(x, ẋ) = NE0. We plot the result in Fig. 4.3-(c), showing the two estimates of
E∞ merge into each other as ϵ is sent to 0.

4.3 Periodically driven dynamics in a large-N sys-
tem: the p-spin spherical model

In this section, we attempt to extend our findings to the quantum regime, by investi-
gating the periodically driven dynamics of the p-spin spherical model (PSM), already
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Figure 4.3: Multiple-scale analysis for the lattice ϕ4 model. We fix N = 100 and
Ω = λ̃ = B̃0 = g̃ = 1. In all panels, the dynamics is always averaged over 1000 initial
conditions. (a) Comparison between two profiles of E(t), obtained either from the
real dynamics in Eqs. (4.19) or from the effective one in Eqs. (4.24). We fix ϵ = 0.05.
The initial conditions are sampled from the microcanonical manifold Hϕ4(x0, ẋ0)/N =
E0 = 1. (b) Behaviour of the time-averaged difference ∆E, between the real and the
effective dynamics, defined in Eq. (4.27). The time average is performed in an interval
[3/4tmax, tmax], where tmax is the total simulation time we used. Within this interval,
E(t) has already reached its late time plateau. The initial conditions are sampled as in
panel (a). (c) Estimates of the asymptotic energy density E∞ as a function of the initial
one, E0. For each solid line, E∞ is computed from the late-time average, in Eq. (4.30),
of the original dynamics in Eqs. (4.19). To eliminate the contribution from the transient
dynamics, we again perform the time-average over an interval [3/4tmax, tmax]. In the
dashed line, E∞ is computed as an average over the effective microcanonical ensemble
(solid line) defined through Eqs. (4.29) and (4.28).

introduced in Section 3.2. The driven version of its Hamiltonian is expressed as

ĤPSM(t) =
1

2M

N∑
i=1

Π̂2
i + J (t)VJ(σ̂)− B(t)

∑
i

σ̂i, (4.31)

with VJ(σ̂) defined in Eq. (3.20). The driving is implemented by taking one taking
either B(t) and J (t) to be a periodic function, while we will set the other to 0 for
simplicity. These will allow us to investigate the effect of different driving terms on
the quantum dynamics of the PSM. As in this chapter we are interested in studying
periodically driven ergodic models, we will restrict our analysis to temperatures above
the ergodicity breaking threshold, T > Td(h̄) [86].

We will focus in particular on the dynamical correlation and response function,
defined respectively as

C(t, t′) =
1

2N

N∑
i=1

⟨σ̂i(t)σ̂i(t′) + σ̂i(t
′)σ̂i(t)⟩ (4.32)

R(t, t′) = θ(t− t′)
i

h̄N

∑
i

⟨[σ̂i(t), σ̂i(t′)]⟩ . (4.33)
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The fully connected nature of the model defined in Eq. (4.31) allows us to derive
closed dynamical equations that describe the evolution of correlation and response
functions starting from an initial state uncorrelated with the disorder. Specifically, a
straightforward generalization of the calculations presented in Refs. [86, 89, 188], leads
to the following closed set of equations, in the large-N limit and after disorder-averaging
(see Appendix D.1 for more details):

[m∂2t + z(t)]R(t, t′) = δ(t− t′) +

∫ t

0

dt′′Σ(t, t′′)R(t′′, t′), (4.34)

[m∂2t + z(t)]C(t, t′) =

∫ t

0

dt′′Σ(t, t′′)C(t′′, t′) +

∫ t′

0

dt′′D(t, t′′)R(t′, t′′) (4.35)

+B(t)

∫ t′

0

dt′′R(t′, t′′)B(t′′) .

Here z(t) is a Lagrange multiplier enforcing the spherical constraint and the self-
energies Σ(t, t′) and D(t, t′) are defined as follows:

Σ(t, t′) =− 4η(t− t′)Θ(tb − t)Θ(tb − t′) +

− pJ (t)J (t′)J2

h̄
Im

[
C(t, t′)− ih̄

2
R(t, t′)

]p−1

, (4.36)

D(t, t′) =2h̄ ν(t− t′)Θ(tb − t)Θ(tb − t′) +

+
pJ (t)J (t′)J2

2
Re

[
C(t, t′)− i

2
(h̄R(t, t′) + h̄R(t′, t))

]p−1

. (4.37)

The determination of the Lagrange multiplier z(t) for our unitary driven dynamics is
more intricate than in previously studied protocols [86]. For the sake of conciseness,
we address this technical issue in Appendix D.2. Equations (4.34) and (4.35) are often
referred to as Mode Coupling (MC) equations, due to the formal analogies with the
mode-coupling theory for structural glasses [189–191]. In the classical limit of h̄ → 0,
the equations are equivalent to the ones studied in Ref. [192]. The terms η(t− t′) and
ν(t− t′) are the correlation and response functions of an external bath, in equilibrium
at a temperature T0 < Td(h̄), that we couple to the system up to a time tb. They are
given by:

η(t− t′) = −Θ(t− t′)

∫ ∞

0

dωI(ω) sin[ω(t− t′)], (4.38)

ν(t− t′) =

∫ ∞

0

I(ω) coth
(
h̄ω

2T0

)
cos[ω(t− t′)] , (4.39)

where I(ω) is the spectral function of the bath. We choose an Ohmic bath with
I(ω) = 1

π
exp (−|ω|/Λ), for which explicit expressions for both ν(t−t′) and η(t−t′) can

be straightfowardly found, and we choose the integration cutoff to be Λ = 5. Making
use of the spherical constraint and the causal structure of the response function, we
can also obtain the equal-time relations:

C(t, t) = 1 , ∂tC(t, t
′)|t′→t− = ∂tC(t, t

′)|t′→t+ = 0 , (4.40)

R(t, t) = 0 , ∂tR(t, t
′)|t′→t− =

1

M
, ∂tR(t, t

′)|t′→t+ = 0 . (4.41)
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Figure 4.4: Time-evolution of the energy density E(t), defined in Eq. (4.43), for the
p-spin spherical model, for fixed B0 = 1 and ∆ = 0. (a)-(c) We fix h̄ = 0. We set
the driving frequency to Ω = 1.0, 1.5, 3.5 respectively for the three panels, from left
to right. (d)-(f) We fix h̄ = 1 and driving frequencies coinciding with the ones used
respectively in panels from (a) to (c).

In the following, we will fix the time-dependent fields as

J (t) = θ(t− tb)[1 + ∆ sin(Ωt)] , B(t) = θ(t− tb)B0 sin(Ωt) . (4.42)

In this way, the system is first coupled to a bath for 0 < t < tb in order to relax to a
thermal state, then for t > tb it evolves unitarily under the effect of the driving fields.

To understand the fate of the periodically driven dynamics of the PSM, we com-
pute the energy density E(t) = ⟨ĤJ⟩ /N , where ĤJ from is the Hamiltonian of the
undriven PSM . In the thermodynamic limit N → ∞, E(t) can be expressed through
the correlation and response function as [89, 143]

E(t) = −M
2
∂2tC(t, t

′)
∣∣
t′→t−

− 1

p

∫ t

0

ds [Σ(t, s)C(t, s) +D(t, s)R(t, s)] . (4.43)

In what follows, we will first fix B0 and ∆ = 0 in Eq. (4.42), to isolate the effect of
the magnetic field B(t) from the one due to J (t). We solve the MC equations using
a predictor-corrector scheme [193], reviewed in Appendix D.3, and compute E(t) for
a several values of the driving frequency Ω and initial temperature T0. We plot the
resulting profiles for E(t) in Fig. 4.4, both for the case of h̄ = 0 and h̄ = 1. In both
cases, E(t) first saturates a first plateau for t ≲ tb, signalling that the system reached
a thermal equilibrium with the bath, and oscillates around a second one at late times,
centered around a finite value E∞. In particular, second saturation to E∞ is compat-
ible with a finite temperature thermalization for the PSM, either in the classical and
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Figure 4.5: Time-evolution of the energy density E(t), defined in Eq. (4.43), for the
p-spin spherical model, for fixed B0 = 0 and ∆ = 1. (a)-(b) We fix h̄ = 0 and set the
driving frequency to Ω = 5.0, 6.0, respectively from left to right in the panels. (c)-(d)
Plots obtained for the same parameters used respectively in panels from (a) to (c),
the only difference being in h̄ set to 1.

quantum regime. The qualitative analogy between the profiles obtained for h̄ = 0 and
the ones at h̄ = 1 suggests a quantum-to-classical correspondence for the periodically
driven dynamics of the PSM. We observe that E∞ does not depend on T0, as long
as E(0) ≲ E∞, in analogy with the lattice ϕ4 model. Our results generalized to the
case of B0 = 0 and ∆ = 1, as shown in Fig. 4.5, where the periodic drive is due to a
modulation in the interaction and we retrieve the same behaviour for E(t), both in the
classical and quantum case.

The numerical results we obtained for the PSM are also consistent with the emer-
gence of a non-trivial conservation law. Unlike for the ϕ4 model, we can not perform
a multi-scale analysis due to the difficulty in accounting for the spherical constraint.
Instead, as we have direct access to the two-point functions, we search for further
indications of of finite temperature thermalization from the Fluctuation-Dissipation
Theorem (FDT) [194, 195], reviewed in the following. The classical version (at h̄ = 0)
of the FDT states that, for a generic dynamics evolving from an equilibrium state, the
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Figure 4.6: Plots for the correlation and response functions of the p-spin spherical
model. (a)-(d): Plots for the correlation and response functions, either for h̄ = 0,
in (a-b), or h̄ = 1, in (c-d). (a,c): Correlation function obtained from Eqs. (4.34)
and (4.35), for , T0 = 0.99 and Ω = 2.5. (b,d): Time-averaged 2-point functions
from Eq. (4.47), for Ω = 2.5 and several values of T0. (e): Effective temperature Teff
obtained from a linear regression fit of Eq. (4.44), for the quantities C0(τ) and χ0(τ) in
panels (b,d), Ω = 2.5 and several values of T0. (f): The corresponding r2 value from
the linear fit described in panel (e).
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correlation and response function are not independent and are related by the equation

d

dt
C(t− t′) = −T R(t− t′) , (4.44)

for t > t′, where T is the temperature of the system. In Eq. (4.44), we used of the fact
that, whenever the dynamics is stationary, the two-point functions depend only on the
difference t− t′ of t and t′. The generalization of the FDT to quantum systems is more
easily expressed in Fourier space as

C̃(ω) = h̄ coth
(
h̄ω

2T

)
R̃(ω) . (4.45)

Here, f̃(ω) =
∫
dtf(t) exp(iωt)/2π. For an ergodic system in contact with a thermal

bath and evolving from a generic state, T coincides with the bath temperature, as
thermal equilibrium is eventually reached. The relations established by FDT are proven
to hold only when the system is in a stationary state. In principle, they are not
expected to be valid when the dynamics is periodically driven. This becomes evident
from the graphical representations in Fig. 4.4, where we observe that E(t) consistently
exhibits persistent oscillations around E∞ across the various timescales we explore
numerically, signifying that the system does not reside in a stationary state during this
interval. However, the results in Fig. 4.6-(a) and (c) reveal that, at large times and at
intermediate values of Ω, the correlation and response function become approximately
invariant under the time translations of 2π/Ω, as expressed by the equations:

C(t, t′) ≃ C(t+ 4π/Ω, t′ + 4π/Ω) R(t, t′) ≃ R(t+ 4π/Ω, t′ + 4π/Ω) (4.46)

This approximate time-translational invariance we observe in the two-point functions
suggests the emergence of a quasi-stationary dynamics, at least at discrete times. Moti-
vated by this observation, we explore a potential connection between the time-averaged
quantities:

C0(τ) =
Ω

4π

∫ t0+4π/Ω

t0

ds [C(s+ τ, s)−m(s+ τ)m(s)] , (4.47)

R0(τ) =
Ω

4π

∫ t0+4π/Ω

t0

dsR(s+ τ, s) . (4.48)

Here, we subtracted the disconnected and oscillating component from C(t, t′) due to
oscillations in the magnetization, which can be expressed as

m(t) =
1

N

N∑
i=1

⟨σ̂i(t)⟩ =
∫ t

0

dsR(t, s)B(s) , (4.49)

as shown in Appendix D.1. In Fig. 4.6-(b) and (d), we plot R0(τ) against dC0(τ)/dτ .
For each initial bath temperature T0, the data retrieved at late times oscillate around
a well-defined linear slope Teff . Thus, we calculate Teff through linear regression of
Eq. (4.44), for C0(τ) and R0(τ), and display the results in Fig. 4.6-(e), as a function
of T0, for both the classical and quantum cases. We note that Teff remains relatively
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constant across a broad spectrum of small to intermediate values of T0. This pattern
aligns with the trends observed in E(t) for the PSM and is consistent with the out-
comes depicted in Fig. 4.3-(d) for the lattice ϕ4 model. The corresponding r2 value
is illustrated in Fig. 4.6-(e), revealing its proximity to one across the entire range of
T0 values, regardless of whether h̄ = 0 or h̄ = 1. This observation confirms the accu-
racy of the linear relationship we hypothesized between R0(τ) and C0(τ) and suggest
that, because the values of Teff are sufficiently high, the classical version of FDT from
Eq. (4.44) approximately holds even if we set h̄ = 1.

4.4 Summary and perspectives
In this chapter, we studied the dynamics of three distinct systems: the classical Duffing
oscillator, the classical ϕ4 model, and the PSM in both classical and quantum domains.
In all the cases examined, the dynamics exhibited characteristics consistent with the
presence of an emergent conservation law, evidenced by the bounded energy absorption
even at extended times. To quantitatively analyze these emergent conservation laws,
we developed a perturbative approach - the multiple-scale analysis- for the Duffing
and ϕ4 models, enabling the explicit computation of the associated conserved quantity.
Furthermore, in the case of the PSM, late-time thermalization was supported also by
the observation of an approximate fluctuation-dissipation relation (FDT).

