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Résumé
L’hypothèse ergodique se situe au cœur de la mécanique statistique, mais de nombreux
systèmes physiques s’en écartent lorsqu’ils sont hors d’équilibre. Les mécanismes à l’origine
de cette brisure d’ergodicité donnent naissance à des phénomènes physiques riches, mais
posent également des défis considérables, en particulier pour les simulations numériques.
Au fil des années, diverses méthodes ont été développées pour relever ces défis dans des
contextes spécifiques.

Cette thèse s’appuie sur ces approches établies et les adapte afin d’étudier des problèmes
dans des systèmes physiques où de telles techniques ne sont pas encore courantes. Ce faisant,
nous cherchons à mettre en évidence de nouvelles perspectives, tant sur les méthodes elles-
mêmes que sur les systèmes désordonnés que nous examinons. Notre travail se concentre
sur trois problèmes principaux dans l’étude plus large de la rupture d’ergodicité dans les
systèmes désordonnés.

Premièrement, nous revisitons la correspondance entre les amas aléatoires (appelés amas
FK–CK) et les modèles de spins sur réseau. Cette correspondance, fondée sur une probabilité
de liaison, devient problématique dans les systèmes frustrés où cette probabilité peut devenir
négative. En utilisant des techniques exactement solubles, telles que la méthode des cavités
sur le réseau de Bethe, nous analysons la validité et les limites de la construction des amas
FK–CK dans ces cas frustrés et proposons des extensions possibles lorsque l’ordre verre de
spin émerge.

Deuxièmement, nous adaptons l’algorithme Monte Carlo SWAP— initialement développé
pour les verres structuraux — aux modèles de spins sur réseau. Dans cette approche, les
spins sont dotés de longueurs aléatoires, et des échanges de spins à longue portée sont
alternés avec des mises à jour conventionnelles par retournement de spin unique, toutes
deux acceptées selon le principe de l’équilibre détaillé. En appliquant cette méthode au
modèle d’Edwards–Anderson bidimensionnel, nous montrons une accélération significative
de la relaxation à basse température et un échantillonnage efficace de l’état fondamental
avec un coût computationnel réduit. Cette adaptation apporte également un éclairage sur
l’efficacité remarquable de la dynamique SWAP dans les systèmes de particules et met en
évidence les liens entre l’évolution dynamique et les paysages d’énergie libre.

Enfin, nous étudions le rôle des résonances à l’échelle du système dans la transition de
localisation à plusieurs corps (MBL) de la chaîne de spins XXZ en champ aléatoire. Nous
utilisons un cadre récemment développé qui caractérise les statistiques des amplitudes de
transmission entre des configurations multi-corps éloignées dans l’espace de Hilbert. Cette
approche fournit un diagramme de phase en accord quantitatif avec d’autres méthodes
récentes qui tiennent également compte des événements rares dans les observables en espace
réel. De plus, nous proposons une image physique dans laquelle les propriétés de transport
sont gouvernées par des chemins de délocalisation sur le graphe de l’espace de Hilbert (ou
de Fock).

Pris ensemble, ces travaux illustrent l’intérêt de transférer des outils conceptuels et
algorithmiques entre différents domaines, offrant des stratégies pratiques pour relever les
divers défis posés par la rupture d’ergodicité dans les systèmes désordonnés.
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Abstract
The ergodic hypothesis lies at the heart of statistical mechanics, yet many physical systems
deviate from it under out-of-equilibrium conditions. The mechanisms behind this ergodicity
breaking give rise to rich physical phenomena but also pose significant challenges, particularly
for numerical simulations. Over the years, a variety of methods have been developed to
address these challenges in specific contexts.

This thesis builds on these established approaches, adapting them to investigate problems
in physical systems where such techniques are not yet standard. By doing so, we aim to
uncover new insights into both the methods themselves and the disordered systems we are
studying. Our work focuses on three main problems within the broader study of ergodicity
breaking in disordered systems.

First, we revisit the mapping between random clusters (referred to as FK–CK clusters)
and lattice spin models. This mapping, based on a bond probability, becomes problematic in
frustrated systems where the probability can turn negative. Using exactly solvable techniques,
such as the cavity method on the Bethe lattice, we analyze the validity and limitations of
the FK–CK cluster construction in these frustrated cases and propose possible extensions
when spin glass order emerges.

Second, we adapt the SWAP Monte Carlo algorithm—originally developed for structural
glasses—to lattice spin models. In this approach, spins are endowed with random lengths,
and long-range spin exchanges are alternated with conventional single-spin-flip updates,
both accepted according to detailed balance. Applying this method to the two-dimensional
Edwards–Anderson model, we demonstrate a significant acceleration of relaxation at low
temperatures and efficient ground-state sampling with little computational cost. This
adaptation also offers insights into why SWAP dynamics is so effective in particle systems
and sheds light on connections between dynamical evolution and free-energy landscapes.

Finally, we investigate the role of system-wide resonances in the many-body localization
(MBL) transition of the random-field XXZ spin chain. We employ a recently developed
framework that characterizes the statistics of transmission amplitudes between distant
many-body configurations in Hilbert space. This approach yields a phase diagram in quanti-
tative agreement with other novel methods that also account for rare events in real-space
observables. Moreover, we propose a physical picture in which transport properties are
governed by delocalization paths on the Hilbert (or Fock) space graph.

Collectively, these studies illustrate the value of transferring conceptual and algorithmic
tools across domains, yielding practical strategies for addressing the diverse challenges
posed by ergodicity breaking in disordered systems.
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Introduction
From Atoms to Probabilities

The question of what the world is made of—whether it is continuous or composed of funda-
mental units—has fascinated human cultures for millennia. Across civilizations, thinkers
have sought to explain the diversity of natural phenomena by imagining underlying con-
stituents: tiny particles [1], ‘seeds’ [2, 3], or principles whose interactions give rise to
the visible world. This search for the ultimate ‘building blocks’ of reality appears in many
traditions: in India, the Vaisheshika school proposed minute eternal particles (anu) [4, 5];
early Buddhist and Jain philosophies envisioned aggregates of fundamental entities [6, 7];
Islamic scholars such as Al-Ghazali and the Ash‘arite school developed atomistic theories to
address change and creation [8, 9]; and Chinese natural philosophy, while often empha-
sizing continuous transformations through concepts like yin–yang and the five phases, also
entertained notions of minimal constituents in Mohist thought [2, 3].

Modern physics, however, developed along a particular historical trajectory rooted in
Europe, where the atomistic ideas of the Greek philosophers Democritus and Leucippus
became especially influential [1]. Their vision of indivisible atoms moving in the void—
combining and separating to form all things—endured through centuries and was later
revitalized by the mechanistic worldview of Newtonian mechanics. In this framework,
knowing the positions and velocities (or momenta) of all particles at a given instant, at
least in principle, would allow one to predict the entire future of a physical system. This
represents reductionism in its purest form: the belief that the microscopic laws, if followed
faithfully, can explain everything about the macroscopic world [10, 11].

However, we encounter an insurmountable obstacle. Even the tiniest grain of sand
contains on the order of 1019 atoms. Solving Newton’s equations for each of them is
impossible, not only practically but conceptually: the amount of information required
is impossible to acquire—much less analyze—in a million lifetimes. There is, moreover,
a deeper and subtler issue: even if we could follow every trajectory, the behavior of the
whole may not always be reduced to the sum of its parts. Phenomena such as temperature,
phase transitions, magnetism, or turbulence are emergent properties of matter: they arise
only from the collective behavior of countless interacting constituents. Understanding this
interplay between microscopic determinism and macroscopic emergence is at the heart of
modern physics [12].

Faced with these challenges, physicists abandoned the purely deterministic perspective
and adopted a probabilistic approach. Instead of solving every equation of motion, we
describe the system statistically: macroscopic properties are understood as average quantities.
The probabilities associated to the real physical observables do not reflect randomness
in nature itself—the microscopic laws may still be deterministic—but rather our limited
knowledge of the precise state of the system.

This shift, pioneered by Boltzmann and later formalized by Gibbs, was revolutionary.
By focusing on probabilities rather than precise trajectories, statistical mechanics builds a
bridge between the microscopic and macroscopic worlds. From this framework, we can
predict measurable properties like temperature, pressure, magnetization, and even explain
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Introduction

dramatic collective phenomena like boiling or magnetic ordering (see [11, 13]).
These macroscopic quantities are the very observables we measure in the laboratory.

Humans have been recording them for centuries: for example, Torricelli invented the mercury
barometer in 1643 to measure atmospheric pressure; Galileo developed one of the first
thermoscopes (a precursor to the thermometer) around 1593; and Fahrenheit introduced the
mercury thermometer with a standardized scale in 1714. They underpin not only physics
but also many vital domains of human activity, including climate science, energy production,
and industrial processes.

Yet a subtle question remains: what is the meaning of the averages we calculate in
theory? In experiments, we measure averages over time: the pressure of a gas on a wall, the
temperature of a liquid, concentration of a solute in a mixture. These macroscopic quantities
fluctuate due to the inaccessible microscopic dynamics underlying them and are therefore
naturally described as outcomes of a stochastic process. What probability distribution,
within our mathematical model, describes the fluctuations of these experimentally observed
quantities?

The answer is provided by the ergodic hypothesis. It asserts that, for systems in equilibrium,
the probability distribution describing long-time measurements of macroscopic quantities
is the same as the distribution obtained by considering all microscopic states compatible
with the macroscopic constraints of the system—such as total energy, temperature, or
particle number. This equivalence allows us to compute macroscopic properties as ensemble
averages from the statistical distribution of microstates, rather than by explicitly tracking
their deterministic evolution.

In practice, this framework is tested not only through experiments on real physical
systems, but also through numerical simulations of the underlying microscopic models. In the
latter case, one simulates the mathematical model under specified conditions and compares
the resulting observables with the predictions obtained from the ensemble description.
Understanding this latter approach, and addressing the challenges it faces, constitutes the
central focus of this thesis.

The Ergodic Hypothesis

Consider a system of classical particles—described by Newton’s laws of motion, or any
other equivalent mathematical formalism like Hamilton’s equations. The state of a d-
dimensional classical system composed of N particles is completely characterized by the
canonical coordinate qi, and its conjugate momentum pi, associated to each individual
particle (i = 1, ..., N).

As such, the relevant physical information of the system can be encoded in the Hamil-
tonian H = H({pi}, {qi}). In phase space Γ, the microstate of the system is defined by a
2Nd-dimensional vector X = ({qi}, {pi}) that indicates the position of a representative
point in this high-dimensional space. The evolution of this representative point is fully
determined by Hamilton’s equations of motion; thus, in principle, describing the system
amounts to solving these coupled deterministic equations for the N particles that compose
it.

However, a macroscopic system typically contains on the order of 1023 particles. Even
if one were able to write down a Hamiltonian that accurately describes the system, the
complexity of its interactions and the presence of deterministic chaos would render such an
approach practically futile. Instead, statistical mechanics provides a feasible way out of this
conundrum by adopting the aforementioned probabilistic approach.

From a given initial position, the evolution of the representative point describes a trajec-
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tory in phase space. We can estimate its position by defining a time-dependent probability
distribution ϱ(X; t) such that ϱ(X; t) dΓ is the probability that the system is in within a
volume dΓ of the phase space around X at time t. The time evolution of this probability
distribution is given by

dϱ

dt
=
∂ϱ

∂t
+

Nd∑
i=1

(
∂ϱ

∂qi

dqi
dt

+
∂ϱ

∂pi

dpi
dt

)
, (1)

For a Hamiltonian system, the distribution function ϱ(X; t) is constant along trajectories in
phase space. Equivalently, the phase space volume is preserved under the time evolution
generated by the Hamiltonian flow. This expressed by the Liouville equation

∂ϱ

∂t
= −

Nd∑
i=1

(
∂H
∂pi

∂ϱ

∂qi
− ∂H
∂qi

∂ϱ

∂pi

)
, (2)

where the expression on the right-hand side is the Poisson bracket {H, ϱ}PB
Without knowing the specific details involved in this evolution—that is a fundamental

problem in statistical mechanics—one expects that in an equilibrium state of the system the
probability distribution ϱ becomes stationary, yielding

∂ϱ

∂t
= {H, ρ}PB = 0 (3)

his stationary distribution ϱ({qi}, {pi}) has a vanishing Poisson bracket with the Hamilto-
nian. Consequently, it can be expressed as a function of the conserved quantities of the
system—most notably, the Hamiltonian itself—so that ϱ = ϱ(H({qi}, {pi})).

Formally, the ergodic hypothesis states that, once the system has evolved for a sufficiently
long time to reach equilibrium—characterized by the relaxation time τR—the following
equality holds for any observable O measured over a time window T :

O ≡ lim
T→∞

1

T

∫ T+τR

τR

dtO({qi(t)}, {pi(t)}) =
∫
dΓ ϱ(H({qi}, {pi}))O({qi}, {pi}) ≡ ⟨O⟩ .

(4)
Although this statement cannot be formally proven for all physical systems (it has only
been rigorously established for certain cases [14–18]), the predictive success of statistical
mechanics has led to its widespread acceptance.

The Importance of Timescales
The validity of the equality in Eq. (4) removes the need to specify the detailed initial condi-
tions of a system or to explicitly solve Hamilton’s equations. However, many physical systems
fail to satisfy the conditions required to fulfill the ergodic hypothesis. This phenomenon is
referred to as ergodicity breaking.

One of the central questions in the study of ergodicity is determining what qualifies as a
sufficiently long time in defining the relaxation time τR—the timescale over which a system
reaches equilibrium, causing the ensemble probability distribution ϱ to become stationary.
In many physical systems, τR increases with system size, τR(N), and can eventually exceed
experimentally accessible timescales. Consequently, for macroscopic systems, τR may become
extremely large, and observables measured over finite observation windows τO ≪ τR may
fail to reflect the true equilibrium value, instead capturing only transient, out-of-equilibrium
behavior.
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These apparent breakdowns of ergodicity are often associated with the emergence of
new forms of order and, in many cases, with critical points where continuous (second-order)
phase transitions occur and thermodynamic singularities appear. However, this connection
is not universal. In particular, for structural glasses the nature of the transition remains
debated: a clear order parameter is lacking, and it is still uncertain whether their dramatic
dynamical slowdown corresponds to an underlying thermodynamic phase transition or a
purely dynamical phenomenon [19–21].

While the loss of ergodicity signals the onset of rich and complex physical phenomena,
it also poses major challenges for their theoretical and numerical study. Ferromagnets,
spin glasses, and structural glasses provide paradigmatic examples of these mechanisms,
illustrating both well-understood cases of spontaneous symmetry breaking and more subtle
situations where the nature of ergodicity breaking in finite-dimensions is less understood.

Spontaneous Symmetry Breaking
In this thesis, we focus primarily on spin systems, which are simplified mathematical models
of magnetic materials. The orientation of the atoms’ magnetic moments is represented by
a classical spin degree of freedom, σi ∈ {−1,+1}, assigned to each site of a d-dimensional
lattice with N sites. For now, we will leave the geometry of the lattice to be generic.

The standard model in this framework is the Ising model, described by the Hamiltonian

H({σi}) = −J
∑
⟨ij⟩

σiσj − hext
∑
i

σi , (5)

The two parameters in the model are the bond strengths J , that control the pairwise
interaction between neighboring spins, and the external magnetic field hext. For J > 0,
interactions are said to be ferromagnetic and they favor the alignment of spins, whereas
J < 0 defines anti-ferromagnetic bonds, and they favor the anti-alignment of neighboring
spins where they point in opposite directions. The external field hext favors the alignment of
the spins with its own direction (i.e. causing them to be aligned with hext). We will consider
the case of the ferromagnet where J > 0.

The microstates of the system correspond to the 2N possible spin configurations {σi} =
(σ1, σ2, . . . , σN) ∈ C , where C denotes the configuration space. The thermodynamic proper-
ties of the system are often studied in the canonical ensemble, where the system is in contact
with a thermal bath with inverse temperature3 β = 1/T . The equilibrium properties of the
system are therefore dictated by the Gibbs-Boltzmann distribution

ϱ(H({σi}), β) =
e−βH({σi})

Z , Z(β) =
∑

{σi}∈C

e−βH({σi}) (6)

where Z(β) is the canonical partition function and the main observable is given by the global
magnetization density, given by

m =
1

N

N∑
i=1

⟨σi⟩ , (7)

with ⟨· · ·⟩ taken over the distribution of Eq. (6), and thus corresponds to an ensemble
average.

In absence of the external field hext = 0, the Hamiltonian has a discrete Z2 symmetry as
it is invariant under a global spin reversal H({σi}) = H({−σi}). As a result, the ensemble
average of σi vanishes i.e. m = ⟨σi⟩ = 0.

3We adopt natural units, setting kB = 1 throughout the thesis
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One can verify experimentally that this is the case at high temperatures, where the
material is demagnetized and any experimental average of its magnetic properties over
time will yield a zero magnetization—apart from sub-extensive fluctuations—this defines
the paramagnetic phase. However, upon lowering the temperature magnetic moments
tend to align, and below some critical temperature Tc the system develops a spontaneous
magnetization m ̸= 0 signaling the emergence of a ferromagnetic phase.

This apparent contradiction is no contradiction at all, the system in the ferromagnetic
phase has two possible equilibrium states related by symmetry: one with positive magneti-
zation m > 0, and another one with negative magnetization −m. These two states are fully
degenerate, and thus compatible equilibrium states for the system at that temperature. For
large enough times the system should visit these two states in the same proportion yielding
m = 0. However, this ‘large enough’ time is astronomically large and not accessible to the
finite time windows τO of experimental observations.

In practice, it is impossible to perfectly isolate a system from small external magnetic
fields. As the experimentalist lowers the temperature through the transition, these residual
fields bias the system toward one of the two symmetry-related orientations. In the theoretical
model, the same effect can be described by introducing a small pinning field (or equivalently,
boundary conditions of fixed spins pointing in the desired direction) that selects one of the
two possible equilibrium states.

If the system is cooled below the critical temperature Tc with this small bias and then
allowed to equilibrate, taking the thermodynamic limit N → ∞ ensures that the system
remains in the selected state. In this limit, even allowing t→ ∞ will not lead to nucleation
events that restore symmetry: the system is locked into one configuration, and ergodicity
is effectively broken. This is known as spontaneous symmetry breaking, as the selected
equilibrium state breaks the Z2 symmetry of the underlying Hamiltonian. Mathematically, is
simply expressed as

lim
δh→0−

lim
N→∞

⟨σi⟩ = − lim
δh→0+

lim
N→∞

⟨σi⟩ ̸= 0 . (8)

This statement implies that the underlying phase space is partitioned in two disconnected
components Γ = Γ+ ∪ Γ−, where Γ+ contains configurations with positive magnetization
and Γ− contains the symmetry related ones with negative magnetization. In other words,
the Gibbs measure is split into sub-components, called pure states, and the ensemble average
is taken as

⟨· · ·⟩ =
∑
α

wα ⟨· · ·⟩α . (9)

For the ferromagnet there are two pure states, both of them related by symmetry and with
equal probability wα = 1/2 (without any boundary conditions nor pinning fields), yielding

m = ⟨σi⟩ =
1

2
⟨σi⟩+ +

1

2
⟨σi⟩− = 0 . (10)

The fundamental thermodynamic properties of the microscopic model can be extracted
from the free-energy density defined by

f(β) = − 1

βN
lnZ(β) . (11)

In particular, the global minimum of the free energy density defines the equilibrium state in
the thermodynamic limit N → ∞.

Expressing the free-energy density as a function of the order parameter—in this case,
the global magnetization density m—provides a clear illustration of spontaneous symmetry
breaking. At high temperatures, the free-energy density exhibits a single global minimum at
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m

f(m)

T > Tc

m

f(m)

T < Tc

Fig. 1: Sketch of the free-energy density as a function of magnetization m. At high tempera-
tures, T > Tc (blue curve), the system has a single minimum at m = 0. At low temperatures,
T < Tc (red curve), two symmetric minima appear at nonzero m.

m = 0, corresponding to a macroscopic equilibrium state—a unique pure state. However,
as the temperature decreases, the free-energy density develops two symmetric minima at
nonzero values of m, indicating the emergence of two pure states related by the symmetry
m→ −m. This transition reflects the spontaneous breaking of the underlying symmetry, as
shown in Fig. 1.

This mechanism of ergodicity breaking is straightforward. In a ferromagnet at low
temperatures, the nature of the pure states is known a priori: they correspond to configura-
tions with positive or negative magnetization. Consequently, we also know the form of the
symmetry-breaking field that selects one of these states—an external field hext > 0 selects
the positively magnetized state, while hext < 0 selects the negatively magnetized one.

While spontaneous symmetry breaking always implies ergodicity breaking, the reverse
is not necessarily true. Ergodicity can break down through various mechanisms, including
integrability, external driving, and quenched disorder—the latter being the primary focus of
this thesis.

Disorder can be introduced into the Ising model by allowing both ferromagnetic (Jij > 0)
and antiferromagnetic (Jij < 0) interactions between spins. At very low temperatures, it
becomes impossible to orient all spins in a way that minimizes the energy of every bond
simultaneously. In such cases, the system is said to be frustrated. An example is shown
in Fig. 2, which illustrates a single frustrated plaquette in a square lattice. Here, the
antiferromagnetic bond J41 remains unsatisfied, and flipping either of the interacting spins
σ1 or σ4 merely shifts the frustration to a different bond.

At very low temperatures, the presence of quenched disorder can give rise to a new kind
of order known as the spin glass phase, which exhibits a rich and complex phenomenology.
In contrast to the ferromagnetic Ising model, where ergodicity breaking is understood as a
consequence of spontaneous symmetry breaking, the mechanism of ergodicity breaking in
spin glasses is more subtle.

In finite dimensions, models with a non-trivial spin glass phase transition are not exactly
solvable, making it difficult to unambiguously characterize the nature of the breakdown
of ergodicity. However, in the infinite-dimensional limit these systems are solvable, and
the low-temperature spin glass phase reveals a qualitatively different form of ergodicity
breaking. Specifically, the Gibbs measure decomposes into a multitude of pure states that
are not related to one another by any simple symmetry, such as spin reversal.
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Fig. 2: Frustrated plaquette in a square lattice. A plaquette is frustrated when∏(ij)∈P Jij < 0

where P is the set of all possible bonds, here P = {(12), (23), (34), (41)}. Ferromagnetic
bonds (solid blue lines) favor aligned spins, while antiferromagnetic bonds (red dashed
lines) are satisfied when spins are anti-aligned. The coexistence of both types of interactions
leads to frustration in the plaquette, as exemplified by the unsatisfied bond J41.

Glassiness
Spin glasses are metallic alloys composed of strongly interacting magnetic ions embedded
in a weakly interacting, non-magnetic host material. These alloys are initially in a liquid
state, and when rapidly cooled, the magnetic ions become fixed at random positions within
the solid structure [22].

The interactions between pairs of magnetic ions are oscillatory and depend on their
relative positions. These are described by the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction [23–25]

J(|ri − rj|) ∼
cos(k · (ri − rj))

|ri − rj|3
, (12)

where k is the wavevector, whose modulus is of the order of the Fermi vector.
The associated magnetic impurities—that is, the ions’ magnetic moments—interact be-

tween each other through couplings that vary in both magnitude and sign. These interactions
are sample-dependent, as each instance of the cooling process can fix the impurities at
different random positions. These interactions between magnetic moments are thus a form
of quenched disorder.

To capture the essential phenomenology of these systems, Edwards and Anderson [26]
proposed a minimal model closely related to the Ising model of Eq. (2.7). This model consists
of classical spins interacting on a lattice, but with random interactions reflecting the disorder
introduced by the fixed, random positions of the ions.

In zero external magnetic field, the Hamiltonian is

HJ(σi) = −
∑
⟨ij⟩

Jijσiσj , (13)

The couplings Jij are typically drawn from a random distribution, often taken to be either
Gaussian,

P(Jij) =
1√
2πJ2

exp

(
− J2

ij

2J2

)
, (14)
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or bimodal,
P(Jij) =

1

2
[δ(Jij − J0) + δ(Jij + J0)] . (15)

As a result, any given pair of spins can interact with ferromagnetic (Jij > 0) or antiferro-
magnetic (Jij < 0) bonds. This randomness introduces frustration: not all bonds can be
simultaneously satisfied, and when frustration is strong enough, a spin glass phase emerges.

Unlike in a ferromagnet—where, at low temperatures, spins tend to align in the same
direction—the equilibrium configurations of a spin glass at low temperatures consist of spins
pointing in random directions. Despite this apparent disorder, most spins remain frozen in
place, exhibiting only small thermal fluctuations, with only minor thermal fluctuations that
do not lead to large-scale reorientation—unlike the paramagnetic phase.

The orientation of these frozen spins depend on the specific disorder realization of the
bonds {Jij}, which is why we explicitly label the Hamiltonian with the index J . The term
‘glass’ draws an analogy with structural glasses: just as window glass lacks the regular atomic
structure of a crystal, spin glasses lack a clear magnetic ordering pattern. Nevertheless, even
though samples are microscopically different, experimental spin glass realizations display
the same average macroscopic behavior, indicative of a new type of thermodynamic order.

For a given disordered sample, the local orientation of the spins can be characterized
by the local magnetization mi = ⟨σi⟩. In the paramagnetic phase, this quantity vanishes
because all spins fluctuate freely, yielding zero magnetization on average. In contrast, in the
spin glass phase, spins remain frozen on average at each site, so mi stays nonzero for a fixed
realization of the disorder.

However, the sign of this frozen magnetization can vary between different disorder
realizations. To eliminate this sign ambiguity, we consider m2

i and then average over many
disorder realizations. This leads to the definition of the global order parameter

qEA ≡ 1

N

∑
i=1

[m2
i ] =

1

N

∑
i=1

[⟨σi⟩2] , (16)

where [· · · ] denotes the average over disorder realizations {Jij}. This is the Edwards–
Anderson (EA) order parameter, originally introduced in the seminal paper describing the
model in Eq. (13) [26].

In principle, we could extract this information from the calculation of the free-energy
density of the model. However, the presence of quenched disorder results in a sample
dependent free-energy density fJ(β) = 1

βN
lnZJ(β). The relevant quantity to be probed is

instead the quenched averaged free-energy density

f = [fJ(β)] = − 1
βN

[lnZJ(β)] . (17)

In finite dimensions, an exact analytical computation of the free-energy density is not
feasible, and one must rely on approximations—most notably the mean-field approximation,
which becomes exact in the limit of infinite spatial dimensions (d→ ∞). In this limit, the
system loses its short-range character, and the underlying lattice becomes equivalent to the
fully-connected case, meaning that each spin interacts with every other spin in the system.
The Hamiltonian in this mean-field limit takes the form

HJ({σi}) = −1

2

∑
i̸=j

Jijσiσj , (18)

where the factor of 1/2 avoids double-counting spin pairs. To ensure that the free-energy
remains extensive in the thermodynamic limit, the variance of the coupling distribution
P(Jij) is rescaled by the system size N .
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This model is known as the Sherrington-Kirkpatrick model [27, 28]. In this context, the
average of the quenched free-energy density [fJ(β)] can be obtained by the replica trick

[lnZJ ] = lim
n→0

[Zn
J ]− 1

n
. (19)

The core idea is to compute Zn
J for integer n and then perform an analytical continuation to

calculate the limit n→ 0. In this middle step, we define a replicated partition function

Zn
J =

∑
{σ(a)

i }

exp

(
−β
∑
a

HJ

({
σ
(a)
i

}))
, (20)

where we have introduced a new index a to distinguish between spin degrees of freedom
corresponding to the n different replicas.

These replicas serve as a formal tool for computing the quenched average of the free-
energy density. They are introduced as n non-interacting copies of the system, all sharing
the same disorder realization {Jij}. In the calculation of the free energy—details omitted
here—averaging over the disorder decouples the site degrees of freedom, but at the cost of
introducing effective correlations between replicas.

From this calculation, after performing a saddle-point calculation, we identify the order
parameter is identified as the overlap between two replicas a and b

qab ≡
1

N

N∑
i=1

σ
(a)
i σ

(b)
i , (21)

but we still need to take the subtle limit of n→ 0, where n is the dimension of the overlap
matrix qab. To do this we need to find a parametrization of the matrix qab as a function its
entries and dimension n.

In principle, nothing distinguishes one replica from another, as they are introduced
purely as a mathematical artifact to aid the calculation. This observation led Sherrington
and Kirkpatrick to propose the replica symmetric (RS) solution, which assumes

qab = q0 + (1− q0)δab , (22)

meaning that all distinct replicas have the same mutual overlap q0, while the overlap of a
replica with itself is exactly one, since it corresponds to the same spin configuration.

Evaluating the limit yields the extrema of the free-energy, which admit two possible
solutions: q0 = 0, corresponding to the paramagnetic phase, and q0 ̸= 0, identifying the
spin glass phase below a finite transition temperature TSG. However, this replica symmetric
solution presents a serious issue: the entropy becomes negative at zero temperature. Fur-
thermore, de Almeida and Thouless proved that the saddle-point corresponding to the RS
solution is unstable in the spin glass phase. Consequently, the replica symmetric ansatz must
be replaced by a more general formulation to correctly describe the spin glass phase.

The correct solution needed the breaking of the replica symmetry (i.e. qab ̸= q0 for a ̸= b)
meaning that different replicas are non-trivially correlated. The correct replica symmetry
breaking solution was introduced and described by Parisi in a list of seminal articles [29–34].
The basic idea is that between any pair of replicas, they can take different k+1 (≤ n) overlap
values. This is known as k-step replica symmetry breaking (RSB). The value of these replicas
are ordered in a hierarchical structure [35]

0 ≤ q0 ≤ q1 ≤ · · · ≤ qK−1 ≤ qk = 1. (23)
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and the overlap matrix qab is arranged in black sub-matrices of size mj according to these
values where

qab = qj if mj+1 ≤ |a− b| ≤ mj , (24)
and the sub-matrix sizes are organized as

n = m0 ≥ m1 ≥ · · · ≥ mk ≥ mk−1 satisfying mj+1

mj

∈ N . (25)

a representation of this construction is shown in Fig. 3. For 1-step RSB the off diagonal
elements of the matrix can have two possible overlap values q0 and q1. In general, for k-step
RSB we will have k + 1 possible values of the off-diagonal elements.

Fig. 3: Construction of the overlap matrix following Parisi’s hierarchical scheme. The
main diagonal, shown as gray dashed lines, is fixed to 1, representing the overlap of a
configuration with itself. For k = 1, the matrix is divided into large sub-matrices whose
off-diagonal elements are all equal to q1. At k = 2, each of these sub-matrices is further
subdivided into smaller blocks, with the off-diagonal elements inside each new block set to
q2. Image adapted from Ref. [36].

The correct SK solution corresponds to the case of full replica symmetry breaking (f-RSB)
where the limit k → ∞ is taken. In this limit, we obtain a physical value for the entropy at
low temperatures, recovering the expected result of being zero at zero temperature. This
solution has been recently proven to be exact for mean-field models by two mathematical
physics, F. Guerra [37] and M. Talagrand [38].

This solution is not merely a mathematical device to reach the correct result—it encap-
sulates essential physical features of the spin glass phase in the mean-field limit. In this
phase, the off-diagonal qab represent the possible values of the overlap between different
equilibrium configurations. Recalling the decomposition of the Gibbs measure into pure
state components α, this indicates that, in the spin glass phase, the phase space itself is
fragmented into a multitude of pure states. These states are related to each other through
their mutual overlaps.

The set of possible overlaps between pure states depends on the level of RSB used to
describe the low-temperature phase. For instance, in the case of 1-step RSB, the pure states
are grouped into two distinct clusters: within the same cluster, all states share the same
overlap q0, whereas states belonging to different clusters have a mutual overlap q1. As k
increases, the structure of overlaps becomes more intricate.

10
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In this context, recall that the thermal average of any observable can be expressed as a
sum over the contributions from the different pure states—partitioning the phase space into
sub-components of the Gibbs measure

⟨· · ·⟩ =
∑
α

wJ
α ⟨· · ·⟩α , (26)

where ⟨· · ·⟩α denotes the thermal average restricted to the pure state α, and wJ
α is the

statistical weight of that state for a given realization of the quenched disorder J , with∑
αw

J
α = 1. In the spin glass phase, unlike in the ferromagnet, these weights fluctuate from

sample to sample.
We can then introduce the overlap between two pure states α and β

qJαβ ≡ 1

N

N∑
i=1

⟨σi⟩α ⟨σi⟩β =
1

N

N∑
i=1

m
(α)
i m

(β)
i , (27)

where ⟨σi⟩α denotes the thermal average of spin i restricted to the pure state α. In other
words, the overlap of local magnetizations between two pure states α and β.

If we consider a single pure state α = β and average over disorder realizations, we
recover the definition of the Edwards–Anderson (EA) order parameter. In this sense, qEA
characterizes the properties of a single pure state α, a description that is exact at the
transition temperature TSG. However, as the temperature decreases below TSG, additional
pure states appear, and the EA order parameter becomes blind to this richer structure of the
phase space.

Instead, one needs to look into the statistics of different overlaps along the low-temperature
phase, that is characterized by the probability distribution

PJ(q) =
∑
αβ

wJ
αw

J
βδ(q − qJαβ) . (28)

Consequently, qEA is directly related to the self-overlap qαα, that corresponds to the maximum
overlap value.

Therefore, the most complete order parameter for the spin glass transition is the overlap
probability distribution P(q), defined as

P(q) = [PJ(q)] =
∑
α,β

wJ
α w

J
β δ
(
q − qJαβ

)
, (29)

This quantity clearly distinguishes between different phases:
• In the paramagnetic phase, P(q) = δ(q), since typical overlaps vanish.
• In the ferromagnetic phase (are any other replica-symmetric phase, e.g. the spin glass

exactly at TSG) P(q) = 1
2
δ(q− qEA)+

1
2
δ(q+ qEA), where qEA = m2 for the ferromagnet.

• In a k-step RSB phase, P(q) contains multiple delta peaks corresponding to distinct
overlap values between pure states. As k → ∞, in the full RSB (f-RSB) phase, these
peaks merge into a continuous distribution, and the possible overlaps form an interval,
as illustrated in Fig. 4.

In this sense, the entire low-temperature phase T < TSG in the SK model is ‘critical’ as
more pure states appear upon decreasing the temperature—these pure states are organized
in a ultrametric structure [39], with a distance between them defined by their overlaps

d(α, β) =
1

2
(qEA − qαβ) . (30)
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−1 0 1 𝑞

P(𝑞) Paramagnetic phase

−1 0 1−𝑞EA 𝑞EA 𝑞

P(𝑞) Ferromagnetic phase

−1 0 1−𝑞EA 𝑞EA 𝑞

P(𝑞)Spin glass phase fRSB

Fig. 4: Different forms of the overlap distribution P(q) for three different phases.

Translating the free-energy plots of Fig. 1 to the mean-field spin-glass setting is subtle.
There is no single global magnetization; instead the system is described by the N local
magnetizations {mi}, which span a high-dimensional free-energy landscape. This landscape
contains many global minima, each corresponding to the set of local magnetizations of a
pure state α, denoted {m(α)

i }. They are separated by barriers whose heights grow with
N and become effectively infinite in the thermodynamic limit. This leads to ergodicity
breaking: once the system is in a given pure state, equilibrium dynamics cannot take it to
another on any finite timescale.

Beyond pure states, the free-energy landscape also exhibits an exponential number of
higher-free-energy local minima (metastable states). These do not dominate the equilibrium
measure but govern the out-of-equilibrium relaxation from random initial conditions. These
metastable states appear from local minima of the Thouless-Anderson-Palmer (TAP) free-
energy [40]. This TAP free-energy is calculated from self-consistent equations of the local
magnetizations, that were introduced to describe the spin glass phase before Parisi’s RSB
solution. The presence of such a vast number of metastable states makes the dynamics
extremely slow: the system can wander among many nearby minima—or even flat regions—
and become trapped for long times before finding deeper valleys [41–43].

Some schematic representations of these free-energy landscapes are shown in Fig. 5.
These are three-dimensional projections of an inherently high-dimensional space, so they
should be interpreted with caution—important features, such as the proliferation of nearly
flat regions, are not explicitly visible.

Conceptually, these sketches illustrate the mechanism of ergodicity breaking in mean-
field spin glasses. Unlike the ferromagnetic case shown in Fig. 1, where ergodicity is broken
between just two symmetry-related pure states, spin glasses possess a vast multiplicity of
pure states along with numerous long-lived metastable states. Dynamically, the system can
become trapped in these states for extremely long times, preventing full exploration of phase
space within accessible observation windows.

The phenomenology described above for the spin-glass phase is strictly valid only above
the upper critical dimension Du = 6 [45]. Whether Parisi’s mean-field picture persists
in lower dimensions remains an open and debated question [46], and several alternative
theoretical descriptions have been proposed for finite-dimensional systems.

One of the main competing approaches is the droplet theory of spin glasses [47]. This
framework proposes that the low-temperature phase contains only two equilibrium states,
related to each other by a global spin-flip symmetry. In this view, the mechanism of ergodicity
breaking is essentially the same as in a standard ferromagnet. The crucial difference is that
here the pure states are composed of spins pointing in many different directions—determined
by the specific realization of the quenched disorder—rather than in a uniform orientation.
Consequently, the corresponding symmetry-breaking field is a random field, not a simple
uniform one. In this framework, the spin glass can be thought of as a ‘disguised ferromagnet’
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Fig. 5: Sketches of the free-energy density landscape close to equilibrium. (a) A single
minimum, typical of high temperatures (paramagnetic phase). (b) Multiple minima in a
1-step RSB model at temperatures below TSG. The parameters q0 and q1 = qEA indicate the
overlap between configurations of different equilibrium states and configurations within the
same one, respectively. (c) The hierarchical organization of equilibrium states with relatively
low barriers between them as realized in the Sherrington-Kirkpatrick model. Image taken
from Ref. [44].

exhibiting conventional spontaneous symmetry breaking but in a highly nontrivial, disorder-
dependent form.

The Dynamical Point of View

In essence, ergodicity breaking is a statement about the dynamics of a system and can often
be identified by the system’s persistent memory of its initial conditions. In what follows, we
introduce key observables commonly used in numerical and theoretical studies to probe this
dynamical behavior.

Unlike the position and momenta of classical particles, Ising degrees of freedom are
bimodal variables with no well defined time derivative and have no intrinsic dynamics—also
seen from the vanishing of its Poisson bracket {σi,H}. To associate a dynamical evolution
to the spin degrees of freedom, one assumes that the presence of a thermal bath induces
fluctuations in the form of stochastic spin moves.

When a system is in contact with a thermal bath at temperature T , the coupling with the
bath tends to drive it towards thermal equilibrium at that temperature. In equilibrium, the
microscopic configurations follow a stationary probability distribution and satisfy microscopic
reversibility: the probability of transitioning from one equilibrium configuration C to another
C ′ is exactly equal to that of the reverse process.

This condition is known as detailed balance, which for spin configurations reads

Peq({σi})P({σi} → {σ′
i}) = Peq({σ′

i})P({σ′
i} → {σi}) , (31)

where Peq({σi}) is the equilibrium probability of finding the system in configuration σi—for a
spin system in equilibrium, this is given by the Gibbs–Boltzmann distribution of Eq. (6)—and
P(σi → σ′

i) is the transition probability from configuration σi to σ′
i.

In practice, these transition probabilities are often implemented via theMetropolis–Hastings
algorithm, that accepts or rejects possible microscopic moves according to the probability.

Pacc = min(1, e−β∆E) (32)

where the energy difference ∆E is the difference between the current configuration {σi}
and the proposed configuration {σi} for the transition σi → σ′

i.
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Although many choices of microscopic moves are possible [48], in the present discussion
we restrict ourselves to the standard single-spin-flip dynamics, in which the proposed move
consists solely of flipping the spin at a randomly chosen site σi → −σi.

In this setting, we investigate how the system approaches equilibrium through a thermal
quench. In such a process, the system is first prepared in a configuration representative
of a given temperature Tinitial. Then, this configuration is suddenly ‘quenched’ to a new
temperature Tfinal. The term quench refers to an abrupt change in a control parameter (here,
the temperature), after which the system evolves according to the chosen dynamics. At the
new temperature, the microscopic configurations change step by step, and—over time—the
system relaxes toward the equilibrium state corresponding to Tfinal.

In the presence of a second-order phase transition, the dynamical behavior of the config-
urations strongly depends on the relative values of the initial and final temperatures with
respect to the critical temperature. The spatial correlations of the configurations can differ
substantially between the distinct phases, and the relaxation dynamics may become very
slow. To illustrate these effects, we focus once again on the ferromagnetic Ising model.

The Ferromagnetic Ising model
In thermal equilibrium, approaching the critical temperature Tc from the high-temperature
phase, the equilibrium correlation length ξeq diverges. This signals the emergence of long-
range spatial order, as spins become correlated over arbitrarily large distances. Near the
transition, the divergence follows the scaling law

ξeq ≃ |T − Tc|−ν , (33)

where ν is a universal critical exponent.
The initial configuration for a quench is necessarily representative of some equilibrium

phase. A perfectly aligned state corresponds to Tinitial = 0, while a completely random spin
configuration is the equilibrium state at Tinitial = ∞. Any sudden change of temperature
therefore drives the system out of equilibrium, and its subsequent relaxation consists in
progressively acquiring the spatial correlations characteristic of the final temperature Tfinal.

As a result, the nature of this relaxation depends strongly on the relative positions of
the initial and final temperatures with respect to Tc. To probe these dynamical processes,
we monitor time-dependent observables such as the magnetization and the autocorrelation
function:

m(t) =
1

N

N∑
i=1

⟨σi(t)⟩ , C(t, tw) =
1

N

N∑
i=1

⟨σi(t) σi(tw + t)⟩ , (34)

where σi(t) is the spin at site i and time t, and tw is the waiting time (or age) elapsed after
the quench before starting the measurement. The magnetization density m(t) measures the
instantaneous global alignment of spins, while the autocorrelation C(t, tw) quantifies how
much of the configuration present at time tw survives after an additional time t. In simulations,
the averages ⟨· · · ⟩ are taken over different initial configurations and/or independent thermal
histories for statistical accuracy.

To capture spatial structure, we also consider the equal-time spatial correlation function:

C(r, t) =
1

N

N∑
j=1

N∑
k=1

⟨σj(t)σk(t)⟩
∣∣∣
|rj−rk|=r

, (35)

which measures the degree of alignment between spins separated by a distance r at a given
time t. A characteristic growing length R(t, T ) can be extracted from the decay of C(r, t) and
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its evolution is central to distinguishing different dynamical regimes after a quench. This is
normally defined as

R(t) =

∫
ddr r2C(r, t)∫
ddr r C(r, t)

, (36)

or simply as the distance r at which the correlation function has decay over some character-
istic value (i.e. 1/e its value at t = 0).

This growing length directly measures the typical size of magnetic domains that are
aligned in the same orientation at time t.

Quench from Tinitial = ∞ to Tfinal > Tc

In this situation, the random initial configuration and the target temperature share the
same type of correlations, so the relaxation is fast. More importantly, the relaxation time τR
remains finite even in the thermodynamic limit, where the system size tends to infinity. As
a result, the autocorrelation decays exponentially,

C(t, tw) ∼ e−(t−tw)/τR ; . (37)
After this short transient, the magnetization relaxes to its equilibrium value (zero in this
case), and the associated correlation length converges to the equilibrium value at the final
temperature, R(t) → ξeq(Tfinal).

The same reasoning applies if the initial configuration is perfectly ordered (Tinitial = 0)
and we quench to Tfinal < Tc. In this case, the initial correlation length is already effectively
infinite, so the quench merely adds thermal fluctuations. The relaxation time is again finite,
and the system reaches equilibrium exponentially fast.

Quench from Tinitial = ∞ to Tfinal < Tc

This is referred to as a subcritical quench, and its out-of-equilibrium dynamics is well
described by the coarsening or domain growth picture.

The initial configuration is completely uncorrelated with the target equilibrium state,
and no external magnetic field is present to favor a uniform spin alignment. Instead, spins
tend to align locally with their neighbors.

Due to spontaneous symmetry breaking, different regions of the system independently
choose one of the two symmetry-related equilibrium states: one with positive magnetization
and the other with negative magnetization. This produces a mosaic of magnetic domains of
opposite orientation, which subsequently compete and evolve in time. Snapshots of a time
evolution of a spin system displaying this domain growth is shown in Fig. 6

The typical domain size grows algebraically:
R(t) ∼ t1/zd ; , (38)

with zd = 2 for single-spin-flip dynamics.
In a finite system, thermalization occurs once one orientation takes over the entire sample

of volume Ld, i.e., when R(t) ≈ L. In the thermodynamic limit, L → ∞, domain growth
continues without bound and the relaxation time becomes effectively infinite.

Autocorrelations reveal aging—the property that the system’s relaxation slows down as
it gets older. The decay of autocorrelations depends on both the time difference t− tw and
the waiting time tw, because R(tw) at the start of the measurement sets the scale for further
evolution. An example of this behavior is shown in Fig. 7.
(i) For short time differences, t−tw ≪ tw, the autocorrelation decays to a quasi-equilibrium

value determined by correlations within the domains: Cst(t− tw) ≃ qEA = m2.
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Fig. 6: Snapshots of domain growth in the two-dimensional Ising model with spin-flip
dynamics and Metropolis acceptance rates. These snapshots are obtained from a simulation
of a L× L square lattice with periodic boundary conditions and L = 5000. We start from
a random initial configuration and perform the quench to T ≃ 0.73Tc. Image taken from
Ref. [48].

(ii) For long time separations, t−tw ≫ tw, the system exhibits aging and the autocorrelation
follows the scaling form

Cag(t, tw) ∼ f

(
R(t)

R(tw)

)
, (39)

reflecting the slow restructuring of the domain mosaic.

A compact way to express this stationary + aging decomposition is

C(t, tw) = Cst(t− tw) + Cag

(
R(t)

R(tw)

)
. (40)

Quench from Tinitial = ∞ to Tc

The target equilibrium state is at the continuous phase transition point, where the correlation
length is infinite and correlations decay algebraically in space. The system is quenched
from a completely disordered configuration (short-range correlations) into a state that is
scale-free at equilibrium.

After the quench, the system develops correlated regions whose typical size Rc(t) grows
algebraically:

Rc(t) ∼ t1/zc , (41)
with zc the dynamic critical exponent, that in general depends on the dimensionality of the
problem (zc ≃ 2.17 for the 2d Ising model with single-spin-flip dynamics). It is expected to
saturate to the value zc = zd = 2 for d > Du = 4—withDu being the upper critical dimension
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Fig. 7: Plot of C(t, tw) for a random initial configuration of the 2d Ising model, suddenly
quenched to Tfinal = 0.66Tc. The waiting time increases in steps of 500 from 2000 up to 4000
(bottom to top). The golden horizontal line indicates the EA order parameter m2 = 0.97,
corresponding with the equilibrium value within the largest domain. Figure adapted from
Ref. [48].

of the Ising model—according to renormalization group calculations [49]. Unlike in the
subcritical case, these regions are critical clusters rather than pure up/down domains—their
internal correlations already exhibit power-law decay.

Again, in a finite system, equilibrium is reached when Rc(t) ≈ L, with a relaxation time
scaling as

τR ∼ Lzc ; . (42)
In the thermodynamic limit, L→ ∞, τR diverges and the system never fully equilibrates at
finite times. This divergence of τR at criticality is the manifestation of critical slowing down:
as the correlation length grows, it takes increasingly longer for fluctuations to relax, making
the dynamics extremely slow near Tc.

Two-time autocorrelations again reveal aging, but here the stationary and aging parts
combine multiplicatively,

C(t, tw) = Cst(t− tw) Cag

(
Rc(t)

Rc(tw)

)
, (43)

where Cst(τ) ∼ τ−2β/(νzc) with β, ν being the Ising critical exponents.

(i) For short time differences, t− tw ≪ tw, the stationary part dominates and the autocor-
relation decays as

C(t, tw) ≃ (t− tw)
−2β/(νzc), (44)

reflecting the quasi-equilibrium decay of critical correlations.

(ii) For long time separations, t − tw ≫ tw, both the stationary and aging parts matter,
and one finds

C(t, tw) ≃ t−b
w fc

(
Rc(t)

Rc(tw)

)
, b =

2β

νzc
, (45)
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In a critical quench to Tc, the growth of Rc(t) under local dynamics leads to large
relaxation times, τR ∼ Lzc , making it computationally expensive to obtain well-equilibrated
critical configurations. This phenomenon is known as critical slowing down. The Fortuin–
Kasteleyn–Coniglio–Klein (FK–CK) cluster construction [50–52] provides a way to overcome
this bottleneck.

In the FK–CK framework, spins with the same orientation are grouped into clusters by
adding bonds between them with probability

pB = 1− e−2βJ . (46)

This probabilistic construction exactly encodes the equilibrium spatial critical correlations of
the ferromagnetic Ising model.

Monte Carlo algorithms such as Swendsen–Wang and Wolff [53–55] exploit this property
by using FK–CK clusters as collective update units: entire clusters are flipped in a single
stochastic move. This dynamics reproduces the correct critical correlations in a single update
step, effectively bypassing the slow coarsening process of local updates and eliminating
critical slowing down for unfrustrated systems.

However, the FK–CK construction is not applicable in general to systems with frustration.
Even when a ferromagnetic phase exists, the presence of antiferromagnetic bonds can
make pB negative, rendering the cluster-building rule unfeasible for numerical applications.
In such cases, no equivalent cluster-based algorithm exists for the generic paramagnetic–
ferromagnetic transition in frustrated systems.

Core Idea: FK–CK clusters with frustration

Although negative probabilities arising in frustrated spin systems prevent the direct
use of these clusters in numerical simulations, their analytical continuation to negative
values enables the FK–CK definition to be explored in exactly solvable models.
The frustrated random-bond Ising model—where the fraction of ferromagnetic and an-
tiferromagnetic bonds is controlled by the parameter ρ—is exactly solvable on certain
geometries. In this setting, closed-form analytical expressions can be derived to inves-
tigate the properties of these clusters and to determine whether critical correlations
persist as ρ is tuned away from the pure ferromagnetic Ising limit.
Such analysis makes it possible to assess whether the original definition continues to
capture the critical correlations of the paramagnetic–ferromagnetic transition, even
though these clusters remain unusable for direct numerical simulations.

Slow Dynamics in Glassy Systems
Like the paramagnetic–ferromagnetic transition, approaching the spin glass critical temper-
ature TSG from above is accompanied by critical slowing down: the dynamical correlation
length grows only algebraically in time, leading to long relaxation times. More strikingly,
this sluggish dynamics does not disappear in the low-temperature spin glass phase.

In contrast to the ferromagnet, where ordering proceeds rapidly once inside the ordered
phase, spin glasses must still build up a complex frozen pattern of correlations whose
structure is not known a priori. This makes equilibration extremely slow, and even more
subtle phenomena such as temperature chaos may come into play: the equilibrium spin
configuration changes dramatically under an arbitrarily small temperature variation once
the system size exceeds a characteristic overlap length [46, 56–58]. As a result, a quench
from T1 < TSG to T2 < T1 still exhibits aging and slow relaxation.
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As in the ferromagnetic case, the two-time autocorrelation function is the standard probe
of aging, now averaged also over disorder realizations:

C(t, tw) =
1

N

N∑
i=1

[
⟨σi(t)σi(t+ tw)⟩

]
, (47)

where [· · · ] denotes the average over different quenched disorder samples.
The key difference lies in the spatial correlations. In a spin glass, the emergent order is

not captured by the spin–spin correlation function in real space, but rather by correlations
between replicas. In a given sample, the spins’ orientations appear completely random, and
no coherent pattern is visible spatially. However, when one considers the overlaps between
two replicas—configurations with the same disorder realization but independent thermal
histories—a clear pattern emerges in the low-temperature phase. This is illustrated in Fig. 8,
where the two spin configurations within the spin glass phase look completely random, yet
their overlap reveals well-defined correlated regions.

Fig. 8: Illustration of the spin overlap in a spin glass. The left panels show configurations
of two independent real replicas of the same disorder sample, evolved for a long time in
the low-temperature phase using Monte Carlo dynamics. The color map represents the
magnetization in the XY plane, averaged along the Z axis, which vanishes in both replicas.
In contrast, the right panel shows the spin overlap defined, where well-defined correlated
regions become visible. Adapted from Ref. [59].

This observation motivates the definition of the four-point correlation function.

C4(r, t) =
1

N

N∑
i,j=1

|r⃗i−r⃗j |=r

[〈
σ
(a)
j (t)σ

(b)
j (t) σ

(a)
i (t)σ

(b)
i (t)

〉]
, (48)

or, more compactly, as the correlation of the local overlaps

C4(r, t) =
1

N

N∑
i,j=1

|r⃗i−r⃗j |=r

[
⟨qi(t)qj(t)⟩

]
, (49)
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with qi(t) = σ
(a)
i (t) σ

(b)
i (t). The characteristic length over which C4(r, t) decays defines the

spin glass growing length, estimated as

R(t) = 2

∫ ∞

0

dr C4(r, t) , (50)

following the definition of Ref. [60].
A qualitatively similar phenomenon occurs in particle systems that undergo a glass

transition where the dynamics become arrested. These systems are known as glass-forming
liquids or structural glasses.

Glasses are amorphous solids formed when a liquid is cooled—or compressed—rapidly
enough to avoid crystallization. In this state, particles remain disordered as in a liquid, but
their dynamics is so slow that the material behaves mechanically like a solid.

The transformation from a supercooled liquid to a glass is called the glass transition Tg.
It is not a sharp thermodynamic phase transition, but rather but an empirical quantity: it
marks the temperature below which the material becomes so viscous that it effectively stops
flowing. This slowdown occurs without any significant change in the spatial structure of the
liquid [19].

Upon supercooling, the structural relaxation time τR increases extremely rapidly, often by
14–15 orders of magnitude over a temperature range of only about 30% [19]. This dramatic
growth is commonly described by the Vogel–Fulcher–Tammann (VFT) law,

τR(T ) ≃ τ0 exp

[
A

T − T0

]
, (51)

where T0 is the putative divergence temperature at which dynamics would completely freeze
if the VFT form held all the way down.

The extreme slowdown of structural relaxation near the glass transition is a major
challenge for both experiments and simulations. Standard molecular dynamics or Monte
Carlo methods become impractical when τR exceeds accessible simulation timescales.

The recently proposed SWAP algorithm [61–63] offered a new way to bypass this bottle-
neck. It was originally devised in poly-disperse mixtures of particles—particles of different
diameters—that exhibit the same properties of standard glass-formers. It incorporates
non-local exchange moves between particles in addition to local displacements of particles
generated by Monte Carlo or molecular dynamics moves.

In systems where the method is efficient, SWAP moves may be rarely accepted; however,
when they are, the relaxation dynamics is significantly accelerated. In some cases, the SWAP
algorithm can achieve speed-ups of up to 1010 compared to traditional methods, enabling
the sampling of equilibrated configurations at very low temperatures that were previously
inaccessible.