Our findings differ significantly from those obtained for quantum [25, 26] or classi-
cal [33, 34] spin chains. In these scenarios, the absence of local conserved quantities at
stroboscopic times leads the system towards a featureless, infinite-temperature state.
A promising avenue for future research involves attempting to apply the multiple-scale
analysis also to many-body classical spin chains. Exploring this direction could pro-
vide a deeper understanding of the qualitative differences between classical spins and
the systems with unbounded phase space. We also observe that our findings for the
ϕ4 model have the potential to be extended to the quantum realm, by employing the
same density-matrix renormalization group techniques as in Ref. [196].

It is important to note that we cannot definitively rule out the eventual relaxation
to infinite temperature at times longer than the ones explored in our simulations; how-
ever, the time-scale of this process should be much larger than all the ones determined
by the system’s couplings that we are studying.
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Chapter 5

From chaos to discrete Floquet time
crystals in long-range systems

In Chapter 4, we investigated the dynamics of periodically driven systems, known as
Floquet systems, which are usually expected to eventually reach a thermal equilibrium
state. This general understanding, however, encounters a fascinating exception known
as discrete Floquet time crystals (DFTCs) [160, 197–203]. DFTCs are defined as dy-
namical phases of matter where the system remains perpetually out of equilibrium,
and local observables exhibit persistent oscillations with a period different from that
of the driving force.

The name "time crystal" finds its roots in the pioneering works by F. Wilczek [197,
204]. Wilczek conjectured that certain autonomous systems can break continuous time
translation symmetry, akin to space traslation symmetry breaking in crystals. For
systems in thermal equilibrium, this possibility has been later ruled out by a no-go
theorem [205]. In the realm of out-of-equilibrium scenarios, one of the initial concrete
observations of a time crystal was made within the context of disorder-localized Flo-
quet systems [160, 206, 207]. For such systems it was shown that local observables
display periodic oscillations, which become persistent in the thermodynamic limit.
Subsequently, the possibility of generating a DFTC in systems without disorder has
been investigated in the context of long-range interacting models. These systems are
defined on a d-dimensional lattice, where the interaction between lattice sites i and j
follows a power-law decay pattern, Ji,j ∼ |i− j|−α. Notably, these models have garnered
significant attention due to their experimental feasibility in various platforms, includ-
ing atomic, molecular, and optical systems [208–215]. Instances of DFTC phases have
been identified for 0 < α < d [216, 217], while for α > d the oscillations fade away in
the thermodynamic limit [202, 203, 218, 219].

In all instances mentioned above, the oscillations defining the the time crystalline
behaviour were always observed to display a period TB = nT , where n is an integer
and and T = 2πΩ−1 is the period of the driving. The corresponding integer n, usually
referred to as the order of the DFTC, was then connected to the explicit Zn symmetry
of the model [160, 216, 217]. Nevertheless, recent investigations [220–222] have revealed
that DFTCs of order n > 2 can be observed in systems displaying only a Z2 symmetry.

71



5. From chaos to discrete Floquet time crystals in long-range systems

The emergence of such higher-order DFTC phases was then explained in terms of an
emergent, rather than fundamental, Zn dynamical symmetry [223].

Despite the significant progress made in the last decade, DFTC phases remain elu-
sive feature in the realm of out-of-equilibrium phenomena, because of the absence of
a universal observable, such as an order parameter, capable of detecting them regard-
less of their order n. In this chapter we address this issue, focusing specifically on
long-range models. We introduce a novel order parameter designed to identify time
crystalline phases irrespective of their order, relying solely on the geometric proper-
ties of the dynamics. We concentrate our efforts on the Lipkin-Meshkov-Glick (LMG)
model [224]. Additionally, we examine the robustness of the DFTC phases against
weak perturbations, both short and long-range, utilizing the non-equilibrium spin-
wave theory (NEQSWT) already discussed in Section 2.3 and Appendix B. At finite
sizes, we interpret the DFTC phases of order n through the lens of an emergent Zn
symmetry in the Floquet eigenstates. These eigenstates manifest as Bloch superposi-
tions of n localized, semi-classical states, a feature demonstrated for n = 2 in Ref. [216].

This chapter is organized as follows. In Section 5.1 we define the salient features of
discrete Floquet time crystals. In Section 5.2 we define the order parameter we propose
and discuss its ability to distinguish time crystals from other dynamical behaviours.
We apply our definition to the LMG model in Section 5.3. We discuss the physical
intrepretation of our results at finite sizes in Section 5.4. In Section 5.5 we discuss how
our results are altered by the inclusion of perturbations beyond the fully-connected
limit. We summarize our results in Section 5.6.

5.1 Review of discrete Floquet time crystals
In this section, we revisit the definition of a discrete Floquet time crystal, following
Refs. [160, 216]. We start by examining a quantum Floquet system, characterized by
a time-dependent Hamiltonian with periodicity Ĥ(t) = Ĥ(t + T ). The corresponding
Floquet operator is defined as follows:

ÛF = T
{

exp
[
− i

h̄

∫ T

0

dsĤ(s)
]}

, (5.1)

where T represents the time ordering, and the integral spans a period T . We will use
the term Floquet eigenstates to refer to the eigenstates of ÛF . Additionally, we will
also consider a state |Ψ⟩ as short-range correlated if, for any local observable Âi, the
clustering condition

lim
|i−j|→∞

[
⟨Ψ|ÂiÂj|Ψ⟩ − ⟨Ψ|Âi|Ψ⟩ ⟨Ψ|Âj|Ψ⟩

]
= 0 (5.2)

holds.

In a driven system, a discrete Floquet time Crystal (DFTC) phase exists if, for a
class of short-range correlated states |Ψ⟩, there exists an observable Ô such that the
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time-evolved expectation value in the thermodynamic limit (N → ∞),

O(t) = lim
N→∞

⟨Ψ(t)|Ô|Ψ(t)⟩, (5.3)

satisfies the following conditions [160]:

1. Time-translation symmetry breaking: O(t+ T ) ̸= O(t), although
Ĥ(t) = Ĥ(t+ T ).

2. Rigidity: O(t) must display periodic oscillations, in a finite and connected region
of the Hamiltonian parameters space.

3. Persistence: in the large system size limit N → ∞, the oscillations of O(t) must
persist for infinitely long time.

It has been proved that the first condition, the breaking of time-translation symmetry, is
equivalent to the requirement of long-range correlations in the Floquet eigenstates [160].
The average observable O(t) that fulfills the conditions 1-3 listed above is commonly
used as an order parameter to detect the DFTC phase. From O(t), the order of the
time crystal can be computed. This order is defined as the smallest rational such that:

O(t) = O(t+ nT ) (5.4)

for every time t. In this context, n = 1 then corresponds to an "unbroken" time-
translation symmetry, while n = 2 is usually called "period-doubling" phase [216].
DFTC phases are often detected as non-vanishing peaks in the Fourier spectrum of
O(t) with the corresponding frequency determining the order n.

5.2 The order parameter
When using the order parameter O(t) from Eq. (5.3), we can not identify a DFTC
from a single scalar quantity. As discussed in Section 5.1, DFTCs are in fact detected
as a non-vanishing peak in the Fourier spectrum of O(t), but the position of this peak
depends on both the driving period T and the order of the DFTC. In this section, we
demonstrate how this challenge can be overcome in the context of long-range systems.
We achieve this by introducing an alternative order parameter, which solely relies on
the geometric aspects of the system’s dynamics.

To set the stage, let us consider a generic family driven Hamiltonian Ĥ(t), such
that Ĥ(t) = Ĥ(t + T ). We assume that Ĥ(t) depends on a parameter (or a set of
parameters) Λ. Let us denote the average at stroboscopic times of the operator Ô as

Ol(Λ) = lim
N→∞

⟨Ψ(lT )|O|Ψ(lT )⟩ . (5.5)

We aim to use this operator to detect potential time-crystalline behavior for a fixed Λ.
Then, we define the following quantity:

ζ2 = lim
nmax→∞
δΛ→0

nmax∑
l=0

[Ol(Λ + δΛ)−Ol(Λ)]
2 , (5.6)
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defined for a fixed nmax δΛ ∼ O(1). Intuitively, ζ measures the robustness of persistent
oscillations of Ol, with respect to changes in the driving parameter(s) Λ.

The key finding of this chapter is that when the stroboscopic dynamics of the
observable Ol can be uniquely associated with a classical trajectory, ζ serves as a
period-blind order parameter, identifying DFTC phases regardless of their order n.
This condition is satisfied, for example, in fully-connected models, as discussed in
Section 2.1. To understand why, we first observe that the driven dynamics of semi-
classical systems takes place in an effective two-dimensional phase space consisting
of a blend of regular, resonant islands and chaotic regions, separated by "separatrix"
orbits. This picture is a consequence of the Poincaré-Birkhoff theorem [15, 16], which
we already discussed in Section 1.1, for a kicked rotor. In this classical context, a
DFTC phase of order n, involves a regular, periodic hopping of the sequence {Ol(Λ)}
between n resonant islands. This behavior was observed in Refs. [220, 222, 223] and is
accompanied by a subtle ’micro-motion’ within each island, as described in Ref. [220].
The presence of n islands gives rise to an emergent dynamical Zn symmetry. If we
consider another sequence {Ol(Λ + δΛ)} with δΛ ≪ 1, the hopping behavior persists,
leading to a linear divergence in the distance |Ol(Λ + δΛ)−Ol(Λ)| ∼ c|δΛ|l, for some
constant c . From this linear divergence, we get the following scaling for the order
parameter:

ζ2 ∼ c2

nmax

∑
l

δΛ2l2 ∼ c2(nmaxδΛ)
2 (5.7)

Conversely, in the chaotic limit, Ol(Λ) and Ol(Λ+δΛ) uniformly spread outside the
islands, becoming uncorrelated over a timescale log |δΛ|−1, shorter than nmax ∼ |δΛ|−1.
Consequently, we obtain a different saturation value for ζ, given by:

ζ2 ≃ ⟨O(Λ)⟩2cl . (5.8)

Here ζ roughly scales as the square of the uniform (i.e. infinite-temperature) average
over the classical phase space, here denoted as ⟨·⟩cl.

In addition, a third possible behavior emerges: a periodic dynamics Ol(Λ) with an
irrational and strongly ψ-dependent period. We refer to this phenomenon as a quasi-
periodic phase and it is typically associated with KAM tori [8–10]. In this integrable
dynamics, |Ol(Λ + δΛ)−Ol(Λ)| still grows linearly with l and ζ scales as in Eq. (5.7),
although ζ is expected to saturate to values typically larger than in the DFTC phase,
as the corresponding KAM tori encompass all the resonant islands. In Section 5.3,
we will make the last statement quantitative for the specific case of the LMG model,
where we will show that ζ exhibits a discontinuity when moving from a DFTC to a
quasi-periodic phase, due to the different topologies of the corresponding trajectories.

Although the discussion above is expected to hold only in fully-connected models,
we will demonstrate in Section 5.5 that our results remain valid for sufficiently long-
range models or when a short-range weak perturbation is included. In these cases,
the dynamics can still be rationalized as a single classical trajectory embedded in a
self-generated bath of dynamical spin-waves, as previously discussed in Section 2.3.1.
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5.3 The dynamical phase diagram of the Lipkin-
Meshkov-Glick model

In this section, we compute the order parameter ζ, defined in Section 5.2, for the specific
case of a chain of N spin 1/2 particles, interacting through the one-dimensional long-
range driven Hamiltonian:

Ĥ(t) = − λ

2Nα

∑
i>j

σ̂xi σ̂
x
j

|i− j|α
+ h(t)

N∑
i=1

σ̂zi − J

N∑
i=1

σ̂xi σ̂
x
i+1 , (5.9)

for α < 1. The operators σ̂xi ,σ̂yi ,σ̂zi are the Pauli matrices relative to the lattice site i
and Nα =

∑
j ̸=0 |j|−α is the Kac scaling factor needed in order to have an extensive

energy [225]. The magnetic field h(t) is periodic with period T and is represented as a
series of kicks:

h(t) = ψ
∞∑
n=1

δ(t− nT ) , (5.10)

The strength of these kicks is determined by the parameter ψ. For convenience, assume
periodic boundary conditions for the lattice and set λ+ J = 1.

In the following we will focus on the case α = J = 0, a condition that renders the
dynamics effectively classical. In this particular instance, the Hamiltonian in Eq. (5.9)
describes the driven version of the Lipkin-Meshkov-Glick (LMG) model [224], represent-
ing the p = 2 variant of the model introduced in Eq. (2.15). The effect of introducing
fluctuations atop this classical dynamics will be discussed in Section 5.5. The kicked
version of the LMG model has been previously investigated, for a fixed value of T , in
Refs. [216, 220]. These studies shown that the model exhibits a DFTC phases, whose
n can be an integer greater than 2, although the fundamental symmetry of the model
is only Z2. The existence of these higher-order DFTC phases was explained in terms
of the hopping mechanism, as we discussed in Section 5.2.