In some theoretical scenarios, notably the Random First-Order Transition (RFOT) theory,
T0 is identified with the Kauzmann temperature TK , marking a genuine thermodynamic glass
transition where an underlying static order would emerge. RFOT attempts to explain the
phenomenology observed in glass-forming liquids through finite-dimensional corrections of
mean-field (infinite dimensional) models of spin glasses [64–68].

In these mean-field models, the sluggish dynamics are directly associated to the rugged
free-energy landscape presented in Fig. 5 with barriers that become infinite in the ther-
modynamic limit. RFOT suggests that barriers between states remain finite if the model
is considered on a finite-dimensional lattice and that the dramatic slowdown in structural
glasses is tied to the existence of a plethora of metastable amorphous states in the free-energy
landscape [69]. In this view, the dramatic slowdown of dynamics stems from the growth of
static correlations associated with this emerging order. Whether such a transition exists in
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real, finite-dimensional systems remains a central open question in glassy physics [19, 21,
70].

Other competing theories propose that the glass transition does not stem from any
underlying thermodynamic singularity, but instead emerges purely from dynamical con-
straints that become increasingly restrictive at lower temperatures or higher densities, where
particles cluster and their motion becomes arrested [71, 72]. This perspective is often
explored through kinetically constrained models—minimalist models devoid of any thermo-
dynamic phase behavior—in which the dynamics are governed by simple rules specifying
how individual particles can move within the system [73–75].

In this context, the remarkable acceleration achieved by the SWAP algorithm was later
interpreted as direct evidence against static, cooperative explanations of the glass transition,
such as that proposed by the RFOT theory [76]. The central argument is that artificially
altering the dynamics of a system should not substantially modify its static properties. Since
SWAP introduces only artificial dynamical moves yet succeeds in dramatically accelerating
relaxation, this suggests that the slow structural relaxation time may not originate from an
underlying thermodynamically driven growing length, but rather from purely dynamical
constraints that SWAP moves effectively bypass.

Along these lines, recent studies have examined the impact of the SWAP algorithm on the
dynamics of kinetically constrained models [77]. In these models, SWAP likewise produces
a dramatic acceleration of structural relaxation, reinforcing the view that its efficiency does
not depend on growing correlations associated with an emerging thermodynamic order.

Core idea: Testing the SWAP method in spin lattice systems
The SWAP method can be adapted to spin lattice systems by assigning each classical
Ising spin a positive-definite amplitude (or length), in direct analogy to the polydis-
persity of particle sizes in glass-forming systems. These “soft spins” enable non-local
exchange Monte Carlo moves that preserve detailed balance and guarantee conver-
gence to equilibrium. In disorder-free systems, such as the standard Ising model, this
modification is expected to have little effect. However, in spin systems with quenched
disorder—such as the Edwards–Anderson model—non-local exchanges can affect the
local energetic constraints, increasing the acceptance rate of Monte Carlo moves and
potentially accelerating the relaxation of spin degrees of freedom.
Unlike kinetically constrained models and glass formers, the Edwards–Anderson
system lacks dynamical constraints: its slow dynamics arises from the competition
between ferromagnetic and antiferromagnetic interactions introduced by quenched
disorder. Studying the effect of SWAP in this setting therefore offers a complementary
perspective to its investigation in kinetically constrained models.

Quantum Ergodicity
In classical systems, a pure state typically refers to amacroscopic configuration—characterized,
for example, by the magnetization m in the ferromagnet, or the overlap q in the spin glass
phase. In contrast, a pure state in quantum mechanics refers to a complete description of a
system’s wavefunction, represented by a state vector in Hilbert space.

Any quantum pure state evolves according to the time-dependent Schrödinger equation

Ĥ |Ψ(t)⟩ = iℏ
∂

∂t
|Ψ(t)⟩ , (52)

where |Ψ(t)⟩ is a properly normalized ket-vector in the associated Hilbert space of the
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Hamiltonian, i.e. ⟨Ψ(t)|Ψ(t)⟩ = 1. Any pure state can be expressed as a superposition of the
eigenstates of the Hamiltonian, whose stationary eigenstates satisfy

Ĥ |ψα⟩ = Eα |ψα⟩ . (53)

The time evolution of a generic stationary quantum state |Ψ(0)⟩ is given by 4

|Ψ(t)⟩ = e−iĤt |Ψ(0)⟩ =
∑
α

Cαe
−iEαt |ψα⟩ . (54)

Accordingly, the probability of finding the system in a given eigenstate |ψα⟩ is pα = |Cα|2 =
|⟨ψα|Ψ(0)⟩. This probability remains constant over time, as the evolution operator just
introduces a phase factor eiEαt that disappears under complex conjugation.

For a local observable Ô in the Hamiltonian eigenbasis, its expectation value is

⟨Ô⟩t = ⟨Ψ(t)|Ô |Ψ(t)⟩ =
∑
α,β

C∗
αCβe

i(Eα−Eβ)tOαβ

=
∑
α

|Cα|2Oαα +
∑
α̸=β

C∗
αCβe

i(Eα−Eβ)tOαβ ,
(55)

where Oαβ = ⟨ψα| O |ψβ⟩.
We say that Ô reaches equilibrium if its expectation value evolves from its initial value

toward a unique, time-independent value with only small fluctuations over experimental
timescales. However, the form of Eq. (55) suggests that a generic many-body pure state
cannot equilibrate in general, for several reasons.

(i) The time-independent diagonal sum depends explicitly on the coefficients Cα, which
are fixed by the initial state |Ψ(0)⟩

(ii) The off-diagonal term is oscillatory and, in general, does not decay to zero unless
explicitly time-averaged, so the instantaneous expectation value continues to fluctuate.

(ii) Energy degeneracies generate persistent time-independent off-diagonal contributions,
again determined by the initial state.

Historically, these observations prompted the belief that isolated quantum systems cannot
thermalize, and that thermalization requires weak coupling to an external bath, making
the system effectively open. In such cases, only macroscopic observables matter, and their
equilibrium values can be predicted from statistical ensembles without knowledge of the
microscopic pure state. This is the standard formulation of quantum statistical mechanics.

In order to describe the equilibrium behavior, we therefore consider averages over
ensembles, i.e. M copies of identical systems. Each member of this ensemble is described by
the same Hamiltonian Ĥ but starts from a different initial state |Ψk(0)⟩, with k = 1, . . . ,M.
Let pk denote the fraction of systems in the ensemble that share the same initial condition
|Ψk(0)⟩, with∑M

k=1 pk = 1. The ensemble average of an observable is then

⟨Ô⟩t =
M∑
k=1

pk ⟨Ψk(t)|Ô|Ψk(t)⟩ . (56)

4We will adhere to natural units ℏ = 1 from this point onward
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This in turn can be rewritten in terms of the eigenbasis of Eq. (53)

⟨Ô⟩t =
∑
k

∑
α

pk ⟨Ψk(t)|Ô|ψα⟩⟨ψα|Ψk(t)⟩ (57)

=
∑
α

⟨ψα|
(∑

k

pk |Ψk(t)⟩⟨Ψk(t)|
)
Ô|ψα⟩ (58)

=
∑
α

⟨ψα|ρ̂(t)Ô|ψα⟩ = Tr
[
ϱ̂(t)Ô

]
= Tr

[
Ôϱ̂(t)

]
, (59)

where the quantity
ϱ̂(t) ≡

∑
k

pk |Ψk(t)⟩⟨Ψk(t)| (60)

is the density matrix (or operator). It generalizes the description of quantum states to
include statistical ensembles, incorporating both unitary time evolution and probabilistic
mixing.

By averaging over initial conditions, the explicit dependence on a single set of coefficients
Cα in Eq. (55) is removed, while the full time evolution is encoded in ϱ̂(t). This resolves
the three issues that can prevent equilibration in Eq. (55): the diagonal part no longer
retains arbitrary memory of one initial state, oscillatory off-diagonal terms average out in
the ensemble, and degeneracy-induced constants are treated naturally within the trace
formalism.

Since all time dependence of the average ⟨Ô⟩t is contained in ϱ̂(t), we can write down an
equation of motion for the density matrix. It follows directly from the Schrödinger equation
that

i
∂ϱ̂

∂t
= [Ĥ, ϱ̂(t)] , (61)

where [ ·, · ] denotes the commutator, and we recall that we are working in natural units
ℏ = 1. This is the quantum-mechanical analogue of Liouville’s equation (3).

The density matrix is a Hermitian, positive-semidefinite operator with unit trace, and
therefore obeys the following properties:
(i) 0 ≤ ϱ̂αα(t) ≤ 1, where ϱ̂αα(t) = ⟨ψα|ϱ̂(t)|ψα⟩ in the eigenbasis of Ĥ.
(ii) Tr ϱ̂(t) =

∑
α ϱ̂αα(t) = 1.

(iii) Tr [ϱ̂(t)2] ≤ 1, with equality holding for pure states.
If the physical system we are describing is in thermal equilibrium, the ensemble average

must be stationary:
∂ϱ̂

∂t
= 0 . (62)

From Liouville’s equation this implies that ϱ̂ must commute with the Hamiltonian, so the
two share a common eigenbasis. For a time-independent Hamiltonian, we can therefore
write ϱ̂ as a function of Ĥ,

ϱ̂ = ϱ(Ĥ) . (63)
Expanding in the Hamiltonian’s eigenbasis {|ψα⟩}

ϱ(Ĥ) =
∑
α

ϱ(Eα) |ψα⟩ ⟨ψα| , (64)

As a result, equilibrium will be described by a diagonal density matrix:
ϱαβ = ϱ(Eα) δαβ . (65)
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The diagonal element ϱαα gives the probability of finding the system in eigenstate |ψα⟩; its
functional dependence on Eα is fixed by the choice of statistical ensemble. For example, in
the microcanonical ensemble all states within a narrow energy shell [U −∆, U ] are equally
probable:

ϱ(Eα) =

{
1/Ω(U,∆) if Eα ∈ [U −∆, U ] ,

0 otherwise, (66)

where Ω(U,∆) is the number of states in the energy shell.
Thus, even though the microscopic wavefunction of an isolated system evolves unitarily

and retains full memory of the initial state, coarse-grained measurements probe a mixed
density matrix—typically microcanonical or canonical—whose predictions agree with long-
time averages for thermalizing systems. Thermalization, in this sense, was therefore not
viewed as a property of individual energy eigenstates, but as a consequence of statistical
typicality: almost all states within a narrow energy window are ‘thermal’ for the purposes of
observable physics.

This picture changed dramatically with breakthrough contributions in the 1990s by
Deutsch [78] and Srednicki [79–81], who showed that an isolated, non-integrable quantum
system can equilibrate when measuring local observables.5 The key insight is that, while
the entire isolated system retains full information about its initial state, sufficiently small
subsystems can act as if they are in thermal equilibrium with the rest of the system. This
idea is encapsulated in the eigenstate thermalization hypothesis (ETH) [82, 83].

Returning to the time evolution of a closed system in Eq. (55), we now ask under what
conditions thermalization can emerge without invoking the ensemble picture. We consider a
macroscopically large quantum system with N degrees of freedom, and assume that the
energy eigenstates with significant weight in the initial pure state |Ψ(0)⟩ lie within a narrow
energy window U −∆ ≤ Eα ≤ U . We will focus on the behavior of local observables—such
as the number density at a given site i, n̂i—whose expectation values depend only on a
small subset of the system’s degrees of freedom.

In the microcanonical ensemble, the equilibrium value of the observable Ô is

⟨Ô⟩eq =
Tr
[
Ô θ(U Î− Ĥ)

]
Ω(U,∆)

, (67)

where θ(U Î− Ĥ) is the Heaviside step function projecting onto the energy shell [U −∆, U ],
and Ω(U,∆) = Tr θ(U Î− Ĥ) is the number of states in that shell.

For an observable described by Eq. (55) to thermalize, its long-time value should satisfy

⟨Ô⟩t ≈ ⟨Ô⟩eq .

This is ensured if the following conditions hold:
(a) The diagonal term matches the equilibrium value,

⟨Ô⟩eq =
∑
α

|Cα|2Oαα . (68)

(b) The Hamiltonian has no large number of degeneracies, which could otherwise alter
(a).

(c) The off-diagonal term in Eq. (55) decays and fluctuates around zero at long times.
5We will comment in more detail on how integrable quantum systems can resist thermalization in Chapter 3

of this thesis.
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Remarkably, generic non-integrable many-body Hamiltonians Ĥ and most local operators
Ô satisfy these conditions. They are summarized by the ETH ansatz for the matrix elements
of Ô in the energy eigenbasis:

Oαβ = O(E) δαβ + e−S(E)/2 fO(E,ω)Rαβ , (69)

where:
• E = (Eα + Eβ)/2 is the mean energy,
• ω = Eα − Eβ is the eigenenergy difference,
• S(E) ∼ lnΩ(E) is the thermodynamic entropy at E,
• O(E) is a smooth function equal to the microcanonical expectation value at energy E,
• fO(E,ω) is a smooth function controlling the size of off-diagonal terms,
• Rαβ is a random variable with zero mean and unit variance.
The ETH implies that, for non-integrable systems, individual many-body eigenstates are

already ‘thermal’ for local observables: Oαα matches the microcanonical prediction at energy
Eα, while Oαβ with α ̸= β vanishes exponentially with system size. In this picture, temporal
fluctuations become negligible in the thermodynamic limit, and long-time expectation values
for a generic pure state are indistinguishable from those predicted by the microcanoical
ensemble.

A central insight of ETH is that thermalization does not require ensemble averaging over
many states—the structure of each typical eigenstate is already such that any sufficiently
small subsystem behaves as if it were in contact with a thermal bath formed by the rest of
the system. This naturally raises the question: how can a closed quantum system, evolving
unitarily and remaining in a pure state, exhibit thermal properties in its parts?

The von Neumann entropy, which quantifies the amount of quantum uncertainty in a
state, is defined as

S[ϱ̂] = −Tr [ϱ̂ ln ϱ̂] = −
∑
α

λα lnλα , (70)

where λα are the eigenvalues of ϱ̂, satisfying 0 ≤ λα ≤ 1. For a pure state of the whole
system, ϱ̂ = |Ψ⟩ ⟨Ψ|, the eigenvalue spectrum is 1, 0, 0, . . ., so S[ϱ̂] = 0. Since the evolution
is unitary, S[ϱ̂(t)] = S[ϱ̂(0)] = 0 at all times—meaning the total quantum information of the
initial state is exactly preserved.

This demonstrates that an isolated system described by a single pure state will never
thermalize as a whole. However, if we partition the degrees of freedom into two disjoint
subsystems A and B, the reduced density matrices are defined by partial tracing:

ϱ̂A = TrB ϱ̂, ϱ̂B = TrA ϱ̂; . (71)

Although the entropy of the global state remains zero, the reduced states ϱ̂A and ϱ̂B are
generally mixed when the two subsystems are entangled, and their von Neumann entropies
can be nonzero. In systems obeying ETH, the von Neumann entropy of a small subsystem A
grows in time and eventually saturates to a value

S[ϱ̂eqA ] = −Tr [ϱ̂eqA ln ϱ̂eqA ] , (72)

where ϱ̂eqA = TrB ϱ̂eq is obtained by tracing out the degrees of freedom of B from the thermal
equilibrium density matrix of the full system. This equilibrium value coincides with the
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thermodynamic entropy predicted by statistical ensembles, providing a direct link between
ETH and the emergence of thermal behavior in subsystems of isolated quantum systems.

As with the classical ergodic hypothesis, ETH has been rigorously proven only for certain
random matrix models and a handful of exactly solvable cases [84]. Nonetheless, the current
body of experimental and numerical evidence suggests that ETH behavior manifests for
a vast number of macroscopic, non-integrable Hamiltonians [83], yet it remains an open
question whether ETH is also a necessary condition for thermalization [83]. As a result, a
lot of research has focused to search and understand exceptional cases in which isolated
non-integrable systems exhibit the breakdown of ETH.

In particular, Kurchan, Foini, and Pappalardi [85–87] have formulated a generalized ETH
that describes not only the thermal bulk of the spectrum but also the statistical properties of
rare nonthermal eigenstates. Their work connects ETH to large-deviation theory, showing
that fluctuations around the ETH prediction are exponentially suppressed with system size,
but can still play an important role in small or mesoscopic systems. As a result, current
research often focuses on identifying and understanding such exceptional cases where
isolated non-integrable systems exhibit partial or complete breakdown of ETH.

One of the most striking examples of ETH breakdown arises in quantum systems with
quenched disorder. In such systems, thermalization can fail due to purely quantum inter-
ference effects that prevent particles from exploring the entire system, and thus achieve
thermalization. The paradigmatic example is the Anderson insulator [88]—a non-interacting
system in which the eigenstates are localized, meaning that the probability of finding the
particle at a site i, given it was initially at site j, is strongly peaked near i = j and decays
exponentially with distance:

|ψ(i)|2 ∝ e−|i−j|/ξloc , (73)
where ξ is a characteristic localization length. In this case, a pure state has significant support
only on a finite set of sites in real space, and thus only on a small fraction of the Hamiltonian’s
eigenstates. A key open question is whether this lack of thermalization remains robust in
the presence of interactions, potentially giving rise to a stable many-body localized (MBL)
phase in which ETH is violated.

The possibility of localization in interacting quantum systems was first identified through
perturbative analyses by Basko, Aleiner, and Altshuler [89] and by Gornyi, Mirlin, and
Polyakov [90]. These works suggested that a closed, interacting many-body system could
retain memory of its initial conditions indefinitely, forming a stable dynamical phase—now
called many-body localization (MBL)—in which the eigenstate thermalization hypothesis
(ETH) fails.

Unlike ETH eigenstates, MBL eigenstates are spatially localized and retain a long-term
‘memory’ of the detailed quantum information encoded in the initial pure state [91–94].
The energy spectrum in the MBL phase contains many gaps, and the matrix elements of
local operators deviate strongly from the ETH form (69): the diagonal elements are not
smooth functions of energy, while most off-diagonal elements are nearly zero, except for a
small fraction that remain large.

In recent years, the stability of the MBL phase has become a subject of intense debate [95–
103]. Numerical evidence supporting MBL has been obtained only for relatively small system
sizes, due to the exponential growth of the Hilbert space. This makes the results highly
sensitive to finite-size effects, manifested for instance in a systematic drift of the apparent
transition point, raising the possibility that observed MBL signatures reflect a finite-size
crossover rather than a stable phase of matter.

A further challenge comes from theoretical scenarios in which non-perturbative effects—
specifically, rare regions of atypically weak disorder—restore ergodic behavior and recover
the ETH in the thermodynamic limit [94, 95, 102]. Such rare events challenge the perturba-
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tive picture of MBL and suggest that the phase may ultimately be unstable. Determining
whether MBL can genuinely persist or is inevitably destroyed in the thermodynamic limit
remains a central open problem, yet its resolution is hampered by the severe numerical
constraints inherent to many-body quantum systems.

Core idea: Observables capturing the effect of rare events
Large deviation theory and extreme value statistics are standard tools for analyzing
classical disordered systems. In some mean-field models of disordered systems, there
exists a putative thermodynamic transition driven by rare disorder realizations that
generate anomalously large Boltzmann weights. This behavior can be characterized
through the quenched and annealed free-energy densities, defined as

fq(β) =
1

βN

[
lnZ(β)

]
, fa(β) =

1

βN
ln
[
Z(β)

]
, (74)

where β is the inverse temperature, N the system size, and [· · · ] denotes the average
over disorder realizations.
These two quantities display markedly different behaviors, but coincide in the thermo-
dynamic limit within the high-temperature (replica-symmetric) phase. Because of this,
they serve as sensitive observables for estimating the critical transition at finite sizes.
An analogous strategy can be applied to the study of theMBL transition, by constructing
equivalent observables capable of capturing the influence of rare disorder realizations.
Employing such measures may yield valuable insights into the stability of the MBL
phase at larger sizes, even when numerical studies are limited to small systems.

The aim of this thesis
This thesis is dedicated to the study of problems that arise in both numerical and theoretical
investigations of physical systems with quenched disorder undergoing an ergodicity-breaking
transition. We analyze three distinct physical systems, each exhibiting a different class of
ergodicity-breaking transition.

As discussed throughout this introduction, the presence of ergodicity-breaking mech-
anisms hinders the validity of standard theoretical and numerical tools in equilibrium
statistical mechanics. When ergodicity breaking mechanisms are present—whether arising
from the proximity to a critical point or across an entire phase—the assumptions underlying
equilibrium descriptions no longer hold.

For this reason, a significant portion of contemporary statistical mechanics research
focuses on bridging the gaps left by equilibrium theory and on developing novel analytical,
numerical, and experimental approaches capable of describing scenarios in which ergodicity
is broken.

These ergodicity-breaking mechanisms arise in a wide variety of physical systems, par-
ticularly within the broad field of disordered systems. In each case, the specific physical
context has motivated the development of tailored methods and tools to address the unique
challenges it presents.

Nevertheless, the phenomenology associated with ergodicity breaking—such as slow
relaxation and the persistence of initial conditions—shows remarkable similarities across
otherwise distinct systems. This opens a fertile ground for cross-fertilization, where tech-
niques originally devised in one domain can be adapted to another. Such exchanges not only
deepen our understanding of the systems themselves but also test and refine the generality
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of the methods employed. In this light, the main aim of this thesis is precisely profit from this
cross-fertilization and adapt novel methods—well established in the study of other physical
systems—to the specific problems addressed here.

The Physical Systems of Interest
In the Ising model, the phenomenon of critical slowing down near the critical point makes
standard simulations with local dynamics extremely slow. However, the spatial critical
correlations can be accurately described by the Fortuin–Kasteleyn–Coniglio–Klein (FK–CK)
clusters, which provide a theoretical mapping to another physical system (mathematical
percolation). This mapping forms the basis for highly efficient numerical algorithms that
eliminate critical slowing down at the paramagnetic–ferromagnetic transition.

However, these algorithms—and the exact percolation mapping—do not extend straight-
forwardly to systems with frustration. In such cases, the construction relies on a probability
that becomes negative when both ferromagnetic and antiferromagnetic bonds are present,
rendering numerical simulations unfeasible. Nonetheless, for certain models admitting
closed-form analytical solutions, one can extend the definition of FK–CK clusters by analyt-
ically continuing this probability to negative values. This allows us to test the validity of
these clusters in such cases.

We will explore the definition of these clusters in the frustrated random bond Ising model,
defined by the Hamiltonian

H = −
∑
⟨ij⟩

Jijσiσj − hext
∑
i

σi , (75)

where σi are Ising degrees of freedom, hext is an external magnetic field and Jij are random
bonds uniformly distributed according to the probability distribution

P(Jij) = ρδ(Jij − J0) + (1− ρ)δ(Jij + J0) , (76)

with J0 > 0. We will study this model on the Bethe lattice geometry, that allows for an exact
analytical solution. We will introduce and explain in detail the properties of this lattice
geometry in Chapter 1.

For ρ = 1 the ferromagnetic Ising model is recovered, where the critical clusters are
described by the FK–CK formalism with a positive bond probability defined by

pB = 1− e−2βJ0 . (77)

We investigate how the percolation of FK–CK clusters in this model changes as the
fraction of antiferromagnetic bonds increases (ρ < 1), and whether these clusters preserve
the correct critical properties of the transition despite involving negative probabilities.

We will also briefly explore alternative cluster definitions proposed to generalize the
percolation construction to the paramagnetic–spin-glass transition, evaluating them and
pointing out subtle caveats that arise in this mapping and possible interesting future direc-
tions to explore.

As mentioned above, even with algorithms that mitigate critical slowing down, the
spin-glass phase poses additional challenges: its entire low-temperature regime exhibits
extremely sluggish dynamics. A similar situation occurs in structural glasses, where dynamics
become arrested at very low temperatures, making it difficult to reach consensus on the
nature of the glassy phase. This has motivated the development of novel algorithms based
on nonphysical dynamics that nevertheless sample equilibrium configurations efficiently.
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Among these, the SWAP algorithm has achieved remarkable speedups—up to 1010 in time
scales—in particle-based models of glass-forming liquids.

The SWAP algorithm has not only been successful in practical terms but has also become
central to debates about the nature of the glass transition, with some arguing that the
transition is purely dynamical and that SWAP results support this view.

In this work, we adapt the SWAP algorithm to a finite-dimensional spin-glass system.
Specifically, the two-dimensional Edwards–Anderson model whose Hamiltonian reads

HJ(σi) = −
∑
⟨ij⟩

Jijσiσj , (78)

and with bimodal distribution of the bonds Jij

P(Jij) =
1

2
δ(Jij − J0) +

1

2
δ(Jij + J0) . (79)

Although this model has no finite-temperature spin-glass transition, its zero-temperature
ground states exhibit spin-glass order, and relaxation toward them becomes sluggish even
within the paramagnetic phase. This makes it an ideal testing ground for adapting SWAP in
a spin-lattice context. Our goals are to assess whether the adapted algorithm accelerates
dynamics and samples spin-glass ground states effectively, and to clarify the role of dynamical
effects in the original particle-based SWAP algorithm.

In order to do this we will study a slight modification, where we include a random
positive-definite degree of freedom τi that are associated to the spins by si = σiτi. This new
degree of freedom will play a role analogous to the diameter in the original particle system.

This modification leads to the Hamiltonian

H = −
∑
⟨ij⟩

Jijσiτiσjτj , (80)

and we have chosen τi to be independent and identically distributed random variables,
initially drawn from a normalized box distribution, pτ (τi), i.e.

τi ∈ [1−∆/2, 1 + ∆/2] , 0 ≤ ∆ ≤ 2 . (81)

The parameter ∆ controls the spin length variation and we will consider ∆ ≤ 2 to ensure
that τi ≥ 0.

This is the main model of interest and we will refer to it as the ∆-model. The standard
Edwards-Anderson model with Ising spins is recovered for ∆ = 0.

In the quantum setting, the main challenge is the exponentially large Hilbert space, which
limits numerical simulations to very small system sizes. Furthermore, ergodicity-breaking
mechanisms often appear to be dominated by rare events that can restore ergodicity, casting
doubt on the existence of a true localization transition.

By applying large-deviation methods—commonly used in mean-field classical disordered
systems exhibiting a freezing transition—we evaluate the impact of these rare events,
enabling conclusions that are more representative of larger system sizes despite working
with small ones.

Specifically, we will study the XXZ quantum spin-1
2
chain, that serves as the paradigmatic

model of the MBL transition. The Hamiltonian, for a chain of L sites, is given by

Ĥ =
L∑
i=1

(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1 + hiŜ

z
i

)
, (82)
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with ∆ a constant controlling the strenght of the interactions and hi a random magnetic
field uniformly drawn from [−W,W ].

In mean-field classical disordered systems, a freezing transition occurs at very low
temperatures, where the behavior of the quenched and annealed free-energy densities differs
significantly through the effect of rare events. These free-energy densities are defined as

fq(β) =
1

βN

[
lnZ(β)

]
, fa(β) =

1

βN
ln
[
Z(β)

]
, (83)

where β is the inverse temperature, N is the system size, and [· · · ] denotes the average over
disorder realizations.

However, both fq(β) and fa(β) coincide in the thermodynamic limit within the high-
temperature phase. Consequently, they serve as sensitive observables for estimating the
critical transition at finite sizes.

Inspired by this approach, we define analogous quantities for the quantum many-body
problem that capture the rare events responsible for restoring ergodicity within the MBL
phase. By analyzing the finite-size behavior of these observables as L increases, we estimate
the critical disorder strength WMBL(L) at which the ergodicity-breaking transition occurs,
explicitly incorporating the effects of these rare events into its determination.

All these studies share a unifying theme: the use of diverse methods within the broader
field of disordered systems to tackle problems where standard approaches fail due to the
nature of the ergodicity-breaking phase transition. The novel approaches explored here are:

(i) Percolation mapping to frustrated systems.

(ii) Non-physical SWAP algorithms for spin-lattice models.

(iii) Analysis of ergodicity-restoring rare events using large-deviation methods in the many-
body localization transition.

Together, these investigations illustrate the value of a cross-fertilization strategy—applying
methods across different contexts within disordered systems—to address challenges that
transcend specific physical models.

The structure
Each chapter addresses one of three cases, outlining the relevant theoretical framework, the
central problem under investigation, and the method used to address it.

Chapter 1: The Critical Clusters of Frustrated Spin Systems. This chapter explores the
Fortuin–Kasteleyn–Coniglio–Klein (FK–CK) clusters and related definitions in the context
of the frustrated random-bond Ising model on the Bethe lattice. It begins with an intuitive
introduction to cluster formation in the Ising model, together with the basics of percolation
theory and the Bethe lattice geometry. The original formulation of FK–CK clusters is reviewed,
followed by an extension of this framework to analytically continued clusters with negative
probabilities, applied to the frustrated random bond Ising model. The main equations are
derived, solved, and used to determine the properties of the FK–CK clusters in this context.
Finally, alternative definitions of critical clusters proposed for the paramagnetic-to-spin-glass
transition are discussed, and one of these is explored on the Bethe lattice using the same
approach.
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Chapter 2: SWAP Dynamics for Frustrated Spin Systems. This chapter adapts the
SWAP Monte Carlo algorithm—originally developed for particle systems—to spin-lattice
systems, focusing on the two-dimensional Edwards–Anderson model. After a brief review
of structural glass phenomenology and two main competing theoretical frameworks for
the glass transition, the original SWAP method is introduced, along with its relevance to
this debate. The adaptation of SWAP to spin systems is then presented, including tests
on simpler models such as the Ising model to assess the dynamical effects of the method
and to confirm that equilibrium properties remain essentially unchanged. The method is
subsequently applied to the 2d Edwards–Anderson model, a frustrated spin system with
spin-glass ground states.

Chapter 3: The Importance of Rare Events in Many-Body Localization. This chapter
investigates rare events that restore ergodicity within the many-body localized phase of
interacting, isolated quantum systems, using the XXZ spin chain in a random field as a case
study. It begins with a review of Anderson localization and its theoretical framework, followed
by an overview of many-body localization and an explanation of it ergodicity breaking
mechanism. The XXZ chain is introduced as the central model, together with standard
numerical observables used to probe the MBL phase, highlighting their limitations. Non-
perturbative mechanisms proposed to restore ergodicity are then discussed and explained,
they are referred to as ‘thermal avalanches’ and ‘many-body resonances’. The novel observable
along with the main large deviation method is presented to better capture the role of rare
events in determining the transition, and its predictions for the XXZ chain are reported. The
chapter concludes with results characterizing these events and an interpretation of the MBL
transition related to the freezing transition present in some mean-field classical disordered
systems.
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Chapter 1 – The Critical Clusters of Frustrated Spin Systems

Introduction

The Ising model occupies a central position in statistical physics as the paradigmatic model
for studying phase transitions and critical phenomena [104]. It serves as the standard
example for understanding the rich and universal features that emerge near continuous
(second-order) phase transitions, and nucleation phenomena in first-order phase transitions
in the presence of an external magnetic field. Beyond its original formulation, the Ising model
has proven instrumental in elucidating the link between thermodynamic phase transitions
and the geometrical organization of microscopic constituents [105, 106].

The phase transition is marked by the emergence of spin clusters with well-defined
geometric and statistical characteristics, which encapsulate the essential information about
spatial correlations among the spin degrees of freedom at criticality. A rigorous formulation
of such clusters was first established in the early 1970s by Kees Fortuin and Piet Kasteleyn [50,
51], who introduced the random cluster model—an exact reformulation of the Potts (and, in
particular, Ising) model partition function in terms of weighted sums over bond-connected
clusters. This framework not only unified the description of percolation and Potts models
but also offered a probabilistic representation of the Ising model’s critical behavior through
correlated cluster formation. This approach has since had a profound influence on stochastic
geometry and mathematical physics [107].

About a decade later, Antonio Coniglio and William Klein (CK) independently demon-
strated that the critical clusters of the Ising model could be constructed by introducing a
bond probability that connects parallel spins [52, 108]. This probabilistic construction, was
later generalized to other models by Robert Edwards and Alan Sokal [109].

Collectively, these developments established a coherent and formal correspondence
between percolation phenomena and thermodynamic phase transitions, through the iden-
tification of critical clusters—referred to as FK–CK clusters—that percolate exactly at the
thermodynamic critical temperature Tc.

Moreover, the geometrical critical exponents—such as those associated with cluster size
and cluster-size distributions—are directly related to the well-known thermodynamic critical
exponents of the Ising model. This means that the shapes and size distributions of clusters
directly reflect the system’s thermodynamic transition. The definition of FK–CK clusters was
later extended [110] to the antiferromagnetic Ising model [111] and to Ising models with
ferromagnetic interactions beyond nearest neighbors [112].

This geometrical insight has not only deepened our theoretical understanding of phase
transitions but has also inspired the development of highly efficient cluster-based algo-
rithms for Monte Carlo simulations, such as the Swendsen-Wang [54, 113] and Wolff
algorithms [55]. These methods effectively suppress the phenomenon of critical slowing
down by constructing non-local updates based on the FK–CK clusters, thereby drastically
improving simulation performance near criticality [114, 115].

Nevertheless, one key challenge of this formulation is that is not easily translated into
frustrated systems of competing interactions. A naive implementation of the FK–CK is
unfeasible in numerical simulations, as the introduction of frustration necessarily leads
to negative probabilities. This has led to extensive research aimed at finding suitable
alternatives to the FK–CK clusters that can reproduce the critical behavior of these systems.
In spin glass systems, for example, new proposals have been put forward [116–121] as
alternative candidates to replace the FK–CK definition. None of these, however, reproduce
the critical behavior for arbitrary dimensionality nor produce algorithms as efficient as the
ones developed for the unfrustrated cases [122, 123].

In this chapter, we will revisit the original FK–CK definition of clusters and use it to
study frustrated systems. Specifically, for the frustrated random bond Ising model on the
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Bethe lattice. Although in these systems the FK–CK definition becomes intractable in Monte
Carlo simulations—due to the emergence of negative probabilities—one can still probe the
percolation of these clusters in exactly solvable models, such as the one considered here. We
will first explore whether the original FK–CK clusters can still capture the critical behavior
associated with the thermodynamic transition. In addition, we will investigate alternative
procedures and definitions, analyzing their limitations as well as potential avenues for further
research.

The structure of this chapter is as follows. In Sec. 1.1, we provide an intuitive introduction
to the cluster formulation of the Ising model. Once this motivation is established, Sec. 1.2
presents the formal framework of percolation theory, introducing its fundamental concepts
and the main geometry used throughout this work—the Bethe lattice. The history of the
FK–CK clusters is reviewed in Sec. 1.3, where we distinguish between the formulations
originally introduced by Fortuin and Kasteleyn, and by Coniglio and Klein—two approaches
that, as we will see, are equivalent. In Sec. 1.4, we extend this framework to frustrated
systems, using the frustrated random-bond Ising model as a case study. Then, in Sec. 1.6,
we present the solution of FK–CK percolation on the Bethe lattice, along with additional
results, including an alternative cluster definition. This alternative definition sets the stage
for discussing the current efforts of mapping the percolation transition onto the model when
spin glass order is present, which is the main focus of Sec. 1.7. Finally, Sec. 3.8 concludes
with a summary of the main results, as well as an outline of possible future extensions.

1.1 The spin configurations across the phase transition
Consider the Ising model in absence of an external magnetic field, with N spin variables σi
interacting with their nearest neighbors through a constant ferromagnetic bond J > 0. The
Hamiltonian is given by

H = −J
∑
⟨i,j⟩

σiσj . (1.1)

This model exhibits a continuous phase transition, from a disordered paramagnetic phase at
high-temperatures to an ordered ferromagnetic phase at low-temperatures. The transition is
identified by the gobal magnetization density

m =
1

N

N∑
i=1

⟨σi⟩ , (1.2)

where ⟨· · ·⟩ denotes the average over the Gibbs-Boltzmann distribution. As explained in
the Introduction Chapter of this thesis, at high-temperatures (T > Tc) the magnetization
density vanishes m = 0, while at low temperatures (T < Tc) the Z2 is spontaneously broken
and the system decides between a positively and negatively magnetized equilibrium states.

In Fig. 1.1 we show three examples of an equilibrium 2d spin configuration in the square
lattice. The configuration at T > Tc is in the paramagnetic phase (left panel), in which
the entropic term of the free-energy dominates, and the configuration seems completely
random. For T = Tc, the configuration is at criticality, where the magnetic domains acquire
a self-similar structure and the system becomes scale-invariant (center panel). Finally, the
right-most panel shows a configuration in the ferromagnetic phase (T < Tc), where the
system has chosen the positive magnetized equilibrium state—with some small thermal
fluctuations of negative spins.

Coming from the low-temperature phase (T < Tc), thermal fluctuations (visible as yellow,
negative spins) gradually increase in number and form larger magnetic domains as the
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Fig. 1.1: Snapshots of equilibrium configurations for the d = 2 Ising model in a square
lattice, with positive spins in blue colors and negative spins in yellow.

temperature rises. At the critical point T = Tc, the clusters of these minority spins (yellow)
have grown to a size comparable to that of the entire system. The same picture can be
viewed from the opposite direction: in the high-temperature phase, positive spins (blue)
formmagnetic domains that grow and eventually span the entire system at some temperature
T ≤ Tc. From these perspectives, one can define a percolation temperature Tp, at which a
cluster of geometrical spins—clusters of neighboring spins sharing the same orientation—first
spans the entire system. This may correspond either to negative-spin domains emerging
as T increases from the ordered phase, or to positive-spin domains forming as T decreases
from the disordered, high-temperature phase.

What remains less certain is whether this percolation transition coincides exactly with
the ferromagnetic-paramagnetic transition i.e. Tp = Tc, and whether the statistical properties
of these clusters carried relevant statistical information about the thermal correlations of the
microscopic spins. The most straightforward intuition is that clearly, these clusters should
be the geometrical clusters meaning, clusters formed by neighboring spins that point in the
same direction. In this interpretation,

It was later recognized, independently by Fortuin and Kasteleyn [50, 51] and by Coniglio
and Klein [52], that geometrical clusters are too large and fail to accurately capture the
thermal fluctuations near the critical point. Instead, the correct critical behavior is recovered
when clusters are formed following a probabilistic construction that depends on the bond
strength J and the system’s temperature T . These are known as FK–CK clusters. A brief
summary of the basic framework of percolation theory is provided below, followed by a
detailed description of the procedure to construct these clusters.

1.2 Geometrical percolation
Before diving deeper into the FK–CK cluster definition, we will first review the two most
simple forms of the percolation problem [124, 125]. Our general setup will be a graph (or
lattice) G = (V,E) formed by vertices (or sites) i ∈ V (with |V | = N) and edges (or bonds)
(ij) ∈ E connecting neighboring sites i, j.

Site percolation

The most basic formulation of the problem considers each site of the lattice as either occupied
(i.e., ni = 1), with probability p, or empty (i.e., ni = 0), with probability 1 − p. We are
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interested in answering the question: what is the critical value of the probability p that
produces a system-spanning—or percolating—cluster in the graph? This is termed as site
percolation. An example of the transition for a d = 2 square lattice is shown in Fig. 1.2. Below
a critical threshold probability pc occupied sites are sparse. However, upon increasing the
occupation probability over the threshold pc, occupied sites proliferate and a system-spanning
cluster arises for p ≥ pc.

Fig. 1.2: Sample of a 2d square lattice undergoing site percolation.

Bond percolation

The second formulation is concerned with the bonds instead. We consider every site to
be occupied ni = 1 ∀i, but the edges (ij) ∈ E have a probability p of connecting a pair of
sites i, j and a probability 1− p of being absent. Two sample configurations for p < pc and
p > pc are shown in Fig. 1.3 for the square lattice. In this case, the sites themselves are not
explicitly represented, since they are all trivially occupied. Again, at p ≥ pc a percolating
cluster arises, identified by the sites connected by bonds extending throughout the entire
lattice.

Fig. 1.3: Sample of a 2d square lattice undergoing bond percolation.

As many problems in statistical physics, the critical percolation threshold pc represents
an average property, as the construction of the clusters is itself a random process. For finite
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sized systems, the critical probability is the average

pc ≡
1

NS

NS∑
k=1

p(k)c , (1.3)

with NS samples—or realizations—of the random process and p(k)c the respective threshold
found for the k-th sample. A key feature of this problem is that sample-to-sample fluctuations
diminish with increasing system size, allowing pc to converge to a well-defined value in the
thermodynamic limit N → ∞.

Consequently, one can formally identify a phase transition in which this emergent giant
cluster appears as a function of the control parameter p. Several other observables can be
used as order parameters detecting the transition. One such observable, is the density of
sites belonging to the largest cluster, this is given by

nmax(p,N) ≡ Nmax(p,N)

N
, (1.4)

For p < pc, the size of the largest cluster (Nmax(p,N)) grows sub-linearly with system size
and therefore tends to zero with growing N . In contrast, for p > pc, the scaling becomes
extensive (Nmax(p,N) ∼ O(N)) so the normalized size of the largest cluster (nmax(p,N))
approaches a finite, non-zero value as N increases.

In the thermodynamic limit (N → ∞), fluctuations vanish. For p > pc, the largest cluster
corresponds exactly to the infinite percolating cluster, and the density of sites within this
cluster matches the probability that a randomly chosen site belongs to it. This probability is
often referred to as strength or weight of the percolating cluster, here we will denote this
quantity as the percolation probability:

P = lim
N→∞

nmax(p,N) , (1.5)

that, as anticipated, serves as an order parameter for the percolation transition:

P = 0 for p ≤ pc ,
P ̸= 0 for p > pc .

(1.6)

The percolation threshold pc depends on the lattice geometry, its dimensionality and on the
type of percolation you are considering—either site, bond or a combination of both.

Apart from the order parameter that we have presented in Eq. (1.6), there are several
relevant observables for the percolation transition: a correlation length ξ that diverges when
the percolation transition is approached, the mean (and largest) cluster size S (Smax), the
distribution of cluster sizes (nS), among others. Similarly to second-order phase transitions,
these quantities display universal behavior when approaching the critical point pc, and
universal critical exponents can be defined for them.

There is a very small number of models in which an exact value for pc and the associated
critical exponents can be obtained. Often one needs to rely on numerical simulations,
renormalization group calculations, rigorous upper-lower bounds and series of expansions to
estimate these quantities. Some of these critical exponents for the site percolation problem
are shown in Table 1.1 for regular geometries in d = 1, d = 2 and d = 3.

1.2.1 The Bethe lattice
From the results in Table 1.1, we see that although the case d = 1 is exactly solvable, it
displays only trivial critical behavior. We therefore turn to the next simplest analytically
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Exponent and law d = 1 d = 2 d = 3
pc 1 0.5927 0.3116
ν Correlation length (ξ)

ξ ∼ |p− pc|−ν 1 4/3 0.876(1)
β Percolation probability (P )

P ∼ |p− pc|β 0 5/36 0.4181(8)
γ Mean cluster size (S)

S ∼ |p− pc|−γ 1 43/18 1.80(5)
σ Largest cluster size (Smax)

Smax ∼ |p− pc|−1/σ 1 36/91 0.445(10)
τ Cluster-size distribution (nS)

nS ∼ S−τ 2 187/91 2.189(2)
ω Correction to scaling (ω)

std(O) ∼ NyO(1 + cN−ω) N/A 0.77(4) 0.64(5)

Table 1.1: Critical threshold and exponent values for site percolation in dimensions d = 1, 2, 3.
The correction-to-scaling behavior has been established for an arbitrary observable O with
corresponding critical exponent yO. For details see [124, 125].

solvable case within site or bond percolation: the percolation problem set on the Bethe
lattice. This is the same geometry in which we will analyze the percolation of FK–CK clusters,
and is thus central to the present work.

The Bethe lattice is an infinite, regular tree where every vertex has the same connectivity
κ + 1—with κ being the branching number of the tree. It has an inherent self-similar
structure with no root, no center, and no boundary. This property—along with its tree
nature—allows for exact solutions in the form of recursive equations, making a useful
playground to understand the properties of many statistical physics models [126, 127].

Fig. 1.4: Schematic portion of the infinite Bethe lattice with κ + 1 = 3. The dashed lines
represent other tree segments extending to infinity.

A finite portion of a Bethe lattice with κ + 1 = 3 is shown in Fig. 1.4. Starting from
any given site, the number of accessible sites within n edges on the Bethe lattice grows
exponentially with n, in contrast to the polynomial growth ∼ nd observed in a regular
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d-dimensional lattice. As a result, the Bethe lattice is often regarded as representing the
d → ∞ limit of the problem, effectively yielding a mean-field-like model. Unlike fully
connected models, however, it preserves a local structure, which provides a more realistic
approximation of spatially extended systems.

This behavior can be related to that of the Cayley tree, a similar tree structure. In this
case, each site also has a fixed connectivity of κ+ 1, but the lattice possesses a boundary
whose sites have connectivity 1. As a result, a central—or root—site can now be properly
identified in this structure, as it is shown in Fig. 1.5.

Fig. 1.5: Schematic portion of a Cayley tree with κ+1 = 3. The dashed lines represent other
tree segments extending to infinity.

The first generation—the central node—branches into κ+1 sites, which form the second
generation. Each of these sites then branches into κ new sites, defining the third generation,
and this process continues recursively until the boundary is reached. The total number of
nodes in a Cayley tree with n generations therefore is

N = 1 + (κ+ 1) + κ(κ+ 1) + κ2(κ+ 1) + ...+ κn−1(κ+ 1)

=
κn(κ+ 1)− 2

κ− 1
,

(1.7)

while the surface boundary is composed of NΩ = κn−1(κ+ 1) sites. In the thermodynamic
limit, the fraction of sites in the boundary is

lim
N→∞

NΩ

N
=
κ− 1

κ
, (1.8)

and thus remains finite. Contrary to what is observed in finite-dimensional lattices, where
the surface-to-bulk ratio vanishes for large N .

Although the local structure of the Bethe lattice is equivalent to that of the Cayley tree,
for models in which boundary effects play an important role, the comparison between both
types of lattices should be made with caution [128]. If one wishes to perform numerical
simulations whose results can be directly cross-checked with analytical calculations on the
Bethe lattice, it is preferable to consider random regular graphs, which share the same fixed
connectivity κ+ 1 but lack a boundary.
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For finite sizes, RRGs more accurately model bulk behavior. An RRG is a graph GN =
(V,E) of size N = |V |, where edges between vertices are placed at random under the
constraint that each vertex has a fixed connectivity κ+ 1. These graphs are locally tree-like
but contain loops whose typical length grows as O(logN). Because the Bethe lattice is
loopless, the presence of loops in RRGs leads to deviations from Bethe lattice predictions at
finite N . These finite-size effects alter observable values, with corrections for local quantities
typically scaling as 1/N . Nonetheless, in the infinite-size limit (N → ∞), RRGs locally
converge to the Bethe lattice. This convergence allows critical quantities—such as pc—to be
accurately approximated by their Bethe lattice values when N is large. In contrast, when
considering finite-size Cayley trees, the boundary size remains comparable to that of the
bulk even in the thermodynamic limit, which can affect system properties and make them
less representative of bulk behavior than RRGs.

In this way, the Bethe lattice is not just an abstract mean-field model, but also serves as
a benchmark for quantifying finite-size effects in numerical simulations on RRGs, and it
qualitatively captures the behavior of more realistic systems.

1.2.2 Site percolation on the Bethe lattice
The general description of site percolation still holds in this case: each site of the lattice
is occupied with probability p and empty with probability 1− p. A percolation transition
occurs at the critical probability pc, marked by the emergence of a system-spanning cluster.

Paths are formed by edges connecting occupied site, in this context, having a percolating
cluster implies that there is an infinite path formed by occupied sites. If we choose a site
on the lattice that is connected to the infinite path by one of its κ+ 1 neighbors, there are
κ branches leading to a new site, which could be occupied with probability p. Hence, for
an arbitrary site connected to a (semi-)infinite path by one of its neighbors, the probability
that this path continues through the remaining neighbors is p κ. Consequently, the condition
to ensure that there is always an occupied neighboring site—and thus an infinite path—is
given by the condition p κ = 1. The critical occupation probability is

pc =
1

κ
. (1.9)

This argument is also valid where instead of empty sites the access to a neighboring site is
blocked by the absence of an edge, making Eq. (1.9) also valid for bond percolation.

We now proceed to define the order parameter, the percolation probability P . This quantity
is defined as the probability that any randomly chosen site belongs to the percolating cluster,
thanks to the self-similar structure of the Bethe lattice, we can find an exact recursive
equation that can be solved to obtain P .

An arbitrary site must necessarily be occupied in order to belong to the percolating
cluster. However, this is not a sufficient requirement, as it also needs that (at least) one of its
κ+ 1 nearest-neighbors is also occupied and connected to the percolating cluster through
another one of its subsequent neighbors, continuing this process ad-infinitum.

We begin by considering a specific site in the lattice, and label it by i. This site is occupied
with probability pi, or empty with probability 1 − pi. Site i has κ + 1 nearest neighbors,
collectively denoted by the set ∂i. We have two main probabilities associated to site i:
The percolation probability Pi, which represents the probability that site i belongs to the
percolating cluster, and the probability that Qi for site i to not belong to the percolating
cluster, here denoted as Qi.

There are two ways in which the site i may not belong to the percolating cluster: (i)
it is not occupied with probability 1− pi or (ii) it is occupied but it is completely isolated,
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meaning that none of its neighbors belong to the percolating cluster, hence:

Qi = 1− pi + pi
∏
l∈∂i

Ql→i , (1.10)

Here, Ql→i denotes the probability that site l does not belong to the percolating cluster in
the absence of site i. This is one of the simplest examples of the cavity method [35, 127].
The basic idea is that by ‘isolating’ site i, we can analyze the contribution from its nearest
neighbors independently.

It is important to note that Ql→i is fundamentally different from Qi. However, by
recursively applying this reasoning to successive generations, we can establish a recursive
relation. After neglecting site i, we move forward to one of its other κ neighbors, which we
label as j. Site j then has κ available branches leading to new sites, and each of those sites,
in turn, connect to κ further sites—excluding j itself. Thus we can construct:

Qj→i = 1− pj + pj
∏

l∈∂j\i

Ql→j . (1.11)

In this context, the quantities Qj→i and Ql→j are commonly referred to as cavity prob-
abilities, and the omitted site is called the cavity site. Restoring the site independence
pj = p, Eq. (1.11) becomes

Q = 1− p + pQκ , (1.12)
that can be solved numerically, or exactly for the specific case of κ = 2. We obtain two
solutions Q = 1 (corresponding to the case p < pc) and Q = (1 − p)/p (for p > pc). For
an arbitrary site, the probability that it is occupied but not connected to the percolating
cluster is p− P that in turn can be expressed in terms of Q as pQ3—the probability of the
site being occupied but its κ+ 1 = 3 neighbors disconnected from the infinite cluster. Thus
P = p(1−Q3), that together with the previous solution for Q we obtain

P = p

(
1− (1− p)3

p3

)
. (1.13)

Expanding Eq. (1.13) around pc, one can obtain the critical behavior associated to the
exponent β, on the Bethe lattice this corresponds to β = 1. The same type of calculation
can be performed to find several of the observables mentioned previously for the finite-
dimensional cases. In Table 1.2, the list of some of them is shown for the Bethe lattice at
any connectivity.

These exponents are somewhat analogous to the mean-field exponents of the Ising
model, which can be derived using either the molecular field approximation or the Bethe-
Peierls approximation. In particular, the fully-connected graph represents a case where the
molecular field approximation becomes exact. Similarly, the Bethe lattice corresponds to
the geometry in which the Bethe-Peierls approximation is exact. For this reason, we refer to
both cases as mean-field-like models.

Any attempt to map the paramagnetic-to-ferromagnetic transition of the Ising model
onto a percolation transition should reproduce not just the correct critical temperature Tc,
but also the Ising universality class. Consequently, the critical clusters should not belong to
the percolation universality class characterized by the exponents in Table 1.1 or Table 1.2,
but instead exhibit the corresponding Ising critical exponents, some of these are shown
in Table 1.3 for the same geometries and dimensions mentioned above, with the exception
of d = 1, where it has been replaced to the most interesting case the Bethe lattice, with its
mean-field exponents.
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Exponent and law Bethe lattice
pc

1/κ
ν Correlation length (ξ)

ξ ∼ |p− pc|−ν 1
β Percolation probability (P )

P ∼ |p− pc|β 1
γ Mean cluster size (S)

S ∼ |p− pc|−γ 1
σ Largest cluster size (Smax)

Smax ∼ |p− pc|−1/σ 1/2
τ Cluster-size distribution (nS)

nS ∼ S−τ 5/2

Table 1.2: Critical threshold and exponent values for percolation on the Bethe lattice. For
details see [124, 125].

Exponent and law Beth lattice d = 2 d = 3
Tc (in units of J /kB) 1/ atanh(1/κ) 2.269 4.5115(2)
ν Correlation length (ξ)

ξ ∼ |T − Tc|−ν 1/2 1 0.6301(4)
β Spontaneous magnetization (m)

M ∼ |Tc − T |β 1/2 1/8 0.3264(2)
γ Susceptibility (χ)

χ ∼ |T − Tc|−γ 1 7/4 1.2372(5)
δ Critical isotherm
m ∼ h

1/δ
ext 3 15 4.789(2)

α Specific heat (C)
C ∼ |T − Tc|−α 0 0 (log) 0.110(1)

η Correlation function exponent 0 1/4 0.0363(1)
ω Correction to scaling (ω) 1 2 0.83(3)

Table 1.3: Critical exponents for the Ising universality class: mean-field (Bethe lattice, z = 6),
2D square lattice, and 3D cubic lattice. Tc for the Bethe lattice is given by 2J/ ln(z − 1),
yielding Tc ≈ 3.478 for z = 6.

1.3 The FK–CK correlated bond percolation
From the thermodynamic point of view, the main quantities of interest are those which can
be obtained directly from the free-energy. However, geometrical structures provide powerful
insight of the microscopic mechanisms driving the phase transition, and are also amenable
to experimental observations.

Consider the Ising model in its lattice gas form, using the transformation σi = 2ni − 1,
where ni denotes the occupation of the i-th site in the lattice.

H = −ϵ
∑
⟨i,j⟩

ninj (1.14)

with ϵ > 0 serving as an attractive interaction between particles, with ϵ = 4J when compared
to Eq. (1.1). Now, the order parameter is given by the average density of particles, that can
be written in terms of the magnetization density as (1 +m)/2.
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In this representation, the system undergoes a low-density to high-density transition as
we lower the temperature. This explicit structural change prompted researches to conceive
the conglomerates of particles—formed by nearest-neighbor pairs—as the central objects
driving the phase transition i.e. those describing the thermal correlations. This is completely
equivalent as conceived in the spin case, shown in Fig. 1.1.

This idea was further motivated by numerical simulations in d = 2, that showed evidence
of the mean cluster size S diverging at the critical temperature Tc [129]. However, this
enthusiasm faded away when numerical simulations at d = 3 [130] and the exact solution on
the Bethe lattice [131] showed that the percolation of these clusters, occurred at a different
temperature Tp ̸= Tc. Specifically, the geometrical clusters appear to be larger than the
critical clusters carrying the correct spin-spin (or density-density) correlations.