5.3.1 A stroboscopic map for the mean-field dynamics
In this section, we investigate the stroboscopic dynamics of the observables

Sal =
1

N

N∑
j=1

⟨σ̂a(lT )⟩ , (5.11)

for a = x, y, z. To do so, we exploit the fact that the Floquet operator of the dynamics
can be decomposed as a product two terms, due to the impulsive nature of the field
h(t):

ÛF = e−2iψŜz

eiλT (Ŝx)2/N , (5.12)
Here, Ŝa = 1

2

∑
j σ̂

a
j are the global spin operators. The first term in the product on the

right-hand side of Eq. (5.12) corresponds to an instantaneous rotation of the spin oper-
ator around the z-axis. Conversely, the second term describes the time evolution under
the fully connected LMG Hamiltonian. Using the general theory from Section 2.1, in
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the thermodynamic limit N → ∞, the dynamics generated by this second term is given
by: 

Ṡx = 0

Ṡy = λSxSz

Ṡz = −λSxSy .
(5.13)

Upon completing a cycle of period T , this dynamics results in a rotation around the
x-axis by an angle λT Sx(t), where Sx(t) denotes the configuration at the cycle’s outset.
To summarize, the dynamics of the set of operators ml = {Sx(lT ),Sy(lT ),Sz(lT )} is
determined, in the thermodynamic limit, by the closed map:

S⃗l+1 = f⃗(S⃗l) ≡ Rz(2ψ)Rx(−Sxl T )S⃗l , (5.14)

where Rx,y,z(ξ) is the rotation matrix of an angle ξ around the corresponding axis [223].
This dynamics is also constrained on the Bloch sphere, |S⃗|2 = 1. Examining Eq. (5.14),
we also observe that the original Z2 symmetry of the model translates into an invariance
of the dynamics under the transformations:{

ψ → ψ + π/2

S⃗l → Rz(πl)S⃗l
(5.15)

We fix the initial condition at t = 0 as the ground state of the h(t) = 0 Hamiltonian,
|Ξ0⟩ = |→ · · · →⟩, with σ̂x |→⟩ = |→⟩. This initial state corresponds to the classical
configuration S⃗0 = (1, 0, 0).

Before going on to discuss the fate of the dynamics, it is worthy to notice that the
map in Eq. (5.14) possesses an Hamiltonian structure. This is made transparent by
mapping the collective spin into a pair of canonically conjugated action-angle variables
as follows:

S⃗ = (
√
1− I2 cosϕ,

√
1− I2 sinϕ, I) (5.16)

It is straightforward to show that the Poisson brackets {Sα,Sβ} =
∑

γ ϵ
αβγSγ are

equivalent to {ϕ, I} = 1. At T = 0, the dynamics can thus be rewritten as{
Il+1 = Il

ϕl+1 = ϕl + 2ψ ,
(5.17)

and corresponds to unperturbed tori with "period" π/ψ. As discussed in Section 1.1, the
KAM theorem predicts that a deformation of these tori survives at small T whenever
ψ is not a rational multiple of π. On the other hand, for ψ = πq/n, with q and n
coprime positive integers, the dynamics of the tori at T = 0 is described by a discrete
set of n points. For small values of T , we expect that these resonant tori will split into
up into n "islands" of the phase space, separated by the KAM tori through a series
of separatrices. This outcome is predicted by the Poincaré-Birkhoff theorem. In this
scenario, we expect a DFTC of order n to emerge.
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Figure 5.1: Plots of order parameter ζ from Eq. (5.18). We fix nmax = 300 and
δψ = 1.6 · 10−3. (Left): Color plot of ζ as a function of the amplitude ψ and the
period T of the driving. (Right): Histogram of the occurrence P(ζ) of ζ within the
parameter region of the left panel, normalized at one.

5.3.2 Dynamical phase diagram
In this section compute the order parameter ζ from Eq. (5.1), tailored for our specific
model:

ζ2 =
1

nmax

nmax∑
l=0

[Sxl (ψ + δψ)− Sxl (ψ)]
2 . (5.18)

The dynamical symmetry in Eq. (5.15) permits us to confine our exploration to ψ ∈
[0, π/2].

The corresponding phase diagram, illustrating ζ as a function of ψ and T is pre-
sented in Fig. 5.1 (left-panel). For small, the quasi-periodic phase (violet) associated
with KAM tori is prevalent. Simultaneously, by increasing T in correspondence of
rational values of ψ/π, isolated regions of DFTC phases (dark blue) emerge. Initially,
these regions expand with T , but as they approach one another, chaos begins to en-
croach around their boundaries.

The size of these regions initially grows with T and, as they get closer to each
other, chaos emerges around their boundaries. At larger T , islands corresponding to
a DFTC of order p > 2 are swallowed by a chaotic phase (yellow), the last of which
corresponds to p = 4. We also observe a revival the p = 4 DFTC at larger values the
driving period, around T ≃ 6. The origin of this revival may depend on fine tuned
characteristics of the model and eludes our current understanding.

In Fig. 5.1 (right), the histogram representing the occurrence frequency P(ζ) re-
veals a discernible gap between ζ ≲ 0.25 and ζ ≳ 0.36. Although not precisely zero,
the occurrence frequency within this interval is very small. These values outline the
boundaries of the DFTC and quasi-periodic phases, respectively. It is possible that
these boundaries become even more distinct with an increase in the maximum number

77



5. From chaos to discrete Floquet time crystals in long-range systems

of iterations nmax of the discrete-time dynamics.

5.4 Floquet eigenstates at finite size
In Section 5.3, we interpreted the dynamical phase using the language of classical
dynamical systems, a possibility enabled by the effectively classical nature of the LMG
model in the thermodynamic limit. However, it has been previously observed [160, 216]
for a n = 2 DFTC that indications of DFTC phases manifest even at finite sizes. This
is evidenced by the Floquet eigenstates appearing as long-range correlated cat states.
In this section, we extend this observation to higher order DFTC phases.

We start by noting that the conservation of the total spin confines the dynamics
to the totally symmetric subspace (TSS), as discussed in Section 2.1. The TSS cor-
responds to the maximal spin sector with Ŝ2 = Ns(Ns + 1), for s = 1/2. As the
dimensionality of the TSS is only polynomial in the system size N , we are able to
perform exact diagonalization on the Floquet operator given in Eq. (5.1) for relatively
large systems (up to N = 800) [216, 226]. To visualize the eigenstates in this subspace,
we introduce the spin coherent states, defined as [71]

|Ω(θ, ϕ)⟩ = e−in·Ŝ |↑ . . . ↑⟩ . (5.19)

Here |↑ . . . ↑⟩ is the eigenstate corresponding to the maximum projection of the spin
along the z-axis and n = (sin θ cosϕ, sin θ sinϕ, cos θ). The overlap between two distinct
coherent states is given by

⟨Ω(θ, ϕ)|Ω(θ +∆θ, ϕ+∆ϕ)⟩ =
(

sin ∆θ

2
e−i∆ϕ

)N

(5.20)

and diverges only for N → ∞. Consequently, spin-coherent space form form an over-
complete basis for the Hilbert space at any finite N .

In Fig. 5.2, we illustrate the projection of selected Floquet eigenstates |ηm⟩ onto the
spin-coherent states. Distinct qualitative patterns emerge in the Floquet eigenstates
across the three phases of the system: the chaotic phase displays no recognizable struc-
ture (Fig. 5.2, right panel), while in the quasi-periodic phase, eigenstates are localized
in connected regions of the (θ, ϕ) space (Fig. 5.2, left panel, curves (a) and (c)). In the
n = 4 DFTC phase, eigenstates appear localized around four, Z4 symmetric, points
(Fig. 5.2, left panel: curve (b)).

The localization in the DFTC phase can be explained on semi-classical ground.
In fact, as we discussed in Section 5.3, the classical stroboscopic dynamics in the
DFTC phase consists of an hopping into adiacent resonant islands of the phase space.
Specifically, for ψ = πq/n, for q and n coprime positive integers, these islands are
expected to appear around ϕk = πkq/n, for k = 1, . . . , n. At finite sizes, quantum
fluctuations translate the classical hopping into long-range correlated Floquet states
|ηm⟩, each taking the form of a Bloch superposition:

⟨Ωθ,ϕ|ηm⟩ =
p−1∑
k=0

e2iπk/pW (k)
m (θ, ϕ− k

q

p
π) , (5.21)
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Figure 5.2: Color plot of the overlap | ⟨Ωθ,ϕ|ηm⟩ |2 between the spin coherent state |Ωθ,ϕ⟩
and different Floquet eigenstates |ηm⟩, corresponding to different phases, for N = 800,
ψ = π/2 + 0.01, T = 1 (left) and T = 10 (right). While in the chaotic phase (right
panel) the eigenstate has no structure, the eigenstate (b) (left panel), which correspond
to the DFTC phase with n = 4, clearly exhibits the structure of a Bloch wave-function
localized around the Z4 symmetric wells. The eigenstate (b) (left panel) has maximum
overlap with the spin coherent state corresponding to the initial conditions cos θ = 0,
ϕ = π/2. Initial conditions localized around the eigenstates (a) and (c) (left panel)
instead correspond to a quasi-periodic phase.

with each wave function W
(k)
m (θ, ϕ − k q

p
π) localized around ϕ = k q

n
π. We also wave-

functions are mapped one into the other by the Floquet propagator:

ÛFW
(k)
m (I, ϕ− k

q

n
π) = eiβmW (k+1)

m (I, ϕ− (k + 1)
q

n
π) . (5.22)

This conjecture, already verified for n = 2 DFTCs in the same model [216], implies
that the overlap in Eq. (5.21) is localized in the union of the resonant islands and is
confirmed by our numerical simulations.

5.5 Beyond mean-field: spin-wave fluctuations

In this section, we explore the robustness of DFTC phases beyond the fully-connected
limit. Specifically, we examine the effects resulting from the inclusion of a short-ranged
perturbation or from the substitution of the all-to-all coupling with a power-law de-
caying term. This is achieved by tuning either a small α or a small J in Eq. (5.9).

We approach the problem using the non-equilibrium spin-wave theory (NEQSWT),
already introduced in Section 2.3.1 and detailed in Appendix B. To facilitate the
analysis, it is convenient to rewrite the perturbation in Fourier space. In Fourier
space, the coupling of the nearest-neighbour interaction is straightforwardly given by
J cos k. However, calculating the Fourier modes corresponding to the power-law cou-
pling Jij ∼ |i − j|−α is a bit more intricate. These modes, denoted as λ̃k, are defined
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Figure 5.3: Phase diagrams resulting from the simultaneous integration of Eqs.(B.13)
and (B.16), for J̃k = J cos k. We fix λ = 1. The momenta are discretized as k =
2πm/N , where N = 50. (Top) Color plot of the order parameter ζ as a function of
the amplitude ψ and the driving period T , with nmax = 300, δψ = 1.6·10−3. (Bottom)
Color plot of the time-averaged spin-wave density ϵ, averaged up to a time t = nmaxT ,
where again nmax = 300, for the same orbits computed in the phase diagrams on top.

as follows:

λ̃k =
λ

Nα

N/2−1∑
r=1

cos(kr)
rα

. (5.23)

As shown in Ref. [227], the spectrum of λ̃k becomes discrete for N → ∞ and can be
expressed as:

λ̃(α)m = lim
N→∞

λ̃k=2πm/N = (1− α)21−α
∫ 1/2

0

cos(2πms)
sα

ds (5.24)

Equation (5.24) is valid for 0 < α < 1. For large size, Hamiltonian in Eq. (5.9) can
then be rewritten in Fourier space as:

Ĥ = − λ

4N
(σ̃x0 )

2 + h(t)σ̃z0 −
1

N

∑
k ̸=0

J̃k σ̃
x
k σ̃

x
−k, (5.25)

where J̃k = J cos k+ λ̃
(α)
m=Nk/2π. Here, the Fourier modes of the rescaled spin operators

are defined as σ̃αk =
∑N

j=1 e
−ikjσ̂αj (with σ̂αj = ŝαj /s being the rescaled spin operator on

the lattice site j) and k = 2πm/N for m = 0, . . . , N −1, with N being the system size.

We apply the NEQSWT to the Hamiltonian in Eq. (5.25), by simultaneously in-
tegrating Eqs. B.13 and B.16. We still consider a fully polarized initial state, charac-
terized by a magnetization S⃗0 = (1, 0, 0). In spherical coordinates, this state can be

80



5. From chaos to discrete Floquet time crystals in long-range systems

Figure 5.4: Phase diagrams resulting from the simultaneous integration of Eqs.(B.13)
and (B.16), for a discrete long-range spectrum J̃k=2πm/N = λ̃

(α)
m , for n = 1 . . . N . We

fix λ = 1 and N = 50. (Top) Color plot of the order parameter ζ as a function of
the amplitude ψ and the period T of the driving, with nmax = 300, δψ = 1.6 · 10−3.
(Bottom) Color plot of the time-averaged spin-wave density ϵ, averaged up to a time
t = nmaxT , where again nmax = 300, for the same orbits computed in the phase
diagrams on top.

rewritten as
θ(0) = π/2, ϕ(t = 0) = 0 . (5.26)

Additionally, in the fully polarized state, no spin-waves are initially excited, implying
that:

∆qq
k (t = 0) = ∆pp

k (t = 0) = 1/2, ∆qp
k (t = 0) = 0 . (5.27)

We integrate the dynamics evolving from this initial configuration, for various choices
of the model parameters. For each integration, we compute the longitudinal magne-
tization Sxl = sin θ(lT ) cosϕ(lT ) 1. Subsequently, we compute the order parameter ζ
from Eq. (5.18). We plot the results in Figg. 5.3 and 5.4 (top), correspondingly sep-
arately to nearest-neighbour (J ̸= 0 and α = 0) and long-range (J = 0 and α ̸= 0)
perturbations. Each panel corresponds to a fixed choice of J and α, and varying ψ and
T .

1As discussed also in Section 2.3, the magnetization length can descrease when spin-waves are
excited. Here we are working with a "normalized" magnetization, whose length is 1, in order to get a
more clear comparison with the mean-field results.
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The plotted results validate the robustness of the DFTC phases even beyond the
fully-connected limit, for the range of parameters we considered. Specifically, the
DFTC regions at low T are stable with respect to perturbations, while the isolated
DFTC island around ψ = π/4 and T = 6 shrinks and eventually vanishes with increas-
ing the perturbation couplings. The stability of the phase-diagram with respect to
spin-wave fluctuations can be understood also from Figg. 5.3 and 5.4 (bottom), where
we show the time-average

ϵ = lim
t→∞

1

t

∫ t

0

ϵ(τ)dτ (5.28)

of the spin-wave density from Eq. (B.18). In the low-T sector of the phase diagram,
where the quasi-periodic phase and the DFTC islands persist, ϵ remains small. Con-
versely, we have ϵ > 1 in the chaotic region, where the system is expected to eventually
thermalize [50] due the spin-wave excitation. This analysis extends the findings of
Ref. [220], where the non-equilibrium spin-wave theory (NEQSWT) was employed to
explore the stability of DFTC phases specifically at T = 1.