Instead of forming clusters with all occupied neighboring sites (or parallel spins) we
reduce their size by creating new clusters, referred to as Ising droplets. Among all pairs of
neighboring parallel spins—related to the ferromagnetic equilibrium state—we add bonds
between them with probability

pB = 1− e−βϵ/2 = 1− e−2βJ , (1.15)

yielding in a correlated bond percolation problem.
For a spin configuration at low temperatures, we show a comparison of the percolating

phase between Ising droplets and geometrical clusters in Fig. 1.6. This pictorial represen-
tation uses the same convention presented in Fig. 1.1, where blue vertices denote positive
spins, and yellow ones negative spins serving as thermal fluctuations in the ordered phase.
On the left panel, the cluster is formed solely by positive whereas the Ising droplets are a
subset of the latter, constructed with a random process controlled by the probability pB.

Fig. 1.6: A percolating Ising spin configuration (T < Tp) for (left panel) geometrical clusters
and (right panel) Ising droplets.

The mean size of the Ising droplets diverges at the Ising critical point with Ising ex-
ponents, as was shown by Coniglio and Klein (CK) in their seminal article [52]. It was
later shown [109], that these Ising droplets have the same statistics as the clusters intro-
duced by Fortuin and Kasteleyn [50, 51] (FK) in their random cluster model. Within their
framework, it was possible to prove that these Ising droplets carry the critical spin-spin (or
density-density) correlations, meaning that

⟨σiσj⟩ = ⟨γ∥ij⟩. (1.16)
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where ⟨σiσj⟩ is the spin-spin correlation function, and ⟨γ∥ij⟩ denotes the probability that spins
i and j are parallel and belong to a same (random) cluster of the corresponding percolation
problem. Consequently, it follows that

| ⟨σi⟩ | = ⟨γi⟩ , (1.17)

with ⟨γi⟩ being the probability of the spin i belonging to the percolating cluster.
This geometric identification then enables updating several correlated spins (or particles)

all at once, thus accelerating configurational sampling down to the critical temperature, Tc.
This was the breakthrough of cluster-based numerical algorithms, proposed by Swendsen
and Wang [132], and Wolff [55], that are able to perform collective moves avoiding the
critical slowing down seen in standard Monte Carlo simulations.

1.3.1 The FK approach
Consider a system of Ising spins on a lattice with ferromagnetic nearest-neighbor interactions,
for which we have set the ground state energy to zero—by adding an irrelevant constant—the
Hamiltonian is

H({σi}) = −
∑
⟨i,j⟩

J(σiσj − 1) . (1.18)

We can modify this Hamiltonian by ’diluting’ the interactions i.e. replace it by

H′({σi}) = −
∑
⟨i,j⟩

J ′
ij(σiσj − 1) , (1.19)

where
J ′
ij =

{
J ′ with probability pB ,
0 with probability 1− pB .

For a given J ′, the parameter pB is chosen such that the Boltzmann weight associated
to the original spin configuration, coincides with a spin configuration of the new diluted
Hamiltonian, i.e.

eβJ(σiσj−1) = pB e
βJ ′(σiσj−1) + (1− pB) . (1.20)

In the limit βJ ′ → ∞, we have eβJ ′(σiσj−1) = δσi,σj
, and from Eq. (1.20) we get that

pB = 1− e−2βJ . (1.21)

As a result, the Boltzmann factor of each spin configuration is

e−βH({σi}) =
∏
⟨i,j⟩

eβJ(σiσj−1) =
∏
⟨i,j⟩

[
pBδσi,σj

+ (1− pB)
]
. (1.22)

Performing the products in the relation above we can write

e−βH({σi}) =
∑
C

WFK({σi}, C) , (1.23)

where

WFK({σi}, C) =
∏

⟨i,j⟩∈C

pBδσi,σj

∏
⟨i,j⟩̸∈C

(1− pB)

= p
|C|
B (1− pB)

|A|
∏

⟨i,j⟩∈C

δσi,σj
. (1.24)
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Here, C is a subset of all the bonds that correspond to a specific configuration of the
interactions J ′, such that the bonds with J ′ = ∞ belong to the cluster configuration C, and
the subset of bonds with J ′ = 0 defines A, with |C|+ |A| = |E| for E the set of all bonds. In
other words, WFK({σi}, C) is the statistical weight of a spin configuration {σi} with the set
of interactions {J ′

ij} in the diluted model with |C| edges interacting with infinite strength
and all other edges interacting with zero strength. The Kronecker delta indicates that two
spins connected by an infinite strength interaction must be in the same state. Therefore, the
cluster configuration C can be decomposed in clusters of parallel spins connected by infinite
strength interactions.

The partition function Z is then obtained by summing the Boltzmann factor in Eq. (1.23)
over all possible spin configurations. Because each disconnected cluster in the cluster
configuration C gives a contribution of 2, one then gets

Z =
∑
C

2NCp
|C|
B (1− pB)

|A| , (1.25)

where NC is the number of clusters in C. Put differently, the FK–CK formalism gives a
partition function, Z =

∑
C W (C), whose structure is equivalent to that of a correlated

bond percolation model,

W (C) =
∑
{σi}

WFK({σi}, C) = 2NCp
|C|
B (1− pB)

|A| , (1.26)

which coincides with the weight of the random bond percolation except for the extra factor
2NC . All clusters and their weights for the spin configuration (st, σr, sb, σl) = (↑, ↑, ↑, ↑) are
shown in Fig. 1.7. Clearly, all percolation quantities in this correlated bond model weighted
according to equation Eq. (1.26) coincide with the corresponding percolation quantities of
the FK clusters made up of parallel spins connected by infinite-strength interaction, whose
statistical weight is given by Eq. (1.24).

α4l r

b

t

α3(1− α)l r

b

t

α2(1− α)2l r

b

t

α(1− α)3l r

b

t

(1− α)4l r

b

t

Fig. 1.7: Chain of four Ising spins with ferromagnetic interactions, Jij = J > 0, under periodic
boundary conditions, in its minimal energy spin configuration (σt, σr, σb, σl) = (↑, ↑, ↑, ↑). All
possible clusters are shown, with zero to four links (solid red lines), thus identifying spins
as being either part (filled circle) or not (unfilled circle) of a cluster. Cluster multiplicities
are 1, 4, 6, 4, and 1, respectively, and FK cluster weights WFK (center) are expressed for
bonding probability α = e−2βJ ∈ (0, 1].
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1.3.2 The CK approach
In the approach followed by Coniglio and Klein [52], given a configuration of spins, one
introduces fictitious random bonds between neighboring parallel spins with probability
pB, while anti-parallel spins are not connected, with probability 1. Clusters are defined
as maximal sets of parallel spins connected by bonds. Unlike with the FK approach the
interaction energy is left unchanged.

For a given realization of bonds we distinguish the subsets C and A1 as the sets of
neighboring parallel spins respectively connected and not connected by bonds and the subset
A2 of neighboring antiparallel spins. Clearly, |C|+ |A1|+ |A2| = |E| where E is the set of all
bonds of the lattice. The statistical weight of a given configuration of spins {σi} and bonds
C is given by

WCK({σi}, C) = p
|C|
B (1− pB)

|A1|e−βH({σi}) . (1.27)
The partition function is obtined by summing Eq (1.27) over all possible spin and bond
configurations

Z =
∑
{σi}

∑
C

WCK({σi}, C) =
∑
{σi}

e−βH({σi}) (1.28)

where the second equality follows from∑
C p

|C|
B (1− pB)

|A1| = 1.
The partition function of course does not depend on the value of pB, which controls the

bond density. Instead, pB tunes the size of the clusters formed by these bonds. For example,
taking pB = 1 the clusters would coincide with nearest-neighbor parallel spins, while for
pB = 0 the clusters are reduced to single spins.

By choosing pB = 1− e−2βJ (equivalent to the result of Eq. (1.21) in the FK approach)
and recoginizing that e−βH({σi}) = e−2βJ |A2|, Eq. (1.27) simplifies to

WCK({σi}, C) = p
|C|
B (1− pB)

|A| , (1.29)

where A = A1 ∪ A2 = E \ C. From this equation, we can calculate the weight of the bond
configuration C. This bond configuration can occur among all possible spin configurations,
however we are interested in taking into account those compatible with the condition of
spins being parallel, i.e.

W (C) =
∑
{σi}

WCK({σi}, C)
∏

⟨ij⟩∈C

δσiσj
. (1.30)

Inserting the explicit form of Eq.(1.29) we get

W (C) =
∑
{σi}

p
|C|
B (1− pB)

|A|
∏

⟨ij⟩∈C

δσiσj
= 2NCp

|C|
B (1− pB)

|A| , (1.31)

coinciding with the result of the FK approach of (1.26) yielding an equivalent partition
function

Z =
∑
C

2NCp
|C|
B (1− pB)

|A| . (1.32)

The CK clusters and the KF clusters have different meanings. In the CK formalism, the
clusters are defined directly in the Ising model as parallel spins connected by fictitious bonds,
while in the KF formalism clusters are defined in the equivalent diluted model as parallel
spins connected by infinite-strength interactions. However, both approaches are equivalent,
as can be seen from the equality between the resulting weights of Eq. (1.26) and Eq. (1.26).
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From these statistical weights it follows that, any percolation quantity O(C) which
depends only on the bond configuration C has the same average in both approaches

⟨O(C)⟩FK = ⟨O(C)⟩CK = ⟨O(C)⟩W , (1.33)
where ⟨· · ·⟩W is the average over bond configurations in the bond-correlated percolation
with weights given by W (C). Consequently, it also follows that

⟨σiσj⟩ = ⟨γ∥ij⟩W , (1.34)

where ⟨· · · ⟩ is the thermodynamic average with the Boltzmann weights. Here γ∥ij(C) = 1 if i
and j are in the same cluster, and 0 otherwise.

1.4 The FK–CK clusters for frustrated models
In models with frustrated interactions, the bond probabilities pB can become negative,
prompting the search for extended definitions of pB. We will mainly consider the case
in which this frustration manifests by the presence of both ferromagnetic (J > 0) and
anti-ferromagntic bonds (−J).

In a natural generalization for these cases, FK–CK clusters may be constructed by adding
bonds between satisfied spin pairs i.e. to those sites i, j with Jijσiσj > 0. It can be shown
that [116, 133]

⟨σiσj⟩ = ⟨γ∥ij⟩ − ⟨γ ̸∥ij⟩, (1.35)
where ⟨γ∥ij⟩ and ⟨γ ̸∥ij⟩ denote the probability that parallel and antiparallel spins i and j are
in the same cluster, respectively. Some of the bonds in the clusters then link neighboring
parallel spins and others anti-parallel ones. In this context, generalizing cluster schemes
by summing the contribution of parallel and antiparallel spins necessarily overestimate
correlations, i.e.,

|⟨σiσj⟩| ≤ ⟨γ∥ij⟩+ ⟨γ ̸∥ij⟩, (1.36)
and the resulting clusters percolate at temperatures higher than Tc.

Therefore, in the critical regime these clusters are largely ineffective at configurational
sampling, as has been repeatedly demonstrated in numerical simulation [122, 134–139].

In what follows, we adopt the FK approach to demonstrate that FK–CK clusters still capture
the relevant critical correlations in frustated systems; that is, the relation ⟨σiσj⟩ = ⟨γ∥ij⟩W
continues to hold. However, for spin pairs connected by an antiferromagnetic bond, one must
take pB < 0, thereby relinquishing any probabilistic interpretation of this quantity.

We first present the frustrated spin model for which we will provide the proof: the
frustrated random bond Ising model (RBIM), also known as the ±J Ising model.

1.4.1 The model
The main model for this chapter will be the frustrated RBIM, defined by the Hamiltonian

HRBIM({σi}) = −
∑
⟨i,j⟩

Jijσiσj − hext
∑
i

σi , (1.37)

where the couplings Jij are taken from a bimodal distribution with probability ρ of being
ferromagnetic, Jij = J0 > 0, and probability 1− ρ of being anti-ferromagnetic, Jij = −J0.
In other words, the Jijs are taken at random from the probability distribution:

P(Jij) = ρδ(Jij − J0) + (1− ρ)δ(Jij + J0) , (1.38)
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with J0 setting the unit of energy. Clearly, the standard ferromagnetic Ising model is recovered
for ρ = 1, and the standard antiferromagnetic Ising model is recovered for ρ = 0. There also
exists a duality: ρ↔ (1− ρ) ∧ J0 ↔ −J0.

The RBIM on d = 2 [140–147] and d = 3 [122] cubic lattices, in particular, has been
extensively studied. For all d ≥ 2 and ρ close to unity the paramagnetic-ferromagnetic
transition is Ising-like. As ρ decreases, however, dimensional differences emerge. In particular,
in d = 3 the model exhibits a finite-temperature spin-glass phase for ρ ≲ 0.78, while in d = 2
spin-glass ordering is only present at T = 0 (for ρ ≲ 0.897). In mean-field models, such as
the infinite-connectivity Sherrington-Kirkpatrick (SK) model as well as comparable models
defined on the Bethe lattice, an additional phase emerges: the ferromagnetic-spin-glass
(FSG) phase. This intermediate phase between the ferromagnetic and the spin-glass phases
exhibits spin-glass behavior while maintaining a non-zero magnetization [148–151].

Interestingly, for all d ≥ 2, local gauge symmetry gives rise to a Nishimori line [152, 153]

βNJ0 =
1

2
ln

ρ

1− ρ
, (1.39)

where βN = 1/kBTN is the inverse Nishimori temperature. Along this line certain ther-
modynamic quantities, such as the internal energy, have closed-form expressions. This
line is also invariant under renormalization-group transformations, as is the paramagnetic-
ferromagnetic transition line. The intersection point of the two lines therefore gives rise to a
multicritical fixed point; this Nishimori point (NP) separates the paramagnetic, ferromagnetic
and spin-glass phases in d ≥ 3. In d = 2, the dynamical (critical) exponent of single spin flip
Metropolis Monte Carlo at the Nishimori point has been estimated to have a very high value,
z ≃ 6, independently of lattice geometry and random bond distribution [154, 155]. Such a
high z significantly inhibits configurational sampling (and equilibration) in this regime.

1.4.2 The FK approach to the frustrated RBIM
Once again, apart from an irrelevant additive constant (and in absence of external magnetic
field), the Hamiltonian in Eq. (1.37) can be rewritten as

HRBIM({σi}) = −
∑
⟨i,j⟩

Jij(σiσj − 1) . (1.40)

We then replace this Hamiltonian with an annealed diluted Hamiltonian

H ′({σi}) = −
∑
⟨i,j⟩

J ′
ij(σiσj − 1) , (1.41)

where
J ′
ij =

{
J ′ with probability p(ij)B ,

0 with probability 1− p
(ij)
B .

For a fixed J ′, p(ij)B is chosen such that

eβJij(σiσj−1) = p
(ij)
B eβJ

′(σiσj−1) +
(
1− p

(ij)
B

)
(1.42)

for each bond. In the limit J ′ → ∞, we have eβJ ′(σiσj−1) = δσi,σj
, and p(ij)B is given by

p
(ij)
B = 1− e−2βJij . (1.43)
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(As anticipated, for Jij < 0 the parameter p(ij)B is negative; the formal construction can
nevertheless be continued.) Consequently, the Boltzmann factor is

e−βHRBIM({σi}) =
∏
⟨i,j⟩

[
p
(ij)
B δσi,σj

+
(
1− p

(ij)
B

)]
, (1.44)

and hence we can write
e−βH({σi}) =

∑
C

WFK({σi}, {Jij}, C) , (1.45)

where
WFK({σi}, {Jij}, C) =

∏
⟨i,j⟩∈C

p
(ij)
B δσi,σj

∏
⟨i,j⟩̸∈C

(1− p
(ij)
B ) . (1.46)

Here, C is a subset of all the bonds that correspond to a specific configuration of the
interactions J ′

ij, such that the bonds with J ′ = ∞ belong to the cluster configuration C, and
the subset of bonds with J ′ = 0 defines A, with |C| + |A| = |E| for E the set of all bonds.
Note that we have here included the dependence on the full realization of the random
couplings {Jij} in the definition of the FK statistical weights, because the quenched disorder
over bond types make their ‘probabilities’ differ for each system realization.

The partition function Z can then be obtained by summing over all spin configurations,

Z =
∑
C

2NC

∏
⟨i,j⟩∈C

p
(ij)
B

∏
⟨i,j⟩̸∈C

(1− p
(ij)
B ) , (1.47)

where NC is the number of clusters in C. Therefore, the FK–CK formalism gives a partition
function, Z =

∑
C W (C), whose structure is equivalent—albeit, as mentioned above, with

some negative bond probabilities—to that of a correlated bond percolation model

W (C) =
∑
{σi}

WFK({σi}, {Jij}, C)

= 2NC

∏
⟨i,j⟩∈C

p
(ij)
B

∏
⟨i,j⟩̸∈C

(1− p
(ij)
B ) .

(1.48)

It follows that
⟨σiσj⟩ = ⟨γ∥ij⟩W , (1.49)

where γ∥ij(C) = 1 if i and j are in the same cluster, and 0 otherwise. We emphasize
that this equality holds when averaging over Boltzmann weights and averaging over bond
configurations, for any fixed disorder realization, {Jij}. Consequently, the equality must
also hold after averaging over the quenched disorder. A concrete example is discussed in the
concluding Sec. 3.8.

Note that the equality between the spin–spin correlation function and ⟨γ∥ij⟩W follows
from the FK–CK clusters ensuring that the Boltzmann weight of every spin configuration
coincides with the statistical weight of the corresponding random-bond percolation model
defined by the measureW (C). This property crucially implies that, even if one constructs
another cluster model for which clusters percolate exactly at the Ising critical point and
exhibit the same critical exponents—as for the α-parameter clusters that will be discussed
below—the equality between the Boltzmann weight of the spin configurations and the
statistical weight of the cluster model no longer holds. As a result, throughout the phase
diagram the spin–spin correlation function differs from the percolation correlation function.
Consequently, an algorithm based on such a cluster model is not expected to weaken the
critical slowing down with any significance.
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1.5 The RBIM on the Bethe lattice

The presence of negative probabilities makes the definition of FK–CK clusters unsuitable
for Monte Carlo simulation studies. However, we can forgo the probabilistic interpretation
of the quantities pB and instead study the clusters in models that admit closed analytical
expressions, such as the model defined on the Bethe lattice.

In this section, we provide the solution of the frustrated RBIM on the Bethe lattice, along
with its thermodynamic phase diagram. Before proceeding to the percolation analysis of the
FK–CK clusters, we first examine their behavior in the standard Ising model, corresponding
to the case ρ = 1. This serves as a consistency check for our methods, ensuring that we
recover the known results. We then solve the percolation equations for the frustated RBIM
and demonstrate that the FK–CK clusters indeed percolate at the critical point, exhibiting
the corresponding Ising critical exponents.

1.5.1 Cavity field and recursion equations
As anticipated in Sec. 1.2.2, we will use the cavity method to solve this model on the Bethe
lattice. In this case we are not dealing with percolation probabilities, but with marginal
probabilities of the microscopic spin configuration. In what follows, we will denote positive
and negative spins with ↑ and ↓, respectively.

We will label a current site with o, and label its κ+ 1 = 3 nearest neighbors as i, j and k,
as illustrated on the left-hand side of Fig. 1.8. The marginal probability of a microscopic
spin configuration at the site o can be parametrized in terms of an effective local field heffo as

ηo(σo) =
eβh

eff
o σo

2 cosh(βheffo )
. (1.50)

This effective field encapsulates the influence of the neighboring spins on site o. Alternatively,
this marginal probability can be expressed explicitly in terms of the interactions with
neighboring sites

ηo(σo) =
eβhextσo

Zsite

∏
l∈∂o

∑
σl

eβJolσoσlηl→o(σl) , (1.51)

where Zsite is a normalization constant ensuring ηo(↑) + ηo(↓) = 1. The quantity ηl→o(σl) is
the cavity marginal configuration probability for the site l ∈ {i, j, k}, computed in absence
of site o. This cavity construction is depicted on the right-hand side of Fig. 1.8, where the
contribution from the site i depends on the remaining neighbors {m,n} = ∂i \ o. This cavity
configuration probability satisfies a recursive equation of the same form

ηl→r(σl) =
eβhextσl

Zcav

∏
p∈∂l\r

∑
σp

eβJlpσlσpηp→l(σp) , (1.52)

for any generic site l, with r denoting the cavity site. The factor Zcav ensures normalization,
ηl→r(↑) + ηl→r(↓) = 1. Analogously to Eq. (1.50), the cavity configuration probability can
also be parametrized using a cavity field hl→r

ηl→r(σl) =
eβhl→rσl

2 cosh(βhl→r)
. (1.53)
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heff
o o

i j

k

Joi

Joj

Jok

i

m n

o

Jmi

Jni

Joihi→o

Fig. 1.8: Labeling scheme for a generic frustrated RBIM configuration on a Bethe lattice
with connectivity κ+ 1 = 3. (Left) The site o is subjected to an effective field heffo , arising
from interactions with its three nearest neighbors i, j, and k, via couplings Joi, Joj, and Jok,
respectively. (Right) The contribution of site i to heffo , denoted hi→o, reflects the influence of
its own neighboring sites m and n, computed in the absence of site o.

With both effective and cavity configuration probabilities expressed in this form, we can
derive equivalent expressions for their corresponding fields. The effective field at site o is
given by:

heffo = hext +
1

β

∑
l∈∂o

atanh(tanh βJol tanh βhl→o), (1.54)

while the cavity field hl→r, which captures the influence on site l in the absence of site r,
satisfies the recursion

hl→r = hext +
1

β

∑
p∈∂l\r

atanh(tanh βJlp tanh βhp→l). (1.55)

Note that both effective and cavity fields are themselves random variables, due to the disorder
present in the couplings {J0l} and {Jlp} whenever ρ ̸= 1. The stationary distribution for
the cavity fields in Eq. (1.55) can be obtained with arbitrary precision using the population
dynamics algorithm [127]. Numerically, this scheme involves initializing a random sample—
or population—of size M of the cavity fields {hl→r} and iteratively updating each member
of this population according to Eq. (1.55). Each member is updated N times until the
entire population converges to a stationary probability distribution. Once the distribution
of the cavity fields is known, the effective fields defined in Eq. (1.54) can be computed.
Knowing the distribution of effective fields, {heffo }, enables the calculation of all relevant
thermodynamic quantities. In particular, the average magnetization density is given by

m ≡ [⟨σo⟩] = [tanh(βheffo )], (1.56)

where ⟨· · · ⟩ denotes the thermal average with respect to the Gibbs–Boltzmann distribution,
and [· · · ] represents the average over disorder realizations. In this context, averaging over
disorder is equivalent to averaging over the distribution of effective fields {heffo }.

1.5.2 Phase diagram
Interestingly, for h = 0, closed-form analytical expressions for the critical temperatures of
the paramagnetic-to-ferromagnetic (P-F) and paramagnetic-to-spin-glass (P-SG) transitions
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can be obtained [153, 156]

J0
Tc

= atanh

(
1

κ(2ρ− 1)

)
,

J0
TSG

= atanh

(
1√
κ

)
,

(1.57)

respectively. These expressions are calculated from the linear stability of the first two
moments of the cavity fields in Eq. (1.55) around zero. In other words, they correspond to
the temperatures for which

[hl→r] = 0 and [h2l→r] = 0, (1.58)
respectively. The critical dilution at which these critical temperatures coincide is

ρ⋆ =
1

2

(
1 +

1√
κ

)
, (1.59)

which corresponds to a multicritical point that separates a regime in which the system
undergoes a paramagnetic-to-ferromagnetic transition (ρ close to 1) from another one in
which the ferromagnetic phase is replaced by a phase with spin-glass ordering (ρ close
to 1/2). The three phases meet at this point. Coming from T large, the P-F transition
corresponds to the temperature at which the system develops a non-zero magnetization,
given by Eq. (1.56). By contrast, during the P-SG transition, the spontaneous magnetization
remains zero, but the system exhibits a non-zero Edwards–Anderson (EA) order parameter,

qEA ≡ [⟨σo⟩2] = [tanh2(βheffo )]. (1.60)
A phase with both non-zero magnetization and EA order parameter can be identified, denoted
here as the ferromagnetic spin glass (FSG). The transition lines between SG-FSG and FSG-F
can be estimated numerically, at the replica-symmetric level, using population dynamics.
Coming from the spin glass phase, the critical line SG-FSG is estimated at the onset of finite
magnetization, while the FSG-F transition line is determined from the stability of the EA
order parameter, measured as

δqEA = |qEA − qab|, (1.61)
where qab is the overlap of two-replicas a and b, i.e.

qab = [⟨σ(a)
o ⟩⟨σ(b)

o ⟩] = [m(a)m(b)] , (1.62)
and δqEA = 0 in the purely ferromagnetic phase. Numerically, this corresponds to two
populations of the cavity fields being updated simultaneously, with different initial conditions.
A crucial point is that both populations a and b are evolved concomitantly in the population
dynamics algorithm [157]. Put differently, at each selected site, p ∈ ∂l \ r, we draw the
same random bonds Jlp for both populations.

The EA order parameter qEA is then calculated using any of the two replicas a or b,
the choice being immaterial as they should produce the same results. For the specific case
of T/J0 = 0, the cavity equations require a modification [158]. In this zero-temperature
limit, we have extracted the known values of ρ corresponding to the SG-FSG and FSG-F
transition lines from Ref. [159]. These values are ρ = 0.86950(3) for the SG-FSG transition
and ρ = 0.91665(5) for the FSG-F transition.

Finally, the Nishimori line is located at J0/TN = ln[ρ/(1 − ρ)]/2, independently of the
Bethe lattice connectivity, and goes through the multicritical point (ρ⋆, TSG), as expected
(see Sec. 3.3). All these results are shown in the phase diagram of Fig. 1.9
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Fig. 1.9: Phase diagram of the RBIM on the Bethe lattice with κ+1 = 3 at zero external field
(see Sec. 1.5.2). The phase boundaries (solid lines) between the paramagnetic, ferromagnetic,
and spin-glass phases, as well as a portion where magnetized spin-glass behavior takes place,
denoted here as the ferromagnetic-spin-glass phase (FSG) are obtained as described in the
text. For reference, the Nishimori line (gray dashed line) and the multicritical point at
(ρ⋆, T⋆/J0) =

(
1+

√
2

2
√
2
, 1
atanh(1/

√
2)

)
(gray dotted line) are also included.

1.6 Percolation of the FK–CK clusters
In the following, we will consider the percolation of FK–CK clusters formed by positive (↑)
spins—i.e. the equilibrium state is positively magnetized. Before presenting the solution
for FK–CK percolation in the frustrated RBIM, let us first examine the case ρ = 1, which
corresponds to the standard ferromagnetic Ising model.

1.6.1 Ising model

Consider the percolation probability P (n)
o , defined as the probability that the spin at site o is

up, belongs to the percolating cluster, and has n nearest neighbors that are also up, for a
generic site o in the lattice. Complementarily, we define the probability Q(n)

o , which—unlike
in the simple site percolation case—denotes the probability that the spin at site o is up but
does not belong to the percolating cluster, while having n neighboring spins that are up.
Compactly, we write these conditions as

P (n)
o ≡ Pr

{
so = ↑ ∧ o ∈ C∞ ∧

∑
l∈∂o

δsl,↑ = n

}
,

Q(n)
o ≡ Pr

{
so = ↑ ∧ o /∈ C∞ ∧

∑
l∈∂o

δsl,↑ = n

}
.

(1.63)

where C∞ denotes the set of sites belonging to the infinite percolating cluster. Clearly, n
can take values according to n ∈ {0, 1, . . . , c + 1}. Summing over all possible values of n
we obtain the overall probabilities for the central site o to belong and not belong to the
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percolating cluster, Po and Qo, respectively. These last two probabilities are related to the
configuration probability defined in Eq. (1.51) via

ηo(↑) = Po +Qo, (1.64)

letting us parametrize all our expressions in terms of the percolation probability, Po, and
the spin up configuration probability ηo(↑). For the Ising model ρ = 1, every site interacts
to any other with the constant ferromagnetic coupling J0, preserving spatial-translational
invariance. Since we are considering a generic site o, we can drop this label and simply write
P (n)—the probability that a randomly chosen site belongs to the percolating cluster, with
its spin up and the spins of n of its nearest neighbors also up. This leads to the equations
defined as

P (n) =
1

Zsite
eβh+βJ0(2n−κ−1)

(
κ+ 1

n

)
(1− η(↑))κ+1−n · · ·

n∑
l=1

(
n

l

)
πl(η(↑)− π)n−l

l∑
s=1

(
l

s

)
psB(1− pB)

l−s ,

(1.65)

where Zsite is the normalization factor ensuring P +Q = η(↑), with

P =
κ+1∑
n=0

P (n) , Q =
κ+1∑
n=0

Q(n) , (1.66)

and π is the cavity percolation probability, where the effect of one neighbor (the cavity site)
is neglected and thus

π =
κ∑

n=0

π(n) , (1.67)

with the constituent cavity percolation probabilities π(n) following the recursive relation

π(n) =
1

Zcav
eβh+βJ0(2n−κ)

(
κ

n

)
(1− η(↑))κ−n · · ·

n∑
l=1

(
n

l

)
πl(η(↑)− π)n−l

l∑
s=1

(
l

s

)
psB(1− pB)

l−s .

(1.68)

By performing the sum as indicated in Eq. (1.67), we obtain:

π =
1

Zcav
eβh−βJ0κ

{ [(
e2βJ0 − 1

)
ηcav(↑) + 1

]κ
−
[(
e2βJ0 − 1

)
ηcav(↑)− pBπe

2βJ0 + 1
]κ }

.
(1.69)

Once again, Zcav is the normalization factor for the condition π + q = ηcav(↑) where q and
ηcav(↑) are the cavity counterparts of the probabilities Q and η(↑), respectively.

We can solve Eq. (1.69) iteratively and then compute the quantity P using Eqs. (1.65)
and (1.66). However, since we are primarily interested in the critical properties of the
clusters—specifically near P = 0—and given that P = 0 ⇔ π = 0, the cavity percolation
probabilities π serve effectively as order parameters for the percolation transition. Therefore,
focusing on π will be sufficient for our analysis. This approach is particularly advantageous
in the frustrated case, where the equations for P become significantly more complicated
than those for π.
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We can analyze the percolation properties of the Ising model as follows: For a given
temperature TK , there exists an associated external magnetic field hKext for which the perco-
lation probability starts to deviate from zero, and the FK–CK clusters percolate. Figure 1.10
illustrates the effect for the pure Ising model (ρ = 1) on a Bethe lattice with κ + 1 = 3 at
TK = 1.2 Tc, where Tc the Ising critical temperature given by Eq. 1.57. The onset of percola-
tion then takes place at hKext ≃ 0.1299(1). Repeating this procedure for all TK ≥ Tc identifies
the points (hKext, TK) that define the Kertész line [160], which identifies the percolation
threshold for the FK–CK clusters in presence of an external field.

Alternatively, the external field can be parameterized in terms of the magnetization
it induces, and visualize the Kertész line in the (m,T ) plane along with the spontaneous
magnetization at zero field. The Kertész line separates a non-percolating region, with high
temperature and weak spin correlations, from a percolating region at low temperatures, and
spins correlated by the external field, resulting in the presence of the spanning cluster. By
construction, in the zero external field limit the Kertész line coincides with the Ising critical
point, (hKext = 0, TK = Tc). Therefore, the thermodynamic and percolating transitions then
match.

Note that the Kertész line does not have a direct physical interpretation in terms of
clusters, as the CK bonding probability is not strictly valid when hext ̸= 0. In fact, there are
two symmetric Kertész lines in the phase diagram: one associated with parallel up spins,
the other with parallel down spins, corresponding to positive and negative magnetic fields,
respectively. These two lines merge at the critical point (Tc, hext = 0). Formally, it can be
shown that in the presence of an external magnetic field, the bonding probability must be
modified to account for the field—for instance, by introducing a ghost spin [124, 161].
Nevertheless, tracing the Kertész line is useful for our purposes, as it highlights the fact that
it terminates precisely at the critical point. This, in turn, implies that at hext = 0, the clusters
defined using the FK–CK bonding probability percolate exactly at criticality.

Fig. 1.10: Percolation properties of the pure Ising model (ρ = 1) on the Bethe lattice
with κ + 1 = 3. Kertész line (dashed line) along with the reversed representation of the
magnetization density with (normalized) temperature (solid line). In the Ising model the
Kertész line converges to the Ising critical point Tc at hext = 0, indicative of the matching
between percolation and thermodynamic transitions. The inset shows the cavity percolation
probability at TK = 1.2Tc. The onset hKext = 0.1299(1), at which the curve detaches from
zero, corresponds to a point on the Kertész line.
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We shall remember that the percolation probability on the Bethe lattice has critical
exponent βP = 1—we have added a subindex P to emphasize that this value is associated
to the percolation universality class. In the thermodynamic problem, the order parameter m
has two critical exponents near the transition point Tc:

(i) For h = 0 near Tc, the spontaneous magnetization follows the law

m ∝ |T − Tc|β, (1.70)

with the Ising mean-field critical exponent β = 1/2.
(ii) At the critical point T = Tc and with a non-zero magnetic field the magnetization

density behaves as:
m ∝ |hext|1/δ, (1.71)

with the Ising mean-field critical exponent δ = 3.
Along the K’ertesz line, the percolation of FK–CK clusters exhibits a crossover. At very

high temperatures (corresponding to values close to m = 1 in the reversed representation
of Fig. 1.10), percolation criticality is governed by the percolation universality class. However,
as we approach T = Tc, the system crosses over to the Ising universality class.

Since cluster percolation arises due to two control parameters, the temperature T and the
external field hext, the percolation exponent βP associated with the percolation probability
P splits into two:
(i) For hext = 0 and temperatures near Tc, we have P ∝ |T − Tc|β, so βP = β.
(ii) At T = Tc and for small hext, P ∝ |hext|1/δ, yielding βP = 1/δ.
The Ising universality class is thus recovered at the critical point, as expected. In the

following, we will show that this is also the case for the frustrated model, whenever the
Ising universality class is present—as in the paramagnetic-to-ferromagnetic portion of the
phase diagram in Fig. 1.9.

1.6.2 Frustated RBIM
In this case, the presence of quenched disorder introduces frustration and breaks the spatial-
translational invariance of the lattice. As a result, the recursive equations for the percolation
probability grow rapidly more complicated with increasing connectivity. Therefore, we here
restrict most of our analysis to the case κ+ 1 = 3.

The cavity percolation equations

To construct the percolation probabilities in this case, we build on the above notation. We
denote P (n)

o the probability for the site o to belong to the percolating cluster, with n of its
nearest-neighbors being spin up, and Q(n)

o the complementary probability that site o does
not belong to the percolating cluster, with n of its nearest-neighbors being spin up. As in
previous sections, we consider the percolation transition of positive magnetized domains,
and hence for the site o to belong to the infinite percolating cluster the spin in o must be up,
i.e. σi = ↑. Compactly, we write these conditions as

P (n)
o ≡ Pr

{
σo = ↑ ∧ o ∈ C∞ ∧

∑
l∈∂o

δσl,↑ = n

}
,

Q(n)
o ≡ Pr

{
σo = ↑ ∧ o /∈ C∞ ∧

∑
l∈∂o

δσl,↑ = n

}
.

(1.72)
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Clearly, n can take values according to n ∈ {0, 1, . . . , c + 1}. Summing over all possible
values of n we obtain the overall probabilities for the site o to belong and not belong to the
percolating cluster, Po and Qo, respectively. These last two probabilities are related to the
configuration probability defined in Eq. (1.51) via

ηo(↑) = Po +Qo, (1.73)
letting us parametrize all our expressions in terms of the percolation probability, Po, and the
spin up configuration probability ηo(↑). Using the labeling shown in Fig. 1.8, the constituent
equations, i.e. those with n = 0, 1, 2, 3, are:
P (0)
o = 0 , (1.74)

P (1)
o =

eβhext

Zsite

∑
(x,y,z)∈C3

eβ(Jix−Jiy−Jiz)πx→op
(ox)
B [1− ηy→o(↑)] [1− ηz→o(↑)] , (1.75)

P (2)
o =

eβhext

Zsite

∑
(x,y,z)∈C3

eβ(Jix+Jiy−Jiz)[1− ηz→o(↑)] · · · (1.76){
πx→o p

(ox)
B [ηy→o(↑)− πy→o] + πy→o p

(oy)
B [ηx→o(↑)− πx→o] + πx→oπy→oΦ

(o)
xy

}
P (3)
o =

eβ(Joi+Joj+Jok+hext)

Zsite

{ ∑
(x,y,z)∈C3

πx→o p
(ox)
B [ηy→o(↑)− πy→o][ηz→o(↑)− πz→o] (1.77)

+
∑

(x,y,z)∈C3

πx→oπy→o [ηz→o(↑)− πz→o]Φ
(o)
xy + πi→oπj→oπk→oΨ

(o)
ijk

}

with

Φ(o)
xy = p

(ox)
B p

(oy)
B +

(
1− p

(ox)
B

)
p
(oy)
B + p

(ox)
B

(
1− p

(oy)
B

)
, (1.78)

Ψ
(o)
ijk =

∑
(x,y,z)∈C3

[
p
(ox)
B

(
1− p

(oy)
B

)(
1− p

(oz)
B

)
+ p

(ox)
B p

(oy)
B

(
1− p

(oz)
B

)]
+ p

(oi)
B p

(oj)
B p

(ok)
B ,

(1.79)
where we used the cyclic permutation group of order 3, C3 = {(i, j, k), (j, k, i), (k, i, j)}, to
consider compactly all possible combinations of sites having spins up. The overall percolation
probability is given by the sum over all constituent contributions

Po =
c+1∑
n=0

P (n)
o . (1.80)

The normalization constant Zsite enforces the condition η(↑) = Po+Qo. The cavity quantities
appearing in Eqs. (1.74)–(1.78), denoted πx→o, represent the probability that a site x (=
i, j, k) belongs to the percolating cluster in the absence of site o, and its complement, qx→o,
corresponds to the probability that x does not belong to the percolating cluster in absence
of o. This last quantity does not appear explicitly in the preceding equations because the
normalization condition, ηx→o(↑) = πx→o + qx→o, has already been imposed.

These equations are constructed considering κ = 2 neighboring spins, reflecting the ab-
sence of site o. As with the overall percolation probability, the cavity percolation probability—
and its complement—is decomposed into constituent terms corresponding to each possible
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number n of neighboring spins in the up state

πx→o =
κ∑

n=0

π(n)
x→o. (1.81)

Analogous to the definitions in Eq. (1.72), the constituent cavity percolation probabilities
are formally defined as:

π(n)
x→o ≡ Pr

sx =↑ ∧ x ∈ C∞ ∧
∑

l∈∂x\o

δσl,↑ = n

 ,

q(n)x→o ≡ Pr

sx =↑ ∧ x /∈ C∞ ∧
∑

l∈∂x\o

δσl,↑ = n

 ,

(1.82)

where in this case n = 0, 1, 2. The explicit form of these equations, following the labeling
used in the right-hand side of Fig. 1.8, is given by
π
(0)
i→o = 0 , (1.83)

π
(1)
i→o =

eβhext

Zcav

{
eβ(Jim−Jin) πm→i p

(im)
B [1− ηn→i(↑)] + e−β(Jim−Jin) πn→i p

(in)
B [1− ηm→i(↑)]

}
,

(1.84)

π
(2)
i→o =

eβhext+β(Jim+Jin)

Zcav

{
πm→i p

(im)
B [ηn→i(↑)− πn→i] + πn→i p

(in)
B [ηm→i(↑)− πm→i]

+ πm→i πn→i

[
p
(im)
B

(
1− p

(in)
B

)
+ p

(in)
B

(
1− p

(im)
B

)
+ p

(im)
B p

(in)
B

]}
.

(1.85)
Once where the normalization condition πx→o + qx→o = ηx→o(↑) is imposed by Zcav. The
most explicit form of the cavity percolation probability, using p(im)

B = 1− e−2βJim, is then

πi→o = ηi→o(↑)
πn→i ψin [ηm→i(↑)ψim + 1] + πm→i ψim [ψin (ηn→i(↑)− πn→i) + 1]

[ηm→i(↑)ψim + 1] [ηn→i(↑)ψin + 1]
. (1.86)

with ψim = e2βJim − 1. It is easy to see that if Jij = J0 > 0 ∀ (i, j) Eq. (1.86) reduces to the
Ising case given by Eq. (1.69), where it can be solved by iterations.

However, introducing antiferromagnetic bonds (Jim < 0) makes the quantity πi→o depend
explicitly on the specific realization of Jim. Because these bonds are quenched random
variables, πi→o becomes a quenched random variable itself. We again solve these cases
using the population dynamics algorithm [127], this time the population being the cavity
percolation probabilities πi→o.

As anticipated above, we omit the computation of the percolation probabilities Po. The
solution of Eq. (1.80) is more complex and is unnecessary to study the critical properties
of the system, as P0 = 0 ⇔ πx→0 = 0. We are interested in the average cavity percolation
probability defined as, π ≡ [πx→o]. We computed it numerically as the average over a
population of cavity percolation probabilities, once their distribution reaches a stationary
state.

FK–CK clusters in the RBIM

We can now proceed to solve Eq. (1.86) and analyze its behavior across different regimes to
identify the onset of percolation. This analysis will focus on the region of the phase diagram
where the paramagnetic-to-ferromagnetic phase transition occurs, that is, for ρ > ρ⋆.
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Figure 1.11 shows the Kertész line in the frustrated RBIM for various ρ ≤ 1. In the (Ising-
like) paramagnetic-to-ferromagnetic transition regime, ρ > ρ⋆, these lines clearly overlap
upon approaching the critical temperature, nicely converging towards their respective Tc.
The lines, however, shorten as ρ decreases. In addition to their shortening due to the reduced
magnetization – following the growing presence of anti-ferromagnetic bonds – we note an
unexpected systematic shortening as ρ decreases.

The numerical convergence of the percolation probability computed using the FK–CK
cluster definition becomes increasingly unstable as we get closer to the multicritical point
(T⋆, ρ⋆) where a different order—the spin-glass phase—emerges. This suggests that the onset
of a competing order may hinder the stability of the random-cluster percolation equations.

In the phase diagram at zero external field (hext = 0), shown in Fig. 1.9, a magnetized
spin-glass (FSG) phase appears for ρ > ρ⋆. This phase, characterized by a finite magnetization
m ̸= 0 and a nonzero Edwards–Anderson parameter qEA > 0, persists up to ρ ≃ 0.916. The
spontaneous magnetization curve at ρ = 0.9 (Fig. 1.11) clearly display the onset of this FSG
phase at very low temperatures. In the presence of an external field, the spin-glass order
extends up to the de Almeida–Thouless (AT) line [157, 162, 163], smoothly connecting
to the zero-field FSG region that emerges directly along the spontaneous magnetization
curve. This spin-glass phase is accompanied by a reentrant behavior in the spontaneous
magnetization curve. However, one should keep in mind that our results for m at zero field
are obtained within the replica-symmetric (RS) approximation. Since the FSG phase strictly
requires the full replica symmetry breaking (RSB) solution, it remains unclear whether this
reentrance is a genuine feature of the model or merely an artifact of the RS approximation.

Fig. 1.11: Kertész lines (points; lines are guides for the eye) and spontaneous magnetization
(solid lines) for the frustrated RBIM on the Bethe lattice with κ+ 1 = 3 for the temperature
in the vertical axis normalized by the critical value at the corresponding ρ, Eq. (1.57). For
ρ = 0.9 and at low temperatures, the spin-glass phase (denoted here with SG) reappears
due to the presence of the de Almeida-Thouless (AT) line.

Furthermore, for several values of ρ—down to ρ = 0.86 lying closely to the multicritical
value ρ⋆ ≃ 0.854—the FK–CK clusters recover the the mean-field Ising scaling, for the two
exponents here considered. This can be seen in Fig. 1.12, where the laws P ∝ |T − Tc|β
and P ∝ |hext|1/δ are recovered with β = 1/2 and δ = 3. Confirming that the FK–CK clusters
belong to the Ising universality class, even in the presence of frustration.
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Fig. 1.12: Average cavity percolation probability of FK–CK clusters for the frustrated RBIM
as a function of (a) the distance to the critical temperature at zero field and (b) the external
field at the critical temperature Tc of each respective ρ. In all cases, upon approaching
Tc or hext = 0 the critical scaling follows the Ising universality with β = 1/2 and δ = 3,
respectively.

The α-clusters

Furthermore, as anticipated in Sec. 1.4.2, it is always possible to construct new cluster
models parameterized by a quantity α, which can be tuned to define clusters such that the
onset of percolation coincides with the critical temperature Tc of the thermodynamic model.

Here, we define these α-clusters through the original proposal of modified FK–CK clusters
for frustrated systems [116], already introduced in Sec. 1.4. Specifically, we adjust the bond
probabilities on satisfied links—that is, between neighboring sites (ij) where the condition
Jijσiσj > 0 holds. For such links, a bond is placed with probability p(ij)B = 1− e−2β|Jij |. This
probability is always strictly positive.

It is well established that with this formulation, the percolation threshold does not
coincide with the thermodynamic critical temperature [116]. To address this discrepancy,
we introduce a tunable parameter α to enforce this alignment. Consequently, the modified
bond probability is defined as

p
(ij)
B (α) = 1− e−βα(Jijσiσj+|Jij |) , (1.87)

with α chosen such that Tp(α) = Tc. With this modification Eqs. (1.83)-(1.86) are updated
accordingly. We will denote the resulting average cavity percolation probability as π(α).

For the dilution ρ = 0.9, this parameter has been found to be α ≃ 0.7845(7). Using this
value, we perform the calculation of the critical exponents β and δ, as we did in Fig. 1.12.
The result is shown in Fig. 1.13.

Surprisingly, the α-parameter model exhibits the same scaling behavior as the FK–CK
clusters. This suggests that, with sufficient numerical precision, it is possible to define
positive bond probabilities that can be tuned to yield an effective model with the same
critical temperature and critical exponents as the associated thermodynamic transition.

However, the clusters generated by the α-parameter model fail to reproduce the spin–spin
correlations required to identify genuine critical clusters. This limitation arises because
introducing a non-zero α necessarily modifies the expressions for the correlations ⟨γij⟩W ,
introducing an additional term that causes them to deviate from the actual spin–spin
correlations ⟨σiσj⟩. In other words, the Ising critical scaling of the clustering probability is a
necessary but insufficient condition for identifying the thermodynamically relevant clusters.
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Fig. 1.13: Average cavity percolation probability of α-parameter clusters with α = 0.7845(7)
for ρ = 0.9 as a function of (a) the distance to the critical temperature at zero field and (b)
the external field at the critical temperature Tc. In all cases, upon approaching Tc or hext = 0
the critical scaling follows the Ising universality with β = 1/2 and δ = 3.

Nevertheless, this may open a new direction to study the spin-glass transition, that has
been proven to be even more elusive to be amenable to cluster representations. As the
generalized version of the FK–CK clusters are unable to converge passed the multicritical
point, we will study a similar α-clusters for the paramagnetic-to-spin-glass transition.

1.7 Spin glass clusters
The instability near the critical dilution ρ⋆ further confirms the inability of standard FK–CK
clusters to properly map the P-SG transition onto a percolating one. This failure is not
surprising given that the magnetization is no order parameter for the spin-glass transition
and, instead, one needs to turn to overlap variables [35].

Several new definitions of bond probabilities have been proposed [117, 119, 164, 165]
in an effort to capture the correlations of the spin-glass order and to provide the basis for
cluster-based algorithms aimed at accelerating the dynamics of frustrated systems. However,
none of these approaches has achieved universally accepted success [120–122]. Among
them, the Houdayer algorithm [118] appears to be the most successful, as it efficiently
samples large instances of the two-dimensional Ising spin-glass model on a square lattice.
Nevertheless, this method cannot be generalized to higher dimensions.

For d > 2, other alternatives yield a percolation transition typically larger than the
thermodynamic one, with the closest value reported by the two-replica FK–CK clusters. These
two-replica FK–CK clusters were initially proposed by Newman and Stein with the aim
of providing tools to mathematically show broken spin-flip symmetry in short-range spin
glasses at non-zero temperature [166].

1.7.1 Two-replica FK–CK clusters
These clusters follow arise as a simple duplication of the FK–CK construction in two spin
configurations with the same realization of the disorder, commonly known as ‘replicas’, i.e.,
bonds are occupied independently in the two replicas according to the modified FK–CK
probability given by Eq. (1.87). This translates into the bond probability given by

pij(ζij) =
(
1− e−β|Jij |−βζijJij

)2
, (1.88)
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where
ζij =

{
+1 for σiσj = 1
−1 for σiσj = −1

(1.89)

The new percolating equations come with a simplification, as now the sign of the central
spin has no implication on its feasibility to belong to the percolating cluster, we can define
two general functions for the site o to belong (or not) to C∞. Using the same labeling as
in Fig. 1.8, where the current site is o, and the nearest neighbors are i, j, k (now excluding
k as the cavity site), these functions are

Pσiσj
= πi→op

(oi)
B (ζoi)(1− πj→o) + πj→op

(oj)
B (ζoj)(1− πi→o) (1.90)

+ πi→oπj→o

[
p
(oi)
B (ζoi)(1− p(oj)(ζoj)) + p

(oj)
B (ζoj)(1− p

(oi)
B (ζoi)) + p

(oi)
B (ζoi)p

(oj)
B (ζoj)

]
Qσiσj

= (1− πi→o)(1− πj→o) + πi→oπj→o(1− p
(oj)
B (ζoj))(1− p

(oi)
B (ζoi)) (1.91)

+ πi→o(1− p
(oi)
B (ζoi))(1− πj→o) + πj→o(1− p

(oj)
B (ζoj))(1− πi→o)

These expressions are clearly probabilities, properly normalized i.e. P(σa, σb)+Q(σa, σb) = 1.
The new cavity probability equations are written in terms of these functions, and are shown
below in Eqs. (1.93) - (1.94) for κ = 2.

π
(0)
o→k =

(1− ηi→o(↑)) (1− ηj→o(↑))
Zcav

[
ηo→k(↑) eβhext−β(Joi+Joj)P↓↓ (1.92)

+ (1− ηo→k(↑)) e−βhext+β(Joi+Joj)P↑↑

]
,

π
(1)
o→k =

1

Zcav

{
eβhext ηo→k(↑)

[
ηi→o(↑) (1− ηj→o(↑)) eβ(Jia−Jib)P↑↓ (1.93)

+ ηj→o(↑) (1− ηi→o(↑)) e−β(Jia−Jib)P↓↑

]
+ e−βhext (1− ηo→k(↑))

[
ηi→o(↑) (1− ηj→o(↑)) e−β(Jia−Jib)P↓↑

+ ηj→o(↑) (1− ηi→o(↑)) eβ(Jia−Jib)P↑↓

]}
,

π
(2)
o→k =

ηi→o(↑)ηj→o(↑)
Zcav

[
ηo→k(↑)eβhext+β(Jia+Jib)P↑↑ (1.94)

+ (1− ηo→k(↑)) e−βhext−β(Jia+Jib)P↓

]
.

Their reciprocal counterparts are obtained by replacing P → Q on each of Eqs. (1.93)-
(1.94). Once again, the overall cavity probability is given by πo→k =

∑κ
n=0 π

(n)
o→k and the

normalization constant Zcav ensures qo→k + πo→k. As the up-spin requirement was dropped,
the normalization factor Zcav is now obtained from πo→k + qo→k = 1.

As in previous sections, we calculate π ≡ [πo→k] using the population dynamics algorithm
for zero external field. Varying the temperature, we find the percolation transition Tp, for
a value of ρ < ρ⋆ where spin glass order replaces the ferromagnetic one. We obtain a
percolation transition of Tp = 1.3178(5) a larger value than TSG ≃ 1.1346 as expected.

However, an interesting feature of these clusters within this model is that the this value
remains consistent for several values of ρ within the paramagnetic-to-spin-glass transition
regime, specifically we measured ρ = 0.5, 0.6, 0.7, 0.8, 0.85.

1.7.2 Multiple-replica FK-CK clusters
Recent works [120, 121] have renewed interest in these clusters by arguing that the bond
probability in Eq. (1.88) can be generalized to accommodate an arbitrary number of replicas
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R
p
(ij)
B (ζij, R) =

(
1− e−β|Jij |−βζijJij

)R
, (1.95)

as increasing the number of replicas R might drive the percolation temperature closer to the
spin glass transition TSG. This parameter plays a role similar to the α parameter introduced
in the previous section. Consequently, one might be tempted to tune R to identify the
value that aligns the percolation transition with the thermodynamic transition. We find that
Tp(R) = TSG when R = 2.860(8).

We have calculated the cavity percolation probability as a function the normalized
temperature T/TSG, for κ = 2 and κ = 3, the results are shown in Fig. 1.14. The universality
class is difficult to assess here, as for the spin glass order the critical exponent associated to
qEA ∝ |T − TSG|β in mean-field is β = 1, coinciding with the percolation universality class.

Again, this value appears to be independent of ρ, allowing these ‘multiple-replica’ clusters
to correctly identify the multicritical point at ρ⋆. Even when κ is varied, the clusters detect
that for κ = 3, the multicritical point given by Eq. (1.59) occurs at ρ⋆ ≃ 0.7887. Consequently,
ρ = 0.85 is no longer a value at which the paramagnetic-to–spin-glass transition is observed,
causing the corresponding curve to deviate from the other two at ρ < ρ⋆. However, for
these latter curves T/TSG ̸= 1, which indicates that the value R = 2.860(8) does not
correctly tune the critical temperature for this connectivity. This result suggests that the
tuned value of R—which enforces the matching between percolation and thermodynamic
transitions—depends on the lattice geometry.

Fig. 1.14: Percolation for the multiple-replica FK-CK with R = 2.860(8), for (left) κ = 2 and
(right) κ = 3.

Since there is no equivalent proof of FK–CK clusters (or alike) carrying the correct spin
glass correlations (either with or without negative probabilities), we cannot determine
whether this behavior reflects an underlying physical property of the exponent R that
enables the detection of spin glass order, or if it is merely an artificial construction similar
to the α-clusters discussed in the previous section. This observation undoubtedly warrants
further investigation.

1.8 Conclusions and outlook
In this work, we have generalized the definition of FK–CK random clusters, which capture
the physical correlations associated with the ferromagnetic critical point in the simple Ising
model, to frustrated models with negative couplings. We first presented a more formal
derivation of the cluster construction, extending the proof of Refs. [50, 52] to systems with
antiferromagnetic frustration. We then implemented the FK–CK scheme for the frustrated
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RBIM, in which the clusters can be constructed by analytically continuing certain bond
probabilities to negative values. In particular, we have explicitly verified that, near the line of
paramagnetic-ferromagnetic critical points, the critical properties of the clusters fall within
the (mean-field) Ising universality class.

This poses a significant obstacle to the idea of constructing an equivalent Swendsen-Wang
algorithm for systems with frustration. In such models, the statistical weight of certain
cluster configurations can become negative, rendering configurational sampling based on
FK–CK clusters unfeasible for accelerating critical dynamics. Although these clusters correctly
encode thermodynamic correlations, they cannot be explicitly constructed under frustration.

Our results suggest tha, at least for paramagnetic-to-ferromagnetic transitions, proposing
alternative cluster definitions is ultimately futile, since the original FK–CK clusters already
capture the correct critical behavior. Furthermore, commonly used indicators of cluster valid-
ity, such as the coincidence of thermodynamic and percolation transitions or the appearance
of Ising critical exponents, can be misleading. As demonstrated by our construction of the
α-clusters, such signatures can be artificially reproduced even when the underlying clusters
are not physically meaningful.

This caution also extends to spin glass clusters. Although there is no formal proof that
any cluster construction in spin glasses reproduces the relevant thermal correlations, the
possibility of artificially defining clusters that appear to coincide with the transition remains.
While the detection of the spin glass transition temperature TSG—independently of ρ—by
the multiple-replica clusters is indeed intriguing, it should be interpreted with care, as it
may represent yet another artificial smoking gun rather than a genuine physical signature.

From a different standpoint, however, this work offers some hope for cluster-based
schemes. The fact that the physically relevant clusters cannot be generated through stan-
dard constructive schemes does not necessarily mean that they cannot be generated at all.
Alternative generation methods do remain possible. An appealing prospect entails the use of
AI-based generative models or other machine learning-based schemes to learn rather than
construct clusters. Exactly solvable models on Bethe lattices offer particularly interesting
benchmarks for such approaches.

Even in this case, however, there is a–somewhat more subtle—hurdle to consider. Our
work demonstrates that critical clusters may only form between parallel spins. However,
in systems with antiferromagnetic couplings, configurations with parallel spins connected
by such couplings are strongly suppressed by the Boltzmann weight at low temperatures,
and hence contribute little to the spin–spin correlation functions. Paradoxically, these same
configurations may contribute significantly to the cluster correlation functions. If the bond
is present, the cluster weight may be negative; if the bond is absent, the bonding probability
may exceed one, thus corresponding to a large weight. These configurations therefore cannot
be neglected in the cluster representation. Put differently, correctly generating physical
clusters requires sampling rare spin configurations with very low statistical weight.

To illustrate this phenomenon, consider a simple one-dimensional chain of 4 spins with
2 ferromagnetic J > 0, and antiferromagnetic, −J , bonds at very low temperature, i.e., near
the zero-temperature critical point of the extended chain, with β → ∞.

Spin configurations in which the two spins connected by the antiferromagnetic bond are
parallel are then strongly suppressed by a factor e−2βJ . Nevertheless, certain cluster configu-
rations associated with these suppressed spin states contribute significantly to the cluster
correlation functions, either through a very large (either-negative or positive) statistical
weight, as seen for all the configurations with WFK → ±∞ as T → 0 in Fig. 1.15.

The relationship between physical and geometrical correlations may therefore be more
intricate in the presence of frustration than in clean (unfrustrated) systems. Going back to
the model on the Bethe lattice, as the system approaches the spin glass order we observed
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Fig. 1.15: Possible clusters for the spin chain configuration (σt, σr, σb, σl) = (↑, ↑, ↑, ↑), with
periodic boundary conditions, and fixed realization of the random bonds (Jtr = −J, Jrb =
+J, Jbl = −J, Jlt = +J). The ferromagnetic bonds, J > 0, are colored red while the anti-
ferromagnetic bonds, −J , are colored blue. The spins have a filled black circle at their tails
if they belong to a cluster, while the circle is left unfilled in the opposite scenario. Despite
the associated Boltzmann weight being vanishingly small at low temperatures, the possible
clusters reveal non-negligible contributions to the spin-spin correlation functions, coming
from the weights of the clustersWFK in the correlated percolation problem. These cluster
weights are shown in the center of each respective cluster, where we have set α = e−2βJ .
Albeit some contributions are of order one (the four cases shown in the first row), most
contributions grow exceedingly large as the temperature decreases (second row). However,
there is an equal number of positive and negative contributions, which effectively balance
out to yield the physical thermodynamic weight of this fully ordered spin configuration.

that the cavity equations governing percolation probabilities fail to converge. For instance,
very close to the multicritical point for the frustrated RBIM, we are unable to find a fixed
point of the recursion.

This difficulty also arises far from the critical point. For instance, at higher temperatures
and stronger magnetic fields, as evidenced by the shortening of the Kértesz line for values of ρ
near the multicritical point ρ⋆. In these regions, the system approaches the low-temperature
spin-glass phase that emerges along the coexistence line. These observations suggest that
the appearance of an additional local minimum in the free-energy landscape – associated
with a competing form of order – undermines the stability of the equations governing the
percolation of physical clusters. This effect might therefore limit the regime over which
relevant clusters can be identified and play a significant physical role.
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Introduction

In addition to the well-known problem of critical slowing down near the critical point, glassy
systems face another fundamental challenge: their dynamics remain sluggish throughout the
entire low-temperature phase. In such cases, novel algorithmic strategies can be developed
to enable the efficient simulation of these disordered systems across these regimes.

For spin glasses, methods such as parallel tempering [167, 168], population anneal-
ing [169–171], as well as the recently introduced replicated simulated annealing [172,
173], enable the equilibration of larger sample sizes compared to conventional single spin
flip Monte Carlo. The special purpose Janus machine has allowed to equilibrate spin glass
models of rather large sizes, though only those with discrete variables and couplings [174,
175]. More recently, deep reinforcement learning methods have been explored to find
the ground states of finite dimensional spin glasses [176, 177]. Spin glasses are not only
interesting physical systems of real magnetic materials, but they also attract theoretical
attention because they map to a broad range of hard combinatorial optimization problems.

In the context of structural glasses, Berthier et al. [61–63] recently made significant
advancements over previous methods [178], achieving accelerated equilibration of sev-
eral glass-forming liquids. Their breakthrough was first realized in polydisperse mixtures
which still exhibit the characteristics of glass formers, and then generalized to many other
models [62]. This technique, referred to as SWAP, has proven successful in equilibrating
particle systems of unprecedented size, all the way down to the experimental glass transition
temperature Tg [179].

Although there is clear empirical evidence for a growing static length scale in glasses, often
estimated through point-to-set correlations and related finite-size scaling analyses [180–
182], its role in the dynamics remains largely debated [19, 76, 183]. The remarkable
acceleration achieved by the SWAP algorithm has been interpreted as direct evidence against
static, cooperative explanations of the glass transition, such as those proposed by the random
first-order transition (RFOT) theory [76, 183].

The reasoning is that if simply introducing artificial dynamical moves reduces the relax-
ation time by about 1010, then collective effects—although undoubtedly present—are likely
to play only a secondary role in the dramatic slowdown observed as the liquid freezes into
a glass state [76]. Instead, this slowdown would be driven primarily by the increasingly
constrained dynamics of the system. This interpretation was contested in Ref. [183], where
it was argued that the onset of slow relaxation—linked to the emergence of long-lived, large-
scale correlated structures arising from the system’s collective thermodynamic behavior—can
be shifted to lower temperatures by the artificial dynamical moves of SWAP, without altering
the thermodynamic properties.

In structural glasses, both static and dynamic effects are present, making it challenging
to determine whether the observed acceleration has a thermodynamic origin or is instead
driven by purely dynamical constraints [71]. In this context, it would be illuminating
to adapt the SWAP algorithm to finite-dimensional spin glasses, where the interplay of
frustration and quenched disorder generates correlated structures at low temperatures
that are characteristic of spin glass order. Unlike structural glasses, such systems are, by
construction, devoid of kinetic constraints [184], providing a cleaner setting in which to
probe the source of the algorithm’s efficacy.

In this chapter, we adapt the SWAP method for application to finite-dimensional spin
glass models. In this reshaping we introduce an auxiliary model, denoted as the ∆-model, in
which we assign a length to the spin variables, akin to the role of particle diameters in the
original SWAP implementation. The exchange of constituents, in our case, the spins, will
effectively mitigate the local energy barriers created by the quenched randomness, allowing
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us to explore configurations that would otherwise remain inaccessible.
We have chosen to focus on two-dimensional (2d) problems for which we know the

equilibrium phases and ground states. The core of this work is the study of the 2D Edwards-
Anderson (EA) model, a random magnet with spin glass properties only at zero temperature,
but exceedingly long physical relaxation at low temperatures. This 2D problem is not just a
theoretical construct: thin film spin glass materials have regained experimental interest in
recent years [185]. Moreover, the ground state configurations can be identified exactly with
special algorithms [186, 187]. This gives us a knowledge against which we can confront the
performance of our algorithm.

The chapter is organized as follows. In Sec. 2.1, we briefly review the phenomenology
of structural glasses, emphasizing the two main competing theories: random first-order
transition and dynamical facilitation. In this context, we introduce the SWAP algorithm, and
briefly explain the implications of its efficiency in the debate regarding the nature of the glass
transition. In Sec. 2.2, we review the known properties of the 2d Edwards-Anderson Ising
spin glass. In Sec. 2.3, we study the equilibrium and dynamical properties of the ∆-model
with constant ferromagnetic bonds, serving as a testing ground to identify and contrast
the effects introduced by spin lengths and non-local exchanges. The core of this work is
presented in Sec. 2.4, where we apply the algorithm to the frustrated ∆-model associated
with the 2d Edwards–Anderson spin glass, analyzing its dynamics at both zero and finite
temperatures, as well as its mean-field behavior. Finally, Sec. 3.8 provides a summary of the
main results and outlines potential directions for future research.

2.1 Structural glasses and the SWAP method

Glasses are amorphous solids formed when a liquid is cooled—or compressed—rapidly
enough to avoid crystallization. More precisely, a glass is produced by cooling the liquid
below its glass transition temperature Tg, fast enough to bypass the first-order transition
at the melting temperature Tm > Tg where it turns into a crystal. Importantly, Tg is not a
true thermodynamic transition but an empirical quantity: it marks the temperature below
which the material becomes so viscous that it effectively stops flowing. In practice, Tg is
often taken as the temperature where the shear viscosity reaches 1013 Poise, though this
operational value of Tg depends on the cooling rate used in the experiment [19].

In 1948, Kauzmann [188] noted that extrapolating the entropy of a supercooled liquid—
which decreases as the liquid cools—would, at some low temperature TK , fall below the
entropy of the crystal—an apparent paradox since the crystal is the more ordered phase. This
hypothetical Kauzmann temperature TK (lying below Tg) marks the vanishing of the liquid’s
configurational entropy Σ(T ), implying an underlying thermodynamic transition to an ‘ideal
glass’ with a unique ground state. This idea of an emergent amorphous order developing
over increasingly large length scales has since been supported by some theoretical [189,
190], experimental [180, 191], and numerical [181, 182, 192–197] studies. However, the
existence of this growing amorphous order and the underlying thermodynamic singularity
remains under active debate. Specifically, the connection of this thermodynamic picture
with the dramatic slowing down of dynamics at low temperatures [76, 183].

Two main theoretical perspectives have emerged. Thermodynamic theories propose that
the slowdown arises from an underlying equilibrium phase transition—or at least a rapidly
growing static order—while kinetic theories view the glass transition as a purely dynamical
phenomenon, with no thermodynamic signature [183]. Several influential frameworks have
been developed within these perspectives. Below, we outline two representative approaches:
the random first-order transition (RFOT) theory, which attributes glass formation to emergent
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static order [198], and dynamical facilitation theory, which explains the transition solely
through kinetic effects, without invoking thermodynamic singularities [71, 72].

2.1.1 Random First-Order Transition (RFOT) theory

RFOT theory [67, 198] attempts to explain the phenomenology observed in supercooled
liquids through finite-dimensional corrections of mean-field models of spin glasses—such
as the random p-spin and Potts glass models with infinite-range interactions. In these
mean-field models, the sluggish dynamics are directly associated to free-energy barriers that
become infinite in the thermodynamic limit, effectively trapping the system in long-lived
metastable states [41–43, 199].

Initially formalized by Kirkpatrick, Thirumalai, and Wolynes in the 1980s [64–68], RFOT
suggests that barriers between equilibrium states remain finite if the model is considered
on a finite-dimensional lattice. Going from one state to another is then possible via the
nucleation of a lower free-energy state. The barriers then result from the competition
between the free-energy difference and the interfacial free-energy between the various
amorphous states. Because the scaling of these two quantities converges in high dimensions,
we recover the diverging barrier heights in the infinitely-connected limit, so pure states are
then well defined. Fundamentally, it poses that the dramatic slowdown in glass-formers
is tied to the existence of a plethora of metastable amorphous states in the free-energy
landscape [69].

The theory predicts two distinct regimes. At a first characteristic temperature, denoted
T ∗, the system begins to develop local rigidity. Below this temperature (T < T ∗), metastable
states emerge that can temporarily ‘trap’ the system, increasing the relaxation time τR. These
metastable states are exponentially numerous, yielding a finite configurational entropy Σ(T ).
Because of their large number, the system can still decorrelate over time, behaving as a
fluid with a transient rigidity described by nonzero shear modulus. As the temperature
is lowered further it reaches the Kauzmann temperature TK , and the system undergoes a
phase transition into an ideal glass phase.

When T is reduced below T ∗, the system is described by the ‘mosaic picture’ [67], which
adapts the mean-field notion of metastable states to finite-dimensional systems. In mean-field
models, metastable states correspond to distinct minima in the free-energy landscape, and
are separated by barriers that scale with system size, making them effectively stable against
thermal fluctuations. In contrast, real supercooled liquids have finite-range interactions,
so barriers are finite: thermal fluctuations can nucleate rearrangements of finite spatial
regions, meaning that metastable states are only well defined locally rather than for the
entire system. Different spatial regions of size ξ can therefore be locally close to different
metastable minima: within each such region the structure is correlated and resembles one
amorphous state, while beyond ξ other regions may correspond to other minima. This
results in a ‘mosaic’ or ‘patchwork’ structure in real space, where each patch corresponds to
a distinct amorphous metastable state.

Interfaces between these patches carry a ‘generalized’ surface tension Y (T ), arising
from the mismatch of particle arrangements at their boundaries. The term ‘generalized’
reflects the fact that the interfacial free-energy cost scales as Rθ with θ ≤ d − 1; when
θ ̸= d− 1, this scaling no longer corresponds to the usual definition of surface tension as
energy per unit area. Rearranging a region of size R therefore incurs a free-energy cost
proportional to Y (T )Rθ, but gains an entropic contribution proportional to −T Σ(T )Rd due
to the large number of available metastable states. Balancing these competing terms yields
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the characteristic length scale

ξ ∼
(
Y (T )

T Σ(T )

) 1
d−θ

, (2.1)

which grows as the configurational entropy decreases, diverging at TK .

2.1.2 Dynamical facilitation theory
Dynamical facilitation theory proposes that the glass transition is primarily kinetic in origin.
In this view, the dramatic slowdown of molecular motion does not arise from an impending
thermodynamic singularity; rather, it results from increasingly restrictive rules governing
particle dynamics at lower temperatures or higher densities [71, 72]. Within this framework,
local regions of enhanced mobility—often called excitations or defects—enable motion in
neighboring regions through a process known as facilitation. As a liquid is supercooled, these
mobile regions appear less frequently, and structural relaxation occurs only through rare
interactions of excitations dynamically facilitating one another. This mechanism naturally
leads to dynamical heterogeneity [200–202]. A key feature of supercooled liquids, where
one can distinguish highly heterogeneous spatiotemporal patterns of fast and slow spatial
regions, in stark contrast to the homogeneous dynamics observed in normal liquids.

To study these ideas in a stripped-down form, kinetically constrained models [73] (KCMs)
were introduced. KCMs are minimal lattice models with no interactions—and consequently,
trivial thermodynamics—while displaying non-trivial dynamics. The dynamics is introduced
by imposing kinetic rules restricting when a region (or site) can relax. For example, in a
spin-facilitated model like the Fredrickson-Andersen model [74] or the East model [75],
each lattice site has a binary state (e.g. 0 = ‘inactive/solid-like’ or 1 = ‘active/defect’). Spins
can flip from 0 to 1 or vice versa only if a certain constraint is satisfied—typically, at least one
neighboring site must be active, modeling the idea that mobility can occur only adjacent to
other mobile regions. These models are sufficiently tractable for allowing detailed analytical
and numerical calculations.

Although KCMs possess no underlying free-energy landscape, they reproduce many as-
pects of the slow dynamics observed in glass-forming liquids. A superArrhenius temperature
dependence of the relaxation time and a consistent picture of the dynamical heterogeneities
in a space-time setting are central features that naturally emerge in all these models.

2.1.3 The SWAP algorithm for structural glasses
Recently, Berthier et al. [61–63] demonstrated that introducing non-local Monte Carlo moves,
which attempt to exchange the positions of particles with different diameters, can yield an
unprecedented acceleration of the relaxation dynamics in supercooled liquids. In particle-
based simulations of liquids, the SWAP algorithm introduces an additional fluctuating degree
of freedom associated with each particle—its diameter—thereby creating a polydisperse
particle mixture, preserving the same properties of glass-forming materials [62, 63, 178,
183].

In the SWAP Monte Carlo algorithm, standard local Metropolis—or molecular dynamics—
moves are complemented with these non-local particle exchanges, accepted or rejected in
a Monte Carlo step obeying detailed balance. This is pictorially shown in Fig. 2.1, where
the two particles of different diameters (green and yellow) are selected and swapped. In
systems where the method is efficient, SWAP moves may be rarely accepted; however, when
they are, the relaxation dynamics is significantly accelerated. In some cases, the SWAP
algorithm can achieve speed-ups of up to 1010 compared to traditional methods, enabling
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the sampling of equilibrated configurations at very low temperatures that were previously
inaccessible.

For poly-disperse particle system

Fig. 2.1: Schematic of the SWAP acceptance move. These moves are alternated with a
standard molecular dynamics—or Metropolis—evolution.

This remarkable acceleration was later interpreted as direct evidence against a static, co-
operative explanation of the glass transition, such as that proposed by the RFOT theory [76].
The core idea is that switching from standard to SWAP dynamics enhances relaxation only
locally, within regions where particle exchanges occur. Consequently, the overall free-energy
landscape remains unchanged: as long as both dynamics reach equilibrium, any static
(thermodynamic) length scale ξ must be identical for both cases. However, the ratio of
equilibration times between SWAP and standard algorithms is enormous—spanning at
least four orders of magnitude. This observation suggests that the exponential growth in
relaxation times τR originates from local barriers that can be dynamically bypassed by SWAP,
rather than from a growing static correlation length as proposed in RFOT theory.

A particularly illuminating test of this idea was provided by Gutiérrez, Garrahan, and
Jack [77], who implemented SWAP moves within a kinetically constrained model. In their
variant of the East model, each lattice site carried not only a binary state (active/inactive) but
also an additional local ‘softness’ variable—analogous to particle diameters in polydisperse
liquids. Allowing exchanges of this softness led to a dramatic acceleration of structural
relaxation and a marked suppression of dynamical heterogeneity. These results demonstrate
that the SWAP method can yield exceptional acceleration even without the presence of a
growing static correlation length, consistent with dynamical facilitation theory.

In this work, we present a similar yet complementary study. We adapt the SWAP algorithm
to the two-dimensional Edwards–Anderson spin glass model. Unlike kinetically constrained
models and glass formers, the Edwards–Anderson system lacks dynamical constraints: its
slow dynamics arises from the competition between ferromagnetic and antiferromagnetic
interactions introduced by quenched disorder. By applying non-local exchange moves in this
setting, we investigate whether the dramatic acceleration observed in other systems persists
even when facilitation mechanisms are absent.
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2.2 The 2d Edwards-Anderson (EA) model

2.2.1 The model
The Hamiltonian of the model is given by

H = −
∑
⟨ij⟩

Jijσiσj , σi = ±1 , i = 1, . . . , N (2.2)

where N = L2, ⟨ij⟩ indicates a sum over nearest neighbors on a two dimensional square
lattice with linear size L and periodic boundary conditions. The bond strengths Jij are
typically chosen to be discrete, drawn from a bimodal distribution

P(Jij) =
1

2
δ(Jij − J) +

1

2
δ(Jij + J) , (2.3)

or continuous, drawn from a Gaussian distribution with zero mean, and variance J2.
In equilibrium, this 2d EA model has no finite temperature phase transition: it has spin

glass ground states and is paramagnetic at non-vanishing temperatures [203–206]. Still,
it exhibits a non-trivial slow relaxation toward the equilibrium paramagnetic state at low
enough temperatures [60, 186, 187, 192, 207–217].

For Gaussian couplings, the spin glass ground states have a 2-fold degeneracy due to
the global spin-reversal symmetry, with a spectrum of excitations growing continuously. For
bimodal couplings this degeneracy increases drastically with a gap to the lowest excitations.
The Gaussian system undergoes domain growth at T = 0 [218]. In the bimodal case, clusters
of spins maintain their relative orientation in all ground states and form a backbone on
which coarsening takes place while all other spins behave paramagnetically [211]. Recently,
the bimodal case was used to study the growth of glassy domains [217], and it was found
that the dynamics is controlled by a single timescale that diverges upon approaching T = 0
in an Arrhenius-like manner.

2.2.2 Relaxation toward equilibrium
The sluggish dynamics of this system can be assessed from a temperature quench from
T = ∞ to a temperature T ≳ 0. As outlined in the introduction, a straightforward way to
establish the presence of aging is to calculate the spin auto-correlation function

C(t, tw) =
1

N

N∑
i=1

[⟨σi(t)σi(t+ tw)⟩] , (2.4)

where tw is the waiting time—also referred to as the ‘age’ of the system—defined as the
duration for which the configuration evolves from the initial state before the observation
time t begins. The brackets [· · · ] and ⟨· · ·⟩ are the standard disorder and thermal averages.

At high temperatures, when tw exceeds a characteristic time scale τR, the auto-correlation
function becomes stationary, i.e., C(t, tw) = C(|t−tw|). In this regime, all curves with tw > τR
collapse onto a one. This behavior strongly suggests that the system has reached equilibrium:
the decay of the correlation function simply reflects the de-correlation between equilibrium
configurations. In this situation, one says that aging is interrupted [41–43, 46, 60, 219,
220]. As the temperature decreases, however, the relaxation time τR increases significantly,
and aging effects reappear, evidenced by the explicit dependence of C(t, tw) on tw.
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As T → 0 overlap-overlap correlations between spin configurations emerge, and we
can study the size of this glassy domains from the 4-point correlation function (or the
overlap-overlap correlation function) defined as

C4(r, t) =
1

N

N∑
i,j=1

|r⃗i−r⃗j |=r

[〈
σ
(1)
j (t)σ

(2)
j (t)σ

(1)
i (t)σ

(2)
i (t)

〉]
, (2.5)

and the characteristic length over which it decays defines the spin glass ordering length—or
growing length. It is here estimated from

R(T, t) = 2

∫ ∞

0

dr C4(r, t) , (2.6)

as defined in Ref. [60].
The Metropolis dynamics of the 2d EA at T ≃ 0.5 yield a super exponential decay,

C4 ∼ e−(r/Rσ(t))β , with β > 1. The growing length scales as R(t) ∼ (t/τ(T ))1/z with
z ∼ 7 and τ(T ) the Arrhenius characteristic timescale found in Ref. [214]. For low enough
temperatures (T ≳ 0) and bimodal bonds this growing length freezes, saturating at a very
short value [221] as seen in Fig. 2.2. The dynamic exponent, plotted in the inset of the same
figure, diverges. By increasing the temperature the plateau is surpassed and the evolution
persists. The latter growth can be described with the power-law t1/zeff , zeff converges to a
value close to 8.5 at T larger than 0.3, say.

Fig. 2.2: Typical growing length in the ±J 2d EA model with L = 512 evolved with single
spin flip dynamics at several temperatures displayed in the key. The inset shows the time
dependence of the dynamical exponent zeff: it converges to ∼ 8.5 after the saturation of the
growing length at the value Rp = 4.483± 0.004 is superseded at high-enough temperatures
(T > 0.2).

This saturation is associated the hampering of single spin flips by the presence of frustra-
tion, which produces energetic barriers to new favorable configurations—whose effective
height increases as the temperature is lowered. We expect that adapting the SWAP method
to this problem will accelerate the dynamics by bypassing these local barriers. To this end,
we will study a variation of the model in Eq.(2.7) in which the spins have different ampli-
tudes[222]—or ‘lengths’—analogous to the softness variable introduced in the kinetically
constrained model of Ref. [77]. We will refer to this extension as the ∆-model.
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In Fig. 2.3 we provide an schematic example of the expected mechanism whereby the
SWAP method accelerates the dynamics. For simplicity, in this sketch we use two spin
lengths only, a large one (long arrows and S±), and a smaller one (short arrows and s±),
and bimodal Jij = ±J interactions. The energy barrier to flip the upper-left highlighted
spin is ∆E = 4J(S2 + Ss) > 0 (as S > 0 and s > 0); therefore, this spin is blocked at low
temperatures. Instead, the energy variation after an exchange of the two highlighted spins is
∆E = J(s2 − S2) < 0 (as s < S). This non-local move will take place since it is energetically
favorable, and it may thus help unblocking the upper-left spin and its surroundings. This
mechanism will be confirmed by the analysis below.

s+

S¡

S+

s¡

For a spin lattice system

s+

S¡

S+

s¡

Fig. 2.3: Sketch of a spin configuration of the modified 2d EA model. Two spins are singled
out for analysis (surrounded by green bubbles). The neighboring up and down spins are
colored red and blue, respectively. The solid (red) and dashed (blue) links represent Jij > 0
and Jij < 0, respectively. The length of the arrows are proportional to the length of the spins,
that is, the local τi values. They are here chosen to take only two values, for simplicity.

2.3 The ∆-model for the clean Ising model
In this section, we introduce the ∆-model for spin systems. We begin by defining the model
in the case where the bond strengths are all ferromagnetic, and present the SWAP algorithm
adapted to this setting. Concretely, we compare the evolution toward equilibrium of the
SWAP algorithm applied to a ∆-model built upon the standard 2d Ising model, to the one of
single spin flips. In both cases we work below their finite temperature critical points.

We start from a finite-dimensional 2d Ising Model (IM),

H = −
∑
⟨ij⟩

Jijσiσj , σi = ±1 , i = 1, . . . , N (2.7)

where N = L2, ⟨ij⟩ indicates a sum over nearest neighbors on a two dimensional square
lattice with linear size L (each pair added once) and periodic boundary conditions. In a
clean ferromagnetic model the coupling strengths are all equal Jij = J > 0.

We will now proceed to ‘dress’ the Ising spins with a new variable τi, creating the∆-model
of interacting soft-spins si = τiσi defined as

H = −J
∑
⟨ij⟩

sisj = −J
∑
⟨ij⟩

τiσiτjσj , (2.8)
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with τi are independently and initially drawn from a normalized box distribution, Pτ (τi), i.e.

τi ∈ [1−∆/2, 1 + ∆/2] , 0 ≤ ∆ ≤ 2 . (2.9)

The average over the τi distribution is denoted [...]. The parameter∆ controls the spin length
variation: their mean and variance are [τi] = 1 and [τ 2i ]− [τi]

2 = ∆2/12. The variable ∆ has
the upper bound ∆ ≤ 2 to ensure that τi ≥ 0. The standard Ising model is clearly recovered
by setting ∆ = 0.

In the rest of this Section we rescale the interactions so as to set J = 1. Concretely, the
convention is such that the critical temperature of the 2d Ising model is T IM

c = 2.27.
A ferromagnetic model with spins with variable size has been considered in [222–224].

One of the motivation was to describe ‘structurally-disordered magnets’ with two (or more)
chemically different magnetic components. Specificaly, the critical properties of model with
variable Ising spin lengths drawn from a bimodal distribution function, was studied in detail
in Ref. [224], with special emphasis on its critical properties. We will comment on their
findings when discussing the critical properties of our model.

At the initial time of the simulation we need to choose the orientation of the Ising
spins σi and the lengths τi of the spins si. For the former we consider two cases, σi = ±1
with probability a half, mimicking an infinite temperature initial state, or σi = 1 for all i
representing a zero temperature one. For both of them, we draw the τi independently from
the box distribution in Eq. (2.9).

The numerical simulation is implemented as follows: at each Monte Carlo (MC) sweep,
the nature of the microscopic moves is

with pswap 7→ N (non-local) exchange attempts
(σi, τi) ↔ (σj, τj) ,

with 1− pswap 7→ N single spin flip attempts
σi → −σi .

The microscopic moves are accepted with the Metropolis acceptance probability Pacc =
min(1, e−β∆E). The inverse temperature is β = 1/T and ∆E is the energy variation due
to the i-th spin flip or the spin exchange between the i-th and j-th spins, chosen with
the constraint of being more than one lattice spacing apart, making the exchanges strictly
non-local. For this model, the energy variation employed in the acceptance probability
pacc = min(1, e−β∆E), is

∆E =


2si
∑
j∈∂i

sj σi → −σi

(si − sj)

(∑
k∈∂i

sk −
∑
k∈∂j

sk

)
si ↔ sj

The first line corresponds to the flipping of the i-th site and the second one to the exchange
between the spins on the i-th and j-th sites, respectively, which are more than one lattice
spacing apart.

In later versions of the algorithm, we found that the overall number of accepted moves
could be increased by considering pure length exchanges, τi ↔ τj, in the SWAP step. The
following results hold for either option, although the latter is recommended.

The symbol ∂i represents the neighbors of the ith spin, i.e. the four nearest neighbors
on the square lattice. For pswap = 0, all sweeps consist solely of single spin flips, thus the τi
variables remain quenched throughout the entire MC evolution. Conversely, for pswap = 1,
all attempted moves are spin-exchanges, allowing the length variables to fluctuate. Any
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intermediate value of pswap yields an evolution such that a fraction 1 − pswap of the total
number of sweeps keeps τi unchanged, while for the remaining pswap the τi are annealed.
We thus refer to the τi as partially annealed. Note that the total set of possible lengths {τi}
remains fixed during a run of the algorithm. In the following, ⟨...⟩ represents an average
over thermal MC noise and initial conditions of the {σi} and [...] stands for the average over
different realizations of the partially annealed length variables {τi}.

2.3.1 An equivalent Random Bond Ising Model (RBIM)
After the introduction of si = τiσi, random interactions between the Ising spins σi emerge.
It is straightforward to see that by separating the Ising degrees of freedom and the length-
ones, the product of the latter plays the role of positive random bonds in the original Ising
Hamiltonian (2.7). An unfrustrated RBIM is then recovered

H = −
∑
⟨ij⟩

Jijσiσj with Jij = Jτiτj , (2.10)

that is, a specific and structured distribution of the couplings Jij induced by the one of the
τi lengths. This distribution is neither the box nor the bimodal one usually considered in the
literature. Being the variables τi and τj i.i.d. for i ̸= j, then P(Jij) = Pτ (τi)Pτ (τj), so that
the probability distribution function (pdf) of the new couplings can be found by means of a
Mellin transform, yielding

P(Jij) =



1

∆2
log

(Jij

u2−

)
u2− ≤ Jij ≤ u−u+

1

∆2
log

(
u2+
Jij

)
u−u+ ≤ Jij ≤ u2+

0 elsewhere

with u− = 1−∆/2 and u+ = 1 +∆/2.

Fig. 2.4: The probability distribution function of the coupling strengths Jij = τiτj (J = 1)
arising from the product of the spin-length variables. Several values of the length-controlling
parameter ∆ given in the key are considered.
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The mean and variance for J = 1 are

[Jij] = 1 , [J 2
ij]− [Jij]

2 =
∆2

144
(∆2 + 24) . (2.11)

A plot of P(Jij) for several values of the length controlling-parameter ∆ is shown in Fig. 2.4,
where it is clear that as we take ∆ → 0 the pdf tends to a Dirac-delta distribution centered
at 1 as it is expected in the Ising spin limit.

These new distributions maintain Jij ≥ 0 for all ∆, so frustration is avoided. However,
notice that the Jij are not i.i.d. variables, as for two bonds with a common spin, k, the
exchanges are correlated

[JikJkj] = [τiτ
2
k τj] = [τi][τ

2
k ][τj] = 1 +

∆2

12
̸= [Jik][Jkj] = [τi][τk]

2[τj] = 1 . (2.12)
Therefore, the joint pdf of all couplings Jij is not just the product of the individual pdfs
P(Jij).

We will characterize the dynamics using both interpretations: firstly, as a ferromagnetic
model with soft-spins and secondly, as a RBIM with the above kind of bonds.

2.3.2 Equilibrium properties
In order to appropriately describe the coarsening dynamics, we need to first locate the
equilibrium critical temperature. In particular, we have to establish its dependence on the
parameter ∆ and also characterize the equilibrium properties in the spontaneous symmetry
broken phase and close to the critical point. Finally, we have to prove that the equilibrium
properties do not depend on the microscopic dynamic rules.

Since the equilibrium configurations below the critical point should be magnetized, for
this study we initiate all simulations in σ-ordered configurations, σi = 1 for all i. In this way
we force a positive magnetization at low temperatures. The length variables τi are drawn
from the box distribution initially. In this way, we sample different positively magnetized
initial configurations of the si soft spins.

The averaged magnetizations

Two magnetization densities can be defined,

ms =
1

N

N∑
i=1

[⟨si⟩] , (2.13)

mσ =
1

N

N∑
i=1

[⟨σi⟩] , (2.14)

where the angular brackets denote average over thermal noises and the square brackets
average over the distribution of the τis. If one assumes that, in equilibrium, the average
[⟨τiσi⟩] factorizes as [τi][⟨σi⟩], and using the fact that [τi] = 1 (for L→ ∞), then

ms =
1

N

∑
i

[τi][⟨σi⟩] = mσ ∀T,∆ . (2.15)

This hypothesis is put to the test in Fig. 2.5 where we plot both magnetization densities for
an equilibrated L = 160 lattice and a not too strong disorder, ∆ = 1. The data show a very
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small systematic deviation, withmσ ≤ ms, suggesting that there might be a weak correlation
between the τi and σi variables along the evolution, disappearing at high temperatures when
the paramagnetic disordered phase prevails with ms = mσ = 0.

Fig. 2.5: The temperature dependence of both equilibrium magnetization densities (2.13)
and (2.14) in the∆-model withL = 160 and∆ = 1. A hundred zero temperature, completely
ordered, initial conditions with different choices of the τi variables were evolved with both
single-spin flip dynamics and the SWAP method with pswap = 0.5 during tmax = 216 MC-
sweeps. After this time, considered to be sufficient for equilibration, we sampled the
magnetization densities along 104 MC-sweeps. The small difference between the σ and s
magnetization densities drops at high temperatures, as expected for the convergence of
mσ = ms to zero in the paramagnetic phase. Here and in all other plots the error bars are
estimated from the standard deviations.

Indeed, the difference is due to the fact that thermal fluctuations tend to favor the
reversal of ‘shorter spins’, since these flips cost less energy than the ones of longer spins, and
hence ms is slightly higher than mσ in the ordered phase. (The same features are visible
within the domains in the out of equilibrium snapshots in Fig. 2.11).

Furthermore, in Fig. 2.5 we also show equilibrium data obtained with the twomicroscopic
dynamics under study, pure single spin-flip and SWAP. The static equilibrium properties are
blind to the choices pswap = 0.5 and pswap = 0. The equivalence between the datasets built
with the two dynamic rules can be verified for other values of pswap in the range 0 ≤ pswap < 1
and other values of ∆.

The distribution of the soft-spin si values at three times, t = 0 and two subsequent ones,
for evolutions that led to a positive magnetized domain are shown in Fig. 2.6. The t = 0 data
are the distribution of the spin-lengths Eq. (2.9), multiplied by ±1. The evolution drives
the system to positive magnetization and the weight of the pdf progressively moves to the
positive support. Note that the two peaks are not symmetric around their midpoints for
t > 0. Indicating that in the ordered phase, larger spins are more likely to point in the
direction of positive magnetization, and the thermal fluctuations are dominated by shorter
spins.

The relaxation time depends on the size of the system, temperature and the length-
controlling parameter (or disorder-width), τR(L;T,∆). Therefore, by increasing L to reduce
finite size effects we are in turn increasing the relaxation time, and this makes equilibrium
harder to access. In order to test the equilibrium properties at large values of ∆ and, in
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Fig. 2.6: Probability distribution of the spins si after a quench to T = 0.77Tc from an infinite
temperature initial condition, with (left) single-spin-flip kinetics and (right) SWAP dynamics
(pswap = 0.5). Data were sampled using 50 realizations of the τis, with L = 128 and ∆ = 1.

Fig. 2.7: The ∆ dependence of the spin s magnetization density for L = 16 using both
kinds of dynamics. The temperature is set to T = 1.67 in all cases which corresponds to
0.74 < T/Tc < 0.84 depending on the ∆ considered. The equilibration time was set to 218

MC-sweeps and data points and error bars were calculated using initial states with σi = 1
and 800 choices of the τi.

particular, the fact that they do not depend on the microscopic dynamics, it is convenient to
use small L. In Fig. 2.7 we compare the ∆ dependence of the equilibrium magnetization
obtained with single spin flip and SWAP dynamics. Just a few averaged values show a
deviation, with the SWAP ones being slightly below the single spin flip ones. This difference
is not systematic and in any case very weak so we do not consider it relevant.
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The phase transition

A second order ferromagnetic-paramagnetic transition separates magnetized and paramag-
netic phases at a ∆ dependent Tc. The Binder Cumulant, defined as

gsL = 1−

[〈(∑N
i=1 si

)4〉]
3

[〈(∑N
i=1 si

)2〉]2 , (2.16)

allows one to pin-down the critical point. It locates the critical temperature where the
gsL data for different L cross, as displayed in Fig. 2.8. We find Tc(∆ = 0) ∼ 2.27 in good
agreement with T IM

c . Then, Tc(∆ = 1) = 2.17, a slightly lower value than T IM
c .

Fig. 2.8: Binder cumulant’s temperature dependence for the equilibrium spin smagnetization
defined in Eq. (2.16) obtained with single spin flip dynamics and ∆ = 1. The results are
equivalent for equilibrium data obtained with the SWAP evolution with pswap = 0.5.

In Fig. 2.9 we plot the full ∆ dependence of the critical temperatures estimated from
the crossing of the Binder parameter. The continuous line is a linear fit which represents
the data rather accurately. The range of variation of Tc, 2.05 − 2.27, with the parameter
∆ ∈ [0, 2] is of the same order as the one found in other works for the conventional RBIM
with a box distribution of couplings and [Jij] = 1 [225]. The analysis of the Binder cumulant
of the magnetization mσ and the two equilibrium magnetizations obtained with the SWAP
method yield a Tc(∆) which is equivalent to this one within error bars. Interestingly enough,
the calculation of the critical temperature in mean-field gives a different behaviour, as Tc(∆)
grows with ∆ in this case. We will show this in latter sections, for the case where disorder is
also introduced through the Jij bonds.

With the critical temperature and its dependency on ∆ assessed, we proceed to probe
the equilibrium behavior around criticality at Tc(∆), and compare it to that of the 2d pure
ferromagnetic Ising universality class, for which the magnetization and correlation length
critical exponents are

β = 0.125 , ν = 1 , (2.17)
respectively. In Fig. 2.10 the equilibrium magnetizations ms of the model with ∆ = 1 and
different system sizes are scaled using the Ising values (2.17). The data fall on a single master
curve, confirming that the critical properties of the 2d IM are preserved in the ∆-model.
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Fig. 2.9: The critical temperature Tc estimated with MC simulation (datapoints) and a linear
fit (curve) against ∆. The 2d IM critical value is found at ∆ = 0. The variation of Tc with ∆
is quite weak.

Fig. 2.10: Critical scaling of the equilibrium magnetization density ms, with t ≡ (T − Tc)/Tc
the reduced temperature. ∆ = 1. We fixed the critical exponents to the values of the clean
ferromagnetic 2d IM, β = 1/8 and ν = 1, and we used the estimated value of Tc for ∆ = 1.

In Ref. [224] the critical properties of this very same model with a bimodal distribution
of lengths was studied analytically and numerically. It was shown in this paper that, apart
from a special length distribution, in all other cases the criticality is the one of the 2d dilute
Ising model. According to the Harris criterium, the 2d dilute Ising model is marginal and
the critical exponents (apart from logs) are the same as the ones of the 2d IM.
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2.3.3 Dynamical properties
Having checked that the equilibrium properties of the ∆-model do not deviate significantly
from the ones of the clean ferromagnetic Ising universality class, we proceed to study the
domain growth. We start the dynamics from an infinite temperature initial configuration
and we perform an instantaneous sub-critical quench. Studying the coarsening phenomena
in this set-up will provide us with a direct survey of the microscopic evolution, hence letting
us contrast the efficiency of the SWAP method to the one of the standard single-spin-flip
kinetics.

Instantaneous configurations

We first present snapshots of the system domains along the Monte Carlo evolution. As with
the magnetization densities, there are two ways to analyze the domains: 1) to consider the
si spins as a whole, keeping track of both their sign and length, or 2) to isolate the Ising
dependence σi. Clearly, the former carries more information than the latter.

Snapshots of the si spins obtained with single spin flip and pswap = 0.5 SWAP dynamics,
are displayed in Fig. 2.11 top and bottom, respectively. As we lost the binary description of
the spin variables, we add a color heat map to distinguish between the different local spin
lengths.

t = 0 t = 128 t = 16384 t = 131072

si
-2 -1 0 1 2

Fig. 2.11: Instantaneous snapshots of the ∆-model with ∆ = 2 for quench at T = 0.8Tc.
First row: single-spin-flip dynamics. Second row: SWAP dynamics. The color scale binned as
indicated in the bar shows the lengths of the local spins. Note that the sizes of the domains
with the same orientational order look very similar but the darkness within them different.
With SWAP longer spins can get together more easily.

As in any coarsening process the size of the domains increases with time. However, here,
there are fluctuations within the domains with the same orientation but smaller absolute
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value than the rest (green within blue, and yellow within red). The interfaces are typically
constituted by a bilayer with short spin length (green and yellow) located in between
oriented regions with large spin length (blue and red). The domains built with SWAP (lower
row) allow the spins with longer length to get together more easily and hence appear with
darker color than the ones grown with single spin flip dynamics.

To quantify the rate at which domain growth occurs we need to measure the time-
dependent typical domain size, R(t), along the simulation. There are several numerical
ways to get an indirect or direct measurement of this quantity. In the following we extract it
from the inverse domain perimeter density and the space-time correlation.

The energy density

The inverse domain perimeter density,

R(t) = − eeq
e(t)− eeq

= − eeq
δe(t)

, (2.18)

gives a first estimate of the growing length. The denominator δe(t) is the distance between
the time-dependent averaged energy density and the equilibrium value, eeq = limt→∞ e(t).
For the clean Ising model, R(t) ∼ t1/zd with zd the dynamical exponent. This in turn fixes
a decay exponent for the energy density difference that would go as δe ∼ t−1/zd. For non-
conserved order parameter dynamics zd = 2 while zd = 3 for the locally conserved order
parameter ones [226]. Comparing the dynamic exponents should be the simplest way to
see whether one algorithm drives the system toward equilibrium faster than the other.

We calculated the equilibrium energy density in the long-time limit (t > 218 MC-sweeps)
of runs initiated in σ-ordered initial conditions and averaged over 100 realizations of the
τis. The time-dependent e(t) = [⟨H(t)⟩]/N was computed, instead, after quenches from
completely disordered initial conditions, with parameters such that the equilibrium state is
ordered. The decay of the excess energy curves is shown in Fig. 2.12 in double logarithmic
scale. A power law fit of the energy decays obtained with both methods leads to a time-
dependent effective exponent zeff reported in the caption.

After a short transient in which the effective exponent of the single spin flip dynamics is
close to 2, the decay of the excess energy slows down and the effective exponent increases
in time reaching a value close to 3 in the considered time window (blue data points in the
main panel and the inset). The reason for this is that the variable length model has, from
the point of view of the Ising spin variables σi, quenched random bonds. Therefore, the
single spin flip dynamics feels these randomness and its evolution is slowed down, with the
effective exponent developing a dependence on the disordered strength, as pointed out in
the literature [225, 227–233].

The SWAP method circumvents the slowing down introduced by the variable length of
the spins. The dynamical exponent of single-spin-flip kinetics of the 2d IM [226], zd = 2, is
recovered when one adds spin exchanges (orange data points in the main panel and the
inset), effectively annealing the disorder.

The space-time correlation

We now focus on the one-time spatial correlation function which also carries information on
the typical domain size along the evolution. As with the magnetization densities, we either
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Fig. 2.12: Averaged energy density relaxation of the ferromagnetic ∆-model in double
logarithmic scale. Disordered initial configurations prepared at T0 = ∞ were evolved at
0.55Tc using single-spin flip and SWAP kinetics with pswap = 0.5. Data correspond to ∆ = 1
and L = 128, and were averaged over 100 different initial conditions for both the σis and
the τis. A power law fit over moving time windows including three data points yields the
effective exponent zeff reported in the inset.

measure the space-time correlation of the complete spin-variables,

Cs(r, t) =
1

N

N∑
j=1

N∑
k=1

[⟨sj(t)sk(t)⟩]
∣∣∣
|r⃗j−r⃗k|=r

=
1

N

N∑
j=1

N∑
k=1

[⟨τjσj(t)τkσk(t)⟩]
∣∣∣
|r⃗j−r⃗k|=r

(2.19)

where the double sum over indices j and k is restricted by the condition on the distance
between the spins. We normalize by the number of terms considered. Or else, we measure
the space-time correlations of the Ising variables, in direct correspondence with the RBIM
interpretation

Cσ(r, t) =
1

N

N∑
j=1

N∑
k=1

[⟨σj(t)σk(t)⟩]
∣∣∣
|r⃗j−r⃗k|=r

. (2.20)

In both cases, ⟨· · · ⟩ is the average over σi initial conditions and noise realizations of the
dynamics on the one hand, and over the 2D equidistant lattice sites on the other. As stated
in prior Sections, [· · · ] represents a disorder average over several realizations of the lengths
{τi}. We note that

Cs(r = 0, t) =
1

N

∑
j

[τ 2j ] = 1 +
∆2

12
, (2.21)

Cσ(r = 0, t) = 1 , (2.22)
at all times t.

Dynamic scaling states that a single domain length R(t) should scale all correlation
functions [199]. We now study separately the correlations of the si and σi spins to confirm
that this is indeed the case in this problem.
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Fig. 2.13: SWAP dynamics with pswap = 0.5 of an L = 2048 ferromagnetic system with∆ = 1,
quenched from T0 = ∞ to T ≈ 0.77 Tc. Main panel: space-time correlation of the s spins
at several times given in the key. The solid (gold) line is the equilibrium correlation while
the dashed green line is m2

s in equilibrium. Inset: test of dynamic scaling with the typical
domain sizeRs(t) estimated fromCs(Rs(t), t) = Cs(r = 0, t)/e, withCs(r = 0, t) = 1+∆2/12.
Averages are performed over 10 runs.

Not too close to the critical temperature, where the equilibrium magnetizations are not
too low, one can estimate the typical domain size Rs,σ(t) from the r such that the correlations
Cs,σ(r, t) decay to, say, 1/e of their zero distance values. A dynamic scaling regime, in which

Cs,σ(r, t) ∼ f

(
r

Rs,σ(t)

)
(2.23)

is expected for ξeq ≪ r ≪ L with ξeq the equilibrium correlation length and L the linear
system size. Numerically, it is convenient to measure r along any of the two axes of the 2D
lattice with PBCs.

The decay and scaling of the space-time correlation Cs(r, t) in a model with ∆ = 1 are
studied in Fig. 2.13, using the SWAP method with pswap = 0.5 and single spin-flips. At
different times, the curves differ, demonstrating, once again, the out of equilibrium character
of the dynamics. The golden curve, which approaches at far distances a finite constant,
corresponds to the correlation decay of an ordered initial configuration that we heated up
to the desired temperature T < Tc and evolves in equilibrium. At very large r, the two spins
in Eqs. (2.19) and (2.20) are expected to become independent and the average factorize,
⟨sjsk⟩ ∼ ⟨sj⟩⟨sk⟩, leading to

lim
r→∞

Cs
eq(r) = [⟨si⟩2] = m2

s , (2.24)
lim
r→∞

Cσ
eq(r) = [⟨σi⟩2] = m2

σ . (2.25)

Moreover, in equilibrium the two magnetization densities are almost identical. The first of
these limits is verified numerically in Fig. 2.13 and the other one as well. Dynamic scaling is
checked in the inset of Fig. 2.13 and it works equally fine for the σ correlations, see Fig. 2.14.
The dynamical scaling master curves, f(x), for C not too close to zero coincide, as can be
seen in Fig. 2.14. There are differences when the Cs get close to zero, with oscillations for
SWAP which are absent for single spin flip (somehow reminiscent of the oscillations also
present when working with local-spin-exhanges as in the case of Kawasaki dynamics [48]).
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Fig. 2.14: Scaling of the space-time correlations Cs and Cσ for the single-spin flip (pswap = 0)
and SWAP dynamics with pswap = 0.5. The same master curve describes both sets of data.
Same parameters as in Fig. 2.13.

The growing length for the soft spins

The growing length Rs—measured from the soft-spins space-time correlations—generated
with the two updating rules are studied in Fig. 2.15 and Fig. 2.16. In the former, the clean
ferromagnetic Ising model’s Rs = R is analyzed as a benchmark. In the latter, the Rs of the
soft spin model is studied. As stated before, the typical domain sizes measured are fitted via
a power law, with an effective exponent which depends on the width ∆,

Rs(t) = λ tz
−1
eff (∆) . (2.26)

λ is a non-universal parameter. The exponent zeff is measured by taking averages over
successive time-windows along the domain growth, as we did in the previous Section when
the inverse perimeter density was calculated. The convergence of zeff toward zd = 2 in the
clean case is verified in Fig. 2.15 for single-spin-flip kinetics, while the SWAP method is
unable to accelerate the dynamics, and produces a slightly slower convergence.

In Fig. 2.16 we study zeff for the soft-spin model with ∆ = 1. When the system is evolved
with single-spin-flip kinetics, we get zeff ∼ 3, and these update rules are not convenient.
However, when we implement the SWAP method, the effective exponent decreases to 2.125,
a value that is very close to the theoretical zd = 2 of the regular 2d IM with non-conserved
order parameter dynamics.

The growing length for the Ising spins

Now, we repeat the analysis above but this time measuring Rσ(t). Tracking the domain
growth of the Ising variables in Fig. 2.17, similar conclusions are reached. The dynamic
exponent remains close to 3 for the single-spin-flip updates, while zeff decreases when SWAP
is performed, approaching a value close to 2.25 in the numerical interval explored, which is
slightly larger than zd = 2 for the 2d IM with non-conserved order parameter [226].

Finally, we study the disorder dependence, ∆, of the asymptotic value of zeff , which we
call z∞eff . We measure it in the last available time-interval. The results are plotted in Fig. 2.18.
There is a large increase of z∞eff with the width of the spin length distribution for the single
spin flip dynamics, while there is none, apart from noise, in the SWAP simulations.
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Fig. 2.15: The growing length of the clean Ising model,∆ = 0, with single spin flip and SWAP
dynamics. The inset shows the time dependence of the effective exponent zeff , measured by
performing a fit of the data at (moving) six consecutive times.

Fig. 2.16: The growing length Rs (estimated from the analysis of the s spins space-time
correlation) of the ∆ = 1-model, with single spin flip and SWAP dynamics. Sub-critical
quench to T ≈ 0.74 Tc and L = 2048. In the inset, the time dependence of the effective
exponent zeff , measured by performing a fit of the data at (moving) six consecutive times.

2.4 The frustrated ∆-model
In this Section, we will restore the site dependence of the original quenched bonds Jij and
construct the∆-model over this case. Specifically, we will consider the 2d Edwards-Anderson
(2d EA) model, as introduced in Eq. (2.2) choosing the bond strengths to be drawn from a
bimodal symmetric distribution

P(Jij) =
1

2
δ(Jij − J) +

1

2
δ(Jij + J) . (2.27)

Once again, we will set J = 1 in the numerical applications.
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Fig. 2.17: The growing length Rσ (estimated from the analysis of the Ising σ spins space-time
correlation). Sub-critical quench to T ≈ 0.74 Tc and L = 2048. The inset shows the effective
exponent zeff variation in time, measured by performing a fit of the data at (moving) six
consecutive times.

Fig. 2.18: The asymptotic dynamical exponent, z∞eff , estimated from the effective exponent
zeff of the spins s growing length, in the latest time interval accessed by the simulation,
against the disorder width ∆. Sub-critical quench to T ≈ 0.74Tc, and L = 2048.

The Hamiltonian of the frustrated ∆-model takes the form

H = −
∑
⟨ij⟩

Jijsisj = −
∑
⟨ij⟩

Jijτiτjσiσj . (2.28)

Again for ∆ = 0, τi = 1 ∀i, it boils down to the 2d EA model with the bimodal couplings in
Eq. (2.2).
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2.4.1 An equivalent Edwards-Anderson model
By following the same recipe used to analyze the ferromagnetic model, one can re-express
the Hamiltonian with randomly chosen lengths τi as an EA Ising spin glass

H = −
∑
⟨ij⟩

Jijσiσj , (2.29)

with an uncommon kind of couplings, defined as Jij = Jijτiτj. The Jij are correlated
through the site dependence of the {τi}, similarly to what happened with the ones of the
ferromagnetic model, see Eq. (2.12).

The mean and variance of the new effective couplings Jij are

[Jij] = 0 , [J 2
ij]− [Jij]

2 = J2

(
1 +

∆2

12

)2

. (2.30)

Moreover, there is a persistent quenched randomness, the Jij, that is unaffected by
the choice of the dynamics, unlike the {τi} that remain locally unmodified only when the
dynamics do not involve spin exchanges. This randomness is the only source of frustration
in the model, as the spin lengths inducing the new effective bonds Jij are all positive, and
do not remove it, independent of the dynamics.

In Fig. 2.19 we show the distribution of the couplings Jij for three values of ∆. The usual
Gaussian distribution with zero mean and unit variance is also shown for reference. The
distribution of the couplings Jij is just two delta peaks at ±J for ∆ → 0 and it progressively
shrinks the gap for increasing ∆ until closing it completely when ∆ = 2.

Fig. 2.19: The probability distribution function of the coupling strengths Jij = Jijτiτj,
arising from the product of the spin-lengths τiτj and the quenched couplings Jij taking ±1
values with probability a half. The dashed line represents a Gaussian distribution in normal
form for comparison.

2.4.2 The mean-field critical temperature
As anticipated in the previous section, we will calculate the critical temperature of the frus-
trated RBIM with fixed couplings Jij (i.e. when both the Jij ’s and the τi’s are quenched) using
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two different mean-field methods: (i) the Thouless-Anderson-Palmer (TAP) approach [35,
40] and (ii) the model on the Bethe lattice [126, 127]. The former will yield an equivalent
result to the replica-symmetric calculation of TSG in the fully-connected case—i.e. the
Sherrington-Kirkpatrick model with Jij bonds.