5.6 Summary and perspectives
In this chapter we introduced a new order parameter ζ, capable to detect DFTC
phases in long-range systems, irrespective of their order. The pressing need for this
study was generated by the recent depiction of high order DFTC phases [220, 223].
Our order parameter exploits the connection between DFTC and Poincaré-Birkhoff
theorem [15, 16], whose quantum counterpart has also been explored in Ref. [228].
Choosing as a paradigmatic example the kicked LMG model, we are able to draw a
new phase diagram. While our picture is exact in the mean-field limit (α = J = 0), we
verified that it is robust against the inclusion of fluctuations due either to power-law
interaction or to perturbation represented as a nearest-neighbour interacting term.

Our newly introduced observable ζ is easily accessible in the experiments, so that
our predictions on the phase diagram may be tested e.g. in NMR experiments on
driven, ordered systems [203]. Our characterization of the higher-order, stable DFTC
phases could thus pave the way for a series of advancement in the field of quantum
technologies.
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Chapter 6

Outlook

In this final section, we outline the key questions that remain unresolved in this thesis.
The first one concerns the connection between the generation of chaos and the prop-
erties of the underlying energy landscape in Hamiltonian systems, a topic explored in
Chapters 2 and 3. In Chapter 3, we investigated the chaotic behavior, quantified by the
classical Lyapunov exponent, in a specific p-spin spherical model (PSM). We observed
a correlation between maximal chaos and the presence of a maximal number of unsta-
ble stationary configurations on the corresponding energy shell. Our observation was
empirical and we did not quantitatively connect the Lyapunov exponent to the number
of stationary points. A more systematic investigation connecting chaos to the under-
lying energy landscape could involve investigating the curvature of the microcanonical
manifold. Previous studies [183, 229] have shown that a reasonable estimation for the
Lyapunov exponent can be derived from the average curvature, when the latter is neg-
ative, or from its fluctuations. From a technical point of view, adopting this approach
in the spherical model is challenging due to the presence of the spherical constraint, yet
extending it to other models with intricate energy manifold complexity remains a pos-
sibility. The second question, stemming from the first one, pertains to the possibility
of extending the techniques from Refs. [183, 229] to quantum systems. Understanding
how chaos connects to the manifold of the dynamics would be crucial, offering physical
insight into the rigorous bound proposed in Ref. [101]. This bound is indeed saturated
in models which are connected to the spreading of information in black holes [98, 135].
A third possible future direction for this thesis works arises from Chapter 4. Therein,
we have demonstrated that an ergodic many-body system, with an unbounded energy
spectrum and subject to a smooth periodic force, exhibits signatures of finite temper-
ature thermalization at long times. This behavior contrasts sharply with the infinite
temperature thermalization observed in spin systems and kicked rotors. However, the
nature of the thermal ensemble we observed remains uncertain. Establishing whether
it is a stationary state or merely a transient phenomenon presents intriguing puzzles for
further investigation. In both cases, the physical origin of the different late dynamics,
retrieved in the Floquet systems we studied and in the ones usually investigated in
literature, remains elusive to us. Lastly, in Section 3.5, we computed the fidelity sus-
ceptibility χ for the classical PSM. Our findings indicate that χ can detect ergodicity
breaking even in a classical dynamics. It would be worthy to test conjecture against a
broader range of classical systems.
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Appendix A

Details on the p-spin model without
disorder

A.1 The period of classical orbits and its relation
with dynamical singularities

In this appendix we derive a closed formula for the period Tcl(g) of the classical orbits
discussed in Section 2.2.1 of the main text. In particular, we show that Tcl(g) diverges
logarithmically when approaching the transition point g = gdyn both from above and
below and discuss how show that such a singularity is retrieved also in Sx(g).

To compute Tcl(g) do so, we first perform the change of variables:

Sx = Q, Sy =
√

1−Q2 sin(P ), Sz =
√

1−Q2 cos(P ) (A.1)

where Q ∈ [−1, 1] and P ∈ [0, π]. By doing so, it can be shown [47, 61] that the
dynamics described by the equations (2.16) is an Hamilton dynamics induced by the
effective Hamiltonian

Hcl(Q,P ) = −λQP − g
√

1−Q2 cos(P ) (A.2)

The first of the Hamilton equations is

∂tQ = g
√

1−Q2 sin(P ) (A.3)

Plugging Eq. (A.3) into the expression (A.2), one straightforwardly obtains the follow-
ing expression:

(Hcl(Q,P ) + λQp)2 = g2(1−Q2)− (∂tQ)
2 (A.4)

Then, fixing the conserved energy as Hcl(Q(0), P (0)) = E0, we can solve the dynamics
by separation of variables to obtain

t =

∫ max(Q(0),Q(t))

min(Q(0),Q(t))

dx√
g2(1− x2)− (E0 + λxp)2

(A.5)
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Figure A.1: Plot of the period Tcl(g) of the classical trajectories originating from the
dynamics discussed in Section 2.2.1 of the main text, respectively for p = 3 (left) and
p = 4 (right). Tcl(g) is compared against log |g − gdyn|, both for g < gdyn (blue) and
g > gdyn (orange). We pose λ = 1, like in the main text.

This formula gives us the period of the classical orbits studied in the main text, if we
fix the initial condition ⃗S(0) = x̂ (i.e. Q(0) = 1, P (0) = 0 and E0 = −λ), arriving at

Tcl(g) = 2

∫ 1

q1

dx√
g2(1− x2)− (λxp − λ)2

(A.6)

where q1 is the turning point of the orbit, obtained as the solution of the equation
Hcl(Q,P = 0) = Hcl(Q = 1, P = 0) = −λ (for Q ̸= 1). We compute Tcl(g) nu-
merically from Eq. (A.6), for several values of g and for the paradigmatic cases of
p = 3 and p = 4. The result, shown in Fig. A.1, is that for g → g±dyn the period di-
verges as Tcl ∼ log |g−gdyn|−1, with a prefactor which is different above and below gdyn.

The divergence of Tcl(g) at gdyn is connected to change of topology of the underlying
trajectories, being confined in a single ferromagnetic well for g < gdyn and exploring the
whole landscape for g > gdyn. In particular, at g = gdyn the trajectory is a separatrix,
that is a singular, non-periodic orbit where any dynamics converges, for late times, to
the nearest local maximum Sxc , separating the well where the motion takes place from
the others. For any value of p, this implies that Sx(gdyn) = Sxc . Tcl(g) can be also
connected to the type of singularity displayed by Sx, when approaching the transition
point from below: as g → g−dyn, the orbits evolving into the righmost ferromagnetic
well develop a plateau of diverging length near Sxc (see Fig. 2.2-(c) and (f) of the main
text), so that Sx can be qualitatively estimated as

Sx(g) = 1

Tcl(g)

∫ Tcl(g)

0

dtSx(t) = Sxc +
1

Tcl(g)

∫ Tcl(g)

0

dt
(
Sx(t)− Sxc

)
≃ Sxc +

c

Tcl(g)
,

(A.7)

if we assume that that the integral
∫ Tcl(g)
0

dt
(
Sx(t)− Sxc

)
is bounded and converges to

a positive constant c > 0 at the transition point. The estimate in Eq. (A.7) implies
that Sx − Sxc ∝ 1/ log(gdyn − g)−1 approaching the transition from below: such a log-
singularity is quantitatively confirmed by the results shown in Fig. A.2, obtained by
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Figure A.2: Plot of the singularity of the time-average magnetization Sx, for the tra-
jectories originating from the dynamics discussed in Section 2.2.1 of the main text,
respectively for p = 3 (blue) and p = 4 (red). Sx is plotted as a function of g in
the dynamical ferromagnetic phase, where g < gdyn, and Sxc is defined as an unstable
stationary point of the potential in Eq. (2.17) of the main text at gdyn.

computing Sx numerically, as done also in Section 2.2.2, and Sxc from the Eqs. (2.20)
and (2.19).

While the singularities in the time-average magnetization Sx are intimately con-
nected to the one of the periods, its continuity is determined by the topology of the
effective potential, as discussed in the main text, thus by the value of p. In particular:

• For p ≥ 3 odd, the dynamics for g → g+dyn Sx develops a plateau at the only
local maximum of the landscape Sxc (see Fig. 2.2-(c) of the main text), so that
limg→g+dyn

Sx = Sxc and the transition is continuous in this case.

• For p ≥ 4 even, Sx = 0 for any g > gdyn, due to the symmetry of the orbits,
so that Sx is discontinuous at the transition. In particular, the plot in Fig. 2.2-
(f) of the main text shows that the magnetization spends an equal, diverging
amount of time near close to each of the two local maxima at Sxc and −Sxc .
At the origin of the discontinuity lies thus the non-symmetric role played by
the opposite ferromagnetic maximum at −Sxc , respectively above and below the
transition point.

A.2 Details on the first-order transition line
In this appendix, examine in greater detail the discontinuity line J = Jdyn(g), appearing
in Fig. 2.4 (left) and Fig. 2.5 (right) of the main text, analyzing the cases of p = 3 and
p = 4 separately.
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Figure A.3: Non-equilibrium phase diagram for the p-spin model in Eq. (2.15), for
p = 3. (Left) Over the same phase diagram shown in Fig. 2.4 (left) of the main text,
we plot the threshold line (red), above which ϵ > ϵsp (see details in Appendix A.2).
The black vertical line and the green box indicate the values of g and J investigated
in the plots on the right. (Top-right) Plot of the time-averaged magnetization Sx,
as function of J and at fixed g ≃ 1.142 (black line on the phase diagram on the left).
Sx is discontinuous around J ≃ 0.194. (Bottom-right) Inset from the phase diagram
on the left (in the green box), around the chaotic region where the second-order and
first-order transition line merge.

For p = 3, the transition line Jdyn(g) emerges clearly fixing a sufficiently large value
of g: the plot in Fig. A.3 (top-right) shows that the time-average magnetization Sx has
a discontinuity in J , though not being either completely smooth J above and below
the discontinuity point, because of the noise induced by the spin-wave emission. In this
regime, it is possible to make a semi-analytical estimation of the point Jdyn(g) where
the transition happens, as discussed in the following. First we notice that, because
of the squeezing of the potential, discussed in Section 2.3.3 and due to the spin-wave
excitation, the dynamics is driven by an effective transverse field

gϵ =
g

(1− ϵ)p−1
(A.8)

which depends on time through ϵ. Thus, for any fixed g it exists a threshold value ϵsp,
set by the equation1.

g

(1− ϵ)p−1
= gsp (A.9)

1Here, gsp is p-dependent the value of the transverse field beyond which the effective potential
displays a single paramagnetic well, as discussed also in Section 2.2.1
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such that whenever ϵ > ϵsp, the squeezed potential in Eq. (2.35) displays a single param-
agnetic well. An intuitive, sufficient condition for the localization of the magnetization
in the paramagnetic well can be set by the statement that ϵ(t) is asymptotically greater
ϵsp for large times, that is

ϵ = lim
T→∞

1

T

∫ T

0

ϵ(t) > ϵsp (A.10)

This condition implies that, for large times, the squeezed potential from Eq. (2.35)
displays a single, paramagnetic well, where the magnetization is by definition local-
ized. The plots in Fig. A.3 (left) show that, fixing a sufficiently large g, the values
of J where ϵ overcomes the threshold ϵsp matches the transition point Jdyn(g): this
provides a semi-analytical argument for the prediction of Jdyn(g) at large g, as the
threshold ϵsp can be predicted analytically, but there is no explicit formula relating
Jdyn(g) to ϵ. Our argument fails for smaller g, where the localization mechanism be-
comes more subtle (as discussed in Section 2.3.3 the main text) and the first-order
transition line is smeared into a chaotic crossover close to the mean-field critical point
gdyn. A similar fate happens to the second-order critical line, extending from the
point (g, J) = (gdyn, 0), to finite values of J , so that the chaotic crossover prevents
the possibility of a precise estimation of the tricritical point where the two lines meet.
However, we can roughly identify the transition point as the center of the finite-width
area where the two transition lines merge completely with the chaotic region: in the
inset in Fig. A.3 (bottom-right), we show that this happens approximately around
(g, J) ≃ (1.026, 0.17).
For p = 4, the results in Fig. A.4 (right) show a discontinuous transition driven by
J , this time detected by the time-averaged fluctuations (δSx)2, even though the semi-
analytical estimation of Jdyn(g) fails in this case. Moreover, here both the mean-field
dynamical transition, driven by g, as well as the one driven by J , are of the first-order,
so that we do not retrieve the tricritical behaviour discussed for p = 3.
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A. Details on the p-spin model without disorder

Figure A.4: Non-equilibrium phase diagram for the p-spin model in Eq. (2.15), for
p = 4. (Left) Same phase diagram shown in Fig. 2.5 (left). The black vertical line
and the green box indicate the values of g and J investigated in the plots on the right.
(Right) Plot of the time-averaged fluctuations (δSx)2, as function of J and at fixed
g ≃ 1.133 (black line on the phase diagram on the left). (δSx)2 is discontinuous around
J ≃ 0.131.
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Appendix B

Review of the non-equilibrium spin-
wave theory

In this appendix, we review the time-dependent spin-wave analysis, following Ref. [49].
This is implemented essentially in three steps:

1. first, we express the dynamical evolution in a rotating reference frame R, defined
in such a way that the magnetization is always aligned with the Z-axis;

2. performing an Holstein-Primakoff in R, we introduce the spin-waves, defined as
canonical coordinates representing the spatial fluctuation of the collective spin
on various length scales;

3. we derive a set of coupled equations describing the evolution of the collective spin,
which is obtained requiring that that the frame R is aligned with the collective
spin at any time, and of the spin-wave correlators, which act as a quantum
feedback on the former.