(i) TAP approach: After having conveniently scaled the Jij with N to ensure a the
extensive property of observables in the thermodynamic limit, one derives the following
equations for the local magnetizations:

mi = tanh

[
β
∑
j∈∂i

Jijmj + βhexti − β2mi

∑
j∈∂i

J 2
ij(1−m2

j)

]
. (2.31)

Assuming a continuous phase transition and taking hexti ∼ 0 as well, the local magnetization
should be mi ∼ 0. If, moreover, one replaces J 2

ij by [J 2
ij] in the Onsager reaction term,

mi ∼ β
∑
j∈∂i

Jijmj + βhexti − β2mi

∑
j∈∂i

[J 2
ij] (2.32)

∼ β
∑
j∈∂i

Jijmj + βhexti − β2J2

(
1 +

∆2

12

)2

mi .

This equation can now be taken to the basis of eigenvectors of the matrix with elements Jij.
Calling vµ the eigenvector associated to the eigenvalue λµ, and mµ = m · vµ,

mµ ∼ βλµmµ + βhextµ − β2J2

(
1 +

∆2

12

)2

mµ . (2.33)

The linear susceptibilities are

χµ =
∂mµ

∂hextµ

∣∣∣∣
hext=0

∼ β

1− βλµ + β2J2

(
1 +

∆2

12

)2 . (2.34)

The first susceptibility to diverge is the one associated to the largest eigenvalue λmax and
this arises at

βSG =

λmax ±
[
λ2max − 4J2

(
1 +

∆2

12

)2
]1/2

2J2

(
1 +

∆2

12

)2 . (2.35)

In the Sherrington-Kirkpatrick model, the mean-field limit of the EA model, ∆ → 0 and
λmax = 2J . Then, βSG = J−1. If, in the ∆-model, λmax = 2[J 2

ij]
1/2, which seems reasonable,

then
βSG ∝ [J 2

ij]
−1/2 ⇒ TSG = J

(
1 +

∆2

12

)
. (2.36)

In Fig. 2.20 we plot, with orange data points, the critical temperature Tc(∆) obtained from
diagonalizing symmetric matrices with such elements and linear size L = 32 (J = 1). The
data points are consistent with the quadratic dependence on ∆ linking TSG = J at ∆ = 0
and TSG = 4/3 J at ∆ = 2.

(ii) Bethe lattice: An alternative way to estimate the ∆ dependence of the critical
temperature with a mean-field approach is to place the model on a Bethe lattice with
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Fig. 2.20: The ∆ dependence of the critical temperature in mean-field. Orange data: results
for the fully connected model with the TAP approach. Blue data: results for the Bethe lattice
model with connectivity κ+ 1 = 3. The trend is the same and the range of variation of the
critical temperature with ∆ is very weak in both cases.

connectivity κ+1. By defining the cavity field acting on site i produced by the effect of κ+1
neighboring spins (in the absence of its j-th neighbor), we obtain the recursive equations

hi→j(τi) =
∑

m∈∂i/j

1

β
atanh [tanh (βJimτiτm) tanh (βhm→i(τm))] . (2.37)

These equations admit hi→j = 0 as a solution on all sites, corresponding to the paramagnetic
phase. Since we will be interested in the temperature regime in the vicinity of the critical
point, T ≲ TSG, in which the cavity fields are small, we can expand the right-hand-side of
Eq. (2.37):

hi→j(τi) ≃
∑

m∈∂i/j

tanh (βJimτiτm)hm→i(τm) . (2.38)

Due to the randomness of the spin-amplitudes, these equations must be interpreted as a
self-consistent integral equation for the probability distribution of the local cavity fields

P(h|τ) =
∫ κ∏

m=1

[
∗∑
Jm

dτmdhm Pτ (τm)P(hm|τm)
]
δ(h− h̃), (2.39)

with h̃ =
∑

m tanh (βJmττm)hm and the sum∑∗ indicates that there is an implicit 1/2 factor.
Using the integral representation of the δ-function, one obtains the following equation for
the Fourier transform of the probability distribution

P̂(q|τ) =
[∫ ∗∑

J

dτ ′pτ (τ
′) P̂ (q tanh (βJττ ′) |τ ′)

]κ
, (2.40)

Assuming that the fields follow a Gaussian distribution with variance, σ2
h = h(τ)2 − h(τ)

2,
we have

P̂ (q|τ) = 1− iqh(τ)− q2

2
h2(τ) + . . .
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plugging this expression into the equation above, using the fact that h(τ)n ≪ 1 for T ≲ TSG,
and expanding up to second order one finds

h(τ) = κ

∫ ∗∑
J

dτ ′ pτ (τ
′) tanh (βJττ ′)h(τ ′), (2.41)

h2(τ) = κ

∫ ∗∑
J

dτ ′ pτ (τ
′) tanh2 (βJττ ′)h2(τ ′)− κ− 1

2
h(τ)

2 (2.42)

For h(τ) = 0 we are interested in the second equation, that defines a linear integral
operator f(τ) = ∫ dτ ′ Γ(τ ′, τ)f(τ ′), with f(τ) = h2(τ) and the (non-symmetric) kernel

Γ(τ ′, τ) = k
∗∑

J=±J

pτ (τ
′) tanh2(βJττ ′) . (2.43)

Therefore a solution of Eq. (2.42) with a non-vanishing function h2(τ) only exists if such
integral operator has an eigenvector with eigenvalue 1. For the specific case of the box
distribution of width ∆ we have diagonalized the integral operator numerically for J = 1
and κ = 2, for several values of β and ∆, on a grid of 2048 × 2048 intervals. The results
for the critical temperature are reported in blue Fig. 2.20. Note that for ∆ → 0 the critical
temperature tends to the Bethe lattice value for the Ising spin glass, βSGJ = atanh(

√
1/κ) ≃

0.88, that is TSG/J ≃ 1.1346. The increasing trend is the same as the one derived in the fully
connected model with the TAP method. The range of variation of the critical temperature
with ∆ is very weak in both cases. This growing dependence also holds for the clean version
of the model with Jij = J > 0 in mean-field.

Although the behavior of the critical temperature differs between mean-field and finite-
dimensional systems, the spin glass phase remains present in the former, as ∆ is bounded.
Combined with the frustration introduced by the symmetric bond distribution, this suggests
that the spin glass order observed in d = 2 persists in this model at T = 0. The precise
nature of these disordered bonds will be analyzed in later sections.

2.4.3 Dynamical properties toward the ground state
In this section, we will study the dynamical properties of the frustrated∆-model. Specifically,
we will characterize the evolution of a infinite temperature configuration—where both
σi and τi are drawn randomly from their respective probability distributions—toward the
equilibrium state at T = 0, where spin glass ground states are present.

In this section, to different dynamical evolutions are considered:
(i) An instantaneous temperature quench. Where the initial configuration is evolved with

the Metropolis’ acceptance rule at T = 0.
(ii) A temperature annealing, in which we slowly decrease the temperature according to

a time-dependent protocol until reaching the target temperature [213], here being
T = 0.

The time-dependent protocol adopted in this work is given by
T (t) = T0 (1− t/tf )

a , (2.44)
with T0 = 1.0, tf the total number of MC-sweeps, and a = 1 (linear) or a = 2 (quadratic).
Unless otherwise stated, we will set a = 2 as it seems to be more efficient than a = 1 for the
case considered.
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The two-time correlation

First, we have calculated the two-time correlation function of the soft-spin variables si(t),
defined as

C(t, tw) =
1

N

N∑
i=1

[⟨si(t)si(t+ tw)⟩] (2.45)

where si(t) = σi(t)τi(t) for the ∆-model and si(t) = σi(t) for the EA one. As can be seen in
Fig. 2.21 the SWAP method induces a faster decay, compared to the single spin flip dynamics,
in which the curves saturate rather quickly, consistent with plateau the Rp found in Fig. 2.2.

However, under the equivalent EA model interpretation, the diffusion of the τi variables
in the SWAP evolution results in the partial annealing of the bonds Jij. Consequently, it
is particularly illuminating to isolate this effects and understand the time evolution of the
bonds Jij—through the spin length variables τi.

Fig. 2.21: The two-time correlation of the si variables, confronting the SWAP method
(pswap = 0.1) with the ∆ = 1.5-model with the single-spin-flip kinetics of the 2d EA model,
both with sizes L = 512 and the waiting time values displayed in the key.

Evolution of the effective bonds Jij

Frustrated plaquettes remain frustrated since neither the signs of Jij norJij change. However,
whenever SWAP is used the diffusion of the τi can affect the magnitude—or strength—of
the local frustration, quantified by

fP ≡
∏

⟨ij⟩∈P

Jij(t) =
∏

⟨ij⟩∈P

Jijτi(t)τj(t) , (2.46)

for frustrated plaquettes (i.e. fP < 0). The product runs over the links of forming the
plaquette P . Concretely, on a square plaquette with site labels 1, 2, 3, 4,

fP (t) = J12J23J34J41 τ
2
1 (t)τ

2
2 (t)τ

2
3 (t)τ

2
4 (t) . (2.47)

The sign, and whether the plaquette is frustrated or not, is decided by the factor J12J23J34J41
while the magnitude of the potential frustration is determined by τ 21 (t)τ 22 (t)τ 23 (t)τ 24 (t) which
depends on time.
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The cumulative probability, defined as

P<(fP < x) =

∫ x

−∞
pfP (y)dy , (2.48)

is plotted for negative fP at different three times reached with SWAP dynamics after a T = 0
quench in the inset of Fig. 2.22. SWAP reduces the magnitude of the frustration, as the
probability of finding large negative values for fP decreases with time, up until a constant
functional form is reached. Moreover, the two-time local correlation,

CJ (t, tw) =

∑
i,j[⟨Jij(t)Jij(tw)⟩]∑

i,j[⟨J 2
ij(tw)⟩]

, (2.49)

displayed in the main part of Fig. 2.22, becomes stationary and limt≫1 limtw≫1CJ (t, tw) = 1.
This can also be confirmed by tracking the energy density as a function of time, where a
stationary plateau is reached at the same values of t−tw. Effectively quenched configurations
of the effective couplings J ∗

ij = Jij(tmax) are reached in each run after ∼ 105 sweeps in a
system with L = 32.

Fig. 2.22: Two-time correlations of the bonds Jij in the ∆-model with ∆ = 1.5, L = 32
quenched to T = 0 evolved with SWAP (pswap = 0.1). The waiting times tw are given in the
key. Inset: the cumulative probability of local frustrations fP at three times after the quench.

The main conclusion of Fig. 2.22 is that for a zero temperature quench, after a time tmax

has elapsed the dynamics freezes, and the effective bonds Jij(tmax) = J ∗
ij are quenched.

A natural question to ask is: what happens to the Ising spin configurations {σi} of the
equivalent EA interpretation? Are they ground states of the associated J ∗

ij?

The ground states of J ∗
ij

We investigate the efficiency of SWAP to reach these ground states of the 2d EA model with
the interactions J ∗

ij obtained at the latest time reached after a zero temperature quench
with SWAP—where they have become stationary.

With this aim we stored the couplings Jij(t) and the Ising spins σi(t). Concomitantly, we
used the facility in Bonn [234] to find the unique (apart from global spin reversal) ground
state σgs

i of a 2DEA model with the J ∗
ij interactions—the functioning of this algorithm is
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outlined in App. A1. Then, we calculated the overlap and the probability of reaching the
ground state [235] as

q(t) =
1

N

N∑
i=1

σgs
i σi(t) , P0(t) =

1

Nr

Nr∑
α=1

δ|qα(t)|,1 . (2.50)

The index α runs over the simulation runs andNr is its total number, that is, the total number
of MC simulations which sample different realizations of the couplings Jij, the set of lengths
{τi} and the initial conditions {σi(t = 0)}. In the simulations shown this number was always
around 100. The results are shown in Fig. 2.23 where we have denoted the plateau reached
at large t as P∞

0 , meaning the asymptotic probability of finding a ground state.

Fig. 2.23: The probability of reaching the ground state of the ∆-model with J ∗
ij = Jij(tmax),

in systems with L = 8 after zero temperature quenches. Main panel: three ∆ values given
in the right key and pswap = 0.5. For ∆ = 2, 96.5% of the runs find a ground state. Lower
inset: the asymptotic value against the parameter pswap for ∆ = 2. Upper inset: Scaling with
t⋆(L) = 1.25L3.75 of the data for ∆ = 2, pswap = 0.1 and three system sizes specified in the
left key.

For an instantaneous quench to T = 0, the main panel in Fig. 2.23 displays P0(t) for
three values of ∆ and pswap = 0.5. In all cases, after a fast increase ending at t ≲ 103 MCs,
P0(t) saturates to a P∞

0 which increases with ∆ and gets very close to 1 for ∆ = 2. Further
optimization of the algorithm achieved by gauging pswap is studied in the lower inset which
shows the dependence of P∞

0 on pswap in the ∆-model with ∆ = 2. For intermediate values,
0.1 ≲ pswap ≲ 0.9, P∞

0 remains approximately constant apart from numerical noise, and it
decays to zero at the two extremes of either non-local spin exchanges (pswap → 1) or pure
single-spin-flips (pswap → 0), as a result we will use pswap = 0.1 for most subsequent analysis.
Finally, we checked the dependence on system size in the lower panel using ∆ = 2 and
pswap = 0.1. The curves are similar and the percentage of ground states found is independent
of L. The upper inset shows the scaling of P0 against t/t⋆(L) with t⋆(L) ∼ 1.25L3.75.

An inconvenience resides in the fact that even in the cases in which the ground states are
reached, for the same realization of the Jij and initial conditions of the τi, different thermal
evolutions produce different final configurations with a broad energy density distribution,
as can be seen in the inset in Fig. 2.24(b) below. Therefore, although being ground states of
the 2DEA model with couplings J ∗

ij, these configurations originate from metastable states of
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the τi variables. We are interested in finding a way of closing this gap, and thus finding a
global minimum of the full model in Eq. (2.28).

In order to optimize both the τi and σi, we adopt the thermal annealing protocol defined
in Eq. (2.44)

T (t) = T0 (1− t/tf )
a , (2.51)

with T0 = 1.0, tf the total number of MC-sweeps, and a = 2.
SWAP is now able to find ground states 100% of the runs for almost all ∆ values, as

seen in the pink triangles in Fig. 2.24(a). The spread of ground state energies (Gaussian
distributed) narrows considerably with respect to the one of T = 0 quenches, in inset
Fig. 2.24(b) (although it does not disappear completely). The configurations reached are
ground states of models with only slightly different J ∗

ij. This is confirmed by the evolution
of the self correlation of the length variables in two different runs, τ (1)i and τ (2)i that will be
shown below in Fig. 2.25.

Fig. 2.24: (a) Asymptotic probability of reaching a ground state after a T = 0 quench and
a quadratic annealing, starting from T0 = 1.0 during tf ≈ 107 MCs. L = 32. Inset (b)
Probability distributions of the ground state energy density differences found after T = 0
quenches and annealing protocols, Eq. (2.44), of models with different∆. In all cases, the Jij
and initial lengths {τi(t = 0)} are the same, and the data are sampled over 103 initial Ising
spin conditions {σi(t = 0) = ±1}. (c) The overlap of an early (left panel) and final (right
panel) si configuration with the ground state of the model with couplings J ∗

ij = Jij(tmax),
for a quench to T = 0 with ∆ = 1.5. The light bullets and triangles are located at frustrated
plaquettes with local frustration fP being greater or smaller than one-half in magnitude,
respectively.

The snapshots shown in Fig. 2.24(c) confirm the initial hypothesis illustrated in Fig. 1
and reveal more detailed mechanisms. By analyzing the overlap of an evolving configuration
with its respective expected ground state, a quench at T = 0 displays clear coarsening
behavior. Warm colors (enclosed with black lines) denote droplets, regions where spins are
unaligned with the expected ground state, while the cool colors indicate domains where
spins are properly aligned. We label the frustrated plaquettes (fP < 0) at their centers with
circles (for |fP | > 0.5) and triangles (for |fP | ≤ 0.5) depending on the magnitude of the
frustration strength. At t = 512, the frustration decreases in several of the enclosed droplets
(more triangles accumulate around the droplets), favoring spin flips that will destroy the
droplets and align their spins with the ground-state orientations. After this process, when
the ground state has been reached at t = 32768, the newly ground-state-aligned spins can
acquire a larger magnitude (lowering the energy further) explaining the proliferation of
circles in the regions previously occupied by the droplets.
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Evolution of the τi variables

We show here how the temperature annealing recovers similar J ∗
ij by analyzing the behavior

of the τi variables. Specifically, we track the correlation of the τi variables sampled in different
runs of the dynamics, given by

Cτ (1)τ (2)(t) =

[
1

N

N∑
i=1

τ
(1)
i (t)τ

(2)
i (t)

]
− 1(

1 +
∆2

12

)
− 1

. (2.52)

In Fig. 2.25 we plot the time evolution of this correlation, where τ (1)i and τ (2)i are the values
of the length variables in two runs of the model with the same quenched disorder Jij,
starting from the same initial condition of the Ising spins and length variables. At equal
times Cτ (1)τ (2)(t = 0) = 1 by definition since τ (1)i (0) = τ

(2)
i (0) and [τ 2i ] = 1 + ∆2/12. If for

t → ∞ the τ (1)i and τ (2)i lengths fully correlate again, then 1 should be recovered in this
limit as well. This is confirmed in Fig. 2.25 where this time-dependent correlation is shown
for various values of ∆ in a system with L = 16 annealed following the protocol Eq. (2.51)
from T0 = 0.5 to zero temperature.

Fig. 2.25: The correlation of the τi variables according to Eq. (2.52). L = 16 system annealed
to zero temperature.

The evolution of the frustration magnitude

The mechanism that renders the SWAP method efficient in the frustrated∆-Model is clarified
by inspecting some snapshots, as we did for the ferromagnetic model. In Fig. 2.27, we show
the actual configuration {si} (first row) and the overlap with the ground state of the system
with the final J ∗

ij interactions {σgs
i si} (second row). We have performed a sub-critical quench

at T = 0, for L = 128 using SWAP dynamics with pswap = 0.1.
The first row displays the spin configurations at four times after the quench. The images do

not show much structure apart from a slight tendency of long spins with the same orientation
to group locally. Still, and as expected, no structure with long-range spin ordering develops.

One can recognize the formation of domains in the overlap of the configurations with the
ground state. Indeed, the images shown in the second row are primarily red or yellow, that
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is, the system acquires a positive overlap with the ground state all over space. The SWAP
algorithm produces domain walls consisting mostly of short length spins (green and yellow).
This structure lowers the energy barriers locally, making the spin-flip more feasible in these
regions. The ratio of {τi} variables for which the corresponding Ising spins do not match the
ground state (i.e. σi(t)σgs

i < 0) goes to zero, see Fig. 2.26, in the course of time. However,
the decay rate depends strongly on the length of the spins. Larger spins (1 < τi ≤ 2) align
faster on the ground state directions compared to smaller ones (τi ≤ 1), as can also be seen
in Fig. 2.26, supporting the previous explanation.

Fig. 2.26: Time evolution for the ratio of small-length (τi ≤ 1) and large-length (1 < τi ≤ 2)
spins with σi not aligned with the ground state σgs

i , i.e. σi(t)σgs
i < 0.

From the snapshot in Fig. 2.24(c)—and several others shown in App. A2—it is clear that
the frustrated or unfrustrated nature of the plaquettes does not change in time. When a
symbol, such as a bullet or triangle, is attached to them, they neither disappear nor appear
elsewhere.

However, the strength of local frustration varies over time. As a result, the symbols may
change—for example, from a bullet to a triangle, or vice versa. This behavior is characterized
by the number density of frustrated plaquettes, n, whose time evolution is shown in Fig. 2.28.
We classify the plaquettes into two categories: those with large amplitudes (|fP | > 1) and
those with small amplitudes (|fP | < 1). The number of plaquettes in each category is
normalized by the total number of frustrated plaquettes, NF . Notably, NF remains constant
over time and is approximately equal to half of the total number of plaquettes.

The number density of plaquettes with small frustration dominates over the ones with
large frustration asymptotically, making the magnitude of the total frustration to diminish in
time. This is better quantified by measuring the total frustration density f(t), defined by

f(t) =
1

NF

∑
P

fP (t) , (2.53)

with the sum running over frustrated plaquettes.
The time evolution of this quantity is shown in Fig. 2.29 for different values of ∆ where,

as shown in the inset of Fig. 2.22, the overall frustration strength diminishes. For ∆ = 2—at
which the SWAP method with a quench is most efficient—the asymptotic value of f(t)
saturates at a value ≳ 1.
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t = 0 t = 128 t = 2048 t = 32768

si
-2 -1 0 1 2

Fig. 2.27: Instantaneous snapshots of the frustrated ∆-model with ∆ = 2, at four times
indicated in the figure after a quench to T = 0. First row: The spin si configurations. Second
row: Overlap with the σ-ground state (si(t)σgs

i ). The color scale binned as indicated in the
bar shows the lengths of the local spins.

Fig. 2.28: The number density of plaquettes with frustration fP < 0, distinguished by the
modulus being larger or smaller than 1.
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Fig. 2.29: The magnitude of the total frustration f , defined in Eq. (2.53) in ∆-models with
different values of ∆ specified in the key and L = 32 quenched to zero temperature and
evolved with SWAP. The initial value is (1 + ∆2/12)4.

The stationary bond distribution

Overall, these subtleties lead to the converged bonds J ∗
ij. In Fig. 2.19 we compare the bond

distribution at an early stage (t = 2), which closely matches the theoretical prediction, with
the distribution at a much later stage (t = 224), where the bonds have already reached a
stationary state. These results were obtained from averages over Nr = 100 independent
runs following a quench to after a quench at T = 0.

Fig. 2.30: Distribution of the effective bonds Jij at two instants of the simulation: (almost)
initial distribution (t = 2), final distribution (t = 224) after a SWAP method was performed
(pswap = 0.1). Taken from an evolution at T = 0 quench, with L = 32, and the values of ∆
displayed in the key.

The distribution preserves its symmetric structure. At later times the tails widen for all
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∆ and symmetric peaks arise, always lower than the original typical values, that are still
present. No new peaks arise for ∆ = 2, however the original peak increase its probability,
reflecting the overall reduction of frustration strength.

2.4.4 Dynamical properties at finite temperature
We now examine the properties of the algorithm at finite temperature. To do this, we
measure the overlap–overlap correlation function, which allows us to extract the growing
length R(t). As discussed in Sec. 2.2, this length saturates T ≤ 0.2, and the dynamics freezes
as illustrated in Fig. 2.2.

For clarity, we recall the definition of the overlap–overlap (also referred to as the four-point
spin–spin) correlation function, and the extracted spin glass growing length:

C4(r, t) =
1

N

N∑
i,j=1

|r⃗i−r⃗j |=r

[〈
σ
(1)
j (t)σ

(2)
j (t)σ

(1)
i (t)σ

(2)
i (t)

〉]
, Rσ(t) = 2

∫ ∞

0

dr C4(r, t) , (2.54)

The spatial dependence of C4, at different times, is studied in Fig. 2.31 at T = 0.5 and
T = 0.1. At high temperatures SWAP on the ∆ = 1 model yields equivalent results to the
single-spin flip evolution of the original∆ = 0model. At the largest time t ∼ 106 the growing
length is of the order of 20, say, while the system’s linear size is L = 512.

At low temperatures instead, SWAP is much more efficient in building long-range cor-
relations, even between copies that may have evolved toward different effective random
couplings Jij, than the single-spin flip evolution of the original ∆ = 0 model. Still, the
correlations obtained with SWAP at the same time t ∼ 106 decay faster than at higher T ,
reaching a shorter Rσ(t).

Fig. 2.31: Overlap correlation C4(r, t) as a function of the Cartesian distance r for several
times given in the keys, with L = 512 ±J . 2d EA (∆ = 0) model evolved with single-spin
dynamics (circles) and ∆ = 1 model evolved with SWAP and pswap = 0.2 (squares). Data for
T = 0.5 (left) and T = 0.1 (right). While single spin flips and SWAP yield equivalent results
at high temperature, the latter builds longer correlations at low temperature.

Finally, in Fig. 2.32 we compare the performance of SWAP with different values of the
parameter pswap to the one of the single spin flip updates when applied to the ∆ = 1 model
at high (left) and low (right) temperatures. The data in the figure demonstrate that the two
methods perform similarly for high temperatures.

However, for low temperatures (T = 0.1) the single spin flip dynamics of the ∆ = 0
model freeze and the spin glass length saturates to Rσ ∼ 5 (blue data). Instead, both single
spin flips (orange) and SWAP (green) of the ∆ = 1 model accelerate the dynamics at long
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times, with the latter becoming more efficient in the last four time decades. We estimated
running effective exponents from fits over a moving window with 12 data points (inset). At
such low temperature within a numerical accuracy zeff converges to z∞eff ∼ 49. The dashed
line is the algebraic law A t1/z

∞
eff . Long-time configurations are not in equilibrium. First, the

Fig. 2.32: Typical growing length of the frustrated model with SWAP dynamics, the values
of ∆ and pswap are shown in the keys. We show the evolution at (left) a relatively high
temperature T = 0.5 with L = 512 and (right) at a lower temperature T = 0.1 using both
L = 32 (triangles) and L = 512 (squares). The growth in the ±J 2d EA with single spin
flip dynamics is plotted for comparison (blue curves). The insets show the time evolution
of the dynamical exponent. In dashed black is the fit with zeff = 49.5(86) and amplitude
A = 3.94(2)

maximal length Rσ ∼ 6 for L = 32 is far from L/2. Second, the τi variables, which are
also dynamical under SWAP, are still evolving. Hence, σ(1)

i and σ(2)
i may be optimized with

respect to different Jij and thus not really inform us about the performance of the algorithm
and measurement in taking one system close to equilibrium.

2.4.5 Consolidating the key results
Our SWAP has two ingredients: annealing of disorder because of the τi exchanges (absent
in the original SWAP method used for interacting particle systems) and non-local moves
(the essential feature of the original SWAP). To determine whether the annealing of the
τi—and the resulting reduction in the magnitude of frustration—yields disorder realizations
J ∗

ij with a less complex structure, in which the ground state can be found more easily, we
compared the outcome of (i) our SWAP algorithm to the following cases:

(ii) Purely single spin flip dynamics (i.e. pswap = 0) with randomly generated Jij bonds.
They follow the initial distribution of Fig. 2.19, with uncorrelated {τi}.

(iii) Purely single spin flip dynamics with the converged J ∗
ij, found with the quadratic

temperature annealing using the strictly non-local SWAP method (with pswap = 0.1).
In this case the τi variables are quenched but organized in the pattern produced by
the SWAP implementation.

We also wanted to distinguish the effect of the non-local moves, therefore we included:

(iv) An evolution with only local exchanges, in which we restrict the spin exchanges to be
just between nearest neighbors. As with the non-local SWAP implementation the τi’s
are still partially annealed along the evolution but only through local moves.
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We then calculate the self-correlation Cσ(t, tw) = N−1
∑N

i=1[⟨σi(t)σi(tw)⟩] after a T = 0
quench of the L = 32 system at three waiting times. The results are plotted in Fig. 2.33,
they show that single spin flips, for both Jij and J ∗

ij, fail to decorrelate the configurations,
as their curves lie in the plateau of C(t, tw) = 1 for all waiting times. The J ∗

ij are not special
in this respect. Besides, while local exchanges are able to decorrelate configurations, they
also reach the C(t, tw) = 1 plateau at the last waiting time considered (tw = 512), but the
associated configuration of the σi variables is not the ground state of the converged J ∗

ij,
unlike for the non-local SWAP. Thus, non-local SWAP is more efficient in advancing the
evolution than just local exchanges.

Fig. 2.33: The two-time Ising spin self-correlation at three waiting-times. Data for four
kinds of T = 0 evolution of a system with L = 32 and ∆ = 1.5 starting from random initial
conditions: (i) SWAP with non-local moves, (iv) local spin exchanges and spin flips, and
solely single spin flips of the∆model with (ii) random Jij and (iii) converged J ∗

ij couplings.

Finally, we measured the characteristic relaxation time, τα, of the algorithms at finite
temperature. We have excluded algorithm (ii), the case of pure single spin flips with
randomly generated Jij bonds, because our previous analysis concluded that its dynamics
are similar to those with converged bonds, J ∗

ij. This time the converged couplings are
taken from the values produced at the end of the non-local SWAP quench when equilibrium
is reached, for each respective temperature. We define this τα as the time for which the
self-correlation has become age independent (i.e. C(t, tw) = Ĉ(t − tw)) and has decayed
to 20% of its original value (i.e. Ĉ(τα) = 0.2 Ĉ(0)). As can be seen in Fig. 2.34, the partial
annealing of the disorder plays a prominent role in accelerating the dynamics with respect
to the single spin flip case with converged couplings. The addition of non-local moves
accelerates the dynamics even further, gaining one decade at T = 0.9 with respect to the
local exchanges. The three dynamics are indistinguishable at higher temperatures (here,
around T ≈ 2.5).

2.5 Conclusions and outlook
In this work, we extend standard lattice spin models by introducing associated ∆-models, in
which spins are assigned a length variable drawn initially from a predetermined probability
distribution with positive support (here chosen to be uniform). Within this framework, we
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Fig. 2.34: Characteristic relaxation time τα extracted from the decay of the σ self-correlation
after quenches to the target temperatures, evolved with (i) SWAP (i.e. non-local moves),
(iv) local spin exchanges, both with the same pswap = 0.1, and (iii) pure single-spin-flip
dynamics (pswap = 0) with converged bonds (J ∗

ij), for a model with ∆ = 1.5. In the inset,
comparison of the two relaxation times, for local exchanges and pure single-spin-flips with
respect to SWAP, as a function of temperature for two ∆-models.

adapted the SWAP method to perform non-local spin exchanges, aiming to evaluate how
these moves help overcome local energy barriers in the Metropolis algorithm.

Our implementation is based on single-spin-flip dynamics, which constitute the majority
of updates. In addition, non-local spin-exchange (SWAP) moves are introduced at random
intervals, accounting for roughly 10% of the total updates—when optimized. This procedure
preserves the overall distribution of spin magnitudes but induces emergent spatially corre-
lated patterns. These correlations effectively lift local energy barriers, thereby facilitating
the acceptance of new configurations.

In the ∆-model with uniform ferromagnetic couplings, the SWAP mechanism offers no
advantage over the standard single-spin-flip dynamics of the parent Ising model. Instead,
it merely reproduces the well-known non-conserved order-parameter kinetics of the Ising
model, effectively bypassing the disorder introduced by the τi variables.

In contrast, in the frustrated case, SWAP manages to accelerate the evolution of a 2d
frustrated model at very low temperatures. The method allowed us to sample ground states
of the 2d Ising spin glass, faster than usual implementations of parallel tempering do for the
EA model at low temperatures. After instantaneous quenches, we find the ground state of
the ∆-Model with ∆ = 2 around 2 decades faster than parallel tempering Monte Carlo [235,
236] in the 2d EA model. This is further improved by a temperature annealing, that enables
us to find at least 99% of the ground states for∆ ≥ 0.5. Other parameters to optimize, which
we have not explored in depth yet, are Pτ (τi) and the parameters of the annealing scheme.

In the disordered spin model, the sluggish dynamics at low temperatures stems from
the complex organization of low-energy configurations and the difficulty of transitioning
between them. The efficiency of the SWAP algorithm in accelerating the dynamics can
therefore be attributed to its ability to partially reduce these transition difficulties, effectively
mitigating the largest energy barriers when needed. This interpretation is supported by the
absence of any speed-up in the non-disordered Ising case, whose low-energy configurations
are comparatively simple. Nevertheless, the acceleration achieved in our spin model is
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modest compared to that observed in structural glasses, suggesting that facilitation [184]
may also contribute in the latter, consistent with previous studies of kinetically constrained
models [77]. In addition, we observe correlated patterns of spin lengths, τi, at low tempera-
tures, hinting at similar phenomena in structural glasses, where spatial correlations related
to particle diameters may develop—an effect that merits further investigation.

A future direction is to extend the application of this algorithm to the 3d case or random
regular graphs (RRG), where the spin glass transition occurs at finite temperatures. The
RRG case is particularly interesting, as we expect the critical temperature of the ∆-model to
be well estimated by the calculation on the Bethe lattice. This will allow us to assess the
dependency Tc(∆) in finite-dimensional systems.

Although the frustration magnitude is reduced overall, the probability distribution of the
converged couplings J ∗

ij remains symmetric and does not appear to constitute an ‘easier
instance’ than standard alternatives such as Gaussian or bimodal distributions. A more
complete characterization of these random bonds would require estimating the associated
stiffness exponent, known to be θ = −0.2793(3) for continuous distributions [237, 238]. In
this work, we could not estimate this exponent directly, as the ground states generated by
SWAP correspond to different J ∗

ij instances, preventing the standard domain-wall analysis
of ground state energies. However, it could still be determined by computing ground states
of the J ∗

ij instances produced by SWAP using conventional methods.

105



SWAP Dynamics for Frustrated Spin Systems

A1 Branch-and-cut algorithm
Currently, the branch-and-cut algorithm can be considered as the most efficient exact algo-
rithm to obtain ground states for spin glass instances. A publicly accessible implementation
of a branch-and-cut algorithm is hosted by the University of Bonn [234]. In this work, we
have used this server to validate the ground state sample produced by the SWAP algorithm.

The algorithm is employed to find the global energy minima of a general Ising spin glass
with Hamiltonian

H = −
∑
i<j

Jijσiσj −
∑
i

hiσi , (55)

with Jij being quenched random variables—either continuous or discrete.
For system of size N , the naive algorithm would compute the energy of the 2N possible

spin configurations and select the minimum from this list, producing a time complexity of
O(2N). Instead, we follow the branch-and-cut construction, that simplifies the problem to a
recursion.

Depending on the value of the spin σN the Hamiltonian can be written in two ways:

H+(σ
′) = −

′∑
i<j

Jijσiσj −
′∑
i

hiσi −
′∑
i

JiNσi − hN , (56)

H−(σ
′) = −

′∑
i<j

Jijσiσj −
′∑
i

hiσi +
′∑
i

JiNσi + hN , (57)

where the sum ∑′ runs from 1 to N − 1. By defining the minimum of the Hamiltonian
without the N -th spin, i.e.

H′
N−1 = min

σ′=(σ1,...,σN−1)

[
−

′∑
i<j

Jijσiσj

]
. (58)

using the min-sum inequality minx(f1(x) + f2(x)) ≥ minx f1(x) + minx f2(x) we obtain the
bounds

H+(σ
′) ≥ H′

N−1 − hN + min
σ′=(σ1,...,σN−1)

[
′∑
i

(−hi − JiN)σi

]
,

H+(σ
′) ≥ H′

N−1 + hN + min
σ′=(σ1,...,σN−1)

[
′∑
i

(hi − JiN)σi

]
.

(59)

If we regard the original Hamiltonian H(σ) as the root of a graph, fixing one spin at a time
produces a binary branching tree: the root splits into two vertices corresponding to σN = +1
and σN = −1; each of these branches again according to the possible values of σN−1, and
so on. Continuing this process recursively generates a tree with 2N leaves, where each leaf
represents one possible spin configuration.

At each branching step, we obtain the lower bounds on the minimal energy attainable
within each subtree found in (59). These bounds are then compared to a ‘current best
energy’, which is obtained either from a heuristic algorithm or from previously explored
branches. Any branch whose lower bound already exceeds this threshold is pruned, as
it cannot contain the ground state. By iteratively branching, bounding, and pruning, the
algorithm efficiently narrows the search and identifies the exact ground-state configuration
at one of the surviving leaves.

In the worst case, the algorithm still scales exponentially, O(2N), since spin glasses are
NP-hard. However, in practice, the effective search space is much smaller. Empirical studies
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show that branch-and-cut can solve instances up to hundreds of spins efficiently, where
naive enumeration would be impossible.

A2 More snapshots at L = 32

Fig. 35: Instantaneous configurations of the ∆-model obtained at subsequent (though not
equally spaced) times after a quench to T = 0 of four initial conditions (different rows)
evolved with SWAP. Each square represents the instantaneous local overlap τi(t)σi(t)σgs

i .
The frustrated plaquettes are indicated with bullets and triangles according to the local
frustration fP (t) being greater or smaller than one, respectively.
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Introduction

Many-body localization (MBL) is a dynamical phase of matter in which an isolated, inter-
acting quantum system with sufficiently strong disorder, controlled by a disorder strength
W , fails to thermalize. Although the possibility of localization in interacting systems was
first suggested by Anderson in his pioneering work [88], it was only about two decades ago
that the perturbative stability of the Anderson insulator in the presence of weak interactions
was explored [89, 90]. For recent reviews, see Refs. [91–94]. This failure is attributed to
the emergence of an extensive set of quasi-local integrals of motion (LIOMs or ‘ℓ-bits’) that
inhibit thermalization, allowing the system to retain local memory of its initial conditions
indefinitely [91–94, 239–242].

In recent years, the stability (particularly with respect to non-perturbative events) of
the MBL phase has been put into question [95–97, 100–103, 243–245]. This skepticism
stems from the exponential increase in Hilbert space volume with the number of degrees of
freedom, which severely limits exact diagonalization studies to relatively small system sizes,
potentially missing the asymptotic behavior of large systems. In these studies, commonly
used observables—such as average spectral statistics, eigenstate participation entropies,
imbalance decay, and entanglement entropy [102, 246, 247]—fail to yield a consistent
estimate of the critical disorder strength WMBL. As the system size L is increased, this
putative critical point drifts toward larger disorder strengths, indicating that larger systems
require stronger randomness to localize. This raised concerns that the true transition in the
thermodynamic limit might occur only at infinitely strong disorder. In other words, the MBL
regime seen in finite chains might be a finite-size effect rather than a stable phase [95–103].

This possibility has been further supported by a theoretical argument, which suggests
that the MBL phase may be unstable with respect to a runaway avalanche thermalization
mechanism. This instability would be triggered by rare regions in the system where the
disorder is anomalously weak [100, 243, 248–254]. The basic idea is that rare regions with
atypically weak disorder inevitably occur in sufficiently large systems, albeit with small but
finite probability. In an otherwise localized system, rare regions can act as small thermal
bubbles that couple to nearby degrees of freedom. Under certain conditions, a thermal
bubble can thermalize its neighbors, which are then effectively absorbed into the bubble. As
the bubble grows, it becomes increasingly capable of thermalizing additional nearby regions.
This can trigger a self-sustained avalanche in which the thermal region expands throughout
the system, ultimately destroying localization and restoring ergodic behavior.

Yet, the system sizes accessible through numerical simulations are too small to accommo-
date these rare, locally thermal regions, making direct evidence of their existence difficult
to obtain. To address this limitation, several studies have investigated how disordered quan-
tum chains in the MBL phase respond when coupled to an artificially introduced thermal
region [248, 253–261]. The core idea is that if the relaxation time of the localized region is
long enough, a thermal bubble cannot trigger the thermal avalanche. This approach sets a
lower bound on the disorder strength required for the MBL phase to remain stable, and the
critical disorder estimated turns out to be much stronger than those previously obtained
using standard observables [244, 246, 247, 262, 263].

In parallel, many recent numerical studies of finite-size quantum systems have revealed
the presence and importance of rare many-body resonances, even deep within regions of
the phase diagram that were previously thought to belong to the many-body localized phase
[264–268]. A many-body resonance occurs when two or more eigenstates of the system
have almost the same energy and are connected strongly enough by the Hamiltonian that
the system can transition between them. In the MBL phase, these eigenstates are typically
‘localized’ and differ only within a finite spatial region. When resonances involve eigenstates
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that differ by a large fraction of the system’s degrees of freedom (for example, several
spin-flips in spin chain) the avalanche is said to be long-range (or system-wide) resonances,
and are believed to be a key factor in its eventual breakdown. Evidence for such resonances
has been found indirectly in microscopic models [268–272] and, more recently, identified
directly through targeted numerical studies [257, 258, 265, 266, 273, 274] and play a
central role in formal proofs about when the MBL phase can remain stable [264, 275, 276].

It is important to emphasize that these two destabilization mechanisms—many-body
resonances and avalanches—are not necessarily independent. In particular, Ref. [258] argues
that avalanches primarily propagate through strong, rare (near-)resonances, suggesting a
close connection between the two. However, the precise relationship between avalanches
and long-range resonances remains elusive. The growing body of evidence for many-body
resonances places them at the center of the discussion, as they seem to play a crucial role
in the physical properties of the MBL transition and its stability [251, 257, 258, 266, 270,
272, 277, 278]. Despite this, a comprehensive microscopic understanding of the origin, the
statistics, and the effect of long-range resonances is still lacking.

As a result, recent studies have shifted focus to the properties of many-body resonances
in strongly disordered regimes—regions that standard diagnostics had previously identified
as many-body localized. Approaches include scaling analyses of extreme values of spectral
observables [257, 258], detailed studies of large deviations in spatial correlations of the
relevant degrees of freedom (such as longitudinal spin–spin correlations) [279, 280], and
proxies for the probability of decorrelation from a randomly initialized state [281]. The
probability distributions of these observables display heavy tails, with rare events taking
values more typical of ergodic regimes. Accounting for these heavy tails shifts the estimated
critical disorder strength at which the system is typically localized, predicting a new threshold
WMBL that is larger than previously thought.

In this chapter, we build upon the approach introduced in Ref. [281], previously applied
to the out-of-equilibrium phase diagram of the random-field Ising model in a transverse
field (also known as the Imbrie model), where the absence of diffusion at strong disorder
has been rigorously established under minimal assumptions [264, 275, 276]. We extend
this method to the more debated case of the random-field Heisenberg chain, a model that
has been central to most numerical investigations of the MBL transition [244–247, 257,
263, 282–286]. Specifically, we study the general random-field XXZ chain and present an
updated phase diagram at high energy (i.e., in the middle of the many-body spectrum) in
the disorder–interaction (W,∆) plane, accounting for the role of long-range resonances.

Building on an analogy with mean-field glassy systems, our method evaluates how
often rare events occur in which the observable behaves as in the ergodic phase, caused
by resonances that extend across the entire Hilbert space.The central quantity we focus
on is the probability that a system initialized in a random configuration |0⟩ at time t =
0 is found in a configuration |f⟩, located far from |0⟩ in Hilbert space, at infinite time.
These probabilities are estimated via the amplitudes of the propagators |G0f |2, which are
significantly easier to compute numerically. Rare resonances are identified as outliers in
the probability distributions of these propagators, corresponding to pairs of resonant states
separated by large distances on the Hilbert space graph.

Exploiting the analogy with classical disordered models, we introduce an auxiliary
parameter β—that corresponds to the inverse temperature in the original classical model.
This parameter controls the influence of extreme outliers and enables us to isolate their
contribution to transport. This reveals three distinct regimes, illustrated in the phase
diagram of Fig. 3.14: (i) In the ergodic phase, a system initialized in a many-body basis
state |0⟩ becomes delocalized over Hilbert space, exploring configurations far from the
initial state; (ii) an intermediate regime where delocalization is driven by rare, disorder-
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dependent long-range resonances that appear only in atypical disorder realizations; and (iii)
a robust many-body localized phase, where such resonances are neither strong nor frequent
enough to destabilize localization. Importantly, numerically accessible typical samples in the
intermediate regime do not exhibit the system-wide resonances responsible for asymptotic
delocalization. Nevertheless, our approach, guided by the analogy with mean-field glassy
systems, captures the effect of these rare contributions in the large L limit.

We investigate the spatial structure of these rare events within Hilbert space. In the
MBL regime, rare resonances become increasingly short-ranged: the portion of Hilbert
space accessible from the initial configuration progressively shrinks, and the spreading of the
wavepacket remains confined near the initial state. In contrast, in the ergodic regime, uniform
delocalization is recovered only at large distances in Hilbert space. Our results thus provide
a Hilbert space-based complement to real space and spectral probes of MBL, highlighting
the crucial role of rare, system-wide resonances in driving finite-size delocalization.

The emergence of heterogeneous resonant pathways facilitating delocalization is further
confirmed by examining the structure of many-body eigenstates, which exhibit pronounced
amplitude fluctuations in the intermediate phase, both between rare and typical disorder
realizations and between distinct branches of the Hilbert space graph.

Finally, we explore these differences by visualizing the transmission pathways on the
Hilbert space graph using techniques originally developed for quantum transport in meso-
scopic systems [287–289]. This graphical perspective offers new insight into the desta-
bilization of the MBL phase at finite sizes, interpreting it as the emergence of resonant
transmission paths that are abundant in the ergodic regime but become increasingly rare
and short-ranged deep in the localized phase.

Our results provide new numerical evidence that the introduction of interactions induces
delocalization through genuinely non-perturbative mechanisms. Notably, even at very small
interaction strengths ∆, the critical disorder strength separating ergodic from non-ergodic
phases remains finite. This implies the existence of a broad region of the phase diagram
at small but finite disorder where the addition of an infinitesimal interaction is sufficient
to destroy the Anderson insulator at ∆ = 0, and possibly even restore full ergodicity. This
observation is consistent with the behavior of longitudinal correlation functions and with
the recently updated phase diagram of the XXZ model at mid-spectrum energies reported in
Refs. [279, 280].

This chapter is organized as follows. Sec. 3.1 reviews the non-interacting Anderson
localization problem, outlining its key phenomenology and theoretical framework. Sec. 3.2
extends the discussion to interacting systems, presenting the main results that support the
persistence of localization in the presence of interactions. We describe the quasilocal integrals
of motion pciture that underlie the microscopic mechanism by which many-body localization
(MBL) breaks ergodicity. We compare this mechanism to other forms of ergodicity breaking—
such as mean-field spin glasses and integrable systems. Sec. 3.3 introduces the interacting
spin model central to our study: the XXZ chain in a random field, a paradigmatic model
of the MBL transition. In Sec. 3.4, we review standard observables used to probe the
MBL phase and discuss their limitations, along with two key mechanisms—many-body
resonances and thermal avalanches—that are related to the restoration of ergodicity in
the MBL phase. Building on this, Sec. 3.5 presents our main method, designed to address
the shortcomings of previous observables. Sec. 3.6 reports the results obtained with this
approach, characterizing finite-size regimes and the nature of many-body resonances within
them. Sec. 3.7 compares rare and typical disorder realizations identified by our method,
examining eigenstate properties and other observables across regimes. Finally, Sec. 3.8
summarizes our findings and suggests directions for future work. Additional technical details
and supporting results are provided in four appendices.
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3.1 Anderson Localization

3.1.1 The Anderson model

Experiments conducted by Feher in the mid-1950s, particularly on silicon (Si) doped with
dilute phosphorus (P) impurities, demonstrated that spin excitations often remained localized
rather than spreading freely [290]. In other words, instead of the spin ‘flips’ propagating
through the material like a wave, they tended to stay near the impurity sites, as if trapped,
preventing the expected movement of spin information through the lattice. This effect
highlighted how disorder in the impurity energy levels hinders the transport properties of
quantum systems.

To explain this, In 1958 Philip W. Anderson in his seminal work [88] studied a simple
model of electrons allowed to hop between neighboring sites on a lattice, but each site
possesses an energy chosen from a random distribution. In this model there is a competition
between the particle’s kinetic energy (hopping) and the energy mismatch caused by the
disordered potential (on-site random energy). Anderson demonstrated that, if this disorder
is sufficiently strong, or if the energy is close to the band edges, the particle’s quantum states
become spatially localized. This phenomenon is nowadays known as Anderson localization.

Over the decades since its appearance, the concepts and results of Anderson localization
have permeated a wide range of other physical systems. It has been widely recognized as a
universal wave-interference phenomenon, applying not only to electrons but also to classical
waves and ultra-cold atoms [291].

The original model studied by Anderson consisted of a modified tight-binding model
with on-site quenched disorder. Set on a cubic d-dimensional lattice with linear dimension
L, its Hamiltonian reads

Ĥ0 = −J
∑
⟨ij⟩

(ĉ†i ĉj + h.c.) +
∑
i

εiĉ
†
i ĉi , (3.1)

where ĉ†i (ĉi) denotes the fermionic creation (annihilation) operator at site i, J is the hopping
amplitude between the neighboring sites i and j, and εi represents the on-site disorder.
The disorder energies εi are independent random variables uniformly distributed over the
interval [−W/2,W/2], with zero mean and variance W 2/12.

The core result of Anderson is that the eigenstates of the Hamiltonian, at a given energy,
can be either ‘extended’ or ‘localized’ depending on the dimensionality of the system and
the parameters J andW . For the caseW/J = 0 the problem simplifies to free fermions on a
lattice at half-filling ĤFF, whose eigenfunctions are plain-waves of the form

ϕα(r) =
1√
Ld

exp

[
2πi

L
n(α) · r

]
, (3.2)

where r can take values among the Ld position vectors associated to each site, with lattice
spacing a. The wavevector n(α) =

(
n1(α), n2(α), . . . , nd(α)

) has components nk(α) ∈
{0, . . . , L − 1}. The integer α ∈ {1, . . . , Ld} enumerates the eigenstates by encoding the
multi-index n(α). We have chosen the encoding α = 1 + n1 + Ln2 + L2 n3 + · · ·+ Ld−1 nd

for the eigenvalue equation ĤFF ϕα(r) = Eα ϕα(r), with eigenenergies given by

Eα = −2t
d∑

k=1

cos

(
2π nk(α)

L

)
. (3.3)
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In this case, the system is said to be ‘delocalized’ or ‘extended’, since a wavepacket initially
prepared on site 0 at the initial time t = 0 will spread under unitary evolution1

|r(t)⟩ = Û(t) |r0⟩ = e−iĤt |r0⟩ . (3.4)
A quantitative measure of this spreading is given by the mean-square displacement—where
the mean is taken over lattice sites [292]

r2(t) =
Ld−1∑
j=0

|rj|2| ⟨rj|r(t)⟩ |2 =
Ld−1∑
j=0

|rj|2
∣∣∣∣∣ 1√
Ld

∑
α

e−iEαt ϕα(rj)

∣∣∣∣∣
2

, (3.5)

that is found to be r2(t) = 2dJ2t2 indicating ballistic transport in every direction. The
wavepacket is found with uniform probability across all sites of the lattice after infinite time.

With sufficiently strong disorderW , the nature of the eigenstates changes: wavefunctions
become exponentially localized around some fixed position Rα in the lattice, normally
denoted as the center of the α-eigenstate. In this case, the wavepacket has a probability
amplitude given by

|ϕα(r)|2 ∼ e
− |r−Rα|

ξloc (3.6)
where ξloc is the disorder-dependent localization length characterizing the exponential decay.
For the infinite-disorder limit, in which J/W = 0, eigenstates are perfectly localized, each
of them occupying a single site on the lattice, i.e. ϕα(ri) = δiα. Instead at zero disorder
W/J = 0 the extended Bloch states of Eq. (3.2) are recovered. Any intermediate case
depends on the ratio J/W , and the limiting cases can be further extracted by the behavior
of the localization length ξloc:

lim
J/W→0

ξloc = a , (3.7)

and the eigenstates are localized within the position Rα. Whereas for
lim

J/W→∞
ξloc = ∞ , (3.8)

and the eigenstates are extended, free to propagate across the entire lattice.
If we consider the hopping term acting as a perturbation then K̂ = −J∑⟨ij⟩(ĉ

†
i ĉj + h.c.).

For an electron initially prepared on a site i the addition of the hopping term yields a
transition probability to a new site j, that according to Fermi’s Golden rule at first order of
perturbation theory the transition probability is

Pi→j = 2π| ⟨j|V̂ |i⟩ |2δ(εi − εj) , (3.9)

where the matrix element ⟨j|K̂|i⟩ = Kij = −J for i and j nearest neighbors and zero
otherwise. In the former case, the transition rate is significant only when the energies are
nearly degenerate with respect to the energy scale set by the hopping term |εi − εj| ≲ J .
This condition produces a resonance between these sites and the states |i⟩ and |j⟩ are said
to hybridize i.e. they form a quantum superposition. This can be better exemplified from
the two-site Hamiltonian

H =

(
εi −J
−J εj

)
. (3.10)

The eigenvalues are obtained by solving det(H− EI) = 0:

E± =
εi + εj

2
±
√(

εi − εj
2

)2

+ J2. (3.11)

1We adopt natural units throughout, setting ℏ = 1
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The corresponding normalized eigenstates are

|ψ+⟩ = cos θ |i⟩+ sin θ |j⟩, (3.12)
|ψ−⟩ = − sin θ |i⟩+ cos θ |j⟩, (3.13)

where the mixing angle θ is defined by

tan 2θ =
2J

εi − εj
. (3.14)

In the strongly resonant case |εi − εj| ≪ J , we have θ ≈ π/4, so the eigenstates are nearly
equal superpositions:

|ψ±⟩ ≈
1√
2
(|i⟩ ± |j⟩) , (3.15)

meaning that the wavepacket spreads equally in both sites.
In the Anderson model, the presence of disorder in the energies {εi} propitiates an energy

mismatch between neighboring sites. For sufficiently strong disorder W ≫ J , resonant
transitions between neighboring sites are strongly suppressed. The same holds for distant
sites: tunneling processes between sites i and j separated by n lattice sites typically occur
in the n-th order of perturbation theory where we expand in terms of J/W . Therefore,
the transition amplitudes scale as (J/W )n. On the other hand, as the quenched random
energies are uncorrelated variables, counting statistics predicts that the energy difference
δε = |εi − εj| will decay only algebraically with the distance δε ∼ W/nd. The competition
between hopping transitions and disorder strengthW yields a critical valueWc that separates
the ergodic phase, characterized by extended eigenstates, from the localized phase, where
eigenstates are spatially confined and transport is suppressed. This critical value depends
strongly on the dimensionality d.

In low spatial dimensions (d = 1, 2), all single-particle eigenstates become localized for
any non-zero disorder. This has been rigorously proven in d = 1 [293] and supported in
d = 2 by a renormalization group analysis [294], as well as by numerical studies [295].
Consequently, the critical disorder strength is Wc = 0 in these cases and the localization
length scales as ξloc ∼ 1/W 2. The scaling theory of localization, developed in Ref.[296]
proposed a one-parameter scaling hypothesis that describes the renormalization group flow
of the dimensionless conductance g(L). The associated beta function

β(g) =
d ln g(L)

d lnL
, (3.16)

describes the scaling of the conductance with size L, and the fixed point β(g) = 0 signals
the metal-insulator (extended-localized) transition. This analysis found the lower critical
dimension to beDl = 2. Consequently, for any non-zero disorder widthW all eigenstates are
localized for d ≤ 2 whereas d > 2 exhibit a metal-insulator transition at a non-zero value of
Wc. In the latter cases, the transition can be characterized in terms of the localization length
ξloc, playing the role of the correlation length in continuous phase transitions, diverging as
we approach Wc. Accordingly, coming from the localized phase the localization length ξloc
follows the universal scaling

ξloc ∼ (W −Wc)
−ν . (3.17)

The best numerical estimates at d = 3, for energies in the middle of the band, found the
localization transition to beWc ≃ 16.5 with critical exponent around ν = 1.58(1) [297–305].
For higher dimensions, numerical estimates for these quantities have been performed [306,
307], they are summarized in Table 3.1
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d = 4 d = 5 d = 6
Wc = 34.5(2) Wc = 57.5(2) Wc = 83.5(4)
ν = 1.11(5) ν = 0.96(6) ν = 0.84(7)

Table 3.1: Critical disorder Wc and exponent ν for dimensions d = 4, 5, 6. Adapted from
Ref. [307].

The Anderson model on the Bethe lattice [308] serves as a representative example of the
infinite-dimensional limit, as discussed in previous chapters. This model is exactly solvable,
and its phase diagram can be expressed as a function of the lattice connectivity κ+ 1; an
example for κ+ 1 = 3 is shown in Fig. 3.1. In this case, the mobility edge—which separates
localized from extended eigenstates—can be determined exactly, and the critical disorder
strengthWc increases with connectivity. The corresponding critical exponent is ν = 1/2, in
agreement with other mean-field approaches [309].

In finite-dimensional systems with d > 2, a mobility edge is likewise expected, separating
localized and extended states in theW–E plane. Interestingly, the critical exponent ν de-
creases smoothly with increasing d, showing no sign of saturating to the infinite-dimensional
value ν = 1/2. This continuous decrease has led several authors to propose that the upper
critical dimension for Anderson localization is effectively infinite [307, 310–313].

Fig. 3.1: Phase diagram for the Bethe lattice with connectivity κ + 1 = 3. The innermost
solid line indicates the mobility edge between extended and localized states, the outermost
solid line being the edge of the density of states E = ±(2

√
κ+W/2), outside of which no

eigenstates can be found (gray regions). The critical disorder width Wc at the center of the
energy band E = 0 is shown. Figure adapted from Ref. [308].

3.1.2 Eigenstate characterization

One useful probe to distinguish between ergodic and localized eigenstates is given by
the inverse participation ratio (IPR), that provides a measure of the concentration of the
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wavefunction in specific sites. Its most general form is given by

I(α)
q ≡

L−1∑
i=0

|ϕα(ri)|2q , (3.18)

In most applications, the term ‘IPR’ specifically refers to the case q = 2. By contrast, for q = 1

we have I(α)
1 = 1, which simply reflects the normalization of the wavefunctions.

For a finite-dimensional system with linear size L, the IPR provides valuable information
about the nature of the eigenstates. Focusing on a single eigenstate |ϕα⟩, we see that:
(i) If |ϕα⟩ is extended, its amplitude is uniform across the lattice hence |ϕα(r)|2 ∼ 1/Ld,

and therefore we expect I(α)
q = L−d(q−1).

(ii) If instead |ϕα⟩ is localized, its amplitude is concentrated within the localization length
ξloc around its center Rα, for these cases we expect |ϕα(r)|2 ∼ O(1) while all the others
are vanishingly small. Therefore we expect I(α)

q ∼ O(1), independent of L.
Consequently, in the thermodynamic limit L→ ∞, the IPR is expected to vanish for extended
eigenstates, whereas it remains finite for localized eigenstates.

To obtain statistically meaningful results, it is common to average I(α)
q over several

eigenstates of the system within a close energy range—and over several disorder realizations.
Often one studies the average IPR Iq and its typical value Ityp

q

Iq = E
[
I(α)
q

]
, Iq = expE

[
ln I(α)

q

]
, (3.19)

where E[· · · ] is taken over several disorder realizations {εi} and over eigenstates whose
energies lie within a narrow energy window—for example, around E = 0 for the band
center.

At the metal-insulator transition, Iq in dimensions greater than two (d > 2), both average
and typical IPRs are found to follow a continuous scaling relation

Iq ∼ L−τq , Iq ∼ L−τ typq , (3.20)
with τq = Dq(q − 1). The cases mentioned above are recovered with Dq = d for extended
states, and Dq = 0 for localized states. The exact relationship between the two exponents τq
and τ typq was studied in detail in Refs. [314, 315]. The quantity Dq corresponds to a fractal
dimension, that has a non-trivial dependence on q and the wavefunctions are said to be
multifractal [309, 313, 316], a concept we will mention briefly in the following section.

3.1.3 Spectral Properties
To gain a fundamental understanding of the localization transition, spectral theory [317,
318] provides a rigorous formal framework. For a general Hamiltonian Ĥ (or in general for
any self-adjoint operator) acting in a Hilbert space H , the latter can be decomposed into
three orthogonal components

H = HD ⊕ HSC ⊕ HAC (3.21)
with HD corresponding to a subspace with discrete—or pure point—spectrum σD(Ĥ),
HSC corresponding to a subspace with singular continuous spectrum σSC(Ĥ), and HAC

corresponding to a subspace with absolute continuous spectrum σAC(Ĥ). Together they
form the spectrum of the operator Ĥ

σ(Ĥ) = σD(Ĥ) + σSC(Ĥ) + σAC(Ĥ) (3.22)
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The Anderson problem (or any other system exhibiting Anderson localization) is such that,
in the thermodynamic limit, the nature of the relevant spectrum collapses into one of these
three possible partitions of the Hilbert space. In other words, depending on the disorder
strength, in the thermodynamic limit L→ ∞ the spectrum becomes:

(i) σD(Ĥ): The associated eigenstates are spatially localized, and the phase is insulating—
conductance is absent.

(ii) σSC(Ĥ): The generalized eigenstates are neither fully localized nor fully extended, but
‘critical’. In many physical systems these eigenstates are multifractal—a case that we
won’t discuss here.

(iii) σAC(Ĥ): The generalized eigenstates are extended, and corresponding wavepackets
spread over time. The phase is thus said to be metallic or ergodic.

This classification follows from the RAGE theorem, which has been rigorously proven in
mathematical physics [293]. The theorem links the spectral decomposition of the Hamilto-
nian in the thermodynamic limit to the asymptotic infinite-time evolution of wavepackets
under unitary dynamics e−iĤt.

The Resolvent Operator

This spectral information can be studied from the Green function—or resolvent operator—
defined as

Ĝ(E) = (E Î− Ĥ)−1 , (3.23)
where E is the energy at which we are evaluating the resolvent.

For finite systems of size Ld the spectrum is always discrete, and we can expand the
resolvent in terms of the eigenpairs of the Hamiltonian Ĥ as

Ĝ(E) =
∑
α

|ϕα⟩ ⟨ϕα|
E − Eα

, (3.24)

with Ĥ |ϕα⟩ = Eα |ϕα⟩. In the position representation this becomes

G(r, r′;E) = ⟨r| Ĝ |r′⟩ =
∑
α

ϕα(r)ϕ
∗
α(r

′)

E − Eα

. (3.25)

The function G(r, r′;E) is analytic in E, except for simple poles located at E = Eα. In the
thermodynamic limit, the spectrum becomes continuous in the ergodic phase, and Eq. (3.25)
changes accordingly. For instance, in the disorder-free tight-binding model for L→ ∞, the
Green function is expressed in terms of the continuous momentum k

G(r, r′;E) =

∫
ddk

(2π)d
ϕk(r)ϕ

∗
k(r

′)

E − E(k)
. (3.26)

More generally, when the spectrum is continuous, the discrete poles of G merge into a
continuum with support on the real axis. In the example above, this continuum is determined
by the values of the dispersion relation E(k) appearing in the denominator of Eq. (3.26).
Conversely, in the localized phase, the spectrum remains discrete in the thermodynamic
limit, and the singular behavior of G persists only through the isolated poles at energies Eα.

As a result, the two phases can be distinguished by examining the singular behavior
of the Green function through a limiting procedure. This involves analytically continuing
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G(r, r′;E) into the complex plane by adding a small imaginary part to the energy, controlled
by a parameter η.

For an absolute continuous spectrum, taking the limit η → 0 causes the analytically
continued Green function to develop a branch cut along the real axis—or, in the case of a
singular continuous spectrum, a natural boundary. The two analytic continuations across
this branch cut correspond to

Gr(r, r′;E) = lim
η→0+

G(r, r′;E − iη) ,

Ga(r, r′;E) = lim
η→0+

G(r, r′;E + iη) ,
(3.27)

where Gr and Ga are the ‘retarded’ and ‘advanced’ Green functions, respectively. Their
respective operators are related as (Ĝr)† = Ĝa.

Both quantities in Eq. (3.27) are equal if no singular point is encountered in the limit
η → 0+. However, for the continuous spectrum, taking the difference between retarded
and advanced Green functions quantifies the discontinuous jump across the branch cut.
While in the discrete spectrum this discontinuity is not present. Instead, the Green function
simply diverges at each pole, and the limit is ill-defined precisely at those points. Away
from the poles, however, the difference is zero, as no singularity is encountered with η → 0.
This difference can be expressed simply as the limit η → 0+ of the imaginary part of the
analytically continued Green function:

∆G(r, r′;E, η) ≡ Gr(r, r′;E)− Ga(r, r′;E)

= 2i ImG(r, r′;E − iη) .
(3.28)

This imaginary part, in turn, is directly related to the local density of states (LDOS)
ρ(r;E). To see this, consider Eq. (3.25) in the thermodynamic limit L→ ∞. By analytically
continuing the Green function as E → E − iη, setting r′ = r, and then taking the limit
η → 0+, the connection to the LDOS becomes evident.

This follows from the Sokhotski–Plemelj theorem (also known as Dirac’s identity), which
states:

lim
η→0+

(
1

x± iη

)
= P

(
1

x

)
∓ iπδ(x), (3.29)

with P being the Cauchy principal value.
For instance, in the localized phase—where Eq. (3.25) remains valid even in the thermo-

dynamic limit—the local density of states is found from

ρ(r;E) =
∑
α

|ϕα(r)|2δ(E − Eα) = lim
η→0+

{
1

π
ImG(r, r;E − iη)

}
. (3.30)

Consequently, the local density of states contains all the relevant information of the localiza-
tion transition, and can serve as an order parameter for the transition.

The local density of states (LDOS) quantifies the spectral weight at a given energy
around a specific position r. In the localized phase, this spectral weight is concentrated
at discrete energies corresponding to isolated poles of the Green function, and the LDOS
vanishes almost everywhere except at those energies. Only eigenstates that have significant
amplitude at position r contribute to the LDOS at that site. These are the eigenstates whose
localization centers Rα lie within a localization length of r—that is, those for which |ϕα(r)|2
is non-negligible.

In contrast, in the ergodic phase, eigenstates are delocalized and spread uniformly over
the system, with amplitudes typically of order 1/N at each site. The spectrum becomes
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continuous and has support over an interval on the real axis—possibly the entire axis. As
a result, the LDOS is finite for any position r within this spectral interval, since a finite
measure of delocalized states contributes at every site.

Moreover, the local density of states is a random variable because it depends on the
specific realization of the quenched disorder {εi}. Consequently, the order parameter of the
transition is formally described by the probability distribution function P(ρ(r;E)), defined
over both lattice sites and disorder realizations {εi}.

In the localized phase, the probability distribution function (PDF) of the LDOS is not a
smooth function. The LDOS consists of delta peaks located at discrete (random) energies
Eα. As a result, for a fixed energy E, the quantity ρ(r;E) is typically zero—since E almost
surely does not coincide with any of the eigenenergies—and diverges at isolated points
where E = Eα. The PDF is therefore ill-defined in the usual sense and becomes singular in
the localized phase. This pathological behavior mirrors the behavior of the Green function
in the limit limη→0 ImG(r, r, E − iη). By contrast, in the ergodic phase, the PDF of the local
density of states is well-defined and smooth.

An equivalent characterization of the transition can be given in terms of the typical value
of the local density of states,

ρtyp(E) = exp (E [ln ρ(r;E)]) (3.31)

where the average E[· · · ] is taken over lattice sites and disorder realizations. This quantity
is well-defined for both phases, yielding zero at the localized phase (W > Wc) and nonzero
in the extended phase (W < Wc), providing yet another order parameter to the localization
transition:

ρtyp(r;E) ̸= 0 , for W < Wc

ρtyp(r;E) = 0 , for W > Wc .
(3.32)

This quantity should be contrasted with the average global density of states, defined as

ρ(E) = E

 1

Ld

Ld−1∑
j=0

ρ(rj;E)

 (3.33)

where E[· · · ] is the average over disorder realizations.
In the ergodic phase, the two quantities coincide, ρ(E) = ρtyp(E). In the localized phase,

however, the typical value ρtyp(E) vanishes, while the distribution P(ρ(r;E)) develops fat
tails arising from rare, large values at the poles E = Eα. As a result, the global density of
states ρ(E) remains finite even in the localized phase, rendering it unsuitable for identifying
the transition.

The Locator Expansion—and the Self-Energy

In fact, the Green function—and its spectral properties—played a central role in Anderson’s
original work, where it formed the basis of the celebrated locator expansion used to probe
localization [88]. We can compute G(r, r;E) by separating the Hamiltonian into kinetic,
K̂ = −J∑⟨ij⟩(ĉ

†
i ĉj + h.c), and potential terms V̂ =

∑
i εiĉ

†
i ĉi. Equivalently, we can separate

the calculation of the resolvent in a bare term ĜV—containing just the random potential—
and the full resolvent Ĝ. We omit the energy dependency to simplify the notation and
write:

Ĝ =
1

EI− Ĥ
, ĜV =

1

EI− V̂
. (3.34)
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From these expressions, it is straightforward to obtain the operator identity (Dyson’s equa-
tion):

Ĝ = ĜV + ĜV K̂Ĝ . (3.35)
Taking the expectation value over the site at position r

G(r, r) = ⟨r|Ĝ|r⟩ = GV (r, r) + ⟨r| ĜV K̂Ĝ |r⟩ . (3.36)

We can keep expanding the second term on the right hand side, to obtain the expansion

G(r, r) = GV (r, r) +
∑
i

GV (r, r)K(r, ri)GV (ri, ri)

+
∑
i,j

GV (r, r)K(r, ri)GV (ri, ri)K(ri, rj)GV (rj, rj) + . . . .
(3.37)

This is just a perturbation expansion over the hopping parameter—known as the locator
expansion. The zeroth order corresponds to no hopping G(0)(r, r) = 1/(E − ε0), the second
order term corresponds to a round trip of two steps 0 → i→ 0, given by

G(2)(r, r) =
∑
i

J2
0i

(E − ε0)(E − εi)(E − ε0)
, (3.38)

with J0i the hopping term with a reintroduced site dependence. We repeat this order
iteratively up to the desire order of perturbation theory. We can group together all the
‘irreducible paths’ i.e. those paths that cannot be split into two at site 0—for example
0 → i→ j → i→ 0 at 4th order. The group of all irreducible contributions are collected in
the self-energy Σ(E, r) associated to the position r. As a result, Dyson’s equation resums all
reducible diagrams, and we recover the recursive form

G(r, r;E) = GV (r, r;E) + GV (r, r;E) Σ(r, E)G(r, r;E) . (3.39)

or equivalently
G(r, r;E) =

(
GV (r, r;E)

−1 − Σ(E, r)
)−1 (3.40)

where we have reinserted explicitly all relevant dependencies. Using this last equation and
the explicit form of the resolvent in Eq. (3.23) we get

G(r, r;E − iη) = (E − ε0 − iη − Σ(r, E − iη))−1 (3.41)

where ε0 is the on-site energy associated to the site at position r.
Computing the self-energy Σ(r, E) is particularly challenging, as it encodes the complex

influence of the disordered environment on a given site. Because of this various approxi-
mations —such as truncating the locator expansion or using self-consistent methods—are
employed to estimate its effects in a tractable way [319].

Its imaginary part is related to the inverse characteristic time for a particle to escape from
the evaluated site into the rest of the system. In localized phases, this escape rate vanishes,
while in ergodic phases it remains finite, this will be made explicit seen in the next section.

3.1.4 Relationship with the time evolution
Anderson localization is a dynamical phase of matter, as such the properties aforementioned
can be understood in terms of its dynamics. In fact, the problem initially considered by
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Anderson [88] was to compute the return probability R(t) for a particle initially prepared
in site |r0⟩ at t = 0. This quantity is given by

R(t) = | ⟨r0|r(t)⟩ |2 , (3.42)

with
|r(t)⟩ = Û(t) |r0⟩ = e−iĤt |r0⟩ =

∑
α

e−iEαt ⟨ϕα|r0⟩ |ϕα⟩ . (3.43)

Using Cauchy’s integral formula to express the factor e−iEαt as

e−iEαt =
1

2πi

∮
C

dz
e−izt

z − Eα

, (3.44)

with C is a contour encircling Eα counterclockwise. Then

⟨r0|r(t)⟩ =
1

2πi

∮
C

dz e−izt
∑
α

|ϕα(r0)|2
z − Eα

=
1

2πi

∮
C

dz e−iztG(r0, r0; z) ,

(3.45)

where the sum over eigenstates has been identified with the diagonal element of the resolvent
(Green’s function) given in Eq. (3.25) with r′ = r = r0. In other words, the resolvent can
be interpreted as the complex Laplace transform of the time evolution operator.

Setting z = E − iη, we evaluate the contour integral by enclosing the real axis using a
counterclockwise rectangular contour. For the negative oriented segment (upper half-plane)
and the positive oriented one (lower half-plane), we take the analytic continuations E + iη
and E − iη, respectively.

⟨r0|r(t)⟩ =
1

2πi

∫ ∞

−∞
dE e−iEt

[
e−ηtG(r0, r0;E − iη)− eηtG(r0, r0;E + iη)

]
(taking η → 0+)

=
1

π

∫ ∞

−∞
dE e−iEt ImGr(r0, r0;E)

(3.46)

Using Eq. (3.41), we can split the self-energy into imaginary and real parts Σ(r0, E − iη) =
ReΣ(r0, E, η) + iImΣ(r0, E, η), with ImΣ(r0, E, η) > 0. We obtain the retarded Green
function of Eq. (3.45) by simply taking the limit η → 0+,

Gr(r0, r0;E) = (E − ε0 − ReΣ(r0, E)− iImΣ(r0, E))
−1 . (3.47)

Finally, its imaginary part can be obtained as

ImGr(r0, r0;E) =
ImΣ(r0, E)

[E − ε0 − ReΣ(r0, r0;E)]2 + [ImΣ(r0, E)]2
, (3.48)

and inserting in Eq. (3.46) we recognize the expression as the inverse Fourier transform of
a Cauchy distribution, yielding

⟨r0|r(t)⟩ ≃ exp
(
i(ε0 + Σ(r0, E))

)
exp

(
− ImΣ(r0, E) t

) (3.49)

R(t) = | ⟨r0|r(t)⟩ |2 ∝ exp
(
− 2 ImΣ(r0, E) t

) (3.50)

where it is clear that as t→ ∞ the return probability goes to zero, as expected for extended
states. We have assumed that the self-energy is weakly dependent on E—that is not
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problematic in the metallic phase. Here it is clear that the imaginary part of the self-energy
is related to the characteristic time of decay of the return probability, and thus related to
the escape rate.

We consider the strong localized regime W ≫ J , where we can truncate the locator
expansion at first order, as a result:

G(r0, r0;E − iη) = (E − ε0 − iη)−1 . (3.51)

After taking the imaginary part we obtain:

ImG(r0, r0;E − iη) =
η

(E − ε0)2 + η2
, (3.52)

taking the limit η → 0+ (along with the prefactor 1/π of Eq. (3.46)) we recognize the
Lorentzian representation of the Dirac delta function, thus

⟨r0|r(t)⟩ =
∫ ∞

−∞
dE e−iEtδ(E − ε0) = exp(−iε0t) (3.53)

R(t) = | ⟨r0|r(t)⟩ |2 = exp(−2iε0t) (3.54)

where t→ ∞ gives R(t) = 1, consistent with completely localized states in the insulating
phase.

In the limit η → 0+, the imaginary part of the resolvent is directly related to the imaginary
part of the self-energy, which determines the characteristic decay time of excitations in the
system. This connection highlights the deep relationship between spectral properties and real-
time dynamics. Since the resolvent is the Laplace transform of the time evolution operator, it
encodes energy-resolved information about dynamical processes, such as transitions between
different states of the system.

3.2 Many-body localization (MBL)

3.2.1 From Anderson to Many-Body Localization
The problem of localization becomes more intricate when interactions are introduced. Mott
demonstrated that coupling electrons to a phonon bath can induce a finite conductivity
through phonon-assisted hopping [320]. However, in this scenario, the phonon bath remains
unaffected by the localized electrons. This raised the question: Could electron-electron
interactions play a role analogous to phonon-electron interactions and thermalize an other-
wise localized phase? This question was already explored in the 1980s by Fleishman and
Anderson [321], who, using perturbative analysis and general arguments, suggested that at
sufficiently low temperatures and strong disorder localization could still persist in systems
with short-range interactions.

Intuitively, the presence of interactions might facilitate resonant events and restore a finite
conductance. Consider the Anderson model of Eq. (3.1) with the addition of interactions:

Ĥ = −J
∑
⟨ij⟩

(ĉ†i ĉj + h.c.) +
∑
i

εin̂i +∆
∑
⟨ij⟩

n̂in̂j , (3.55)

where n̂i is the number operator n̂i = ĉ†i ĉi.
In the Anderson problem, the energy mismatch relevant for an electron hopping between

sites i and j is given by δε = |εi − εj|. When this mismatch is much larger than the hopping
constant δε≫ J the transition is strongly suppressed.
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In the presence of interactions, however, the energy of an electron at each site is modified
by the occupations of its neighboring sites. The effective energy at site i becomes

εeffi = εi +∆
∑
j∈∂i

nj , (3.56)

where nj is the occupation numbert at site j (with n̂j |j⟩ = nj |j⟩).
The new energy shift introduced by∆ can partially compensate the bare energy mismatch

δε between the two sites i and j. If site i has occupied neighbors, its energy is raised by∆ per
occupied neighbor, while the energy of j is shifted according by its own local neighborhood.
As a result, the effective energy mismatch |εeffi − εeffj | may become smaller (or larger),
depending on the occupations of the surrounding sites. A hopping process that was off-
resonant in the single-particle case can thus become resonant once interaction-induced
energy shifts are included, enabling the formation of many-body resonances.

The stability of the Anderson insulator under the effect of small interactions was first
thoroughly investigated by the breakthrough of Basko, Aleiner, and Altshuler [89] (see also
Ref. [90]). The interacting problem was formulated in Fock space: rather than working in
real space, they represented each many-body configuration as a site on a high-dimensional
graph, where edges correspond to interaction-induced transitions (or ‘channels’) between
configurations. In this picture, the interacting problem becomes analogous to Anderson
localization on this Fock-space graph. They found that the connectivity of this graph—i.e., the
number of available paths for transitions—grows with the system’s energy (or ‘temperature’).
Using this analogy, they identified a critical energy above which the system delocalizes,
while below it the system remains localized. This provided the first theoretical evidence for
the existence of a many-body localized (MBL) phase, in which localization survives despite
interactions.

3.2.2 Perturbative Perspective on MBL
Basko et al. [89] used Keldysh perturbation theory and focused on a class of diagrams known
as rainbow diagrams (no loops), which can be resummed within the Self-Consistent Born
Approximation (SCBA). Neglecting the real part of the self-energies leads to a simplified
version called Imaginary SCBA (ImSCBA). This approximation is conceptually related to the
Forward Scattering Approximation used in single-particle Anderson problems [322, 323].
These approximations are known to provide an upper bound on the critical disorder strength
for delocalization: if SCBA predicts localization, the system is certainly localized, but SCBA
may predict delocalization even when the system is still localized, serving as good probes
for the single-particle setting.

However, because SCBA ignores loop diagrams and treats only the most resonant decay
paths, its predictions may not capture non-perturbative effects that could destabilize many-
body localization. In particular, rare ‘Griffiths regions’—regions within the system for which
the disorder strength is anomalously weak—or higher-order processes could eventually
induce delocalization even when perturbative calculations predict stability [324, 325]. For
this reason, while Basko et al.’s work provided the first analytic evidence for the many-body
localized phase, modern perspectives view their result as suggestive rather than definitive:
the true stability and boundaries of MBL likely require going beyond perturbation theory.
These non-perturbative effects are the main interest of the present chapter.

Most studies of many-body localization (MBL) focus on one-dimensional systems (d = 1)
because localization is both conceptually simpler and computationally more tractable there.
In d = 1, even infinitesimal disorder is sufficient to localize non-interacting particles [88],
providing a natural starting point for understanding MBL. Moreover, numerical techniques
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such as exact diagonalization and matrix product state methods can capture the essential
physics in 1d, but become severely limited in higher dimensions due to the exponential
growth of the Hilbert space [91–94].

However, even in d = 1 the ultimate stability of the MBL phase remains unsettled. Several
works have suggested that the rare, weakly disordered Griffiths regions could eventually
destabilize localization at very long times or in the thermodynamic limit via an avalanche
instability [100, 243, 248–254], that we will explain in the following sections. This leaves
open important questions about whether true MBL can survive indefinitely even in d = 1.
Because of this unresolved issue, the situation in higher dimensions (d > 1) is even less
clear: while some authors have argued that MBL might persist in 2d [326, 327], others
expect that the same destabilizing mechanisms are even stronger at higher dimensions. For
this reason, most theoretical and numerical analyses of the MBL transition are carried out in
d = 1, where the phenomenology is best understood and the open questions can be most
sharply addressed.

3.2.3 Contrasting MBL with Other Forms of Ergodicty Breaking
Unlike standard phase transitions, MBL is not associated with any spontaneous symmetry
breaking. It shares several phenomenological features with glassy systems—both classical
and quantum—such as ergodicity breaking and slow dynamics. However, the microscopic
mechanisms responsible for these effects in MBL are fundamentally different from those
underlying conventional glassiness [328].

Spin glasses arise in disordered systems where quenched randomness and competing
(frustrated) interactions prevent the system from selecting a unique global energy mini-
mum [35, 329]. This leads to ergodicity breaking at low temperatures: the system becomes
trapped in one of many possible configurations and fails to fully explore phase space on
accessible timescales.

In mean-field models, this behavior is often described in terms of a rugged free-energy
landscape with an extensive number of metastable states separated by barriers that grow
with system size. MBL, by contrast, is an intrinsically quantum phenomenon. It occurs
in highly excited states, where the discreteness of the many-body spectrum and quantum
interference prevent resonant energy exchange between configurations [91, 94].

Glassy dynamics are typically enabled and stabilized by coupling to a cold thermal
bath: the bath provides the fluctuations needed for the system to gradually relax across
energy barriers, and this slow relaxation fundamentally depends on the presence of such
an environment. The stability of glassy phases generally increases with dimensionality; for
instance, mean-field spin glasses in high dimensions exhibit replica symmetry breaking,
reflecting a highly fragmented configuration space [29–35].

In contrast, many-body localized (MBL) phases are intrinsically fragile. They generally
appear only in low dimensions and require strict isolation from any external bath [248,
253–261]. Even weak coupling to the environment can induce delocalization, restoring
transport and ergodicity by allowing energy exchange and dephasing between localized
degrees of freedom.

These contrasting responses to dimensionality and environmental coupling provide a
sharp criterion to distinguish glasses from MBL systems: glasses rely on frustration and
survive in contact with a bath; MBL relies on quantum interference and collapses upon
coupling to a bath [328]. Despite these differences, hybrid models, like the Quantum
Random Energy Model (QREM) display features of both. In the dynamical phase diagram of
the QREM an MBL phase is known to emerge [330, 331] , while a glassy phase is realized
in equilibrium at low temperatures [332, 333].
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Other mechanisms for ergodicity breaking also arise in quantum systems — for example,
in integrable models [334–336], systems hosting many-body scars [337, 338], or in those
exhibiting Hilbert-space fragmentation [339, 340]. However, these types of non-ergodic
behavior are typically fragile: small generic perturbations break integrability, destabilize
scars, or reconnect fragmented sectors, ultimately restoring thermalization.

By contrast, many-body localization represents a more robust form of ergodicity breaking.
Here, quenched disorder dynamically generates an extensive set of quasi-local conserved
quantities—an emergent integrability [91–94, 239–242]—which protects non-ergodic be-
havior even far from equilibrium. This robustness is what allows MBL to persist under
conditions where other non-ergodic phenomena would typically thermalize.

3.2.4 Integrable systems
Integrability is another of the main sources of ergodicity breaking. A classical system with
N degrees of freedom si is said to be Liouville integrable if there exist N functionally
independent conserved quantities Ik that are in involution—that is, their mutual Poisson
brackets vanish:

{Ii, Ij}PB = 0 ∀i, j ∈ 1, . . . , N . (3.57)
We have already encountered the most trivial example in the introductory chapter of this

thesis: the Hamiltonian is always in involution with itself, making it a constant of motion
(i.e., the total energy). Building on this, we formulated the ergodic hypothesis, which in its
microcanonical form states that the long-time dynamics of a system initially prepared with
energy E0 will explore all microstates compatible with E0 in phase-space.

Put simply, the long-time average of an observableO(t) should coincide with its ensemble
average. In this case, using the microcanonical measure, this reduces to the statement:

O = lim
t→∞

1

t

∫ τR+t

τR

dt′ O({si(t′)}) = ⟨O⟩ =
∫ N∏

i=1

dsi ϱ({si}, E0) O({si}) , (3.58)

with the measure of the microcanonical ensemble given by

ϱ({si}, E0) =
δ(H({si})− E0)∫ ∏N

i=1 dsi δ(H({si})− E0)
. (3.59)

The presence of more integrals of motion impose extra constraints on the dynamics: the
system’s trajectory is confined to the intersection of all constant-Ik hypersurfaces. Conse-
quently, the system cannot sample all microstates with energy E0; instead, it explores only a
restricted manifold determined by all conserved quantities. In contrast, a non-integrable
(chaotic) system typically has fewer conserved quantities; its trajectories densely explore
allowed phase-space regions, leading to ergodic behavior over long times.

One might be tempted to extend this notion directly to quantum systems via Dirac’s
canonical quantization, by mapping the classical conserved quantities Ik to operators Îk
and replacing Poisson brackets with commutators, proposing a definition where [Îi, Îj] = 0.
However, this straightforward translation, is flawed as it fails to provide any meaningful in-
formation or to separate quantum models into distinct classes, which is a crucial requirement
for a useful definition of integrability [341, 342].

The fundamental issue is that any quantum model associated with a finite-dimensional
Hilbert space H (e.g., systems involving spins) trivially possesses a maximal set of mutually
commuting operators. This is guaranteed by the spectral theorem, which states that any
hermitian Hamiltonian (H) is diagonalizable. From its dim(H ) orthogonal state vectors
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(eigenstates) |ψα⟩, one can construct projection operators Îα = |ψα⟩ ⟨ψα|. This set of projec-
tors inherently constitutes a maximal independent commuting set, as they are diagonal in
the Hamiltonian’s eigenbasis, and their eigenvalues are sufficient to uniquely specify a state
in Hilbert space. Therefore, if this naive translation of integrability were to be accepted,
virtually every quantum system would be deemed ‘integrable’ rendering the definition mean-
ingless for classification. This highlights the ongoing debate and the need for more nuanced
definitions of quantum integrability [342].

The standard conception of quantum integrability arises in the study of models solvable
via the Yang–Baxter equation—regarded as a sufficient yet not necessary condition for
integrability [342]. These systems possess an extensive number of conserved quantities that
can be generated systematically from the so-called transfer matrix, ensuring exact solvability
through the Bethe ansatz [343]. Crucially, the conserved operators in Yang–Baxter integrable
models are typically non-local [344], involving combinations of degrees of freedom across
the entire system, and are associated with algebraic structures like quantum groups and
R-matrices [345] rather than simple projection operators.

The many-body localized (MBL) phase is often regarded as an emergent integrable
phase, in the sense that it is characterized by an extensive set of quasi-local integrals of
motion (LIOMs or ‘ℓ-bits’) that constrain the dynamics and prevent thermalization [91–94,
239–242]. The main difference with respect to standard quantum integrable systems is
that LIOMs are exponentially localized in real space and closely tied to the microscopic
degrees of freedom, in stark contrast to the non-local conserved quantities generated by
the Yang–Baxter algebra. Whereas Yang–Baxter integrable models owe their solvability to
fine-tuned algebraic structures—R-matrices, transfer matrices, and Bethe ansatz methods—
that are typically destroyed by even infinitesimal perturbations [346, 347], the quasi-local
conservation laws in MBL remain robust: local perturbations merely renormalize the LIOMs
without destabilizing the non-ergodic phase [242, 275]. This robustness highlights a key
distinction: while Yang–Baxter systems represent isolated solvable points in parameter space,
MBL constitutes a stable dynamical phase of matter whose non-ergodic behavior survives
generic deformations of the Hamiltonian.

3.2.5 Quasilocal Integrals of Motion
In order to understand the emergent integrability of the MBL phase, it is useful to first
revisit the non-interacting Anderson problem. In one dimension with periodic boundary
conditions, the Hamiltonian can be written as

Ĥ = −J
L∑
i=1

(
ĉ†i ĉi+1 + h.c.

)
+

L∑
i=1

εi n̂i, (3.60)

with n̂i = ĉ†i ĉi the local number operator in the site (real-space) basis.
The corresponding single-particle eigenproblem is

Ĥ |ϕα⟩ = ϵα |ϕα⟩ , with |ϕα⟩ =
L∑
i=1

ϕα(i) |i⟩ , (3.61)

where α = 1, . . . , L labels the single-particle eigenstates (Anderson orbitals) and ϕα(i) are
normalized real-space amplitudes.

Since Ĥ is quadratic in the fermion operators, diagonalizing its single-particle form also
diagonalizes the full many-body (non-interacting) problem. This is achieved by a unitary
change of basis from the site basis {|i⟩} to the Anderson-orbital basis {|ϕα⟩}. As a result, the
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Hamiltonian is readily diagonalizable by introducing new fermionic creation/annihilation
operators

b̂α =
L∑
i=1

ϕα(i) ĉi, b̂†α =
L∑
i=1

ϕ∗
α(i) ĉ

†
i , (3.62)

with the inverse relations

ĉi =
L∑

α=1

ϕ∗
α(i) b̂α, ĉ†i =

L∑
α=1

ϕα(i) b̂
†
α. (3.63)

The unitarity of this transformation ensures the anticommutation relations {b̂α, b̂†β} = δαβ.
In terms of these operators the Hamiltonian is diagonal:

Ĥ =
L∑

α=1

ϵα b̂
†
αb̂α =

L∑
α=1

ϵα n̂α, (3.64)

where b̂†α creates a fermion in the α-th Anderson orbital and n̂α = b̂†αb̂α counts its occupation.
A many-body eigenstate is obtained by choosing a set of orbitals to occupy and acting

with the corresponding creation operators on the vacuum. For example, at half filling (L/2
fermions), one occupies L/2 different orbitals. These many-body eigenstates are Slater
determinants built from the occupied single-particle eigenstates.

In the site basis, the local number operators transform as

n̂i = ĉ†i ĉi =
∑
α,β

ϕα(i)ϕ
∗
β(i) b̂

†
αb̂β =

∑
α,β

U
(i)
αβ b̂

†
αb̂β, (3.65)

where U (i)
αβ ≡ ϕα(i)ϕ

∗
β(i). The diagonal terms n̂α = b̂†αb̂α can be expressed via the inverse

transformation
n̂α =

∑
i,j

ϕ∗
α(i)ϕα(j) ĉ

†
i ĉj =

∑
i,j

Ũ
(α)
ij ĉ†i ĉj, (3.66)

with Ũ (α)
ij = ϕ∗

α(i)ϕα(j).
It is evident that the site-local operator n̂i has support in many Anderson orbitals (due

to the sum over α, β). If an eigenstate is extended, any local perturbation produces a state
with support over many orbitals. For example, creating a particle on an empty site j via
ĉ†j|ϕα⟩ can be seen as

ĉ†j|ϕα⟩ =
L∑

β=1

ϕβ(j) b̂
†
β|ϕα⟩, (3.67)

and for extended states, ϕβ(j) is generically nonzero for many β, so the excitation mixes
many eigenstates.

For localized eigenstates, the situation is different: if |ϕα⟩ is localized around a center
Rα with localization length ξloc, and if |Rα − j| ≫ ξloc, then ϕα(j) is exponentially small. A
local excitation at j therefore has negligible overlap with |ϕα⟩ and remains confined near j.
Formally, the kernel Ũ (α)

ij in Eq. (3.66) decays exponentially with |i−Rα| and |j −Rα|, so
n̂α is quasilocal in real space—it has appreciable support only on sites within O(ξloc) of Rα.

In the non-interacting case, these n̂α are exact integrals of motion:

[n̂α, Ĥ] = 0, [n̂α, n̂β] = 0. (3.68)

We can then truncate the sum over (i, j) in Eq. (3.66) to sites lying within a spatial region
centered at Rα whose radius is mξloc, where ξloc is the localization length of the eigenstate
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and m > 0 is a dimensionless cutoff parameter controlling how many localization lengths
are included. The resulting quasilocal operator n̂(m)

α differs from the exact n̂α only by terms
supported outside this region; these contributions are exponentially small in m, so the
commutator [n̂(m)

α , Ĥ] vanishes exponentially as m → ∞, recovering the exact conserved
quantity.

This property becomes crucial when interactions are introduced:

ĤMBL = −J
L∑
i=1

(
ĉ†i ĉi+1 + h.c.

)
+

L∑
i=1

εi n̂i +∆
L∑
i=1

n̂in̂i+1 , (3.69)

for small ∆, the exact integrals of motion of the interacting Hamiltonian are expected to
be weakly ‘dressed’ versions of these non-interacting n̂α, and their quasilocality ensures
that such dressed operators can remain spatially localized and mutually commuting in the
MBL phase [91–94, 239–242]. Concretely, we can regard the quasilocal integrals of motion
(LIOMs) in the MBL phase as

Îα = q n̂α +
∞∑

m=1

U (m)
α Ô(m)

α , (3.70)

where q is the finite overlap between the interacting LIOM Îα and its non-interacting
counterpart n̂α = b̂†αb̂α. The operators Ô(m)

α contain up to (2m + 1)-body terms whose
support is centered around the localization center Rα of orbital α and extends over a region
of radius mξop. The coefficients U (m)

α decay exponentially with m, U (m)
α ∼ e−m/ξop , reflecting

the quasilocal nature of Îα.
Notice that ξop is the localization length associated with the LIOM operators, which

generally differs from the single-particle localization length ξloc. The two coincide, ξop = ξloc,
only in the non-interacting limit ∆ = 0. For ∆ > 0, interactions cause the LIOMs to acquire
multi-site and multi-body terms through dressing, which increases their spatial extent and
generally yields ξop > ξloc.

These LIOMs share a common eigenbasis with the Hamiltonian and thus form a complete
set of commuting operators in terms of which the Hamiltonian can be expanded. In the
presence of interactions, the Hamiltonian is no longer quadratic in fermionic operators, and
its most general diagonal form in the LIOM basis reads

ĤMBL = h0 Î+
∑
α

hα Îα +
∑
α,β

hαβ ÎαÎβ +
∑
α,β,γ

hαβγ ÎαÎβ Îγ + · · · , (3.71)

where the sums run over all LIOM indices and the expansion includes interactions of
arbitrarily high order between them.

Phenomenological models for the MBL phase [239, 240] aim to capture its essential
static and dynamical properties without relying on a full microscopic solution. A common
approach is to represent the system in terms of this complete set of quasilocal integrals
of motion Îα, and assume that they possess a binary spectrum and can be interpreted as
effective spins or occupation number operators (so called ℓ-bits). The full local operator
algebra can then be generated from these Îα via suitable ladder operators [275].

In this picture, many-body eigenstates are simultaneous eigenstates of all Îα, and the
quasilocality of the latter ensures spatial localization, absence of transport, and persistence
of local information at arbitrarily long times. When the system enters the delocalized phase,
the Îα cease to be quasilocal and instead become extended over the entire system, losing
their role as a complete set of local conserved quantities.
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3.3 The Random Field XXZ Chain

In the present work, we will consider the XXZ spin-1
2
chain with interaction anisotropy

parameter ∆ (0 ≤ ∆ ≤ 1 2), and a random magnetic field hi uniformly drawn from [−W,W ].
The Hamiltonian, for a chain of L sites, is given by

Ĥ =
L∑
i=1

(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 +∆Ŝz

i Ŝ
z
i+1 + hiŜ

z
i

)
. (3.72)

For ∆ = 1, we recover the strongly interacting random-field Heisenberg chain, which serves
as the paradigmatic model of the MBL transition. This model is equivalent, through a
Jordan-Wigner transformation

Ŝx
j =

1

2

(
ĉ†j + ĉj

) j−1∏
k=1

(
1− 2 ĉ†kĉk

)
, (3.73)

Ŝy
j = − i

2
(ĉ†j − ĉj)

j−1∏
k=1

(
1− 2 ĉ†kĉk

)
, (3.74)

Ŝz
j = ĉ†j ĉj −

1

2
Î , (3.75)

to that of interacting spinless fermions hopping on a chain of L sites, written as

Ĥ =
1

2

L∑
i=1

(
ĉ†i ĉi+1 + h.c.+ 2∆n̂in̂i+1 + 2hin̂i

)
, (3.76)

with ĉ†i (ĉi) the creation (annihilation) fermionic operators and n̂i = ĉ†i ĉi the local occupation
number operator.

In both cases, setting ∆ = 0 corresponds to the non-interacting limit, which—when
described in the language of spinless fermions—is known to exhibit Anderson localization
for any nonzero value of the disorder strength W . In this regime, the localization length
of the single-particle Anderson-localized orbitals diverges as 1/W 2 in the limit W → 0.
The Hamiltonian preserves the U(1) symmetry thus conserving the magnetization in the
z direction—or total particle number—of the system. In the present work, we restrict to
studying the sector of zero magnetization, or half-filling, with periodic boundary conditions.

3.3.1 The Hilbert space picture
The Hilbert space structure of the model described above has been extensively studied [90,
283, 349–353]. Any quantum state |Ψ⟩ can be expressed as superpositions of the many-body
basis states in the form

|Ψ⟩ =
N∑
I=1

ψI |I⟩ , (3.77)

where {|I⟩} is the appropriate set of many-body basis states. We will focus on two bases:
spin configurations {|I⟩}S and the Anderson basis {|I⟩}A. These are the most relevant for
the model in Eq. (3.72), as each diagonalizes the Hamiltonian in specific limits where

2The sign of the interaction is not relevant at high energy, see for instance Ref. [348]
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localization is well-understood, the infinite-disorder limit W → ∞ for {|I⟩}S, and the
non-interacting limit ∆ = 0 for {|I⟩}A.

Once the computational basis is chosen, the Hamiltonian (3.72)-(3.76) can be recast as

Ĥ =
∑
I

EI |I⟩⟨I|+
∑
⟨IJ⟩

TIJ |I⟩⟨J | . (3.78)

This is now a tight-binding model of a fictitious single-particle hopping on a graph. The
number of verticesN in this high-dimensional graph represents the possible basis states asso-
ciated to the problem (i.e., the Hilbert space volume). In a system with L spins or fermions,
the dimension of Hilbert space grows exponentially with L. In the zero magnetization (or
half-filling) sector it is given byN =

(
L

L/2

)
≈ 2L

√
2
πL

. Each of these states have an associated
‘on-site’ energy EI , given by the expectation value of the diagonal part of the Hamiltonian
in the chosen basis, which is random through the fields hi. The edges of the Hilbert space
graph joining different vertices are given by the non-zero off-diagonal elements TIJ , which
gives the ‘hopping’ amplitudes of the fictitious particle between two neighboring vertices.
A pictorial representation of the Hilbert space graph of the XXZ model—considering spin
configurations |I⟩S—with L = 8 is shown in Fig. 3.2.

Fig. 3.2: Sketch of Hilbert space graph for the XXZ model with L = 8 spins. Adapted from
Ref. [353].

Each vertex—basis state—is connected to a large number of other vertices via local
interactions, such as spin flips or particle hoppings. Even though the underlying physical
system is one-dimensional, the connectivity in Hilbert space is governed by the action of
local operators on basis states. This gives rise to a complex, high-dimensional network in
which each vertex (or basis state) is connected to a number of others that scales with L or a
power of L, depending on the chosen computational basis (see below).

This reformulation provides a framework in which spectral and dynamical properties
of the many-body quantum disordered system can be understood in terms of the effective
single-particle problem on an underlying complex graph structure. Generically, this Hilbert
space graph exhibits an effective infinite dimensionality: the number of vertices at a given
distance from a reference vertex grows exponentially with that distance.
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Themain differences compared to the Anderson localization problem on high dimensional
graphs [352, 354–356] lie in the scaling and structure of the problem. In the many-body
case, the corresponding Hilbert space (or Fock-space) graph is deterministic and contains
loops of various lengths. Moreover, the many-body problem features strongly correlated
on-site energies EI and matrix elements TIJ , further complicating the analysis compared
to standard single-particle Anderson localization on tree-like structures such as the Bethe
lattice.

In the following sections we introduce and explain in detail the two computational bases
used to investigate the random-field XXZ model.

3.3.2 Spin basis
The first computational basis we will be working with is the simultaneous eigenstates of
the Sz

i operators: {|I⟩}S are just classical Ising spin configurations on the chain with zero
global magnetization in the z. For example, for L = 6 one of its basis states is |↑↓↓↑↑↓⟩. The
states in the set {|I⟩}S are the eigenstates of Ĥ0 =

∑L
i=1(∆Ŝ

z
i Ŝ

z
i+1 + hiŜ

z
i ) with eigenenergy

EI = ⟨I|Ĥ0|I⟩. In this basis the off-diagonal elements, TIJ , are not random and are in fact
all set to TIJ = 1/2 for those basis states—I and J—that differ by the exchange of two
spins forming domain walls in the chain. It is clear that the connectivity of the vertices is
not constant and depends on the number of domain walls in each basis state. For example,
the Néel state |↑↓↑↓ ... ↑↓⟩, and its time-reversed symmetric, are maximally connected as
they both have L domain walls, but these two Néel states are distant from each other by
L/2 spin flips. Instead, the state |↑↑ ... ↑↓↓ ... ↓⟩ has only two domain walls (with periodic
boundary conditions) thus having just two neighboring vertices in the Hilbert space graph.
The average degree of the Hilbert space graph is L/2.

Through a Jordan-Wigner transformation, these basis states can be mapped to Fock
states of spinless fermions hopping on a lattice at half-filling. For example, the Néel state
introduced above becomes |1 0 1 0 . . . 1 0⟩ in this representation. Throughout the text, we will
refer to both representations as the spin basis, and we will switch between the conventional
spin configuration notation (e.g., |↑↓↑↓ . . . ↑↓⟩) and the corresponding Fock state notation
(e.g., |1 0 1 0 . . . 1 0⟩) whenever it is convenient for clarity.

3.3.3 Anderson basis
Another natural choice that, by construction, captures the fact that the system remains
localized at any finite disorder in the absence of interactions is the Anderson basis of
single particle localized orbitals, described below (see also Refs. [263, 357–360]). This
second computational basis corresponds to the eigenstates of the non-interacting part of
the Hamiltonian in Eq. (3.76), defined as ĤNI =

1
2

∑L
i=1(ĉ

†
i ĉi+1 + h.c. + 2hin̂i). This ĤNI

defines the Anderson model of a spinless fermion hopping on a chain, in a random potential.
Eigenpairs of this single-particle Hamiltonian stem from ĤNIϕα = ϵαϕα, and are known
to be Anderson localized. The single-particle orbitals ϕα are used to construct the unitary
transformation that diagonalizes the non-interacting Hamiltonian ĤNI as it was already
discussed in Sec. 3.2.5,

ĤNI =
∑
α

ϵαb̂
†
αb̂α , b̂α =

L∑
i=1

ϕα(i)ĉi . (3.79)

The basis states are thus defined as the occupation numbers of the L single particle orbitals,
i.e., the tensor product of the simultaneous eigensates of the number operators b̂†αb̂α. The

131



Chapter 3 – The Importance of Rare Events in Many-Body Localization

Anderson basis {|I⟩}A, is thus built as

|I⟩ =
L∏

α=1

(b̂†α)
nα |∅⟩ , ENI

I =
∑
α

nαϵα , (3.80)

where |∅⟩ is the vacuum state, and nα is the fermion occupation number for the α-th orbital,
that in our case for half-filling fulfills ∑α nα = L/2. ENI

I is the non-interacting energy
associated to the basis state |I⟩. The interacting part,∑L

i=1 n̂in̂i+1, transforms under the
unitary transformation defined in Eq. (3.79) into

V̂ =
∑
αβγδ

Vαβγδ(∆) b̂†αb̂
†
β b̂γ b̂δ (3.81)

with

Vαβγδ(∆) = ∆
L∑
i=1

ϕ∗
α(i)ϕ

∗
β(i+ 1)ϕγ(i+ 1)ϕδ(i) . (3.82)

We can unfold Eq. (3.82) to consider explicitly the three non-vanishing contributions to
VIJ = ⟨J | V̂ |I⟩, according to the groupings of indices α, β, γ and δ: (i) α = δ and β = γ,
gives a diagonal contribution in the form

V̂d = 2
∑
α>β

(Vαββα − Vβααβ) n̂βn̂α , (3.83)

making the on-site energy of the associated basis state |I⟩ to be EI = ENI
I + ⟨I| V̂d |I⟩. The

other two non-zero contributions to VIJ come from the off-diagonal entries |I⟩ ̸= |J⟩, that
will construct the hopping terms TIJ . The second contribution comes from (ii) α = δ, β ̸= γ:

V̂1 = 2
∑
αβγ

(Vαβγα − Vβααγ)n̂αb̂
†
β b̂γ , (3.84)

where the occupation of the γ-th orbital has been replaced by a new occupation in the
orbital labeled by β, given that nα = nγ = 1 and nβ = 0. This ‘assisted’ hopping connects
each vertex with L2/4 nearest-neighbors. The third and final contribution corresponds to
(iii) α ̸= β ̸= γ ̸= δ:

V̂2 =
∑
α>β
γ>δ

(Vαβγδ + Vβαδγ − Vαβδγ − Vβαγδ)b̂
†
αb̂

†
β b̂γ b̂δ . (3.85)

This contribution is non-zero provided that nδ = nγ = 1 and nα = nβ = 0. This contribution
adds L4/64−L3/16+L2/16 neighboring vertices to each single vertex. Thus, the Fock-space
graph has constant connectivity z = L2/4 [(L/2− 1)2 /4 + 1], for each basis state. Note that
unlike the spin basis, here the TIJ are all random, and broadly distributed [357].

3.4 Standard observables and their limitations
The characterization of the many-body localization (MBL) transition has traditionally relied
on a set of widely studied observables, including imbalance dynamics, autocorrelation
functions, adjacent gap ratios, and entanglement scaling laws. These diagnostics have
provided essential evidence for ergodicity breaking and are routinely employed in both
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numerical [102, 246, 247] and experimental studies [361]. Yet their interpretation remains
subtle: signatures that appear robust at finite sizes can become ambiguous when probed at
longer times or larger system sizes.

These ambiguities, together with discrepancies among different diagnostics, have moti-
vated a better understanding of rare Griffiths regions—spatial domains where the disorder
is anomalously weak [100, 243, 248–254]. These regions can act as ergodic seeds that grow
with system size, potentially destabilizing localization in the thermodynamic limit [95–97,
100–103, 243–245].

In the following, we review standard probes of the MBL transition and introduce the two
primary frameworks that describe how rare Griffiths regions can destabilize the MBL phase:
many-body resonances and the avalanche mechanism.

Spectral statistics

Within the ETH phase, the eigenstates/values of the Hamiltonian follow the predictions
of random matrix theory. For example, as the matrix elements of Eq. (3.72) are real, its
eigenvalues should follow the Gaussian Orthogonal Ensemble (GOE) statistics. As a result, its
eigenvalues (Eα) follow a Wigner semi-circle law while the level spacings (δEα = Eα−Eα−1)
are distributed according to the Wigner-Dyson law.

However, in many-body systems, the energy levels are not uniformly spaced—the density
of states varies with energy. As a result, the average level spacing ⟨δEα⟩ may introduce
finite-size effects and requires arbitrary choices—as selecting a window size for the local
averaging. Instead, is better to study the ratio of consecutive level spacings rn, introduced
by Huse and Oganesyan in Ref. [362]

rα =
min(δEα, δEα−1)

max(δEα, δEα−1)
. (3.86)

Whose average in the GOE ensemble is ⟨r⟩GOE ≃ 0.5307. In the MBL phase the eigenval-
ues are uncorrelated, and thus they follow a Poisson distribution, for which one obtains
⟨r⟩Poisson ≃ 0.386. Where in the case of MBL systems the average ⟨r⟩ is computed over
disorder realizations and different eigenstates within the same energy. This measure has
been extensively used as an indicator of the absence of level repulsion, generically regarded
as a signature of integrability [363–367]. We show an example of this calculation for the
Hamiltonian in Eq. (3.72), adapted from the work of Luitz, Laflorencie, and Alet [246].

An argument challenging the conclusions drawn from this observable was presented in
Ref. [95]. There, it was shown that close to the ETH regime—i.e., for ⟨r⟩ (W ) ≳ ⟨r⟩GOE—the
curves collapse when rescaled as ⟨r⟩ (W ) → ⟨r⟩ (W/L). This scaling implies that ⟨r⟩ remains
essentially constant if the disorder strengthW is increased proportionally to the system size
L. Consequently, in the thermodynamic limit (L→ ∞) one would have ⟨r⟩ (W ) → ⟨r⟩GOE

for any finite W , effectively reducing the MBL phase to a finite-size crossover rather than a
genuine phase transition.

Entanglement entropy

Consider an isolated quantum system S that can be partitioned into two subsystems, A and
B (S = A∪B). The central implication of the ETH is that if subsystem A is sufficiently small,
its complement B effectively acts as a thermal bath for A. This principle directly influences
the structure of the eigenstates |ψα⟩ of the system: for any local observable within A, the
expectation values ⟨ψα| ÔA |ψα⟩ are thermal. Consequently, the von Neumann entanglement
entropy S(α)

A , obtained by tracing out the degrees of freedom of subsystem B,
S
(α)
A = −Tr(ρ̂A ln ρ̂A) , with ρ̂A ≡ TrB |ψα⟩ ⟨ψα| , (3.87)
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Fig. 3.3: Adjacent gap ratio as a function of disorder strength W in the middle of the
spectrum. Inset: data collapse used to extract the critical disorder strengthWc and exponent
ν. Figure adapted from Ref. [246]

needs to be extensive with respect to the subsystem size LA (in a spin chain of size L then
L = LA + LB, for example). This behavior is known as volume-law scaling: for a system of
spatial dimension d and linear size L, the entanglement entropy scales proportionally to the
system’s volume, i.e., as Ld. Such volume-law scaling has been confirmed in disorder-free
quantum spin chains [368–372].

However, Bauer and Nayak observed in Ref. [373] that within the MBL phase, the finite
localization length of the eigenstates causes a breakdown of this volume-law behavior.
Instead, the entanglement entropy follows an area-law scaling, growing proportionally
to the surface area of the subsystem—corresponding to a constant in one-dimensional
systems. This property has become one of the standard diagnostics for identifying the MBL
transition [246, 270, 374–377].

To make meaningful comparisons of entanglement entropy at different system sizes, it is
convenient to rescale the entanglement entropy by the value predicted from random matrix
theory SRMT, in the respective subspace of the Hilbertspace, i.e. s = SA/SRMT. The average
over disorder realizations and mid-spectrum energies ⟨s⟩ may serve as an indicator of the
transition.