B.1 Rotating frame of reference coordinates
We consider a generic fully-connected p-spin Hamiltonian, with an additional short-
ranged interaction in the form of:

Ĥ = − λ

Np−1
(σ̃x0 )

p − gσ̃z0 −
1

N

∑
k ̸=0

J̃k σ̃
x
k σ̃

x
−k, (B.1)

We assume that our systems lives on a one-dimensional lattice with periodic boundary
conditions, although our calculations are straightforwardly generalized to any dimen-
sionality. The Fourier modes are defined as σ̃αk =

∑N
j=1 e

−ikjσ̂αj (with σ̂αj = ŝαj /s being
the rescaled spin operator on the lattice site j) and k = 2πn/N for n = 0, . . . , N − 1,
N being the system size. The Hamiltonian can be also split into a mean-field term
Ĥ0 = λ(σ̃x0 )

p/Np−1 − gσ̃z0, depending on the collective spin only, and a short-range
perturbation Û = −

∑
k ̸=0 J̃k σ̃

x
k σ̃

x
−k/N , as done in the main text. The reference frame

R is identified by the time-dependent Cartesian vector basis {X(t),Y(t),Z(t)}, whose
components in the original frame {x, y, z} read as
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B. Review of the non-equilibrium spin-wave theory

X =

cos θ(t) cosϕ(t)
cos θ(t) sinϕ(t)

− sin θ(t)

 ; Y =

− sinϕ(t)
cosϕ(t)

0

 ; Z =

sin θ cosϕ(t)
sin θ sinϕ(t)

cos θ(t)


and where the spherical angles θ(t) and ϕ(t) are defined so that the average magne-
tization S⃗(t) = ⟨

∑
j σ⃗j(t)⟩ /N is always aligned with Z(t). This change of frame is

implemented on the spin Hilbert space by the time-dependent unitary rotation

V
(
θ(t), ϕ(t)

)
= exp (−isϕ(t)

∑
i σ

z
i ) exp (−isθ(t)

∑
i σ

y
i )

so that the spin operators transform accordingly :

V σ̂xj V
† = X · σ⃗j ≡ σ̂Xj , V σ̂yjV

† = Y · σ⃗j ≡ σ̂Yj , V σ̂zjV
† = Z · σ⃗j ≡ σ̂Zj , (B.2)

In this new frame, the Heisenberg equation of motion can be written as

d

dt
σ̂αj = −i[σ̂αj , H̃] (B.3)

where the modified Hamiltonian

H̃ = H + iV V̇ † (B.4)

includes an additional term iV V̇ † = −sω⃗(t)·
∑

j σ⃗j, where ω⃗(t) = (− sin θϕ̇,−θ̇, cos θϕ̇),
playing the same role of apparent forces in classical mechanics. In the rotating frame
R, H̃ has the following form:

H̃

N
= −g

[
(X · z) σ̃

X
0

N
+ (Y · z) σ̃

Y
0

N
+ (Z · z) σ̃

Z
0

N

]
− λ

[
(X · x) σ̃

X
0

N
+ (Y · x) σ̃

Y
0

N
+ (Z · x) σ̃

Z
0

N

]p
−

∑
k ̸=0

J̃k

[
(X · x) σ̃

X
k

N
+ (Y · x) σ̃

Y
k

N
+ (Z · x) σ̃

Z
k

N

] [
(X · x)

σ̃X−k
N

+ (Y · x)
σ̃Y−k
N

+ (Z · x)
σ̃Z−k
N

]
+ sin θ sϕ̇ σ̃X0

N
− sθ̇

σ̃Y0
N

− cos θ sϕ̇ σ̃Z0
N
,

(B.5)

Once the equations of motion are formally written in the new frame, θ(t) and ϕ(t)
are obtained self-consistently by imposing that{

⟨σ̃X0 (t)⟩ = 0

⟨σ̃Y0 (t)⟩ = 0
(B.6)

B.2 Holstein-Primakoff transformation
The main idea at the basis of time-dependent spin-wave theory is that in the new frame,
as long as the spatial fluctuations induced by the short-range coupling J are weak
enough, these act as a small perturbation on top of a “classical" average collective spin.
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B. Review of the non-equilibrium spin-wave theory

In this case, we can rewrite the spin operators via the well known Holstein-Primakoff
transformation [71] 

σ̂Xj ∼ qj/
√
s+O(1/s3/2)

σ̂Yj ∼ pj/
√
s+O(1/s3/2)

σ̂Zj = 1− q2j+p
2
j−1

2s

(B.7)

expanded in powers of 1/
√
s and truncated to the leading order. In terms of the Fourier

space variables q̃k =
∑

r e
−ikrqr/

√
N and p̃k =

∑
r e

−ikrpr/
√
N , can also be expressed

as [71]: 
σ̃X
k

N
∼ q̃k/

√
Ns+O(1/s3/2)

σ̃Y
k

N
∼ p̃k/

√
Ns+O(1/s3/2)

σ̃Z
k

N
= 1− 1

2Ns

∑
k′(q̃k′ q̃k−k′ + p̃k′ p̃k−k′ − δk,0)

(B.8)

This approximation is exact both in the limit of large spin s→ ∞, or, as stated before,
when the spin-wave degree of excitation is kept small throughout the dynamics, in a
sense which is made clear below.
The whole sense of our approximation is that we are expanding on-site fluctuations
of the spin along the Z-axis in terms of harmonic excitations, defined in terms of
ladder operators âj = (qj + ipj)/

√
2 and his conjugate â†i : their Fourier Transform

ãk =
∑

j e
−ikj âj/

√
N represent the spin-wave excitations which destroy coherence in

the system, causing a depletion of the magnetization length, which can be rewritten as
| ⟨σ̃Z0 (t)⟩ /N | = 1− ϵ(t), where

ϵ(t) ≡ 1

Ns

∑
k ̸=0

〈
ã†kãk(t)

〉
=

1

Ns

∑
k ̸=0

〈
q̃k(t)q̃−k(t) + p̃k(t)p̃−k(t)− 1

2

〉
(B.9)

is the spin-wave density. Thus, the the time-dependent spin-wave theory is valid as
long as ϵ(t) ≪ 1.

B.3 Equations of motion for weak spin-wave exci-
tation

As long as the spin-wave excitation density ϵ(t) is small, it is reasonable to assume
that the dynamics is dominated by terms of lowest nontrivial order in the operators
{(q̃k, p̃k)} (from Eq. (B.8)), that is by a Gaussian approximation, in our case. Exactly
as in the case of Ref. [49], an expansion of the Hamiltonian in Eq. (B.5), this amounts
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B. Review of the non-equilibrium spin-wave theory

to keeping the terms

Û1 =
q̃0√
Ns

{
s sin θϕ̇− pλ(Z · x)p−1(X · x)

(
1− (p− 1)

n̂SW
Ns

)
− g(X · z)+

+
2(Z · x)
Ns

∑
k ̸=0

J̃k
[
(X · x)q̃kq̃−k + (Y · x) q̃kp̃−k + p̃kq̃−k

2

]}
+

+
p̃0√
Ns

{
− sθ̇ − pλ(Z · x)p−1(Y · x)

(
1− (p− 1)

n̂SW
Ns

)
− g(Y · z)+

+
2(Z · x)
Ns

∑
k ̸=0

J̃k
[
(Y · x)p̃kp̃−k + (X · x) q̃kp̃−k + p̃kq̃−k

2

]}
(B.10)

Û
(0)
2 = (pλ(Z · x)p + g(Z · z) + s cos θϕ̇) 1

Ns

∑
k ̸=0

n̂k (B.11)

Û2 = − 1

Ns

∑
k ̸=0

J̃k{(X · x)2q̃kq̃−k + (Y · x)2p̃kp̃−k + 2(X · x)(Y · x) q̃kp̃−k + p̃kq̃−k
2

}

(B.12)

In particular, the terms Û (0)
2 and Û2 represent the quadratic part from the expansion of

the mean-field term Ĥ0 and the short-range perturbation Û , respectively. Within such
approximation, the dynamics of the time-dependent frame R is determined imposing
the conditions (B.6), leading to

sϕ̇ =pλ(sin θ)p−2(cosϕ)p cos θ
{
1− (p− 1)ϵ(t)

}
− g+

− 2Jδqq(t) cos θ cos2 ϕ+ 2Jδqp(t) sinϕ cosϕ
sθ̇ =pλ(sin θ cosϕ)p−1 sinϕ{1− (p− 1)ϵ(t)} − 2Jδpp(t) sin θ sinϕ cosϕ

+ 2Jδqp(t) sin θ cos θ cos2 ϕ

(B.13)

with the quantum feedback being Jδαβ(t) ≡
∑

k ̸=0,∆
αβ
k J̃k/(Ns) for α, β ∈ {p, q}, as

stated in the main text (the correlators ∆αβ
k are defined also below). Here J is a

dimensionful energy scale that we factor out of the quantum feedback.
We see that, within time-dependent spin-wave theory, the motion of the collective spin
is coupled to the one of the correlation functions

∆qq
k (t) =⟨q̃−k(t)q̃k(t)⟩, ∆qp

k (t) = ⟨ q̃−k(t)p̃k(t) + p̃−k(t)q̃k(t)

2
⟩, (B.14)

∆pp
k (t) =⟨p̃−k(t)p̃k(t)⟩

defined for k ̸= 0, where all the averages are performed with respect to the initial
state. The evolution of the variables {∆αβ

k (t)} is straightfowardly determined by the
Heisenberg equations of motion for the canonical variables

(
q̃k, p̃k

)
:

s
dq̃k
dt

=
(
pλ(sin θ)p−2(cosϕ)p − 2J̃k sin2 ϕ

)
p̃k + 2J̃k cos θ sinϕ cosϕ q̃k

s
dp̃k
dt

=−
(
λ(sin θ)p−2(cosϕ)p − 2J̃k cos2 ϕ cos2 θ

)
q̃k − (2J̃k cos θ sinϕ cosϕ

)
p̃k

(B.15)
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and reads as 

s
d

dt
∆qq
k =(4J̃k cos θ sinϕ cosϕ)∆qq

k +

+ {2pλ(sin θ)p−2(cosϕ)p − 4J̃k sin2 ϕ}∆qp
k

s
d

dt
∆qp
k =− {pλ(sin θ)p−2(cosϕ)p − 2J̃k cos2 ϕ cos2 θ}∆qq

k

+ {pλ(sin θ)p−2(cosϕ)p − 2J̃k sin2 ϕ}∆pp
k

s
d

dt
∆pp
k =− {2pλ(sin θ)p−2(cosϕ)p − 4J̃k cos2 ϕ cos2 θ}∆qp

k

− (4J̃k cos θ sinϕ cosϕ)∆pp
k

(B.16)

From equations Eq. (B.16), it is also possible to prove that, for any fixed momentum
k, the time-evolution of the three spin-wave correlators is completely specified by two
of them, as they have to satisfy the constraint(

∆qp
k (t)

)2
= ∆qq

k (t)∆
pp
k (t)− 1

4
. (B.17)

at any time t. The final result is that, within the framework of time-dependent spin-
wave theory, the dynamics of the average magnetization S⃗(t) is coupled with that of
the spin-wave correlation functions ∆αβ(t), which also the determine the spin-wave
density (see Eq. (B.9))

ϵ(t) =
1

Ns

∑
k ̸=0

∆qq
k (t) + ∆pp

k (t)− 1

2
. (B.18)

Integrating simultaneously the system of equations (B.13) and (B.16) and checking
that ϵ(t) ≪ 1, one obtains the non-equilibrium dynamics of ⟨S⃗(t)⟩, coupled to spin-
wave fluctuations. The initial conditions are determined by the initial state |ψ0⟩. The
case we studied is the one of a quench in the Hamiltonian (B.1), with pre-quenches
values given by g = g0 and J = 0, which correspond to

{sin θ(t = 0)}p−2 cos θ(t = 0) = g0/(λp), ϕ(t = 0) = 0,

∆qq
k (t = 0) = ∆pp

k (t = 0) = 1/2, and ∆qp
k (t = 0) = 0,

(B.19)

for every k ̸= 0. This also imply that ϵ(t = 0) = 0, as the initial ground state
|ψ0⟩ = |→ · · · →⟩ is perfectly coherent, with the spin on each lattice site point in
the direction of the ferromagnetic minimum of Ĥ. From the first and the second of
Eq. (B.16), we can also get an evolution equation for ϵ(t), written as

dϵ(t)

dt
= 4

J

s
cos θ sinϕ cosϕ δqq(t) + 4

J

s
(cos2 θ cos2 ϕ− sin2 ϕ)δqp(t). (B.20)

The emission rate of spin waves, dϵ/dt, is determined by the coefficients C1(θ, ϕ) =
cos θ sinϕ and C2(θ, ϕ) = cos2 θ cos2 ϕ − sin2 ϕ. These coefficients are derived from
the quadratic approximation given in Eq. (B.12) of the short-term perturbation Û in
Eq. (2.25) and expressed in the rotating frame R. Consequently, when altering the
direction of the short-ranged interaction, we expect changes in C1(θ, ϕ) and C2(θ, ϕ).
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B. Review of the non-equilibrium spin-wave theory

It is crucial to note that these coefficients remain entirely independent of the fully-
connected term Ĥ0 in the Hamiltonian.