This was studied for the J1 − J2 model, another spin chain that exhibits an ETH-MBL
transition [246] with Hamiltonian

ĤJ1−J2 = ĤXXZ +
L∑
i=1

(
Ŝx
i Ŝ

x
i+2 + Ŝy

i Ŝ
y
i+2 +∆Ŝz

i Ŝ
z
i+2

)
(3.88)

where ĤXXZ is the original model defined in Eq. (3.72). In the MBL phase we expect ⟨s⟩ → 0,
whereas for ETH ⟨s⟩ → 1, upon increasing L, as show in ??.

Notably, the crossing point of the ⟨s⟩ (W ) curves exhibits a pronounced drift as the system
size increases. This behavior is analogous to that observed for the averaged gap ratio ⟨r⟩
discussed earlier, preventing unambiguous conclusions about the fate of the crossover in the
thermodynamic limit. Furthermore, it has been reported [94] that the magnitude of this
drift can depend on the specific observable considered.

134



Chapter 3 – The Importance of Rare Events in Many-Body Localization

Fig. 3.4: Exact diagonalization results for the disorder-average entanglement entropy com-
puted at half-chains using the partition of the subsystem as half the chaine L/2 for the
Hamiltonian in Eq. (3.72) with ∆ = 1 at a fixed energy density in the middle of the many-
body spectrum. One sees a qualitative change from volume-law at small disorderW to an
area law at stronger disorders. Figure adapted from Ref. [246]

Fig. 3.5: Rescaled entanglement ⟨s⟩ of mid-spectrum eigenstates of the J1– J2 model at the
ETH-MBL crossover. Figure taken from Ref. [94].

Some dynamical properties

The breakdown of ergodicity of MBL is reflected directly in its dynamics, and there are
many observables that attempt to measure this directly. The most intuitive quantity is the
autocorrelation function—often used in the study of glassy systems. Similarly one can define
the autocorrelation as

C0(t) =
1

L
Re

L∑
i=1

Tr
(
ρ̂0 Ŝ

z
i (t)Ŝ

z
i (0)

)
, (3.89)
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where the real part is taken to ensure the observed quantity is hermitian, and ρ̂0 is the
associated density matrix e−βĤ/Z.

The infinite time average will then be given by

lim
T→∞

∫ T

0

C0(t
′)dt′ =

1

L

∑
i

∑
α

e−βEα| ⟨ψα|Ŝz
i |ψα⟩ |2 = qEA , (3.90)

where |ψα⟩ and Eα are the eigenvalue and eigenstate of the Hamiltonian, and qEA is the
Edwards-Anderson (EA) order parameter. Equivalently as in spin-glasses, if we in the ergodic
phase (where ETH is obeyed) we expect qEA = 0, as the expected value ⟨ψα|Ŝz

i |ψα⟩ will
match the thermal expectation for every eigenstate. In the MBL phase instead, localized
eigenstates will produce a saturation of the EA parameter to a non-zero value. For systems
with no spin reflection symmetry, one could use this as an order parameter of the MBL
phase [374, 378–381].

Within this context, one can examine the autocorrelation function setting as initial state
an eigenstate of the Hamiltonian. In this case, the density matriz is just ρ̂0 = |ψα⟩ ⟨ψα| and
we obtain

C0(t) =
1

L

L∑
i=1

⟨ψα| Ŝz
i (t)Ŝ

z
i (0)|ψα⟩ . (3.91)

We can split the operator Ŝz
i into its static value and its fluctuations

Ŝz
i = ⟨ψα| Ŝz

i |ψα⟩+ δŜz
i , with δŜz

i = Ŝz
i − ⟨ψα| Ŝz

i |ψα⟩ , (3.92)
making the time dependence of operators in Eq. (3.91) to be entirely contained in their
respective fluctuations δŜz

i (t). As a result we get

⟨ψα| Ŝz
i (t)Ŝ

z
i (0)ψα⟩ = ⟨ψα| Ŝz

i |ψα⟩
2
+ ⟨ψα| δŜz

i (t)δŜ
z
i (0)|ψα⟩ . (3.93)

After time averaging, the EA order parameter is then

qEA =
1

L

L∑
i=1

⟨ψα| Ŝz
i |ψα⟩

2
. (3.94)

It is then interesting to analyze the time evolution of the fluctuating state |ψ̃α⟩ = δŜz
i |ψα⟩,

specifically its return probability

R(t) = | ⟨ψ̃α|δe−iĤt|ψ̃α⟩ |2 = | ⟨ψ̃α|Ŝz
i δe

−iĤtδŜz
i |ψα⟩ |2 . (3.95)

This scenario is equivalent to the situation explained in Sec. 3.2.5, in which a local excitation
(Ŝz

i ) changes the eigenstate |ψα⟩. The return probability then quantifies the spread of this
local excitation: in the ETH phase the excitation spreads over the entire system, the initial
fluctuating state is forgotten and the return probability goes to zero for asymptomatically
large times. In the MBL phase, the local excitation connects the perturbed eigenstate |ψ̃α⟩
only to a few nearby eigenstates (those compatible with the local integrals of motion). As
the fluctuating state remains confined near the site i, in asymptotically large times we get a
finite return probability.

In the Hilbert (Fock) space framework, several attempts have been made to extend the
characterization of single-particle eigenstate statistics—described via the inverse partici-
pation ratio (IPR), see Sec. 3.1.2—to many-body eigenstates. In this case, the size of real
space is replaced by the Hilbert space volume N

I(α)
q =

∑
I

| ⟨ψα|I⟩ |2q (3.96)
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where |I⟩ is some chosen basis state. This quantity is closely related to the basis-dependent
Réyni participation entropies [246, 382, 383].

An attempt to study this quantity (for q = 2) in the MBL problem was performed in
Ref. [384], using the basis state Ŝz

i |ψα⟩. Consequently, we can relate this IPR to the return
probability. By expanding ψ̃α over the relevant eigenbasis |ψβ⟩ and taking the infinite time
average of the return probability we get

I(α)
2 = lim

T→∞

∫ T

0

dt

∣∣∣∣∣∑
β

|Mαβ|2e−iEβt

∣∣∣∣∣
2

=
∑
β

|Mαβ|4 , (3.97)

withMαβ = ⟨ψα|δŜz
i |ψβ⟩.

The inverse paticipation ratio scales as I(α)
2 ∝ N−D̃2, where D̃2 is a generalized dimen-

sion [260, 384]. Analogous to the single particle case, as L → ∞ the IPR I2 → 0 in the
ergodic phase, whereas I2 remains finite in the localized phase, consistent with the criterion
coming from the return probability.

Several other dynamical probes can be considered, including conductivities, mean-square
displacements, and dynamical structure factors—the latter being widely employed in the
study of structural glasses [19, 21]. A particularly relevant observable in this context is the
imbalance, defined as

I (t) =
L∑
i=1

(−1)i ⟨Ŝz
i (t)⟩ ; , (3.98)

which can be directly measured in cold-atom experiments [361]. In these setups, site
occupations are accessed via band-mapping techniques, enabling the study of post-quench
dynamics of a charge-density wave initialized in a Néel state (i.e., |↑↓↑↓ . . .⟩). This quantity
has also been employed in numerical investigations [385].

It has been pointed out in the literature [94, 102] that a finite long-time value of the
autocorrelation function does not necessarily signal the presence of a stable MBL phase. In
systems with very slow dynamics, finite-size effects can lead to a saturation of C0(t) over
the time scales accessible in numerical simulations or experiments, even if the system is
ultimately thermalizing. In such cases, the decay of correlations may occur only on times far
beyond those probed, producing apparent plateaus—such as those visible in Fig. 3.6—that
mimic the behavior expected from truly localized states. Similar considerations apply to
other commonly used diagnostics, such as the return probability and the imbalance, whose
finite-time persistence may also reflect transient rather than asymptotic localization.

Entanglement growth

If a many-body system is initialized in a state with low entanglement—for example a simple
basis state |I⟩ = |↑↓↓↑↓ . . .⟩—the unitary evolution will typically generate entanglement
between increasingly distant regions as time evolves.

Heuristically, one can understand this studying the time evolution of a simple system
with two spins. We prepare the system to be initially in a basis state |↑A⟩ ⊗ |↓B⟩. This state
is untangled: the reduced density matrix is pure ρ̂A = |↑⟩ ⟨↑| (or equivalent ρ̂B = |↓⟩ ⟨↓|).
Now assume that the Hamiltonian has eigenstates

|ψ1⟩ =
1√
2
(|↑↓⟩+ |↓↑⟩) ,

|ψ2⟩ =
1√
2
(|↑↓⟩ − |↓↑⟩) ,

(3.99)
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Fig. 3.6: Time evolution
of the density autocorrela-
tion function C(t) in the
disordered XXZ spin-1/2
chain (3.72). (a) For W =
4, the interacting case (∆ =
1) exhibits a slow decay
of C(t) up to the Heisen-
berg time tH (red squares),
while for ∆ = 0 (Anderson
localized phase) C(t) sat-
urates after initial oscilla-
tions. (b) At W = 3, a pro-
nounced decay is seen, con-
sistent with the crossover
regime. (c) At W = 5 (MBL
regime, W > W ∗(L) for
12 ≤ L ≤ 20), C(t) decays
extremely slowly; whether
it ultimately vanishes in the
L, t → ∞ limit remains
unresolved. Adapted from
Refs. [94, 102].

with eigenenergies E1 and E2, respectively. The initial basis state is a superposition of these
two eigenstates |I⟩ = 1√

2
(|ψ1⟩ + |ψ2⟩). Hence, applying the time evolution operator we

obtain

|Ψ(t)⟩ = Û(t) |↑↓⟩ = e−iĤt |↑↓⟩

=
1

2

[
e−iE1t(|↑↓⟩+ |↓↑⟩) + e−iE2t(|↑↓⟩ − |↓↑⟩)

]
=

1

2

[
(e−iE1t + e−iE2t) |↑↓⟩+ (e−iE1t − e−iE2t) |↓↑⟩

]
.

(3.100)

We can see from Eq. (3.100) that at later times the relative phases e−i(E1±E2)t become non-
trivial, and the states becomes a coherent superposition of entangled basis states. This
produces the reduced density matrix to become ‘mixed’ and the entanglement entropy
grows.

This irreversible growth of entanglement—quantified by the growth of the von Neumman
entropy in Eq. (3.87)—is an essential feature of thermalization, and as a result has been
addressed in diverse contexts ranging from conformal field theory [386–388] and holography
[389–394] to integrable [395–397], nonintegrable [398, 399] and, our main interest,
strongly disordered spin chains [240, 385, 400–402].

In non-interacting systems [386], the entanglement entropy S(t), as defined in Eq.
(3.87), increases linearly with time. This defines a ballistic growth of the entanglement
entropy, also observed in integrable systems—such as the clean XXZ chain—after a global
quench [386, 403] and non-integrable systems [399]. The introduction of disorder renders
this growth slower, as first observed in Ref. [403] for an XX spin chain with random bonds.

In the MBL phase, distant spins at a distance n are weakly coupled and they get slowly
entangled at long times, this leads to a very slow entanglement growth of S(t) ∼ ln t [400,
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401] making it consistent with the framework of local integrals of motion [239]. The
crossover between ETH and MBL phases exhibits an entanglement entropy that grows
sub-ballistically, with S(t) ∼ t1/z(W ) with a disorder dependent exponent [385].

Nevertheless, a slight systematic increase in the exponent z can be observed as the time
and length scales grow [404, 405]. This observation raises the question of whether a gradual
onset of slow thermalization is taking place, wherein the logarithmic growth of S(t) is
replaced by a slow algebraic increase of the entanglement entropy. Distinguishing between
algebraic and logarithmic growth is highly non-trivial when the dynamics become slower
with increasing W , particularly since the available data typically cover only a limited time
window.

3.4.1 The destabilization of the MBL phase
The aforementioned observables of the MBL phase suffer from significant limitations and
strong finite-size effects, which have prevented studies from reaching definitive and unam-
biguous conclusions about the fate of the MBL phase in the thermodynamic limit. Further-
more, mechanisms that restore ergodicity within the MBL phase have been proposed; these
are inherently non-perturbative in nature. As a result, both perturbative descriptions of
the MBL transition and these standard observables have been met with skepticism. These
non-perturbative effects are associated to the existence of regions of the chain that are
effectively ergodic, for which the disorder is anomalously weak. Such Griffiths regions are
expected to necessarily occur in sufficiently large systems, leading to the idea that they
can trigger mechanisms that restore ergodicity in the MBL phase—primarily via a runaway
avalanche instability or, not necessarily independently, through long-range resonances.

Thermal avalanches

Firstly introduced in Ref. [243], the authors proposed that the MBL phase can become
unstable in the presence of anomalously weakly disordered regions within the system. These
regions may act as ‘thermal bubbles’, that expand through the neighboring degrees of
freedom rendering them ergodic.

Consider a disordered spin chain of total length L, that contains a subsystem B (of length
LB) where the disorder is small and can be locally described by the disorder width WB.
The rest of the chain is described by the disorderWA and both chains interact through the
interface between A and B. The total Hamiltonian of the system Ĥ can be expressed as

Ĥ = ĤA + ĤB + ĤAB , (3.101)

in which ĤA is in the MBL phase (admitting a LIOM description), ĤB is the ergodic or
thermal ‘bubble’ (that obeys ETH) and ĤAB involves local operators with support in both
MBL and ETH subsystems, this is represented in a diagram in Fig. 3.7.

We prepare the system in the state

|ψ⟩ = |I1 . . . Ij . . . ILA
⟩ ⊗ |nB⟩ , (3.102)

where |I1 . . . Ij . . . ILA
⟩ denotes a configuration of the LIOMs3, i.e., a simultaneous eigenstate

of the operators Îk, with Îk the LIOM centered at site k. In this formulation, the LIOMs corre-
spond to effective spin-1

2
degrees of freedom, so that Ij ∈ {↑, ↓} specifies the local eigenvalue

at site j. The state |nB⟩ is a many-body eigenstate of the thermal bubble Hamiltonian ĤB.
3Here the LIOMs are defined in real space, rather than in terms of the Anderson orbitals as in Sec. 3.2.5.

The two descriptions are equivalent up to a basis change.
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Fig. 3.7: The avalanche scenario. Subsystem A is subject to strong disorder and it is in the
MBL regime. The subsystem B is weakly disordered and it is in the ergodic regime. The two
subsystems interact via the boundary term HAB, which may induce a gradual thermalization
of the subsystem B. Figure adapted from Ref. [254].

.

In first-order perturbation theory, the rate for the LIOM at site k to flip out of its initial
eigenstate due to the coupling with the thermal bubble is given by the Fermi golden rule:

Γk ∝ ρB e
−2r/ξop , (3.103)

where ρB is the density of states of the bubble, r is the distance between site k and the closest
site belonging to the thermal bubble, and ξop is the localization length of the LIOM operators.
The corresponding thermalization time τk ∼ 1/Γk therefore increases exponentially with r.

To thermalize the LIOM closest to the bath i.e. ILA
→ ĨLA

—where ĨLA
indicates the

reverse configuration e.g. if it was associate to a spin degree of freedom ↑ now it becomes ↓.
Then the thermalization time is τLA

∼ ρBe
2/ξop.

According to the avalanche mechanism [243], once the state of the LIOM ÎLA
has relaxed,

the spin at site j = LA becomes a member of the ergodic bath, and, consequently the density
of states the new bath B′ is increased by a factor of 2, ρB′ = 2ρB. After r iterations of this
process, the density of states of the enlarged bath B′ is ρB′ = 2rρB.

As a consequence, thermalization of the MBL subsystem can become a self-sustaining
process—i.e., the avalanche mechanism sets in—if the growth of the bath’s density of states
outpaces the exponential decay of the LIOM–bath coupling with distance r. To first order in
perturbation theory, this condition reads

ln 2

2
− 1

ξop
> 0 , (3.104)

which means that the rate of density-of-states growth of the expanding bath exceeds the
rate at which the coupling strength decays with distance.

In summary, the avalanche scenario predicts that when the localization length of the
LIOMs, ξop, exceeds the critical value ξ∗op = 1/ ln 2, the growth of the bath’s density of
states outpaces the exponential decay of the LIOM–bath coupling, enabling rare ergodic
inclusions to destabilize the MBL phase and drive a thermalizing front through the system.
For ξop < ξ∗op, such avalanches cannot propagate and localization is expected to persist. In
one dimension, the balance between coupling decay and density-of-states growth can be
satisfied, whereas in higher dimensions avalanches are expected to proliferate generically,
precluding a stable MBL phase.

In the thermodynamic limit, the scenario relies on the existence of rare thermal bubbles—
small regions of anomalously weak disorder that act as ergodic grains capable of seeding
the avalanche. In finite-size numerical simulations, however, the probability of finding such
bubbles spontaneously is exponentially small, making the mechanism effectively invisible in
typical disorder realizations. To overcome this, planted-bubble protocols are used: a thermal
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grain is intentionally introduced by setting a contiguous region to have low or no disorder,
embedded in an otherwise localized system.

This planted bubble mimics the role of a rare thermal inclusion and allows one to study
how its thermalizing influence penetrates the MBL region. The growth of the thermal-
ization length ξd(t) can then be monitored, providing a practical test of avalanche theory
in numerically accessible sizes [252, 254, 258]. Results from such studies are consistent
with avalanche predictions, such as logarithmic growth of ξd(t), but cannot fully rule out
alternative microscopic mechanisms that produce similar dynamics. Thus, the problem of
pin-pointing the microscopic mechanism responsible for the emergence of ergodicity in
disordered spin chains remains a challenge.

Many-body resonances

Many-body resonances occur when an eigenstate of a many-body system can be expressed
as a superposition of a few not entangled or weakly entangled states, e.g., the basis states
|I⟩S. As it was explained in the beginning of Sec. 3.2, this implies that the basis states
are nearly-degenerate and transitions can occurs between them, making it possible for
the system to go flip a number of spins in the chain. If the resonance is system-wide (or
long-range) meaning, that connects two basis states with a large amount of differing number
of spins, then the system can spread outside of the range expected from the local integrals
of motion. The proliferation of many-body resonances leads to the destabilization of MBL
and the onset of ergodicity [264–268].

In Ref. [265] Villalonga and Clark used numerically constructed local integrals of mo-
tion to investigate many-body resonances and found that, in the vicinity of the ETH–MBL
crossover, resonances occur across all length scales. This highlights that the crossover regime
is characterized by widespread hybridization of eigenstates, in contrast to the fully ergodic
or fully localized phases. Building on this perspective, Morningstar et al. [257] introduced
the measure of quantum mutual information (QMI) between the first and last spins of a dis-
ordered XXZ spin chain (with open boundary conditions) as a diagnostic of such long-range
resonances.

The QMI is particularly insightful because it captures correlations between the two ends of
the system: it becomes small in both limiting regimes—ergodic and localized. In the ergodic
phase, entanglement entropy obeys volume-law scaling, so the mutual information between
two single spins essentially cancels out and vanishes. In the many-body localized (MBL)
phase, end spins are uncorrelated due to localization, so the QMI again vanishes. However,
in the intermediate crossover regime, the QMI becomes enhanced due to the superpositions
of a few basis states with substantially different spin configurations—normally associated
with ‘cat-like states’ 4. As such, QMI serves as a sensitive probe of system-wide resonances.

Morningstar et al. [257] quantified this effect by identifying, for each eigenstate, the
maximum QMI across the spectrum and then taking the typical value of this quantity over
disorder realizations. When plotted as a function of disorder strengthW for different system
sizes L, these curves display a crossing point at a characteristic scaleWswr(L). Interestingly,
this crossing occurs at significantly larger disorder strengths than one predicted from
standard observables W ∗(L). For example, at system size L = 16, one finds W ∗ ≃ 3.5 while
Wswr ≃ 8.5. Moreover, as the system size is increased (e.g., from L = 11 to L = 16, Wswr(L)
drifts upward by about one-third of its value, comparable to the drift observed for W ∗(L).

4Strictly speaking, an ideal Schrödinger cat state refers to a coherent superposition of two macroscopically
distinct classical configurations. In the MBL crossover, the situation is more nuanced: the hybridizing states
are not always perfectly classical, may involve more than two configurations, and often differ only over part of
the system. The term ‘cat-like’ is therefore used heuristically to describe these long-range resonances rather
than an exact two-state superposition.
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Although the resonances detected in this way are extremely weak—the QMI at the
crossing point is on the order of 10−7—they nonetheless span the entire system, reflecting
correlations between the two ends of the chain. This indicates a subtle form of non-locality
emerging in the crossover regime. Furthermore, the maximum of the QMI as a function of
W provides an additional marker for the MBL crossover, occurring at a disorder strength
comparable to W ∗(L). Other indicators where studied in this study, such as the minimal
value of the gap ratio ⟨rmin⟩. The latter, when normalized to Poisson statistics, defines
another disorder widthWmg(L) lying between the scales identified byW ∗ andWswr around
≃ 5.7.

These observations motivate a careful study of the role of system-wide resonances in the
MBL transition. In particular, extreme value statistics appear to be a natural tool to probe
their impact, improving upon the standard observables discussed above. Understanding the
effect of rare, long-range resonances is crucial for assessing the stability of the MBL phase
and the nature of the transition, and the present study is aimed in this direction.

3.5 The large deviation method

3.5.1 The delocalization probability
A suitable order parameter for detecting delocalization is the probability that a system,
initially prepared in the basis state |0⟩, is found in distant basis states |f⟩ after infinite-time.

We select the initial basis state |0⟩ to be in the middle of the many-body spectrum, so as
to probe localization in this highly-excited regime. This is done by selecting the diagonal
elements of the Hamiltonian, that correspond to the random part Ĥ0 in the spin basis. These
energies E0 = ⟨0| Ĥ0 |0⟩ are extensive and normal distributed with zero mean and a variance
proportional to L. As a result, E0/L ∼ 1/

√
L.

Basically, we want to sudy the long-time spreading of the wave-packet starting from |0⟩,
and examine whether it can reach distant configurations on the Hilbert space graph. For
most of the work reported here, and unless otherwise stated, we will consider the distant
basis states |f⟩ to be states maximally uncorrelated with the initial one |0⟩. The criteria of
selection for these ‘distant’ or maximally uncorrelated configurations will be based on the
overlap between the basis states |0⟩ and |f⟩, which depends on the choice of basis. In the
spin basis the overlap is defined as

qS0f =
4

L

L∑
i=1

Sz
i (0)S

z
i (f) , (3.105)

where Sz
i ∈

{
±1

2

} is the eigenvalue of the spin operator in the z direction Ŝz
i acting on

the i-th site of the chain. Whereas, in the Anderson basis the basis states are occupation
numbers, i.e. bit-strings made of 1s and 0s and the overlap reads

qA0f =
1

L

L∑
α=1

(2nα(0)− 1)(2nα(f)− 1) , (3.106)

where nα is the occupation number of the α-th single-particle orbital, i. e. the eigenvalues
of the b̂†αb̂γ b̂α operators.

In both cases, −1 ≤ qS,A0f ≤ 1, and basis states that are completely uncorrelated with the
initial state are characterized by zero overlap. In the spin basis this corresponds to flipping
half of the spins between 0 and f . In the Anderson basis this implies that half of the L/2
spinless fermions have transitioned to different single-particle orbitals. Such overlaps are
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Fig. 3.8: Probability distribution function for the infinite time probabilities, Eq. (3.108),
of finding a system, initially prepared in the basis state |0⟩, in a basis state |f⟩ ∈ E . The
gray dashed line indicates a reference power-law decay with exponent 2. For weak disorder
(W = 1, left panel), the distribution is relatively narrow. As the disorder strength increases
(W = 4 and W = 9, center and right panels), the distribution broadens significantly. The
total number of samples used to compute these distributions is Ntot = N0 ×NS ×NE , where
N0 = 2L/2−2, and NS = 500, 5× 103, 5× 104 for L = 8, 12, 16, respectively.

closely related to the concept of imbalance, a measurement frequently used in the study of
many-body quantum systems to quantify the degree to which memory of an initial basis
state is retained over time [102, 406]. Based on the overlap value q, with respect to the
initially prepared basis state |0⟩, we define two sets of basis states:

S0(q) =
{
|f⟩ : qS0f = q

}
,

A0(q) =
{
|f⟩ : qA0f = q

}
,

(3.107)

for the spin and Anderson bases, respectively. In the following, we will primarily focus
on S0(q = 0) and A0(q = 0), which we will collectively denote by the symbol E and refer
to as the ‘equator’ of the Hilbert space graph. It will be clear from the context whether
E refers to S0(q = 0) or A0(q = 0). Whenever ambiguity arises, we will explicitly add
the superscript S or A to indicate that the quantity is measured in the spin or Anderson
basis, respectively. In the zero-magnetization (or half-filling) sector, the equator possesses
NE =

(
L/2
L/4

)2 ∼ 2L/(πL/4) target basis states, for any initial condition |0⟩ chosen. The fact
that the volume of the equator of the graph scales asymptotically with L in the same way
as the volume of the entire graph, NE/N ∼

√
8/(πL), is a hallmark of infinite-dimensional

geometries. This justifies our primary choice of qS,A0f for the analysis of localization: If the
wave packet can reach E in the infinite-time limit, it can essentially reach any configuration
on the Hilbert space graph that is compatible with energy conservation.

The asymptotic probability that a system prepared in |0⟩ reaches a basis state in the
equator, |f⟩ ∈ E , can be calculated exactly in terms of the eigenstates |n⟩ of the Hamiltonian
Ĥ as

P0→f = lim
t→∞

|⟨f |e−iĤt|0⟩|2 =
∑
n

|⟨f |n⟩⟨n|0⟩|2 . (3.108)

Our key observable of interest is the overall delocalization probability that quantifies the
likelihood that a system, initially prepared in the state |0⟩, evolves into any state belonging
to the equator:

PE =
∑
f∈E

P0→f . (3.109)

The sum runs over an exponentially large number of terms in L. This object is a random
variables that depends on the disorder realization and on the choice of the initial state. In
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a localized phase, the typical value of the delocalization probability should vanish with
increasing system size, while go to 1 in the extended phase.

Using exact diagonalization of the full spectrum, we calculated the probability density
function (PDF) of P0→f for finite-sized systems for ∆ = 1. The results are shown in Fig. 3.8.
In the inset we present a close-up of the right tails of the PDF of P0→f in the spin basis.
To construct this PDF, we selected N0 initial states–located near the center of the energy
spectrum–for each of the NS disorder realizations of the random fields {hi}. For each initial
state, we computed P0→f for all NE basis states with zero overlap from the initial one (i.e.,
at the equator of the Hilbert space graph). Consequently, each pdf is built from a total of
NS ×N0 ×NE data points. The specific values of NS, N0, and NE used for each system size
are provided in the caption of Fig. 3.8.

For weak disorder (W = 1), the distribution is sharply peaked. Consequently, the sum
Eq. (3.109) is primarily governed by the bulk of the distribution P0→f , with dominant
contributions coming from its peak. This makes PE a self-averaging quantity. The peak of
the distribution of P0→f shifts toward smaller values as the system size L increases. This
indicates that as L is increased an exponentially increasingly large number of terms must
contribute to the sum Eq. (3.109) in order to have that PE is of order 1.

As disorder is increased, instead, the tails of the distribution of P0→f decay increasingly
slowly. At strong enough disorder this decay becomes slower than a square power-law, shown
as a reference with a dashed-gray line. As a result, the sum in Eq. (3.109) becomes dominated
by contributions from the tails of the distribution—that is, by rare events. These rare outliers
from the tails correspond precisely to the system-wide strong resonances between states |0⟩
and |f⟩, which have been extensively discussed in the recent literature [257, 258, 266, 267,
270, 272, 277, 278].

The properties of P(P0→f ) directly reflect on those of P(PE). In Fig. 3.9, we present
these PDFs for four different disorder strengths: W = 1, 4, 9, and 20, with system size
L = 16 and interaction strength ∆ = 1. For W = 1, PE is strongly peaked, with rapidly
decaying tails. This is better appreciated in the inset, where we show a zoom-in with respect
to the PE axis. As the disorder strength increases the PDFs become increasingly broad and

Fig. 3.9: Probability distributions of the delocalization probability PE in log-log scale, for
the disorder strengths shown in the key, with L = 16 and ∆ = 1. The inset is a zoom-in for
the W = 1 distribution, shown in linear-log scale instead. This latter distribution is heavily
peaked at finite values of PE with fast decaying tails.
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asymmetric: most values cluster near a very small value; however, the distribution develops
increasingly heavy tails, which are rare realizations of the disorder for which the probability
of delocalizing is anomalously large. In the inset, one can observe that the right tails for
W = 4 and W = 9 even extend beyond the full distribution for W = 1. This indicates that
some disorder realizations at very strong disorder strength have the same probability to
delocalize to that of the typical samples at disorder W = 1.

In this work, we argue that these rare events are responsible for the presence of ergodic
instabilities inside the MBL at finite sizes, within a broad intermediate region of the phase
diagram. The central goal of the method proposed here is to put forward a computational
scheme that allows one to account correctly for the statistical weight of the fat-tailed
distributions P(P0→f ). Such a computational scheme is based on an analogy with classical
mean-field disordered systems that undergo phase transitions exhibiting phenomenological
features similar to those described above for the probability of delocalization from a random
initial state. Specifically, the partition function of a classical disordered system with N
degrees of freedom is given by

ZN =
∑
µ

e−βEµ , (3.110)

where the µ’s label microscopic configurations of the system, whose number grows expo-
nentially with N . In general, the energies Eµ are random (and correlated). The inverse
temperature β controls the spread of the Boltzmann weights. In this analogy, the partition
function ZN corresponds to the delocalization probability PEg, while the Boltzmann factors
e−βEµ play the role of the transition probabilities P0→f .

A broad class of classical mean-field disordered systems exhibit a sharp phase transition
in the thermodynamic limit (N → ∞), from a high-temperature phase—where the partition
function receives contributions from an exponential number of configurations—to a low-
temperature phase, where the Boltzmann measure freezes onto a few rare configurations
with anomalously large weights in the tails of the Boltzmann factor distribution [407–412].

The key result for such systems is that, in the frozen phase, in the thermodynamic limit
the typical value of the partition function (which corresponds to the free-energy in classical
disordered systems terminology) is dominated by rare configurations in the far tails of the
Boltzmann weight distribution. In the MBL context, this implies that the typical value of
the delocalization probability PE is asymptotically controlled by a few anomalously strong,
system-wide resonances.

Yet, accurately estimating the asymptotic typical value of the partition function (or
equivalently PE) from finite-size numerical simulations is extremely challenging, since
accessible system sizes typically do not include the rare events that dominate the measure
in the thermodynamic limit, resulting in strong finite-size corrections.

Our approach therefore consists in adapting the set of tools and methods developed
in the study of mean-field classical disordered systems to properly account for these rare-
event effects, allowing us to evaluate the correct asymptotic behavior of the delocalization
probability in a disorder regime where it is given by a sum over an exponentially large
number of correlated and broadly distributed random variables.

However, the computational cost of evaluating Eq. (3.109) is substantial, specifically, it
requires computing all eigenstates |n⟩ of the Hamiltonian Ĥ. Carrying out exact diagonaliza-
tion of the full spectrum over a sufficiently large number of disorder realizations to obtain
reliable statistics is computationally intensive and can only be done for relatively small sizes,
L ≤ 16 (corresponding to a maximal Hilbert space dimension of 12 870). To address this
limitation, we introduce a proxy quantity for P0→f that is easier to access computationally,
yet still retains the same physical information. This allows us to capture the essential features
of the transport properties under investigation. An additional advantage of this approach is
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that it enables the exploration of larger system sizes, up to L = 22, which corresponds to a
Hilbert space dimension of 705 432.

3.5.2 A Proxy for Transport in Hilbert space
Let us now go back to the set-up defined in Sec. 3.5.1, in which we probe how a system,
initially prepared in the random basis state |0⟩, spreads to an exponentially large subset
of basis states located at the equator E . In this setting, Eqs. (3.108) and (3.109) give the
definition of the probability to decorrelate from a random initial state after infinite time. In
a many-body system, the projections of the eigenstates |n⟩ with energy densities different
from the initial energy ⟨0|H|0⟩ are expected to vanish exponentially with the system size. As
a result, the sum over |n⟩ is expected to be dominated by the eigenstates having the same
expectation value of energy as the initial state. Hence, the probability that the system is
initialized in |0⟩ and is found in |f⟩ after an infinite time can be expressed in terms of the
squared modulus of the infinite-time propagator between the nodes of the Hilbert space
corresponding to the basis states |0⟩ and |f⟩:

PE ≈ lim
η→0

∑
f∈E

η|G0f (E − iη)|2 , (3.111)

where G0f are the off-diagonal elements of the resolvent Ĝ(E−iη) = (E−iη−Ĥ)−1 computed
on the nodes |0⟩ and |f⟩ of the Hilbert space, and η is a small imaginary regulator.

The interpretation of Eq. (3.111) is quite intuitive: The spreading of the many-body
states is driven by energy-resonant hybridization among basis states with energies close to
the selected energy E. In closed systems, such resonances are captured by the off-diagonal
elements of the resolvent operator, whose matrix elements, G0f = ⟨f | Ĝ |0⟩, quantify the
effective hopping amplitude for an energy-resolved transition between the initial state |0⟩
and the target state |f⟩.

As detailed in Appendix A1, computing the matrix elements G0f is computationally more
efficient than evaluating the probabilities P0→f , as it only requires solving a sparse linear
system (see Eq. (141)), rather than obtaining the full energy spectrum. Nevertheless, G0f

encodes the same physical information as P0→f .
Specifically, Eq. (3.111) can be interpreted in terms of an analogy from the study of

quantum mesoscopic systems in real space, where transport properties at fixed energy E are
typically characterized by the Landauer transmission [413]. These are commonly computed
using the Fisher-Lee formula [289, 414], which relates the dimensionless conductance to
the Green’s function of the scatterer dressed by the incoming and outgoing leads—creating
channels of transport. Explicitly, the formula reads

TFL = Tr{ΓLGrΓRGa} , (3.112)

where the energy dependence E is implicit in all quantities. The superscripts r and a
denote the retarded and advanced Green’s functions, respectively, which are related through
Ga = (Gr)†. The quantities ΓL and ΓR represent the level broadening due to the coupling
with the left (L) and right (R) leads, respectively, and are given by

ΓL,R = −2 ImΣL,R , (3.113)

with ΣL,R being the self-energies of the leads. A schematic representation of this construction
is shown in Fig. 3.10(a). In this respect, PE is the analogue of the conductance of a complex
network (i.e., the Hilbert space graph) in a scattering geometry in which a semi-infinite lead
through which ‘particles’ are injected is connected to the node |0⟩, and (L/2

L/4

)2 semi-infinite
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leads through which ‘particles’ are extracted are connected to the nodes |f⟩ ∈ S0(0) (or
A0(0), depending on the chosen basis). This construction is illustrated in Fig. 3.10(b), where
the incoming and outgoing semi-infinite leads are replaced by the initial state |0⟩ and the set
of target states E , respectively. It is clear that in this analogy the broadening of the energy
levels provided by the imaginary part of the self-energy of the leads plays the role of the small
imaginary regulator η in Eq. (3.111). In the ergodic phase—where all channels contribute
comparably to transport—TFL is of order 1. By contrast, in the MBL regime transport is
suppressed and the typical value of TFL decays exponentially with L.

In order to further simplify the numerical computations, in most of the following we do
not evaluate the true delocalization probability Eq. (3.109) (or, equivalently, the Landauer
transmission Eq. (3.112)), but rather a simplified proxy in which the imaginary parts are
neglected:

T0 =
∑
f∈E

|G0f |2 , (3.114)

where G0f = ⟨f | (E − Ĥ)−1 |0⟩ denotes the real-part off-diagonal propagator between |0⟩
and |f⟩. Restricting the computation to real parts only reduces the numerical cost—both in
terms of computational time and, more importantly, memory usage—by more than a factor
of two.

Yet, in the absence of the imaginary regulator, the amplitudes |G0f |2 are no longer
bounded and can take arbitrarily large values. This occurs because the poles of G associated
with many-body eigenstates whose energies lie very close to E are no longer regularized,
leading to spuriously large contributions. As a result, the |G0f |2’s, and hence T0, can no
longer be strictly interpreted as the probabilities to delocalize from |0⟩ to |f⟩ after infinite
time.

The absence of this regularization has, in particular, important consequences for the
asymptotic scaling of T0 in the delocalized phase. While the properly regularized transmission
TFL and the probability to reach the equator PE saturate to a value of order one on the
ergodic side of the transition, their unregularized counterpart T0 grows exponentially with
the system size L, proportionally to the number of outgoing channels. In contrast, in the
MBL phase both TFL and T0 exhibit the same exponential decay with L. Therefore, although
T0 formally overestimates the true Landauer transmission, it reproduces its correct large-L
scaling in the localized phase and can thus be reliably (and more efficiently) used to identify
the localization transition, as discussed below.

Fig. 3.10: (a) Quantum transport on a network in a scattering geometry, receiving particles
from a semi-infinite lead on the left and transmits them through several semi-infinite leads
connected to its right-hand side. (b) Schematic of the transport of the ’fictitious particle’–
initially prepared in the basis state |0⟩–on the Hilbert space network.
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Fig. 3.11: Sketch of the different scaling behavior with L of the typical value of the Landauer
transmissions with and without imaginary parts for the Anderson model on the Bethe lattice.

Here, we present several arguments to support this claim and justify our choice. The
first argument stems from an analogy with the Anderson model on the Bethe lattice. Indeed,
the Hilbert-space graph associated with a quantum many-body problem—which lies at the
core of our discussion—is, in general, a sparse and high-dimensional network, as discussed
in Sec. 3.3.1. Although this graph exhibits strong correlations and complex loop structures
that are absent in simpler tree-like models such as the Bethe lattice, the latter nonetheless
serves as a valuable toy model that captures the essential features of the Hilbert-space
network [349]. This analogy provides a powerful framework for gaining qualitative insight
into the behavior of many-body systems [283, 289, 350–352, 415–417].

The order parameter for the localization transition in the single-particle Anderson model
is the typical value of the imaginary part of the local Green’s function, exp{E[ln ImGii]},
which is finite in the delocalized phase and vanishes in the localized one. For locally tree-like
graphs, asymptotically exact recursive relations can be derived that express these local
Green’s functions in terms of those on neighboring nodes [418]. Considering a specific
node 0 of the tree, the recursive equation for the imaginary part (in the η → 0 limit) can be
telescoped as:

ImG00 = |G00|2
∑
i∈∂0

ImGii , (3.115)

where the sum runs over all neighbors i of node 0, and |G00|2 is the squared modulus of
the full local Green’s function, including both its real and imaginary parts. Starting from
node 0, we iteratively apply the recurrence to unfold the expression, rewriting the imaginary
parts ImGii on the right-hand side in terms of those from successive generations of the tree,
i.e., of nodes at increasing distance from 0. Repeating this procedure over L generations,
and writing the two-points propagators as product of the local Green’s functions yields (see
Refs. [281, 419] for more details):

ImG00 =
kL∑
f=1

|G0f |2 ImGff , (3.116)

where f labels the kL nodes at distance L from 0 (where k is the branching ratio of the tree).
This equation is the analogue of Eqs. (3.111) and (3.112), and its physical interpretation is
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intuitively clear: ImG00 represents the inverse lifetime of a particle created at node 0, while
the propagators |G0f |2 correspond to the probabilities that the particle escapes from 0 to f
after an infinite time.

We now set the imaginary part of the Green’s functions on all these distant nodes f to a
small value η, and take L to be large. In the delocalized phase, the imaginary parts grow
under iteration and eventually reach a stationary value for large L. In the localized phase,
by contrast, they decay exponentially under iteration. In this regime, the recursion relations
can be linearized with respect to the imaginary parts, and to leading order Eq. (3.116)
becomes:

ImG00 = η
kL∑
f=1

|ReG0f |2 = η T0 . (3.117)

The exponential decay of the typical value of ImG00 under iteration in this linearized regime
is governed by the largest eigenvalue of an integral operator that encodes the critical
properties of Anderson localization [355, 418]. One finds exp{E[ln ImG00]} ≃ η λLmax, with
λmax ≃ 1− c(W −Wc) near the localization transition, hence

1

L
E[ln T0] = lnλmax ≃ − c(W −Wc) . (3.118)

Consequently, the scaling of the typical Landauer transmission with L (evaluated from the
real propagators) reflects the W -dependence of the Lyapunov exponent that controls the
response of the typical ImG to perturbations, thereby indicating whether the system is in a
localized or a delocalized phase. Note that in the context of the Anderson model on tree-like
graphs, this is an exact result.

Of course, in the delocalized phase the recursion equations can no longer be linearized,
and Eq. (3.117) no longer describes the probability of delocalization from a random initial
state: instead of saturating to a finite value, as its counterpart (3.116) which contains also
the imaginary parts, it diverges exponentially. Nevertheless, as discussed below and explicitly
demonstrated in [281], the scaling of its typical value with L can still be used effectively
and reliably to locate the localization transition in the Anderson model on the Bethe lattice.
This argument is schematically depicted in Fig. 3.11 which illustrates the different behavior
of the scaling with L of the typical value of the Landauer transmissions—or equivalently,
the delocalization probability—with and without imaginary parts for the Anderson model
on the Bethe lattice.

The second argument supporting the choice of the typical value of T0 as an order parame-
ter for MBL comes from the benchmark analysis presented in Ref. [281]. In that work, some
of us employed this quantity not only to locate the localization transition in the Anderson
model on the Bethe lattice (for which, as discussed above, Eq. (3.118) can be explicitly
and rigorously justified), but also to study abstract random matrix ensembles that display
three distinct regimes: a fully delocalized phase, a localized phase, and an intermediate
delocalized yet fractal phase. Ref. [281] demonstrated that the numerical scaling analysis
of the typical value of T0 successfully reproduces the analytically known phase diagram of
these models, accurately identifying the transitions between the different phases.

A final argument in favor of our approximation is provided by direct numerical tests [420]
on the random-field transverse-field Ising model. We explicitly examined the scenario
schematically illustrated in Fig. 3.11. In particular, we computed the probability to delocalize
from a random initial state, using Eqs. (3.108) and (3.109) (via exact diagonalization),
and compared it to the Landauer transmission T0 for the same disorder realizations and
initial states. At sufficiently strong disorder—where PE decays exponentially with the system
size—we find that the typical value of T0 is proportional to that of PE . Moreover, their
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covariance increases with system size and approaches unity in the strong-disorder regime
for the system sizes accessible to our numerics [420]. This implies that samples and initial
configurations with an anomalously large probability to decorrelate after infinite time also
exhibit anomalously large values of T0.

To summarize, even though neglecting the imaginary regulator in Eqs. (3.111) and (3.112)
leads to a distinct scaling behavior in the delocalized phase (due to the proliferation of
spurious poles in the denominator of G), the typical value of the Landauer transmission T0

nonetheless provides an efficient and reliable order parameter for MBL. It offers a much sim-
pler computational route while faithfully reflecting the same physical information: instead
of directly evaluating the probability for a random initial state to delocalize, we compute a
proxy quantity that signals whether this probability decays exponentially or not.

Yet, we are still left with the problem of how to perform a correct statistical analysis of T0,
which is a sum of an exponential number of correlated random variables, whose distribution
becomes broader as W is increased.

As explained above, Eq. (3.114) is a sum of an exponential number of correlated random
variables, whose distribution becomes broader and broader when W is increased. T0 is
formally equivalent to the partition function of a classical disordered system (3.110).

Specifically, the factors |G0f |2 play the role of the Boltzmann weights associated to each
one of the exponentially numerous target states |f⟩. As mentioned above, for a broad class
of mean-field classical disordered systems, such as directed polymers in disordered media
on high-dimensional graphs [421–423] and related models [407, 408, 411, 424], it is well
known that the partition function (3.110) can undergo a phase transition: if the probability
distribution of the Boltzmann weights becomes too broad (which in classical systems is
induced by reducing the temperature), then the measure is dominated by few O(1) outliers
of the distribution, corresponding to a few configurations of the system with particularly low
energy; instead at high temperature the partition function receives significant contribution
from exponentially many terms.

In this context, our ultimate goal is to estimate the typical value of T0 in the large-L limit,
which is analogous to estimating the free-energy density in classical disordered systems at a
given temperature. However, in the many-body problem, the broadening of the distribution
of the |G0f |2’s is indirectly controlled by the disorder strength W . For a given W , it is not
obvious a priori whether T0 corresponds to the ‘high-temperature’ or ‘low-temperature’
phase in this analogy. This distinction is crucial, as estimating the asymptotic behavior of
the typical value in the frozen phase is particularly subtle. As mentioned earlier, one must
properly account for the contribution of rare outliers—namely, atypical disorder realizations
that lead to anomalously large values of T0 and are unlikely to appear in small or moderate
system sizes.

In the following, we begin by explaining how this type of analysis is carried out in the
standard setting of classical disordered systems, where the distribution of Boltzmann weights
is known and analytical calculations are possible. As a guiding example, we will focus on the
directed polymer in disordered media [425], which has already been connected to various
tightly-related quantum systems—most notably to single-particle Anderson localization [289,
426, 427], two-interacting-particle models in one-dimensional disordered systems [428],
and random-field quantum Ising models [429, 430]. Following this discussion, we will
outline how we adapt this theoretical framework to compute the typical value of T0 in our
quantum many-body context.
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The transition indicators
Freezing transition in mean-field classical disordered systems

The discrete model of a directed polymer in random media (DPRM) consists of a self-
avoiding directed random walk on a d-dimensional lattice. Each edge of the lattice, (ij), has
an associated energy ϵij which is a quenched random variable. The set of edges that the self-
avoiding random walk follows defines a path P, and its energy is given by EP =

∑
(ij)∈P ϵij.

The partition function is

ZN(β) =
∑
P∈PN

e−βEP , (3.119)

where EP is the total random energy collected along the path P of length N . The sum runs
over all possible directed paths of length N , here denoted as the set PN , and β is the inverse
temperature. The energies of different paths, say EP and EP ′ , are correlated through their
common edges. A formal relationship between this model and Anderson localization has
been exploited in the past [289, 322, 427, 431, 432]. DPRM exhibit a well-known freezing
transition in the infinite-dimensional limit [421, 423], when the problem is studied on an
infinite tree. On this class of hierarchical lattices, the number of directed paths for polymers
of length N is (k + 1)kN−1, k being the branching ratio of the tree.

The transition occurs at a critical inverse temperature β = β⋆. At high temperatures,
β < β⋆, the partition function receives contributions from an exponential number of directed
paths. Instead, in the low temperature phase β > β⋆, the polymer freeze in a fewO(1) specific
disorder-dependent paths. This corresponds to a condensation of the Boltzmann measure on
a few paths with particularly low energy, which directly reflects in the non-analytic behavior
of the quenched free-energy density, defined as

fq(β) = − lim
N→∞

1

βN
⟨lnZN(β)⟩ , (3.120)

where ⟨· · · ⟩, denotes the average over the disorder realizations. For the specific problem of
directed polymers on a tree, the exact solution of Refs. [421, 423] yields:

fq(β) =

{
− ln

(
k
〈
e−βϵ

〉)
/β for β < β⋆ ,

− ln
(
k
〈
e−β⋆ϵ

〉)
/β⋆ for β ≥ β⋆ .

(3.121)

In the thermodynamic limit, the quenched free-energy density develops a plateau for β > β⋆.
For finite system sizes, however, the quenched free-energy remains a concave function of β
for any arbitrarily large but finite N . The convergence of the finite-N quenched free-energy
to its asymptotic plateau value for β > β⋆ is slow, with finite-size corrections scaling as
logN/N [433, 434]. This slow convergence arises because typical finite-size samples do not
contain the rare configurations that dominate the behavior in the thermodynamic limit.

In this situation, it is particularly insightful to study also the behavior of the finite-size
annealed free-energy density, defined as

fa(β,N) = − 1

βN
ln⟨ZN(β)⟩ , (3.122)

and compare it with the finite-size quenched free-energy density (3.120).
The basic idea is the following: In the high-temperature phase (β < β⋆), the sum (3.119)

is dominated by the bulk of the probability distribution of the Boltzmann weights. As a result,
the average and typical values of ZN exhibit the same asymptotic scaling with N , and the
free-energy is self-averaging, i.e., the annealed and quenched free-energy densities converge
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to the same value upon increasing the system size N . In contrast, in the low-temperature
phase (β > β⋆), only a few disorder-dependent paths with particularly low energies EP
dominate the sum in Eq. (3.119). These rare, large Boltzmann weights induce strong sample-
to-sample fluctuations, leading to a broad distribution P (ZN) characterized by power-law
tails [421]. When these tails are sufficiently heavy, the typical and average values of ZN

exhibit different scaling with N : the former is governed by the bulk of the distribution, while
the latter is dominated by rare configurations with anomalously low energies. Consequently,
the self-averaging property of the free-energy is lost. In particular, the extreme outliers skew
the average ⟨ZN⟩, causing the finite-N annealed free-energy density to develop a maximum
close to β⋆. Such maximum of the annealed free-energy curve is completely unphysical and
purely a consequence of the biased finite sampling of anonymously large outliers of ZN .

Yet, in models for which the analytical solution in the thermodynamic limit is unavailable
(as is the case for the asymptotic typical value of T0 in the MBL problem), the behavior of the
annealed free-energy provides a valuable practical tool to estimate the asymptotic critical
behavior of the quenched free-energy in the low-temperature phase using finite-N numerical
results.

The basic idea is to first identify the position of the maximum of the annealed free-energy
curve, which gives an estimate of β⋆. Then, the unphysical portion of the annealed free-
energy for β > β⋆ is replaced by a flat segment at height fa(β⋆, N). For models in which the
large-N solution is known analytically, this construction has been shown to provide a more
accurate approximation of the asymptotic value of the quenched free-energy density in the
frozen phase [281, 434]

Formally, this construction is as follows:

f̃a(β,N) =

{
fa(β,N) for β < β⋆ ,

fa(β⋆, N) for β ≥ β⋆ ,
(3.123)

where fa(β,N) is the finite-size annealed free-energy density given in Eq. (3.122). With
this modification one obtains two equivalent quantities for the entire temperature range in
the thermodynamic limit:

f(β) = lim
N→∞

fq(β,N) = lim
N→∞

f̃a(β,N) . (3.124)

At finite N , fq(β,N) and f̃a(β,N) are complementary, and allow us to assess the role that
finite size effects play in the problem at hand. The former describes the behavior of typical
samples at the chosen value of N ; while the latter provides a more accurate estimation at
large N [281].

Probing the rare events in the quantum many-body problem

In the following, we apply the construction (3.123) to estimate the asymptotic behavior
of the typical value of T0 in the large-N limit, while properly accounting for the statistical
contribution of strong, system-wide resonances which, for the system sizes accessible nu-
merically, typically form only between a few specific distant configurations, and only in rare
disorder realizations.

The key assumption underlying our approach is that Eq. (3.114) belongs to the same
universality class as the classical mean-field disordered models discussed above. This
connection can be rigorously established in the case of single-particle Anderson localization
on the Bethe lattice [281]. More generally, this universality holds whenever the elements of
the sum exhibit ultrametric correlations, as in the DPRM case [408, 410]. In Appendix A3,
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we provide numerical evidence that the correlations ⟨|G0f ||G0f ′|⟩c are consistent with this
assumption for the system sizes we are able to study.

To apply the machinery described in the previous section to the MBL problem, we enlarge
the parameter space by formally introducing an auxiliary parameter β, which plays the role
of the inverse temperature in the classical problem. We thus define the β-dressed version of
the transmission, T0(β):

T0(β) =
∑
f∈E

|G0f |β . (3.125)

This auxiliary parameter has the role of tuning the strength of the tails of the probability
distribution of the |G0f |’s for a fixed value of the disorderW of the original MBL problem,
thereby allowing us to identify the threshold value β⋆ at which the distribution of T0(β)
develops sufficiently broad tails. At this point, rare outliers begin to dominate its typical
value, signaling the onset of a freezing transition analogous to that in the DPRM. Note that
T0(β) has been already introduced and studied in the mathematical literature on single-
particle Anderson localization in hierarchical lattices [435, 436], in the context of the
so-called fractional moment method. Our primary interest is to compute the asymptotic
scaling behavior of the typical value of T0(β = 2), which is a proxy for the probability tht a
randomly chosen initial state reaches arbitrarily distant configurations on the Hilbert space
graph after infinite time.

In order to do this, we have to determine the position of β = 2 relative to the threshold
β⋆, which determine whether T0(β = 2) is dominated by the broad tails of its distribution
(i.e., rare events) or whether the tails decay rapidly enough for it to be dominated by the
bulk of the distribution (i.e., typical realizations of the disorder).

Proceeding as in the theoretical framework outlined in the previous section, we define
two quantities analogous to the annealed and quenched free-energy densities:

ϕa(β, L) =
lnE[T0(β, L)]

β lnNE
, (3.126)

ϕ̃a(β, L) =

{
ϕa(β, L) for β < β⋆ ,

ϕa(β⋆, L) for β ≥ β⋆ ,
(3.127)

ϕq(β, L) =
E[ln T0(β, L)]

β lnNE
, (3.128)

corresponding to the annealed, annealed with the plateau replacement — similar to Eq.
(3.123) — and the quenched free-densities, respectively. Here E[· · · ] denotes the average
with respect to initial conditions |0⟩ and disorder realizations of the random fields.

The partition function of the classical DPRM ZN(β), has been replaced by the biased
Hilbert space Landauer transmission T0(β). In the classical DPRM model, the total number
of configurations—that is, the number of terms contributing to the partition function—scales
exponentially with the length of the polymer as kN , previously denoted by N . In this case,
the number of terms contributing to the sum is NE , which represents the number of target
states. Accordingly, we adapt the definition of the free-energy functions by normalizing with
lnNE . Additionally, we have omitted the overall minus sign in the definition, so that the
free-energies become negative when the typical value of T0 vanishes—signaling localization—
while a positive values of the free-energies indicates delocalization. Due to this modification
the maximum in the annealed free-energy density of the original DPRM at β⋆ now appears
as a minimum of ϕa(β). Beyond the dependence on β and L, T0(β, L) also depends on W
and ∆. From this point onward, we will omit the explicit dependence on L,W and ∆ in the
functions T0, ϕa, ϕ̃a, and ϕq, unless otherwise stated.

153



Chapter 3 – The Importance of Rare Events in Many-Body Localization

Exploiting the analogy with DPRM and similar mean-field disordered models [408, 421,
423, 434, 437], the large-L behavior of the probability of delocorrelate from a random
initial state, T0(β = 2), can be estimated indirectly in two steps, as described below:

• Ergodic Phase. We first determine the position of the minimum β⋆ of the finite-L
annealed free-energy density. If β⋆ > 2 the Hilbert space Landauer transmission
defined in Eq. (3.114) lies within the ergodic (or high-temperature) phase, and its
typical value can be directly obtained from ϕq(β = 2). In this regime the system is
delocalized since ϕq(β = 2) > 0.