In the fully-connected limit J̃k → 0 the evolution of the collective spin decouples
from the fluctuations, and the equations (B.13) are identical to the ones predicted
by the effective classical theory described in Ref. [47]. In this case, the spin-wave
correlators still have nontrivial dynamics, but the spin-wave density is conserved and
always vanishes.
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Appendix C

Supplemental details about chaos in
the p-spin spherical model

C.1 The Truncated Wigner approximation for the
p-spin spherical model

In this Appendix we show that, for the quantum spin glass defined in Eq. (3.19) of
the main text in the Truncated Wigner Approximation (TWA) the dynamics is ruled
by Eqs. (3.24) and that such approximation becomes exact in the classical limit. We
begin by rewriting the Weyl symbol

OW (σ,Π, t) =

∫
dξ

〈
σ − ξ

2

∣∣∣O(σ̂(t), Π̂(t))
∣∣∣σ +

ξ

2

〉
· exp

[
i
Π · ξ
h̄

]
, (C.1)

for a generic operator

O(σ̂(t), Π̂(t)) = eiĤtO(σ̂, Π̂)e−iĤt . (C.2)

evolving in the Heisenberg picture. As shown in Ref. [140], the Eq. (C.1) can be
represented in a path integral form, suitable to study both the h̄→ 0 and the thermo-
dynamic limit. Without reproducing the details of the calculation, here we just quote
the final result:

OW (σ,Π, t) =

∫
Dσ

∫
DΠ

∫
Dξ

∫
Dη OW (σ(t),Π(t))·

· exp
{ i
h̄

∫ t

0

dτ
[
η(τ) · ∂σ(τ)

∂τ
− ξ(τ) · ∂Π(τ)

∂τ
−HW

(
σ(τ) +

ξ(τ)

2
,Π(τ) +

η(τ)

2

)
+HW

(
σ(τ)− ξ(τ)

2
,Π(τ)− η(τ)

2

)
+ z(τ)ξ · σ

]}
,

(C.3)

with initial conditions σ(0) = σ, ξ(0) = ξ and Π(0) = Π. The Weyl symbol of
the Hamiltonian is defined as HW

(
σ,Π

)
= Π2/2M + VJ(σ), and we inserted a term

proportional to the Lagrange multiplier z(τ) in the action, to enforce the spherical
constraint (see also Ref. [86]).
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It is straightforward to see that TWA is equivalent to a (classical) expansion of the
action in the integrand of Eq. (C.3): indeed we obtain, at leading order, that

−HW

(
σ(τ) +

ξ(τ)

2
,Π(τ) +

η(τ)

2

)
+HW

(
σ(τ)− ξ(τ)

2
,Π(τ)− η(τ)

2

)
∼

−ξ(τ) · ∂HW (σ(τ),Π(τ))

∂σ
+ η(τ) · ∂HW (σ(τ),Π(τ))

∂Π
+O(η2, ξ2) .

(C.4)

Integrating out the variables η(τ) and ξ(τ), we obtain a δ-function constraint on the
trajectories σ(τ) and Π(τ):

∂σ

∂τ
=

Π

M
∂Π

∂τ
= −∂VJ(σ,Π)

∂σ
− z(t)σ ,

(C.5)

The Lagrange multiplier is obtained by imposing the constraint σ2 = N , that by
imposing that the total radial force appearing in the second of Eqs. (C.5) is the correct
centripetal one:

− 1

N

∂VJ(σ,Π)

∂σ
· σ − z(t) = − Π2

MN
. (C.6)

Replacing the expression of z(t) obtained in this way into Eqs. (C.5), we obtain exactly
the Eqs. (3.24) of the main text. Such expansion at leading order is exact in the
limit h̄ → 0 where the dynamics is determined by the saddle point of the action
appearing in the path-integral.

C.2 Correlation function on a longer time-scale
In this Appendix, we discuss some results obtained from the dynamics of the p-spin
model on larger time-scales. In particular, we integrate the dynamics according to the
protocol described in Section 3.2 of the main text, and compute the corresponding
correlation function C(t, t′) in Eq. (3.38). Here the averages are performed on fewer
realizations, with respect to the results presented in the main text. The results in
Fig. C.1 show that the correlation function seems to break time-translation invariance
on energy scales between −0.25 and −0.42, even though the profiles of C(tw+τ, tw), for
various tw, are less smooth due to the noise induced by the fewer realization we took.
The results shown here are anyway compatible with the ones presented in the main
text. The results shown in Fig. C.1 are anyway compatible with the ones presented in
the main text and are also qualitatively similar with the plots describing the correlation
function of a classical spin-glass in the non-ergodic phase and in the large-N limit, see
for example Fig. (10) of Ref. [82].

C.3 Details on the fidelity susceptibility
In this appendix, we prove the expression in Eq. (3.49) of the main text for the average
fidelity susceptibility χ. We also discuss how the qualitative profile of the fidelity χµ,
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Figure C.1: Several plots of the correlation function C(tw + τ, tw), for different fixed
values of the energy density E. For all the panels, the data are obtained from a
dynamics up to time tmax = 320, with the same simulation parameters described in
Fig. 3.5-(b) of the main text. The data are presented on a log-log scale.

defined in Eq. (3.50) and shown in Figg. 3.5-(a) and (b) of the main text, is independent
both of the time window [0, T ], over which we average the average correlation function
in Eq. (3.51), and of the value of the cut-off µ, provided that the latter is sufficiently
small.

We begin by recalling our definition for the fidelity susceptibility. We perturb the
Hamiltonian ĤJ = 1

2M

∑N
i=1 Π̂

2
i + VJ(σ̂) of the PSM with local magnetic fields, as

Ĥ(B) = ĤJ −
N∑
i=1

Biσ̂i , (C.7)

and define the local susceptibilities of the as

χ(i)
n =

[
− ∂2

∂B2
i

⟨En|En(B)⟩
]
B=0

, (C.8)
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where |En(B)⟩ is the n-th eigenstate of the perturbed Hamiltonian Ĥ(B) and |En⟩ =
|En(0)⟩. By standard calculations of non-degenerate perturbation theory [128], we have

χ(i)
n =

∑
m ̸=n

| ⟨En|σ̂i|Em⟩ |2

(En − Em)2
(C.9)

where En is the n-th unperturbed energy level of the Hamiltonian ĤJ . For the initial
state ρ̂ defined in Eq. (3.25) of the main text, we define the fidelity susceptibility χ as
the weighted average

χ =
1

N

N∑
i=1

∑
n

⟨En|ρ̂|En⟩χ(i)
n =

1

N

N∑
i=1

∑
n,m ̸=n

| ⟨En|ψ⟩ |2
| ⟨En|σ̂i|Em⟩ |2
(En − Em)2

(C.10)

performed over the sites, the eigenstates and the disorder configurations. Then, we
observe that χ is connected to the Fourier transform of the time-averaged correlation
function

Cav(τ) = lim
T →∞

1

T

∫ T

0

dtwC(tw, tw + τ) . (C.11)

In particular, C(tw, tw + τ) and Cav(τ) can be represented as follows:

C(tw, tw + τ) =
1

N

N∑
i=1

∑
lmn

ei(El−En)twei(El−Em)τ ⟨El|σ̂i|Em⟩ ⟨Em|σ̂i|En⟩ ⟨ψ|El⟩ ⟨En|ψ⟩ ,

Cav(τ) =
1

N

N∑
i=1

∑
n

∑
m

| ⟨En|ψ⟩ |2ei(En−Em)τ | ⟨En|σ̂i|Em⟩ |2 .

(C.12)

The second line leads immediately to the Lehmann representation of the average cor-
relation function, which reads as1

C̃av(ω) =

∫ ∞

−∞
dτe−iωτCav(τ) =

2π

N

N∑
i=1

∑
nm

⟨En|ρ̂|En⟩ | ⟨En|σ̂i|Em⟩ |2δ(ω − En + Em) .

(C.13)
The latter is immediately related to the typical susceptibility χ in Eq. (C.10) via the
expression

χ =

∫
|ω|>ωL

dω

2π

C̃av(ω)

ω2
, (C.14)

where ωL is the average spacing of the unperturbed energy levels [112].

As stated in the main text, within the TWA framework we can not compute the
fidelity directly from Eq. (C.14) for two reasons: first, our simulations are performed up
to a finite maximum time tmax, so that we can perform the average in Eq. (3.51) only
on a finite time window [0, T ], with T < tmax; second, in the limit h̄ → 0 we do not

1In our framework, C(twτ, tw) is actually defined only for τ > tw. To compute the Fourier trans-
form, we first symmetrized Cav(τ) with respect to τ .
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Figure C.2: Fidelity susceptibility χµ from Eq. (3.50) of the main text, shown as a
function of E for a fixed cutoff µ = 0.07. The average time window for the correlation
function in Eq. (3.51) is set to [0, T ], for several values of T . The data are obtained from
a dynamics up to time tmax = 320, with the same parameters described in Fig. 3.5-(b)
of the main text.

have access to the spacing ωL and have a frequency cut-off set by ∆ω = 2π/tmax. The
second issue was already solved by using the regularized fidelity χµ, from Eq. (3.50)
of the main text, in place of χ. In Fig. C.2 we also show that the profile of χµ is
qualitatively the same for a wide range of T between 0 and tmax, so that the first issue
is actually irrelevant for our results.

C.4 Calculation of the complexity
In this appendix, we compute in detail the average number of stationary configurations
of the dynamics induced by Eq. (3.24) of the main text. We start by rewriting the
Eqs. (3.42), defining such stationary points:

−∂VJ
∂σi

+ p
VJ(σ)

N
σi = 0∑

i

σ2
i = N

Πi = 0 .

(C.15)

More precisely, we look for a solution of Eq. (C.15) lying on a microcanonical manifold
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defined by the equation

E =

∑
iΠ

2
i

2MN
+
VJ(σ)

N
(C.16)

Thus, as the kinetic energy vanishes (as Πi = 0 for every i), we can rewrite the equations
for the stationary configurations in the following equivalent form:

−∂VJ
∂σi

+ p
VJ(σ)

N
σi = 0

VJ(σ)

N
= E∑

i

σ2
i = N

Πi = 0 .

(C.17)

The system of Eqs. (C.17) can be further simplified by the following two observations.
The first one is that, as we are interested in counting the number of the solutions of
Eqs. (C.17), we can just focus on the number of solutions of the equations involving
σ, as the trivial equations Πi = 0 do not bring any degeneracy. The second one is that
the equations involving σ, written in the first three lines of Eqs. (C.17), are equivalent
to the following reduced system of equations

−∂VJ
∂σi

+ p
E

N
σi = 0∑

i

σ2
i = N .

(C.18)

The equivalence can be seen by multiplying the first line of the system of Eqs. (C.18)
by σi and summing over i: by making use of the spherical constraint, one recovers the
equation E = VJ(σ)/N ; then, by substituting back E = VJ(σ)/N in the first line of
Eqs. (C.18), we obtain the first line of Eqs. (C.17).

To summarize, the number of stationary points of Eqs. (3.42) lying on a manifold
at energy density E coincides with the number of solution of the equations

−∂VJ
∂σi

+ p
E

N
σi = 0 , (C.19)

for i = 1, . . . , N , lying on the N -sphere. In the spirit of Ref. [148], in what follows
we will often write the indices for the p = 3 case, such that Ji1...ip becomes Jijk.
However, to give formulas that are valid even in the general case, we will write all the
factors containing a term p for the generic p. Then, the average number of solutions of
Eq. (C.19) on the N -sphere then reads:

N (E) =

∫
Dσ

∏
i

δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

)∣∣∣ det
(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij

)∣∣∣ ,
(C.20)

the overbar denoting the average over the disorder and the spherical constraint will
be from now on hidden in the integration measure Dσ = δ(

∑
i σ

2
i −N)

∏N
i=1 dσi. The
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absolute value of the determinant appearing on the right-hand side is just a Jacobian
factor appearing because the Eqs. (C.19) are written in an implicit form.

To compute N (E) in the large-N limit, we need two approximations. The first
one consists in assuming that there is no correlation between the last two terms in the
right-hand side of Eq. (C.20) [75, 148], that is

δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

)∣∣∣ det
(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij

)∣∣∣ ≃
δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

) ∣∣∣ det
(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij

)∣∣∣ (C.21)

so that each the average of the δ-function and the one of the determinant can be
computed independently from each other. We compute the average δ-function by using
the exponential representation

δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

)
=

∫ ∏
i

dµi
2π

e−ip/p!
∑

ikl JiklµiσkσleipE
∑

j µjσj (C.22)

and averaging out the disorder after a proper symmetrization of the exponent. Taking
into account the spherical constraint

∑
i σ

2
i = N and posing J = 1 for simplicity, we

get

δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

)
=

∫ ∏
i

dµi
2π

exp
{
−p
4

∑
j

µ2
j−

p(p− 1)

4N
(
∑
j

µjσj)
2+ipE

∑
j

µjσj

}
(C.23)

To get rid of the term (
∑

j µjσj)
2, we perform and extra Hubbard-Stratonovich trans-

formation and perform straightforwardly all the remaining Gaussian integrals, posing
again

∑
i σ

2
i = N in all our expressions. The final result is:

δ
(
− p

p!

∑
kl

Jiklσkσl − pEσi

)
≃ 1

(2π)N/2
exp

{
−N

(
E2 +

1

2
log p

2

)}
(C.24)

up to a multiplicative constant which becomes irrelevant in the thermodynamic limit.
The integration of the Jacobian factor is a bit more tricky. To perform it, we make
our second approximation by assuming that the sign of the determinant, for any fixed
configuration of the disorder, is given by the average number of negative eigenvalues
of the corresponding Hessian matrix at energy density E, that we write as Nk(E). In
formulas, this is equivalent to:∣∣∣ det

(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij
)∣∣∣ ≃ det

(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij
)
·(−1)−Nk(E)

(C.25)
k(E) being the average fraction of negative eigenvalues. Once we got rid of the modulus,
we rewrite the average of the determinant using a fermionic representation [230]:

det
(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij
)
=

∫ ∏
j

dψjdψje
−p(p−1)/p!

∑
ikl Jiklσiψkψle−pE

∑
i ψiψi

(C.26)
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Integrating out the disorder and using again an Hubbard-Stratonovich transformation
to get rid of quartic fermionic terms (see Ref. [148] for more details about this step),
we arrive at

det
(
− p(p− 1)

p!

∑
k

Jijkσk − pEδij
)
∝

∫ i∞

−i∞
dzeNG(z) (C.27)

where G(z) = z2

p(p−1)
+ log(z − pE). Plugging everything together, we have that (up to

an irrelevant prefactor)

N (E) = (−1)Nk(E) exp
{
−N

(
E2 +

1

2
log p

2

)}∫ i∞

−i∞
dzeNG(z) (C.28)

Thus, we are left with the computation of the integral

IΓ =

∫
Γ

dzeNG(z) (C.29)

along the imaginary axis Γ in the complex plane. In the thermodynamic limit N → ∞,
this goal can be achieved by using the saddle-point method [177], which we briefly
review in the following. First, we observe that, for generic z = x + iy (for x, y real
numbers), the function G(z) = u(x, y) + iv(x, y) can be decomposed in its real and
imaginary parts as

u(x, y) =
1

2
log[(x− pE)2 + y2] +

x2 − y2

p(p− 1)

v(x, y) =
2

p(p− 1)
xy + arctan y

x− pE
+ πΘ(pE − x)sign(y)

(C.30)

In summary, the saddle point method states that if we find a deformation γ of Γ in the
context plane such that:

1. v(x, y) is constant over γ,

2. u(x, y) has a global maximum along γ at some point z = z0,

3. G(z) is analytic in the closed domain encompassed by the curves Γ and γ,

we have that
IΓ = Iγ ≡

∫
γ

dzeNG(z) ≃ exp
(
NG(z0) + o(N)

)
, (C.31)

where the last asymptotic relation holds in the N → ∞ limit and is known as Laplace
method [177]. It is easy to see that the first condition is equivalent to state that γ is
parallel to ∇u(x, y), as the relation ∇u · ∇v = 0 holds for the holomorphic function
G(z). Then if ∇u(x, y) vanishes along γ, it vanishes in the whole R2 plane, so that any
maximum of u(x, y) along γ is a stationary point of u(x, y) in R2.

However, the choice of a suitable γ depends on the value of the energy density E,
because G(z) has a branch-cut on the half-line {z = x|x < pE} (see the expression of
v(x, y) in eq (C.30)) and the position in the complex plane of the stationary points of
u(x, y), given by

z±(E) =
p

2

(
E ±

√
E2 − 2(p− 1)

p

)
, (C.32)
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also depends on E. In particular, we can identify four relevant energy windows, which
we treat separately:

E < Eth ≡ −
√

2(p− 1)/p , Eth < E < 0,

0 < E < |Eth| , E > |Eth|
(C.33)

For E < Eth, we can take the curve γ as the level curve v(x, y) = v(z+(E)) = 02

(shown in Fig. C.3-(a)). It is straightforward to show that γ is the only deformation
of Γ along which u(x, y) displays a maximum, located at z = z+(E). Thus for N → ∞
we have IΓ ≃ exp{NG(z+(E))} and N (E) ≃ exp{NΣ(E)}, where

Σ(E) =
z+(E)

2

p(p− 1)
+ log(z+(E)− pE)− E2 − 1

2
log p

2
+

1

2
(C.34)

where we posed the phase k(E) = 0 in Eq. (C.28),as N (E) has to be a positive real
number. The physical meaning of having k(E) = 0 is that, in this energy range, the
integral in Eq. (C.20) is dominated by local minima of the potential VJ(σ), where the
Hessian is positive definite.

For Eth < E < 0, the only suitable deformation of Γ is γ = γ+ ∪ γ−, where γ+ and
γ− are respectively the two level curves v(z) = v(z+(E)) and v(z) = v(z−(E)) of v(z).
The two curves intersect respectively the points z+(E) and z−(E) in the complex plane
(see Fig. C.3-(b)), which in turn are maxima of u(x, y) along each of the two curves.
Then, as u(z+) = u(z−) and v(z+) = −v(z−), the N → ∞ asymptotic value of IΓ is
the sum of two contributions:

IΓ ≃ eiNv(z+) + e−iNv(z+)

2
eNu(z+) (C.35)

To give a physical interpretation to our result, let us first note that the function Nk(E),
defined in Eq. (C.25), is a non-negative integer. This is because Nk(E) is the average
number of negative eigenvalues of the Hessian matrix associated with VJ(σ). Thus,
even though the values of k(E) become dense in the interval [0, 1] as N approaches
infinity, at any finite N we must always have

(−1)Nk(E) = (−1)−Nk(E) . (C.36)

Since N (E) is a positive real number, any phase obtained from the integral IΓ must
compensate for the one coming from k(E). Therefore, with a bit of lack of rigor, we
can conclude that for all physically meaningful values of k(E), the following equalities
hold:

eiNv(z+) = (−1)Nk(E) = (−1)−Nk(E) = e−iNv(z+) (C.37)

and we write
IΓ ≃ (−1)Nk(E) exp{NΣ(E)} (C.38)

2To simplify notation, we will abuse notation by writing v(z) to represent v(Re(z), Im(z)), and
similarly for u(x, y). This allows us to write equations more compactly and avoid cluttering them
with repetitive expressions.
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Figure C.3: Color map in the complex plane representing the values assumed by the
function v(x, y) defined in the appendix. Each panel corresponds to a different, fixed
value of the energy density E, each representative of one of the four, qualitatively
different cases studied in the appendix. Here we plot the results for p = 3. The
white thick line correponds to the branch-cut of v(z) = v(x, y) in the complex plane,
where z = x + iy, while the black lines represent the integration contour Γ or its
deformation Γ+ ∪Γ−. The blue and the red lines correspond to the level curve of v(z),
passing respectively through z−(E) and z+(E). (a) E < Eth.(b) Eth < E < 0.(c)
0 < E < |Eth|.(d) E > |Eth|.
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with

k(E) =
p

2π(p− 1)
E
√
E2
th − E2 +

1

π
arctan(

√
E2
th − E2)

E
. (C.39)

and Σ(E) = Re[G(z+(E))]. Physically, having k(E) > 0 means that for E > Eth the
contribution to the integral in Eq. (C.20) is dominated by saddles having an extensive
number of unstable direction: this is why in literature Eth is referred to as the energy
threshold where the local minima cease to dominate [74, 148].

For 0 < E < |Eth|, the branch-cut crosses the integration path Γ and we can not
use the saddle-point method straightforwardly. Instead, we first notice that it exist
two curve in the complex plane, γ+ and γ−, passing respectively through the saddle
points z+(E) and z−(E) (both being maxima of u(z) along such curves) and ending up
in a point z = x1(E) on the branch-cut.
However, we observe that if we split Γ in two curves, Γ+ and Γ−, defined in such a way
that

IΓ+ =

∫
Γ+

dzeNG(z) ≡
∫ i∞

0

dzeNG(z) −
∫ x1(E)

0

dxeNG(x)

IΓ− =

∫
Γ−
dzeNG(z) ≡

∫ 0

−i∞
dzeNG(z) +

∫ x1(E)

0

dxeNG(x)

(C.40)

then we have that IΓ = IΓ+ + IΓ− and that Γ+ and Γ− can be respectively deformed on
γ+ and γ−, as shown in Fig. C.3-(c). In this way, we can use the saddle-point method to
evaluate IΓ+ and IΓ− separately. As the equalities u(z+) = u(z−) and v(z+) = −v(z−)
hold like in the previous case, we find once again that IΓ ≃ (−1)Nk(E) exp{NΣ(E)]},
with k(E) given by Eq. (C.39), Σ(E) = Re[G(z+(E))] and for E in the range [0, |Eth|].

Finally, for E > |Eth| both the z+(E) and z−(E) lie on the branch-cut, like in
Fig. C.3-(d). By some algebraic manipulations, one can show that u(x, y) has an
absolute maximum at the point z−(E) along the level curves γ+ and γ− of v(x, y) that
intersect z−(E), while u(x, y) has a minimum at the point z+(E) along the level curves
of v(x, y) that intersect z+(E). As done for the case 0 < E < |Eth| we divide once again
Γ in the curves Γ+ and Γ−, both ending in z−(E) and deform each of them respectively
along γ+ and γ− (see Fig. C.3-(d)). By observing that v(z) = ±π respectively along
γ+ and γ−, we conclude that k(E) = 1 in the energy range taken into exam, meaning
that for E > |Eth| the majority of stationary points of VJ(σ) are local maxima. At the
same time, the application of the Laplace method gives us:

Σ(E) =
z+(E)

2

p(p− 1)
+ log(z+(E)− pE)− E2 − 1

2
log p

2
+

1

2
. (C.41)

In summary, in the whole energy range studied we have

Σ(E) =
z(E)2

p(p− 1)
+ log(z(E)− pE)− E2 − 1

2
log p

2
+

1

2
(C.42)

where z(E) = z+(E) if E < |Eth| and z(E) = z−(E) if E > |Eth|, while the average
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stability index is given by

k(E) =


0 , if E < Eth

p
2π(p−1)

E
√
E2
th − E2 + 1

π
arctan(

√
E2

th−E2)

E
) , if |E| < |Eth|

1 , if E > |Eth|
(C.43)

which is the result plotted in Figure 3.4 of the main text.
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Appendix D

Derivation and details about the Mode-
Coupling equations

D.1 Derivation of the mode-coupling equations
The aim of this appendix is to derive the closed set of equations of motions (4.34)
and (4.35), governing the dynamics of the correlation function C(t, t′) and response
function R(t, t′) for a p-spin glass driven Hamiltonian:

ĤJ =
1

2M

N∑
i=1

Π̂2
i − J (t)

∑
i1<···<ip

Ji1,...,ip σ̂i1 · · · σ̂ip − B(t)
∑
i

σ̂i (D.1)

with all-to-all couplings Ji1,...,ip , independently sampled from a Gaussian distribution
with zero mean and variance J2 = 2p!/Np−1. The spins σ̂i obey the usual spherical
constraint

∑
i ⟨σ̂2

i ⟩ = N . The canonical commutation relations [σ̂j, Π̂k] = ih̄δjk hold.
The unitary dynamics generated by the Hamiltonian in Eq. (D.1) can be expressed
through a path integral on the Schwinger-Keldysh contour [230], whose generating
functional reads as:

Z[J ] =

∫
Dσ+Dσ− exp

[
i
(
Ss[σ

+]− Ss[σ
−]
)
/h̄

]
⟨σ+|ρ̂(0)|σ−⟩ . (D.2)

Here, ρ(0) represents the element of the initial density matrix at t = 0 and is chosen
to be uncorrelated a random, infinite-temperature initial state, which is uncorrelated
with the disorder. The action S can be defined in terms of a quadratic term S0 and a
disordered interaction term VJ [σ] as follows:

Ss[σ, J ] = S0[σ]−
∫ ∞

0

dt J (t)VJ [σ], (D.3)

S0[σ] =

∫ ∞

0

dt

[
M

2
σ̇2 − z(t)

2
(σ2 −N)

]
−

N∑
i=1

∫ ∞

0

dtB(t)σi(t), (D.4)

VJ [σ] = −
N∑

i1<...<ip

Ji1...ipσi1 ...σip . (D.5)
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The quadratic part S0 contains a kinetic term, chosen such that the eventual dynamical
equations are written in terms of second derivatives with respect to time. The time-
dependent Lagrange multiplier z(t) enforces the constraint

∑N
i σ

2
i = N . We also

included in S0 the coupling to the time-dependent field B(t). This action can be split
into components σ+ and σ− residing on the forward and backwards Keldysh contours
respectively, to give an action:

S[σ+,σ−, J ] = S0[σ
+]− S0[σ

−]−
∫ ∞

0

dtJ (t)
(
VJ [σ

+]− VJ [σ
−]
)

(D.6)

where the relative minus sign comes from reversing the integration limits on the reverse
contour.

D.1.1 System-Bath Coupling
The coupling between the system and bath can be treated exactly as in Ref. [86]. We
couple the quantum p-spin Hamiltonian linearly to a bath of harmonic oscilllators,
assumed to be in thermal equilibrium, for a time window [0, tb]. This coupling can be
described by the functional [230]:

Sbath =
1

h̄

∫ tb

0

dt

∫ tb

0

dt′
(
− [σ+(t)− σ−(t)]η(t− t′)[σ+(t′) + σ−(t′)] (D.7)

+i[σ+(t)− σ−(t)]ν(t− t′)[σ+(t′)− σ−(t′)]
)

where η and ν are the correlation and response functions of the bath, and are time-
translation invariant due to the bath being in equilibrium. They are given by:

η(t− t′) = −Θ(t− t′)

∫ ∞

0

dωI(ω) sin[ω(t− t′)], (D.8)

ν(t− t′) =

∫ ∞

0

I(ω) coth
(
1

2
βh̄0ω

)
cos[ω(t− t′)] (D.9)

where I(ω) is the spectral function of the bath. We choose an Ohmic bath with
I(ω) = 1

π
exp (−|ω|/Λ) and set the integration cutoff to be Λ = 5.

D.1.2 Disorder Averaging
For an initial condition ρ̂(0) uncorrelated with the disorder, we can perform the disorder
average explicitly. As in the Letter, we assume that the distribution of the disorder
variable Ji1...ip is given by the Gaussian distribution

P [J ] =

√
Np−1

πp!J2
exp

−N
p−1

p!J2

∑
i1 ̸=... ̸=ip

(Ji1...ip)
2

 (D.10)

with zero average and variance (Ji1...ip)
2 = (p!J2)/(2Np−1). The disorder average re-

duces to just averaging over the terms proportional to VJ [σ], which are the only ones
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depending on the disorder. By performing it explicitly, we obtain the disorder-averaged
generating functional:

Z[J ] =

∫
Dσ−Dσ+ exp

[
i
(
Seff [σ

+,σ−]
)]

. (D.11)

The effective action at the exponent is given by:

Seff [σ
+,σ−] = S0[σ

+]− S0[σ
−]− VD[σ

+,σ−] + Sbath[σ
+,σ−], (D.12)

VD[σ
+,σ−] =

iN

4

∫
dtdt′J (t)J (t′)J2

∑
α,β=±

N∑
i=1

αβ

(
1

N
σαi (t)σ

β
i (t

′)

)p

(D.13)

where α, β = ± are the Schwinger-Keldysh contours.

D.1.3 Transformed Order Parameters
The contribution to the action containing at most quadratic terms in the spins σαi (t)
can be written down as:

S
(2)
eff [σ

+,σ−] = −1

2

∫
dtdt′σα(t)Oαβ

p (t, t′)σβ(t′)−
∑
iα

∫
dt

h̄
αB(t)σαi (t) (D.14)

where the matrix elements are given by:

O++
p (t, t′) =

1

h̄
[M∂2t + z+(t)]δ(t− t′)− 2

h̄0
(iν(t− t′)− η(t− t′))Θ(t− tq)Θ(t′ − tq),

(D.15)

O+−
p (t, t′) =

1

h̄0
(2η(t− t′) + 2iν(t− t′))Θ(t− tq)Θ(t′ − tq), (D.16)

O−+
p (t, t′) =

1

h̄0
(−2η(t− t′) + 2iν(t− t′))Θ(t− tq)Θ(t′ − tq), (D.17)

O−−
p (t, t′) = −1

h̄
[M∂2t + z−(t)]δ(t− t′)− 2

h̄0
(iν(t− t′) + η(t− t′))Θ(t− tq)Θ(t′ − tq).

(D.18)

We now introduce new variables Qαβ(t, t′) (where α, β = ±) which will allow us to
decouple the p-interaction term:

1 =

∫ ∏
αβ

DQαβδ

(
1

N
σα(t)σβ(t′)−Qαβ(t, t′)

)
, (D.19)

∝
∫ ∏

αβ

DQαβDλαβ exp
(
− i

2
λαβ

(
σα(t)σβ(t′)−NQαβ(t, t′)

))
. (D.20)

D.1.4 Saddle-Point Equations
Using a compact notation, the final form of the generating functional is

Z[J ] =

∫
DQDλ exp{NS[Q, λ]} (D.21)
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where

S[Q, λ] =
∑
αβ

∫
dtdt′

{ i
2
λαβ(t, t′)Qαβ(t, t′)− 1

4
Qαβ(t, t

′)
}
+ logZ[Q, λ] (D.22)

and

Z[Q, λ] =

∫
Dσ−Dσ+ exp

[
− 1

2

∑
αβ

∫
dtdt′σα(t)[iOαβ

p (t, t′) + iλαβ(t, t′)]σβ(t′)+

− i
∑
α

∫
dt

h̄
αB(t)σαi (t)

]
(D.23)

is the action of a single effective spin. Then, defining the matrixMαβ(t, t′) = iOαβ
p (t, t′)+

iλαβ(t, t′), the saddle point equations for the N → ∞ limit read

Qαβ(t, t′) = ⟨σα(t)σβ(t′)⟩ = (M−1)αβ(t, t′) +m(t)m(t′) (D.24)

iλαβ(t, t′) =
p

2
F [Q]αβ(t, t′) (D.25)

The average ⟨·⟩ in Eq. (D.24) is performed over the partition function Z[Q, λ] and the
magnetization

m(t) = ⟨σ(t)⟩ =
∑
β

∫
dt′

i

h̄
(M−1)αβ(t, t′)βB(t′) (D.26)

does not actually depend on the Keldysh index α, like every other one-time quantity.
The matrices used in Eq. (D.24) are defined as

Q(t, t′) =

[
Q++(t, t′) Q+−(t, t′)
Q−+(t, t′) Q−−(t, t′)

]
, M(t, t′) =

[
M++(t, t′) M+−(t, t′)
M−+(t, t′) M−−(t, t′)

]
(D.27)

F [Q](t, t′) =

[
[Q++(t, t′)]p−1 −[Q+−(t, t′)]p−1

−[Q−+(t, t′)]p−1 [Q−−(t, t′)]p−1

]
J (t)J (t′)J2

h̄2
(D.28)

using the same notation of Ref. [86]. Manipulating Eq. (D.24), we can rewrite the
response function as

R(t, t′) =
i

h̄
[Q++(t, t′)−Q+−(t, t′)] =

i

h̄
[(M−1)++(t, t′)− (M−1)+−(t, t′)] (D.29)

so that, fixing α = +1 in Eq. (D.26), the magnetization becomes

m(t) =

∫
dt′R(t, t′)B(t′) (D.30)

Using Eq. (D.25) the variable λαβ(t, t′) and applying the matrix M on both sides of
Eq. Eq. (D.24), we obtain the dynamical equations for all the two-point correlations
on the Keldysh contour, represented in the following compact form:

iOp ⊗Q(t, t′) = I − p

2
F [Q]⊗Q(t, t′) + S B(t) ⟨σ(t′)⟩ (D.31)

where the matrix elements Sαβ = α does not depend on the time indices.
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D.1.5 Dynamical Equations
Following the same prescription described in Ref. [86], it is straightforward to obtain a
closed set of dynamical equations for the response function R(t, t′) and the (symmetric)
correlation function

C(t, t′) =
1

2
[Q+−(t, t′) +Q−+(t, t′)] (D.32)

In particular, the equations of motion for the response function R(t, t′) are obtained
by taking the difference of the ++ and +− components of Eq. (D.31), while the ones
for C(t, t′) are obtained by taking the addition of the +− and −+ components. After
some algebra, the result is given by:

[m∂2t + z(t)]R(t, t′) = δ(t− t′) +

∫ t

0

dt′′Σ(t, t′′)R(t′′, t′), (D.33)

[m∂2t + z(t)]C(t, t′) =

∫ t

0

dt′′Σ(t, t′′)C(t′′, t′) +

∫ t′

0

dt′′D(t, t′′)R(t′, t′′)+ (D.34)

+B(t)

∫ t′

0

dt′′R(t′, t′′)B(t′′)

where we have defined the self-energy Σ(t, t′) and the vertex D(t, t′) as the following:

Σ(t, t′) = −4η(t− t′)Θ(tq − t)Θ(tq − t′)+ (D.35)

− pJ (t)J (t′)J2

h̄
Im

[
C(t, t′)− ih̄

2
R(t, t′)

]p−1

,

D(t, t′) = 2h̄0ν(t− t′)Θ(tq − t)Θ(tq − t′)+ (D.36)

+
pJ (t)J (t′)J2

2
Re

[
C(t, t′)− i

2
(h̄R(t, t′) + h̄R(t′, t))

]p−1

.

D.2 The evolution equation for the Lagrange mul-
tiplier

In this section we discuss how to self-consistently determine the Lagrange multiplier
z(t). The approach typically used in literature [86] consists in evaluating Eq. (4.35) at
equal times t′ = t:

z(t) =

∫ t

0

du{Σ(t, u)C(u, t) +D(t, u)R(t, u)} −m∂2tC(t, t
′)
∣∣
t′→t

. (D.37)

However, we observe that Eq. (D.37) leads to ambiguities, as it tautologically depends
on the second derivative of C(t, t′) at equal times. While this issue is irrelevant when
the system is either coupled to an external bath [86] or evolves under energy-conserved
dynamics [89, 143], Eq. (D.37) does not determine z(t) for the driven dynamics and
in absence of an external bath that we study for t > tb. We solve this issue by
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determining z(t) straightforwardly from the spherical constraint. Specifically, we take
the total derivative of the constraint equation C(t, t) = 1 multiple times and obtain:

0 =
d

dt
C(t, t) = lim

t′→t
∂tC(t, t

′)

0 =
d2

dt2
C(t, t) = lim

t′→t
[∂2tC(t, t

′) + ∂t∂t′C(t, t
′)]

0 =
d2

dt3
C(t, t) = lim

t′→t
[∂3tC(t, t

′) + 3∂2t ∂t′C(t, t
′)]

(D.38)

where we also made use of the symmetry relation C(t, t′) = C(t′, t). It is easy to realize
that the first of Eqs. (D.38) corresponds to some of the equal-time conditions described
in Eqs. (4.41), that the second one is useless, as ∂t∂t′C(t, t′) can not be computed
using Eqs.(4.34) and (4.35), and that the third one can be rewritten in terms of the
derivatives, with respect to t and t′ respectively, of both sides of Eq. (4.35). After some
algebra, we obtain:

dz

dt
=

∫ t

0

du{∂tΣ(t, u)C(t, u) + ∂tD(t, u)R(t, u) + 3Σ(t, u)∂tC(t, u) + 3D(t, u)∂tR(t, u)}+

+ ∂tB(t)

∫ t

0

duR(t, u)B(u) + 3B(t)

∫ t

0

du∂tR(t, u)B(u) (D.39)

From Eq. (D.39) it is easy to determine the Lagrange multiplier in a causal form, as

z(t) =

∫ t

t0

ds

∫ s

0

du{∂sΣ(s, u)C(t, u) + ∂sD(s, u)R(s, u) + 3Σ(s, u)∂sC(s, u) + 3D(s, u)∂sR(s, u)}

+

∫ t

t0

ds

∫ s

0

du
{
∂sB(s)R(t, u)B(u) + 3B(s)∂sR(s, u)B(u)

}
+ z(t0) (D.40)

provided that we can access the value z(t0), for some t0. Thus we first solve numerically
the dissipative dynamics generated from Eqs. (4.34) and (4.35), for 0 < t < tb, using
the standard expression from Eq. (D.37), then solve the "closed dynamics" for t > tb us-
ing the expression from Eq. (D.40), imposing continuity with the value z(tb), obtained
from the previous algorithm. In the following, we will always set m = J = 1 and p = 3.

D.3 Predictor-corrector scheme for the Mode-Coupling
equations

To solve the Eqs. (4.34) and (4.35) of the main text, we first introduce a discrete time
step ∆t and rewrite the two continuous times indices as t = n∆t and t′ = m∆t. We
use a "forward" discretization scheme for the time derivatives, that is

∂tf(t, t
′) ≈ (fn+1,m − fn,m)/∆t , (D.41)
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for every two-point function f(t, t′). With this notation, the discretized version of
Eqs. (4.34) and (4.35) equations is


Rn+1,m = Rn,m +Π(R)

n,m∆t/M

Cn+1,m = Cn,m +Π(C)
n,m∆t/M

Π
(R)
n+1,m = Π(R)

n,m − zn∆tRn,m + δn,m +∆tF (1)
n,m

Π
(C)
n+1,m = Π(C)

n,m − zn∆tCn,m +∆tF (2)
n,m

where



F (1)
n,m=∆t

n∑
j=m

ΣnjRjm

F (2)
n,m=∆t

{ m∑
j=0

DnjRjm+
n∑
j=0

ΣnjCjm
}

Σn,m=−
pJnJmJ2

h̄
Im

[
Cn,m−

ih̄

2
Rn,m

]p−1

−4ηn,mΘ(tb−n∆t)Θ(tb−m∆t)

Dn,m=
pJnJmJ2

h̄
Re

[
Cn,m−

ih̄

2

(
Rn,m+Rm,n)

]p−1

+2h̄νn,mΘ(tb−n∆t)Θ(tb−m∆t)

(D.42)
where Jn = J (n∆t). The equal time conditions (4.41) here assume the simple form

Cn,n = 0 , Rn,n = Π(R)
n,n = Π(C)

n,n = 0 . (D.43)

It is easy to note that Eqs. (D.42) are causal, implying that we can iteratively compute
each minor matrix C0≤i≤n,0≤j≤n from the knowledge of C0≤i≤n−1,0≤j≤n−1. To under-
stand in detail why, we notice that the row Cn,0≤j≤n−1 can be straightforwardly com-
puted from the minor C0≤i≤n−1,0≤j≤n−1 using Eqs. (D.42), then the column C0≤i≤n−1,n

is immediately obtained from the symmetry relation Cn,m = Cm,n and the diagonal
element Cn,n = 1 is given by the spherical constraint. The same reasoning holds for
the response function, with the only difference that Rn,m is not symmetric and instead
R0≤i≤n−1,n = 0 due to causality.

We aim to integrate Eqs. (4.34) and (4.35) to some finite time tmax = nsteps∆t. With
the discretization we chose, the error we make is of order nsteps∆t2. In order to increase
the precision of our results, we improve our method by employing a predictor-corrector
algorithm, already used in a similar context in Ref. [193]. In a nutshell, we first predict
the (n + 1)-th row of the correlation and response function using Eq. (D.42), then we
correct our result by inserting the result of the prediction in the right-hand sides of the
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following equations of motion:

Π
(R)
n+1,m = Π(R)

n,m −∆t
znRn,m + zn+1Rn+1,m

2
+ δn,m +∆t

F
(1)
n,m + F

(1)
n+1,m

2

Π
(C)
n+1,m = Π(C)

n,m −∆t
znCn,m + zn+1Cn+1,m

2
+ δn,m +∆t

F
(2)
n,m + F

(2)
n+1,m

2

Rn+1,m = Rn,m +∆t
Π

(R)
n,m +Π

(R)
n+1,m

2m

Cn+1,m = Cn,m +∆t
Π

(C)
n,m +Π

(C)
n+1,m

2m

(D.44)

For each n-th step, we take a loop over the predictor-corrector scheme NL times. In
this way, the error we make is of order nsteps∆t(1+NL). For the results presented in the
main text, we have always fixed NL = 2.

At this point, we observe that Eqs. (D.44) alone still do not determine the Lagrange
multiplier zn, which is in principle determined by the non-causal equation (equivalent
to Eq. (D.37) of the main text):

zn = −
Π

(C)
n+1,n − Π

(C)
n,n

∆t
+∆tF (2)

n,m (D.45)

As long as the system is coupled to a thermal bath, we solve this issue by making
the physical assumption that, due to dissipation, zn converges at large times to a
stationary value, as also observed in Ref. [86]. Due to this asymptotic convergence, we
can safely replace the difference Π

(C)
n+1,n − Π

(C)
n,n with the one evaluated at the previous

time step, Π
(C)
n,n − Π

(C)
n,n−1, in Eq. (D.45). However, this substitution is not valid for

t > tb, where the dynamics is isolated and periodically driven. In latter scenario, we
proceed as discussed in Section D.2 and include the discretized version of Eq. (D.39) in
the system of Eqs. (D.42), so that also zn can be computed using the predictor-corrector
algorithm.
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