• Non-Ergodic Phases. Conversely, when β⋆ < 2, physical transport occurs within the
freezing region, where the Hilbert space Landauer transmissions are dominated by the
tails of their distribution. According to our analogy with classical disordered systems
and DPRM, in this regime, the finite-L value of ϕq(β = 2) provides a poor estimate of
the typical value of T0 in the large-L limit. This is because typical samples at small
L lack the rare events that will dominate the statistics at large L. A more accurate
estimation is instead provided by the value of ϕ̃a(β = 2) = ϕa(β⋆). Then:

– Non-Ergodic Delocalized Phase. If ϕa(β⋆) > 0, the elements in the tails of
the distribution of |G0f |2 give such a large contribution that the typical value of
T0 remains positive upon increasing system size. This corresponds to a regime
in which the system eventually delocalizes for large enough L through a small
number of long-range resonances that destabilize the MBL phase.

– Non-Ergodic Many-Body Localized Phase. If instead ϕa(β⋆) < 0, even with the
inclusion of large rare-events of T0, the typical value of T0 vanishes with increasing
system size. This corresponds to a genuine MBL phase, where rare system-wide
resonances are unable to make a random initial state completely decorrelate.

These three distinct criteria provide us with independent estimates of finite-sized critical
disorder strengths, separating the different regimes observed in the model:

1. Wergo(L) is defined by the condition β⋆(Wergo) = 2. It provides an estimate for the
disorder strength at which the system transitions from an ergodic regime—where
physical transport at β = 2 receives contributions from an exponential number of
terms |G0f |2 and its behavior is governed by typical instances—to a regime where T0

is dominated by few anomalously large outliers from the distribution’s tails of |G0f |2,
and the distribution of T0 becomes broad.

2. WMBL(L) is defined by the condition ϕa(β⋆,WMBL) = 0. It provides an estimate of the
critical disorder strength at which the system enters a genuinely localized regime. In
this phase, even rare resonant inclusions between basis states are insufficient to induce
delocalization.

3. W typ
MBL is defined by the condition ϕq(β = 2,W typ

MBL) = 0. As previously discussed, the
quenched free-energy suppresses the contribution of rare, large outliers, making it a
good indicator of the typical behavior at a given system size L. Consequently, we expect
this estimator to capture the localization transition of typical disorder realizations
within the accessible sizes. It should therefore align with the critical disorder strength
estimated through standard spectral observables and conventional approaches to the
MBL transition. As will be discussed below, this may also apply to Wergo. For instance,
applying this analysis to the single-particle Anderson localization (AL) on random
regular graphs (RRG), one finds thatW typ

AL coincides with the disorder strength at which
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the average gap ratio shows an apparent transition from RMT to Poisson behavior,
with Wergo ≲ W typ

AL .

It is important to note that the phase diagram derived from these estimators is a finite-
L phase diagram. We observe significant finite-size effects and drifts in the positions of
the transitions between different regimes (see Figs. 3.14). Concerning the fate of this
phase diagram in the L→ ∞ limit, two main scenarios are possible. In the first scenario,
the intermediate phase Wergo < W < WMBL—where delocalization occurs through rare
resonances—is merely a finite-size crossover region that progressively shrinks and eventually
disappears as L→ ∞, yielding a direct transition from the fully chaotic phase to the MBL
phase (as for the Anderson model on the RRG). In the second scenario, this intermediate
phase persists in the thermodynamic limit as a genuine new type of delocalized phase.
Our numerical results for the accessible system sizes seem to favor the first scenario: the
intermediate region shrinks progressively as L increases (see Sec. ??).

In the first scenario, the apparent non-ergodic behavior is a statistical artifact: typical
finite-L samples are not representative of the thermodynamic limit. As established earlier,
for W > W typ

MBL, typical instances are localized with exponentially decaying long-range reso-
nances, yet rare disorder realizations—identified byWMBL(L)—can still drive delocalization.
Although such realizations are uncommon at currently accessible sizes, they become typical
at larger L. Therefore, in this scenario, it is natural to identifyW typ

MBL as the disorder strength
at which apparent ergodicity is effectively broken for finite systems. We thus expect W typ

MBL

andWergo(L) to exhibit the same trend, both drifting towardWMBL as L→ ∞. In the second
(less likely) scenario,W typ

MBL would still drift towardWMBL in the thermodynamic limit, while
Wergo would converge to a finite value strictly smaller than both WMBL and W typ

MBL.
In the rest of the article we systematically track the behavior of β⋆, ϕa(β⋆), and ϕq(β = 2),

varying the parameters of the model. We present results in both the spin and Anderson
bases, identified by different color scales in the following figures.

3.6 Finite size analysis

The free-energies and the relevant indicators
InFig. 3.12 we show examples of the free-energy densities as a function of the auxiliary
parameter—or ‘inverse temperature’—β. In the Figure we show the case ∆ = 1 for several
disorder strengths across the phase diagram, and for system sizes, shown in the color scale
on the right of the figures. Results are shown for both spin basis (red, top row) and Anderson
basis (blue, bottom row). The corresponding biased Hilbert space Landauer transmission,
T0(β), is computed using initial states |0⟩ taken from the middle of the many-body spectrum.
This choice, along with other simulation details, are described in App. A1.

The solid lines denote the free-energy functions ϕ̃a, i.e. the annealed free-energy with
the replacement defined in Eq. (3.127). The increasing part of the annealed free-energy
functions ϕa for β > β⋆ are shown as dashed lines, with their respective minima marked
by vertical dashed lines of the same color. The error bars associated with these annealed
free-energy functions are omitted for β > β⋆, as the average value of T0 becomes ill-defined
in this regime, and ϕa depends strongly on the number of samples, being dominated by
extreme value statistics.

The quenched free-energy functions ϕq(β) are also shown in solid lines with triangular
markers. The two relevant values β = 2 and ϕ̃a = ϕq = 0 are also shown as vertical and
horizontal dashed-gray lines, respectively.
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Fig. 3.12: The annealed free-energy ϕa (dashed), the modified annealed free-energy ϕ̃a

(solid) and the quenched free-energy ϕq (solid with triangular markers) in the spin (warm
colors) and Anderson (cold colors) bases. Low (left panel), intermediate (middle panel) and
large (right panel) disorder widths. The sizes are distinguished by the colors of the scale.
The dashed gray lines show the relevant values at β = 2 (physical transport) and ϕ(β) = 0
(delocalization/localization). The vertical colored dashed lines show the position of β⋆, for
each curve.

For β < β⋆, the annealed free-energy ϕa(β) (and accordingly its modified counterpart
ϕ̃a(β)) closely follows the quenched free-energy ϕq(β), with the gap between them narrowing
as the system size L increases. In the vicinity of β = β⋆ the annealed free-energy ϕa(β)
begins to deviate, developing into a convex function with a minimum. Both β⋆ and the
corresponding value of the annealed free-energy ϕa(β⋆) exhibit a systematic drift with system
size, while the value of the quenched free-energy ϕq(β = 2) shows weaker finite-size effect.

For small disorder (W = 1, left panels), we find that β⋆ > 2 as the system size is increased,
indicating that T0 receives contributions from an exponential number of terms. In contrast,
for both intermediate (W = 5.5 and W = 7, middle panels) and strong disorders (W = 10
and W = 16, right panels), we observe β⋆ < 2, signaling that, at least for the accessible
system sizes, the sum (3.114) is dominated by a few outliers in the tails of the distributions
of the propagators.

For the intermediate disorder regime ϕa(β⋆) > 0, implying that the typical value of T0 in
the large L limit should remain finite due to the inclusion of rare, large outliers of T0. Upon
increasing even more the disorder, however, ϕa(β⋆) < 0, indicating that the typical value of
T0 vanishes exponentially upon increasing the size of the system. The results in both bases
exhibit qualitatively similar behavior and allow us to distinguish the three relevant regimes.
Yet, the crossover between these regimes occur at different values of disorder strength W ,
indicating a quantitative difference between the two bases—a point to which we will return
in later sections.

3.6.1 The finite size phase diagrams
In what follows, we show the behaviour of β⋆, ϕa(β⋆) and ϕq(β = 2) as a function ofW with
increasing L. From these curves we extract the relevant finite-size critical disorder widths
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Wergo(L), WMBL(L) and W typ
MBL(L), respectively, as it is shown in the example ofFig. 3.13 for

∆ = 1.0. From top to bottom the panels are: the minimum β⋆, the height of the plateau
ϕa(β⋆), and the value of the quenched free-energy for the physical transport ϕq(β = 2). The
critical disorder widths are computed through a linear or cubic spline interpolation using
the points closest to the relevant crossings. The error bars associated to the critical disorder
widths are computed through standard error propagation—whenever the corresponding
covariance matrix is well-behaved, see App. A2 for further details—or with a Monte-Carlo
based bootstrap resampling.

Fig. 3.13: (From top to bot-
tom) Disorder width W de-
pendence of β⋆, ϕa(β⋆), and
ϕq(β = 2) for different sys-
tem sizes, in the spin ba-
sis (left panels) and the An-
derson basis (right panels).
The relevant values β⋆ =
2 and ϕ = 0 are corre-
spondingly indicated with a
horizontal dashed-gray line.
The crossing of the curves
with these lines identifies
the position of Wergo(L),
WMBL(L) andW typ

MBL(L), ac-
cordingly. The star symbol
at disorder W = 9 in the
first column is obtained by
computing the same quan-
tity, β⋆, through another
method, in order to verify
the consistency of the re-
sults (see Sec. 3.6.3).

We repeat this procedure for several values of ∆ to construct a finite size phase-diagram
in the W −∆ plane. The results of this procedure are shown inFig. 3.14 for both the spin
and Anderson bases.

We identify three distinct finite-size regimes. At low disorder strengths, where β⋆ > 2 and
ϕq,a(β = 2) > 0, the system is in an ergodic regime, in which T0(β = 2) receives contributions
from an exponentially large number of terms in the sum. As a result, it is self-averaging, its
distribution has rapidly decaying tails, and sample-to-sample fluctuations are small. The
typical and average values of T0(2) both increase with the number of target states connected
to the initial state |0⟩, which grows exponentially with L. This behavior corresponds to a
standard metallic regime for the conductance on the Hilbert space graph, meaning that the
probability of delocalization from a random initial state |0⟩ approaches 1 as L increases.
This regime is depicted in green in the leftmost part of the phase diagrams Fig. 3.14.

A second regime emerges at intermediate disorder, β⋆ < 2 and ϕa(β⋆) > 0. This implies
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that T0(β = 2) is dominated by rare outliers in the tails of the distribution of the propa-
gators, corresponding to rare system-wide anomalously large resonances between distant
configurations of the system. In this regime the distribution of T0(2) develops heavy tails.
According to our analogy with mean-field classical disordered systems, its typical value at
large L will be ultimately dominated by samples that are rare at the accessible system sizes,
and that feature anomalously large transmission events, leading to delocalization through
rare resonances. As a result, the typical value of the probability that the system reaches one
of the configurations at zero overlap from a random initial state will eventually approach 1
in the thermodynamic limit. However, only a few specific disorder-dependent configurations
will be reached under the unitary evolution, corresponding to an extremely heterogeneous
spreading of the wave-packet on the Hilbert space graph. This regime is depicted in green
in Fig. 3.14, and is separated from the weak-disorder ergodic regime by the crossover line
Wergo(L,∆), indicated by square markers (darker colors correspond to larger L).

Note that the line where ϕq(β = 2) = 0, which defines the typical disorder strengthWtyp,
lies within the intermediate region of the phase diagram. This line separates a regime at
W < Wtyp, where typical samples are delocalized for the system sizes accessible numerically,
from a regime of stronger disorder, where typical samples are localized. The position of this
line agrees well with previous estimates of the MBL transition based on standard observables
and conventional approaches [246, 247]. Importantly, most of the intermediate region
corresponds to parameters where typical samples appear localized. This implies that rare
resonances, ultimately responsible for delocalization to distant configurations over very long
times in the asymptotic regime, are typically absent in the disorder realizations we can
currently probe numerically. Nevertheless, our approach, inspired by mean-field theories of
disordered glassy systems, provides a way to capture the asymptotic effects of such atypical
disorder realizations.

At stronger disorder, the system enters a third regime, characterized by β⋆ < 2 and
ϕa(β⋆) < 0. This corresponds to a genuine localized behaviour, as the typical value of
the transmission T0(β = 2) vanishes (exponentially) in the large L limit even with the
contributions of anomalously large outliers coming from the right tails of G0f . This phase
is shown in shades of purple, with the corresponding crossover lines WMBL(L,∆) marked
by circular symbols. The graded coloring within each region serves as a visual guide to the
system sizes L used in the analysis: darker tones indicate larger system sizes.

A clear finite-size trend is observed: as L increases,Wergo(L) shifts toward higher disorder
(rightward), whileWMBL(L) shifts toward lower disorder (leftward), reflecting a systematic
drift of the phase boundaries with increasing system size. This implies that the broad regime
where the system delocalizes through rare events shrinks upon increasing L. This leaves
open the possibility that the entire intermediate region corresponds to a finite-size pre-
thermal crossover [257, 258], and that in the thermodynamic limit there is a direct transition
from the ergodic phase to the MBL phase, i.e. that the two transition lines Wergo(L,∆) and
WMBL(L,∆) may converge as L→ ∞.

This systematic drift of the transition point differs significantly from what was observed
when applying the same method to the random field Ising model in a transverse field (also
known as the Imbrie model), studied in Ref. [281]. The precise origin of the discrepancy
between the two models remains unclear at present, though it certainly calls for further
investigation.

Furthermore, the crossover lines found in the spin and in the Anderson basis are quantita-
tively different. This difference becomes more pronounced at small ∆. In particular the spin
basis seems to perform poorly in detecting localization at small values of the interaction. This
is especially evident at∆ = 0—indicated by the horizontal black line—where the eigenstates
of the Hamiltonian are tensor products of eigenstates of the single-particle Anderson model
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Fig. 3.14: Phase diagram
of the system at the center
of the energy spectrum,
shown in the ∆–W plane.
Crossover lines between the
three regimes are indicated
as follows: Wergo (square
markers), WMBL (circular
markers), andW typ

MBL (solid
transparent lines), each
plotted for the system
sizes indicated in the color
scale. The three identi-
fied regimes—ergodic,
delocalization via rare res-
onances, and many-body
localization—are shaded
in cyan, green, and purple,
respectively. Gradients
within each colored region
serve as a visual guide to
distinguish crossover lines
estimated for different
system sizes: regions iden-
tified from smaller sizes are
darker and get lighter upon
increasing L.

in one dimension. These single-particle eigenstates are known to be localized for any finite
value of the disorder strength W , with a disorder-dependent characteristic localization
length scale ξloc. These localized eigenstates are not aligned with the spin basis states. As a
result, when the system is initialized in a random spin basis state, the wavepacket spreads
dynamically until it ’accommodates’ into a superposition of eigenstates where the initial
condition has a strong support. This evolution corresponds to a partial spreading—from a
single spin basis state to a ’blob’ of eigenstates whose typical size scales as ξL/2loc , in which the
system is properly localized at sufficient strong disorder. However, to correctly recognize
this partial spreading does not correspond to proper delocalization, it is necessary that the
system size satisfies L≫ ξloc.

For the system sizes accessible in numerical simulations, this condition is only met at
sufficiently strong disorder, where the localization length is small enough compared to the
system size. At smaller disorder, the localization length ξloc becomes large, introducing
strong finite-size effects that hinder the observation of the localization behavior. This implies
that at small ∆ and moderateW , the spin basis is not well suited for the method, as it differs
too much from the basis formed by the many-body localized eigenstates of the Hamiltonian.
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This is why, in our analysis using the spin basis, the transition lines appear essentially vertical
as ∆ decreases. In particular, we can explicitly verify that our method in the spin basis
fails to correctly capture localization at smallW when ∆ = 0. For these reasons, we have
restricted our analysis in the spin basis to the regime ∆ > 0.25, below which it becomes
unreliable.

Fig. 3.15: Hilbert space graphs for L = 8 shown in the spin basis (left) and the Anderson
basis (right). The central vertex represents a random initial condition in the middle of
the energy spectrum, that is a basis state of the Hamiltonian. All vertices of the graph
are connected with black edges denoting the distance in the Hilbert space graph, given by
number of applications of the Hamiltonian. In the spin basis we use concentric blue-dashed
circles to aid the identification of these equidistant vertices, as the structure in this case is
more irregular. The red colored vertices correspond to basis states belonging to the equator
set E in both bases.

Additionally, the spin basis systematically predicts finite-size transitions at stronger
disorder values compared to the Anderson basis. This leads to a substantial quantitative
difference in the width of the regime where delocalization is driven by rare events. The
origin of this discrepancy appears to be twofold.

First, as discussed above, the nature of the initial state plays a crucial role and depends
strongly on the basis in which it is defined. In the Anderson basis, each basis state corre-
sponds to a specific configuration of localized single-particle orbitals and is therefore a local
modification of an eigenstate of the local integrals of motion (LIOMs). As such, an initial
condition prepared in an Anderson basis state is expected to exhibit a small spreading in
the MBL phase. In contrast, an initial state defined in the spin basis is expected to spread
over many other vertices in Hilbert space—specifically, over all those LIOM eigenstates
on which the initial state has significant projection—even in the MBL phase. This initial
spreading leads to pronounced finite-size effects whenever L ∼ ξloc. Secondly, there is a
mismatch between the equator sets A0(q = 0) and S0(q = 0), used to identify target basis
states at large distance from the initial state |0⟩. In the Anderson basis, all target states
|f⟩ ∈ E = A0(q = 0) lie at the same graph distance from |0⟩ on the Hilbert space graph,
(defined as the length of the shortest path between |0⟩ and |f⟩, i.e., the minimum number
of applications of the off-diagonal part of the Hamiltonian needed to connect them). In
contrast, the target states in the spin basis, |f⟩ ∈ E = S0(q = 0), have varying distances
from |0⟩, as different vertices have different degrees. The degree depends on the number
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of domain walls present in each basis state, which can fluctuate from 2 to L, as explained
in Sec. 3.3.2.

This difference between the two basis is illustrated in Fig. 3.15, where we present the
complete Hilbert space graph for the case L = 8 in both bases. The central vertex represents
a randomly chosen initial condition with energy near the middle of the many-body spectrum.
All edges connecting the Hilbert states through applications of the off-diagonal part of the
Hamiltonian are shown. Vertices are arranged radially outward according to their distance
on the graph from the central vertex |0⟩. In the spin basis, we overlay concentric circles to
help identifying the vertices that are equidistant from |0⟩, as the structure in this case is
more irregular due to the fluctuating connectivity the nodes. While in the Anderson basis
all target states lie at the same graph distance from the initial condition, the targets in the
spin basis are more dispersed: a large fraction of them are at a distance L/4 on the graph,
but others are found at larger distances. Some of these target states are even located at the
maximal possible distance from |0⟩, reflecting the broader distribution of distances between
spin configurations at zero overlap in the spin basis.

However, as the system size increases, the differences between the two computational
bases are expected to diminish. On the one hand, due to the local nature of the LIOMs,
when L≫ ξloc, the ‘blobs’ representing LIOM eigenstates in the spin basis become effectively
point-like: their typical spatial extent remains much smaller than the total Hilbert space
volume. On the other hand, as L increases, most target states tend to concentrate uniformly
around a distance L/4 from the initial state, since the majority of nodes on the Hilbert space
graph contain approximately L/2 domain walls. As a result, we expect the transition lines
to the MBL regime to eventually converge to a common value, independent of the choice of
computational basis.

Remarkably, even very weak interactions (e.g., ∆ = 0.05 in the Anderson basis, see
Fig. 3.14) yield a finite typical value of T0, signaling delocalization for the finite system
sizes considered. In other words, both transition lines, WMBL and W typ

MBL, remain finite at
small ∆, indicating a discontinuous departure from the Anderson insulator at ∆ = 0, where
localization persists at arbitrarily small disorderW . This provides further numerical evidence
of the non-perturbative effect of interactions, consistent with the spin–spin correlation
analysis and the updated XXZ phase diagram reported in Refs. [279, 280].

3.6.2 Dependence on the target states distance
In this section, we modify the selection of target states, which so far has been restricted to
the equator set E . Specifically, to investigate the progressive spreading of the wave packet
onto configurations at increasing distances, we vary the parameter q in the sets S0(q) and
A0(q), defined in Eq. (3.107), for the spin and Anderson bases, respectively. We reintroduce
the superscript on the overlap value, q → qS,A, to explicitly indicate the basis—spin (S) or
Anderson (A)—in which the overlap is being measured. We reparametrize these overlaps to
define a correlation distance ζS,A, which serves as an ultrametric distance in Hilbert space,
and is defined by

ζS,A = 1− qS,A . (3.129)
where ζS,A = 0 trivially corresponds to the initial random basis state itself, while ζS,A = 1
represents completely uncorrelated states, where half of the spins have been flipped in
terms of the spin basis or, equivalently, where half of the spinless-fermions have hopped to
different orbital occupations, in the Anderson basis. We will omit the cases 1 < ζS,A < 2,
that correspond to anti-correlated basis states with respect to the initial condition |0⟩. We
refer to ζS,A as the correlation distance. In what follows we will restrict the analysis to ∆ = 1.

161



Chapter 3 – The Importance of Rare Events in Many-Body Localization

We have computed T0(β) while varying the correlation distance ζS,A between the target
nodes and the initial condition, for several values of the disorder strength W and system
sizes L, averaging over many disorder realizations and many initial states |0⟩ randomly
chosen close to the middle of the many-body spectrum. The procedure follows the same
steps as in previous sections, with the only difference being the new dependence of the
target states on ζS,A. We evaluate the annealed free-energy ϕa(β, L, ζ

S,A) and extract the
corresponding values of β⋆ and ϕa(β⋆) for different values of the disorder close to the ergodic
and MBL transitions, respectively. From these, we determine the characteristic distances that
fulfill β⋆(ζS,A) = 2 and ϕa(β⋆, ζ

S,A) = 0 by performing linear interpolations. An example of
this procedure is shown in Fig. 3.16 for the spin basis, with L = 20 and ∆ = 1, an equivalent
example for the Anderson basis is shown in App. A4.

Fig. 3.16: Calculation of (a) β⋆ and (b) ϕa(β⋆) as functions of the correlation distance ζS, for
∆ = 1 and L = 20. The values of the disorder widths considered are shown in the legend.
Horizontal gray dashed lines indicate the reference values β⋆ = 2 and ϕa(β⋆) = 0.

These characteristic distances define crossover lines that separate different regimes in
the W -ζ plane, as shown in Fig. 3.17 for both the spin (left) and Anderson (right) bases.
For the condition β⋆(ζS,A) = 2, we used the largest system size, L = 20, where such a value
of ζS,A is obtained. In contrast, for the condition ϕa(β⋆, ζ

S,A) = 0, we display the results for
three different system sizes: L = 12, 16, and 20.

In the first region (shaded green), the system remains ergodic within the distance defined
by β⋆(ζS,A) = 2: A randomly chosen initial basis state has a high probability of spreading
uniformly to any other state in Hilbert space within the corresponding correlation distance.
Interestingly, the curve β⋆(ζS,A) = 2 bends to the right (i.e., toward larger disorder values)
as the distance increases. This indicates the existence of a disorder window (1.5 ≲ W ≲ 3
approximately) where the spreading of the wave packet is inhomogeneous and driven by
rare resonances at short distances, but recovers a uniform, ergodic-like spreading over an
exponential number of configurations at larger distances. A similar behavior is observed on
the metallic side of the Anderson model on the Bethe lattice [350, 419].

In the white region, the spreading of the wave packet from the initial state |0⟩ is highly
inhomogeneous and dominated by a few rare resonances in the broad tails of the propagator
distribution at the corresponding distances. As explained above, at weak disorder, for
W < Wergo, the system eventually recover an ergodic behavior at large distances, after
crossing the crossover line separating the white from the green region. In the intermediate
regime, Wergo < W < WMBL, the dynamics is still driven by rare resonances up to the
distances corresponding to states with zero overlap with |0⟩. As a result, the spreading
remains inhomogeneous across the entire Hilbert space. For W > WMBL, the transport is
dominated by a few O(1) resonances at short distances; beyond that, i.e., for distances
within the gray regions, they become so rare that the probability for a random initial state
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Fig. 3.17: Relevant regions
in the W–ζS,A plane for
bosons (top) and fermions
(bottom) at ∆ = 1. The
transition to the ergodic
region (green) is ob-
tained from β⋆(ζ

S,A) = 2,
while the boundaries of
the inaccessible regions
(gray shades) follow
ϕa(β⋆, ζ

S,A) = 0 for each
system size. Critical disor-
der widthsWergo andWMBL

are shown as dashed lines,
colored by system size. On
each vertical axis, a random
initial basis state (ζS,A = 0)
is indicated, followed by
example basis states at
increasing distances ζS,A.
Equator states at ζS = 1
represent complete decor-
relation from the initial
state.

to reach such distant configurations decays exponentially with system size—even when
accounting for the statistical weight of rare events. The crossover distance, determined by
the condition ϕ(β⋆, ζS,A) = 0 and marking the boundary of the gray regions, represents the
maximal Hilbert space correlation length accessible under unitary dynamics from a typical
initial state. Consequently, in the large-L limit, the gray regions become asymptotically
inaccessible for typical initial conditions and disorder realizations.

As the disorder strength grows, the system becomes progressively confined to a smaller
portion of Hilbert space near the initially prepared configuration. In other words, resonant
transmissions become increasingly short-ranged. This behavior becomes more pronounced
with larger system sizes, as the inaccessible region of Hilbert space expands, restricting
more and more the set of basis states available for delocalization. This behavior reflects
the persistent memory of the initial condition at strong disorder, where the values along
the transition line ϕa(β⋆) = 0 define the maximum correlation distance (i.e., the minimal
overlap) the system can explore.

Note that even deep within the MBL phase (e.g. W = 20) there still exist rare resonances
in the Hilbert space that allows the system to flip a finite fraction of the spins and partially
decorrelate from the initial condition. This is consistent with the picture of resonant cat
states [438], formed by two nearly degenerate spin basis states that differ by a fraction of
spin flips. These rare events can drive partial delocalization even in strongly disordered
regimes, within the system sizes considered.
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3.6.3 The distributions of the Hilbert space Landauer tranmssions

In this section, we will explicitly examine the probability distributions of the Hilbert space
Landauer transmissions T0, for several disorder widths W and system sizes L. In Fig. 3.18,
we show the results for three different system sizes (L = 12, 16, 20) and three disorder
strengths (W = 1, 9, 20).

Fig. 3.18: Probability distributions for the Hilbert space Landauer transmission T0, for
the different sizes displayed in the key. For small (left), mid (center), and strong (right)
disorder widths, in both spin (top panels) and Anderson (bottom panels) bases. These
plots are the counterpart of the probability distributions ofFig. 3.9, where the probability
to delocalize to the states at zero overlap from the random initial state is replaced by our
proxy T0. The vertical black-dashed line in the middle panel corresponds to the Hilbert
space Landauer transmission, from a disorder realization that give rise to cat states with
system-wide resonances, for L = 20 (see the main text for a detailed explanation).

At weak disorder, W = 1, the peak of the distribution shifts rightward with increasing
L, and the distributions develop a sharper cutoff. This behavior indicates the absence of
rare outliers and suggests that the typical and average values of T0 are proportional to each
other, growing as a power of L due to the increasing number of outgoing channels NE . This
reflects the fact that ϕq,a(β = 2) > 0, signaling an ergodic regime in which the typical value
of T0 receives contributions from an exponential number of target states |f⟩.

In contrast, for stronger disorder values,W = 9 andW = 20, the peak of the distribution
shifts leftward, while the tails remain broad. This indicates the presence of significant
fluctuations, causing the average and typical values of T0 to differ substantially. According to
Derrida’s theory of the freezing transition of directed polymers and its generalizations [421,
439] the exponent governing the tail of the probability distribution of T0(β) is related to the
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freezing inverse temperature β⋆ via:

P(T0(β)) ≃
e−β2

⋆ lnNEϕq/β

T 1+β⋆/β
0

, (3.130)

This behavior has a clear intuitive origin: for β < β⋆, the typical and average values of
T0 remain proportional, since the average is dominated by the bulk of the distribution
rather than its tail. In contrast, for β > β⋆, the average becomes dominated by rare, large
fluctuations, as the tail of the distribution decays with an exponent smaller than 2. We
test this prediction by extracting the value of β⋆ from the power-law fit of the tails of the
distribution P(T0(β = 2)). The values of β⋆ found from the fits of the power-law tails of the
distributiosn are displayed in the key of Fig. 3.18 and shown in Fig. 3.13 with a star symbol
for the largest system size L = 20 and disorder widthW = 9, showing consistency with the
value of β⋆ found from the position of the minimum of the annealed free-energy.

Furthermore, in a recent study by some of the co-authors [438], the existence of an
intermediate, non-ergodic phase in the disordered Heisenberg chain was linked to the
emergence of unusual high-energy eigenstates exhibiting anomalously strong longitudinal
spin–spin correlations [279, 280]. These eigenstates appear in nearly degenerate pairs,
sparsely distributed across the exponentially large many-body spectrum. Remarkably, their
properties are accurately captured by a simple toy model of cat states. These cat states take
the form |ψ⟩± ∼ |I1⟩ ± |I2⟩, where |I1⟩ and |I2⟩ are spin-basis states.

The occurrence of such cat eigenstates is frequent in the intermediate disorder regime
(W ∼ 10), but they become increasingly rare at stronger disorder (W ≳ 20). Intuitively,
the presence of a resonant cat state in a localized system can enhance the probability of
delocalization: if a random initial spin basis state has a significant projection with one
of these cat states, a resonance between |I1⟩ and |I2⟩ enables the system to explore both
configurations, thus promoting delocalization. However, such states are rare in the spectrum,
and their impact on the decorrelation from a typical random initial state—and their direct
connection to delocalization via rare resonances—remains unestablished.

To fill this gap, we test this picture with our observables defined in Hilbert space, and
we compute the Hilbert space Landauer transmission T0—averaged over several initial
conditions—for a specific disorder realization at system size L = 20 and disorder strength
W = 9. This particular realization hosts pairs of nearly degenerate eigenstates exhibiting
strong spin–spin correlations, consistent with the cat-state scenario [438]. The corresponding
value of T0 is indicated by the black dashed line in the middle panel of Fig. 3.18 forW = 9.
Interestingly, this sample is also classified as a rare event in terms of the Hilbert space
Landauer transmission, as its corresponding T0 lies within the tail of the distribution, where
P (T0(β = 2)) ≈ 10−6. This observation suggests a potential link between atypical values of
Hilbert space observables—such as T0—and real space features like longitudinal spin–spin
correlations. This intriguing connection merits further investigation.

3.7 Rare vs typical samples
One of the key features of our proxy observable for the probability to decorrelate from a
random initial state, T0, is that it naturally allows us to distinguish between typical and rare
samples. In this section, we take advantage of this property to explore how the spectral
and transport features differ when the quenched disorder corresponds to rare versus typical
realizations. Specifically, rare samples are defined as disorder realizations of the random
fields hi for which the corresponding value T0, averaged over multiple initial conditions,
lies in the tails of the distributions shown in Fig. 3.18. In contrast, typical samples are
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selected from the vicinity of the peak of the T0 distribution, representing the most probable
values. We denote these rare and typical realizations of random fields as {hi}rare and {hi}typ,
respectively.

The structure of the eigenstates’ amplitudes

We first probe these typical and rare samples by diagonalizing their associated Hamiltonian,
through an implementation of Chebyshev filter diagonalization [440] that finds eigenpairs
within the center of the many-body spectrum [441]. We perform this procedure for small
(W = 1), intermediate (W = 9) and strong (W = 20) disorders, for a fixed system size
L = 20.

For each of the several eigenstates found—here numbered with the sub-index α—we
extract the basis state with largest wavefunction amplitude, i.e. I ≡ argmaxI′ |ψα(I

′)|2. For
a given eigenstate α, we order the amplitudes of all other basis states |ψα(J)|2J ̸=I , in terms
of the correlation distance to the most probable state I. This correlation distance is given by

ζS,AIJ = 1− qS,AIJ , (3.131)

for the spin and Anderson bases, respectively. The basic idea is to study the decay of many-
body eigenstates from their main peak, by averaging the wavefunction amplitudes of all
states {|J⟩} at equal correlation distances ζSIJ . The results of this procedure are shown in
the top panel of Fig. 3.19, where we have calculated the corresponding eigenstates for both
rare, {hi}rare, and typical, {hi}typ, realizations of the random fields. We will present the
results associated with the Anderson basis in App. A4.

Fig. 3.19: Basis state amplitudes, within a given eigenstate, as a function of the correlation
distance ζSIJ from the basis state maximal amplitude. The top row of panels shows the
average amplitudes over all spin states that share the same distance ζS, while the bottom
panel displays the maximum amplitudes among those same basis states. Different color tones
correspond to five distinct eigenstates. Dashed lines with triangular markers represent typical
disorder realizations, whereas solid lines with circular markers denote rare realizations.
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At weak disorder (W = 1), the amplitudes of the eigenstates remain nearly constant
across the Hilbert space graph, showing no decay with distance. Fluctuations between
eigenstates are minimal, even across different disorder realizations. In contrast, at stronger
disorder (W = 9 and W = 20), the eigenstates exhibit exponentially fast decay with the
correlation distance ζ(S), becoming strongly peaked around the reference basis state I with
amplitudes of order 1. In this regime, differences between disorder realizations become
apparent: the fluctuations in eigenstate amplitudes are meaningful—specially for the the
intermediate disorder width ofW = 9—and eigenstates from rare disorder realizations tend
to decay more slowly, by 2 orders of magnitudes close to ζ(S) = 1, compared to those from
typical ones.

To further explore this behavior, we modify the previous analysis by taking the maximum
amplitude—rather than the average—among all basis states at a given correlation distance
ζS. This modified approach is illustrated in the bottom panel of Fig. 3.19. The basic idea
is to investigate whether rare, disorder-dependent resonances occurring at specific points
in the Hilbert space graph lead to an inhomogeneous decay of the wave functions along
different paths, resulting in a strong disparity between the average decay and the decay
along the path corresponding to the maximal amplitude.

For weak disorder (W = 1), the change is minimal: the decay remains largely unaffected,
as the eigenstates display ergodic behavior. In this regime, amplitude fluctuations are
small, and the wavefunction remains nearly uniform across the entire Hilbert space graph,
equivalent to its averaged counterpart. In contrast, at strong disorder (W = 9 and W = 20),
the use of the maximum amplitude reveals significant fluctuations between eigenstates,
particularly between typical and rare disorder realizations. In these cases, eigenstates from
typical realizations decay faster than those from rare ones. Moreover, examining individual
eigenstates shows that the decay away from the maximum amplitude is highly anisotropic
across the Hilbert space graph: Specific directions, aligned with the largest amplitudes
exhibit a much slower decay (by 3 or 4 ourders of magnitudes close to ζS = 1, than the
average one. In other words, there exist spin basis states at large Hilbert space distances
whose amplitudes are anomalously large compared to the typical amplitudes at the same
distance.

This effect is especially pronounced at intermediate disorder. It suggests that, in this
regime, delocalization proceeds in a highly heterogeneous manner, along rare, disorder-
dependent paths through the Hilbert space graph. These paths are determined by the
presence of long-range resonances that connect distant basis states and dominate the
eigenstate structure in certain realizations. We will further investigate this structure by
explicitly examining the presence of resonant paths in the Hilbert space graph, as generated
by both typical and rare realizations of the random disorder fields.

Rarefaction of paths on the Hilbert space graph

Our results so far suggest that there is a broad intermediate regime in which delocalization
occurs via a small number of rare long-range resonances on the Hilbert space graph. This
interpretation is also supported by the analysis of the eigenstate structure presented above.
In this section, we further explore this scenario by directly investigating the paths on the
Hilbert space graph that contribute most significantly to the delocalization probability from
a random initial configuration. We adopt an approach that has previously been used by
Lemarié in Ref. [289] to study the zero temperature properties of single-particle Anderson
localization in a two dimensional geometry.

In the standard setup of quantum transport involving a scattering geometry, as illustrated
schematically in Fig. 3.10, electrons are injected from the leads on the left and extracted
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through those on the right. In the presence of strong disorder within the scattering region,
electron transport becomes highly inhomogeneous. Rather than spreading uniformly, an
electron at zero temperature follows a narrow, meandering path through the disordered
potential landscape—effectively forming a ’trajectory’ or conducting channel connecting the
leads [413]. This behavior contrasts with the weak-disorder, diffusive regime, in which the
electron’s probability distribution is approximately uniform across the sample. A central
challenge, therefore, is how to visualize or reconstruct these hidden transmission paths in
the localized regime.

As introduced in Refs. [287, 288], one can devise a clever numerical perturbation
technique, inspired by experimental scanning gate microscopy methods [442, 443] to
visualize these dominant paths. In such experiments, a movable tip locally modifies the
potential landscape of a nanoscale conductor, and the resulting changes in conductance
reveal the regions through which current flows. The numerical analog operates as follows: for
a given disordered sample, one slightly perturbs the on-site disorder at a specific location and
measures how much the conductance g0 between the incoming and outgoing leads changes.
If the perturbed site lies along a main transmission path, even a local modification will
significantly affect the coherent transport, resulting in a noticeable change in g0. Conversely,
if the site is far from the dominant path (i.e., weakly visited by the electron’s wavefunction),
the conductance remains essentially unchanged. By systematically applying this ’poke test’
across all sites, one obtains a spatial map of conductance sensitivity: regions where g0 is
highly responsive to local perturbations directly identify the dominant current-carrying
pathways.

Lemarié’s work builds on the same principle, applied to quantum transport of non-
interacting electrons at zero temperature in 2d. In this approach, the on-site disorder
potential εi of the single-particle Anderson model is locally perturbed according to εi → −εi.
The resulting conductance gi is then computed for each perturbed site. To quantify the
impact of the local perturbation, the relative conductance response at site i is defined as

δg(i) ≡ |gi − g0|
g0

(3.132)

where g0 is the original conductance of the sample, and gi is the conductance after flipping
the disorder at site i.

As in Anderson localization, we argue that in the strong disorder regime, the propagation
of a fictitious particle in Hilbert space becomes highly inhomogeneous, dominated by an O(1)
number of transmission paths on the Hilbert space graph. To probe this structure, we adopt
an analogous approach to the one outlined above. To this aim, we formally reintroduce
the semi-infinite leads: an incoming lead is connected to the initial basis state |0⟩—with
energy in the middle of the many-body spectrum—and several outgoing leads connected
to each of the target states |f⟩ ∈ E . The fictitious particle is then injected at |0⟩ and may
propagate through the network of allowed transitions in Hilbert space before being absorbed
at one of the target states. This defines an effective transport setup in Hilbert space, where
the network of paths connecting |0⟩ to the various |f⟩ ∈ E plays the role of the scattering
geometry. For simplicity we only perform this analysis in the spin basis.

The effect of the leads is incorporated by adding a self-energy term, −iΣI , to the diagonal
element of the Hamiltonian in Eq. (3.78) for the respective basis state at which the lead is
connected. This is implemented via the replacement

Ĥ → Ĥ − iΣI |I⟩ ⟨I| , (3.133)
with I corresponding to both the inital basis state |0⟩, and its respective targets |f⟩ ∈ E .
The addition of an imaginary part of the self-energies of the leads is equivalent to inserting
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dissipation to the Hilbert space-graph at the vertices of interest. A pictorial representation
of this construction can be seen in Fig. 3.20.

In our case the local perturbations to the disordered potential are introduced indirectly,
by modifying the diagonal elements of the sparse Hamiltonian, which encodes the quenched
disorder from a specific realization of the random fields. Specifically, we alter the diagonal
element associated with the basis state |I⟩—a vertex in the Hilbert space graph—through:

H′
II = HII + 2(E −HII) |I⟩ ⟨I| , (3.134)

where E is the average energy over all basis states—or equivalently, the average of the
diagonal elements of the Hamiltonian matrix H. In other words, this perturbation flips
the value of the energy associated to the state |I⟩ with respect to the mean E. We repeat
this procedure for each of the N diagonal elements, and calculate the associated resolvent
matrix each time. Instead of doing this exhaustively, we calculate it using perturbation
theory, which becomes exact in this case and reduces to the Sherman-Morrison formula for
inverting matrices under 1-rank perturbations. Using this formula

G ′ = G − 2(HII − E)G |I⟩ ⟨I| G
1 + 2(HII − E)GII

, (3.135)

we can recompute the Hilbert space Landauer transmissions perturbed at each vertex I,
which we call T (p)

0 (I), and we measure the (normalized) response defined as

δg(I) ≡ |T (p)
0 (I)− T0|∑

I

|T (p)
0 (I)− T0|

. (3.136)

Fig. 3.20: Scattering geometry to measure the reaction of the Hilbert space conductance
and responses to small perturbations. The initial basis state at the center of the many-body
spectrum is connected to a semi-infinite lead through which fictitious particles are injected.
Similarly, semi-infinite right leads are connected to the target vertices |f⟩, that belong to
the equator E .

We have calculated the response δg at low, intermediate, and large disorder strengths.
We have repeated the calculations for typical samples (for which T0 is in the bulk of the
probability distribution) and for rare samples (corresponding to disorder realizations that
produce values of T0 in the tails of the distribution). In order to visualize the effect of
the perturbation—that can be interpreted as the conductance generated by the incoming

169



Chapter 3 – The Importance of Rare Events in Many-Body Localization

fictitious particles in the Hilbert space network—we normalize δg in the following way:

δg′(I) =


0.5

δg(I)− δgmin

δg(0)− δgmin

, if δg(I) < δg(0)

0.5 + 0.5
δg(I)− δg(0)

δgmax − δg(0)
, if δg(I) > δg(0)

0.5, otherwise.

(3.137)

In words, we normalize the response δg(I) onto a scale from 0 to 1. The initial basis state |0⟩
(to which the incoming semi-infinite lead is connected) defines the reference of this scale,
because we are interested in probing how strong or weak each other vertex’s response is
relative to the initial signal at |0⟩ here denoted as δg(0).

Fig. 3.21: Rarefaction of paths in the Hilbert space graph (for the spin basis) for L = 16, for
three disorder strengths. The color scale is set according to the central vertex δg′ = 0.5.

We show the results of this construction in Fig. 3.21 for L = 16. The initial state |0⟩
is placed at the center in each of the six diagrams, and all other vertices connected to it
are also shown. These vertices are arranged radially outward, ordered according to their
Hilbert space distance from |0⟩, i.e. same radius implies the same distance in the graph from
|0⟩. The vertices are then colored according to the scale of δg′. Darker colors correspond to
δg′ > 0.5, all the way to black for δg′ = 1. These are vertices that exhibit a strong response
to the perturbation of T0, indicating that the corresponding basis states lie along dominant
transmission paths originating from the initial state |0⟩. In contrast, vertices shown in lighter
colors (with δg′ < 0.5) exhibit a weaker response, suggesting a low probability for the
fictitious particle to reach those sites from the initial condition. Although the reaction δg′ is a
variable assigned to the vertices of the graph, we have colored the edges to aide visualization.
Hence, the edges are colored according to the value of the preceding vertex connected to
them.

For weak disorder strength (W = 1), both rare and typical disorder realizations exhibit
a proliferation of transmission paths in Hilbert space, enabling the transport of the injected
fictitious particles to distant vertices in a uniform wa, with most of the target states at large
distance from |0⟩ reached by dark paths. When disorder is increased (W = 9), these reactions
become smaller and dark conducting paths are strongly rarefied. For typical samples these
rarefied conducting paths do not reach far away spin configurations, corresponding to the
suppression of wave-packet spreading and localization. Yet, rare disorder realizations from
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the tails of the distribution of T0 exhibit much more reactive paths than typical samples,
some of them extending to a few basis states at large distances. This corresponds to a
strongly inhomogeneous spreading of the wave-packet starting at |0⟩, and delocalization
along specific disorder-dependent paths, occurring only for rare disorder realizations. At very
strong disorder W = 20, finding subgraphs with highly-reactive paths is even more rare—
although possible—but even these rare paths are unable to reach distant spin configurations,
even for rare disorder realizations, corresponding to complete suppression of long-distance
spreading of the wave-packet and a hallmark of genuine MBL.

More quantitatively, the contribution of these strongly reactive paths can be characterized
using the (average and typical) inverse participation ratio (IPR) associated with the reaction
amplitudes, they are defined as (recall that according to our definition (3.136) the response
is normalized to one, i.e. ∑I δg(I) = 1):

I2(δg) = E

[∑
I

δg(I)2

]
,

Ityp
2 (δg) = exp

(
E

[
log
∑
I

δg(I)2

])
,

(3.138)

where E[· · · ] is taken for several initial conditions and disorder realizations. In Fig. 3.22,
we show the behaviour of the IPR as a function of the system size L. The definition of the
typical IPR suppresses the influence of rare events, thereby capturing the behavior of typical
disorder realizations.

For weak disorder (W = 1), the response values are approximately uniform across all N
basis states. In this regime, the inverse participation ratio (IPR) scales as 1/N , decreasing
exponentially with system size L and reflecting the contribution of an extensive number
of transmission paths. In contrast, for stronger disorder (W = 9, W = 20), only a small
O(1) number of sites—not growing with the size of the Hilbert space—exhibit significant
responses, leading to an IPR that saturates to a finite plateau over the system sizes studied.

At small disorder (W = 1), the typical and average IPR are essentially equivalent. At
large disorder (W = 9, W = 20), the typical IPR is consistently slightly smaller than the
average one. This small difference highlights the presence of rare disorder realizations with
exceptionally reactive dominant paths, which significantly affect the arithmetic average.

These results are consistent with the picture developed in Sec. 3.7, which highlights
the strong fluctuations in the structure of eigenstates near the middle of the spectrum.
In the present context, this heterogeneity manifests as a broad distribution of dominant
transmission paths in the Hilbert space graph, particularly pronounced in the intermediate
disorder regime (W = 9).

3.8 Conclusions and outlook
In this work we have developed an approach based on an analogy with a class of mean-field
disordered glassy systems that allows one to take into account the statistical weights of rare
events for the MBL transition. We have extended the analysis of Ref. [281] by applying this
method to the XXZ model varying the strength of the interaction∆, considering both the spin
and Anderson bases. Our study emphasizes the role of rare long-range resonances—arising
in rare disorder realizations—in destabilizing the MBL transition at finite sizes in a broad
intermediate disorder range. These rare system-wide resonances are identified as the outliers
in the probability distribution of transition amplitudes between distant configurations of the
system in Hilbert space, expressed in the chosen computational basis. Concretely, we use
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Fig. 3.22: Inverse participation ratios (I2) associated to the reaction term δg as a function
of the system size L. The different curves correspond to average and typical IPR as in
Eq. (3.138).

the propagators |G0f |2 as a proxy for the probability that a system initialized in a random
configuration |0⟩ at time t = 0 is found in the configuration |f⟩—located at large distance
from |0⟩—at infinite time,∑n |⟨f |n⟩⟨n|0⟩|2. Our study complements previous studies focused
on real space observables and spectral signatures of rare events [251, 257, 258, 266, 270,
278–280], by providing a Hilbert space-based perspective.

To correctly evaluate the statistical weight of rare resonances in the asymptotic limit
of large system size L, we exploited an analogy with classical disordered systems and
introduced an auxiliary parameter β that plays the role of an effective temperature. This
extension of the parameter space allows us to tune the influence of extreme outliers in the
heavy-tailed distribution of propagators, and to identify, for each given disorder strengthW ,
the value of β at which rare events begin to dominate the statistical measure.

This method reveals the existence of three distinct regimes: (i) an ergodic phase, (ii) an
intermediate regime in which delocalization is driven by rare long-range resonances in an
otherwise localized background, and (iii) a genuinely many-body localized phase, which
remains stable even in the presence of anomalously large outliers emerging from the tails
of the distributions of the propagators. We show that typical samples that we can probe
numerically lack the system-wide resonances that ultimately lead to delocalization in the
asymptotic limit in the intermediate regime. Yet, our approach inspired by the analogy with
mean-field glassy systems captures their asymptotic contribution.

It is important to acknowledge the potential limitations and drawbacks of our approach.
As explained in Sec. 3.5.2, for numerical convenience we do not perform a systematic study of
the statistics of the ‘true’ order parameter for delocalization—namely, the typical value of the
probability to delocalize from a random initial state after infinite time, PE—but instead study
the typical value of the unregularized Hilbert space transmission T0. This approximation is
partially justified by the fact that the typical values of T0 and PE exhibit the same scaling
with L when both decay exponentially with L (see Sec. 3.5.2 and Fig. 3.11), since in this
regime the regularization of poles becomes asymptotically unnecessary. However, at finite
L, the typical values of PE and T0—obtained by computing E[lnPE ] and E[ln T0]—begin to
decrease exponentially with L well before the MBL transition. In fact, throughout almost
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the entire intermediate region (ii), which is dominated by rare resonances, both eE[lnPE ] and
eE[ln T0] decay exponentially with L. We then employ a large-deviation approach to determine
whether rare events in the tail of the probability distribution might alter this scaling when
properly accounted for at large L. We find that in this intermediate regime, the system is
indeed delocalized despite the exponential decay of eE[lnPE ] and eE[ln T0] at accessible system
sizes.

A legitimate question then arises: could the large outliers that we suggest destabilize
localization be overestimated due to the lack of regularization in T0? In this sense, our MBL
threshold should be viewed as an upper bound—some of the rare events we consider crucial
for MBL destabilization might be spurious artifacts that would disappear under proper
regularization. To address this concern, we note that when applied to benchmark cases,
our method performs well in predicting phase boundaries. Specifically, we have tested it on
the Anderson model on the RRG [420] and on the Rosenzweig-Porter model [281]. For the
Anderson model on the RRG, the method locates the transition atWc ≈ 18, very close to the
exact value. We also identify an intermediate region at accessible system sizes where eE[ln T0]

decreases exponentially but the system will eventually delocalize due to rare outliers of T0.
Importantly, we observe a drift of this intermediate region toward larger disorder values
as L increases, consistent with the drift observed in numerical exact diagonalizations. For
the Rosenzweig-Porter model, the method accurately identifies all three phases—localized,
fractal, and delocalized—even at relatively small system sizes. In summary, while our
method might in principle overestimate the effect of large resonances in the intermediate
phase, this issue does not appear in the two benchmark cases we have studied.

By studying the model in two different computational bases provides another way to
probe the limitations of our method. In particular, we examined how the structure of
random initial conditions differs in the spin and Anderson bases. This difference gives rise
to significant finite-size effects at intermediate disorder. Nevertheless, the overall physical
picture remains robust and consistent with recent findings. Notably, the finite-size phase
diagram obtained in the Anderson basis closely matches the results of Refs. [279, 280],
where alternative approaches based on real space observables—such as longitudinal spin-spin
correlation functions—were employed.

Surprisingly, in our case, finite-size effects manifest differently than in the random-field
Ising model in a transverse field previously studied in Ref. [281]. In that model, the method
yields a critical disorder strength for the MBL transition that remains approximately stable
with increasing system size. In contrast, in the present study, we observe a systematic drift
of the critical disorder strength for the MBL transition towards lower values as the system
size L increases. Simultaneously, the apparent boundary of the ergodic phase shifts towards
higher disorder strengths with growing L. This concomitant trend suggests that the two
crossover lines may ultimately merge into a single critical line in the thermodynamic limit,
signaling a direct transition from the ergodic phase to the MBL phase. In this scenario, the
broad intermediate regime—where delocalization is mediated by rare, system-spanning
resonances—would then correspond to a finite-size prethermal crossover that disappears
at large L, as proposed in Ref. [257]. The origin of the discrepancy between the finite-
size behavior observed here and in Ref. [281] is both intriguing and not yet understood.
Further investigation is necessary to clarify the mechanisms behind these differing trends.
In particular, it would be highly interesting to investigate whether the finite-size effects
reported here can be interpreted within the framework of the renormalization-group flow
recently proposed in Refs. [444, 445].

To resolve the spatial structure and statistics of rare resonances, we investigate the
progressive delocalization from a random initial state as a function of the distance between
the initial and target configurations in Hilbert space. In the strong disorder regime, deep in
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the MBL phase, we find that the maximum reachable distance decreases with increasing
disorder. As a consequence, at strong disorder, resonant transmission processes remain
confined to a small region of Hilbert space around the initial state, allowing only for partial
delocalization involving a limited fraction of the degrees of freedom. The extent of this
region decreases with increasing system size, reflecting the progressive suppression of rare
long-range resonances within the MBL phase. At weak disorder, in the ergodic regime, we
observe that uniform spreading of the wavepacket is recovered only at large distances, while
at shorter distances, strong resonances responsible for delocalization do not uniformly cover
Hilbert space at that scale.

At large disorder, the spatial structure of high-energy eigenstates in Hilbert space exhibits
pronounced fluctuations across different disorder realizations, reflecting the difference
between typical and rare configurations of the disorder. To probe this heterogeneity, we
identified and visualized the dominant resonant paths that form on the Hilbert space
graph. This analysis, inspired by approaches to inhomogeneous quantum transport in real
space networks [287–289], offers a novel perspective on the MBL instability: it stems from
the inclusion of rare resonant paths, which, however, become progressively shorter and
increasingly scarce deep within the MBL phase.

This picture of rarefied transmission paths in Hilbert space presents an intriguing di-
rection for further exploration. The original analogy with Anderson localization in two
dimensions [289] expands into how these dominant paths pinned by disorder can change
suddenly and abruptly producing avalanches—as conceived in the classical setting of directed
polymers—when the energy is varied. The depinning transition of the polymers through
avalanches can be directly related to the singular behavior of the overlap correlation function
between eigenstates at different energies which, in our case, corresponds to the correlation
between the Hilbert space Landauer transmissions at different values of the energy—for a
given disorder realization. It would be therefore interesting to investigate whether some
signatures of these avalanches and shocks are present also in the quantum problem.

Although the importance of system-wide resonances in determining the properties of the
MBL transition and the stability of the localized phase has been highlighted in this and several
related works [251, 257, 258, 265, 266, 270, 273, 278–281], a proper characterization of
the disorder realizations that lead to the formation of these resonances remains an open
question. A first step in this direction was the proposal that such many-body resonances
manifest as nearly degenerate cat states [265, 267, 272], a hypothesis recently tested in
Ref. [438]. The anatomy of these nearly degenerate eigenstates reveals resonant events
whose probability decreases with increasing disorder strength, consistent with the findings
of the present work. Furthermore, rare disorder realizations at intermediate disorder, whose
spectra contain such sparse, nearly degenerate eigenstate pairs, also exhibit probabilities to
delocalize from a random initial state that are classified as ’rare events’ under our metric,
appearing in the tails of the distribution of T0.

However, a proper characterization of the structure of rare disorder realizations that
give rise to anomalously large delocalization probabilities remains to be performed. This
task is highly computationally demanding when using standard sampling techniques. A
promising direction would be to employ importance sampling strategies [446]: by biasing the
sampling towards disorder configurations that enhance the likelihood of rare resonances, one
could develop a genuine large-deviation framework and obtain a more accurate statistical
characterization of the spatial structure of these rare events.

Similarly, understanding whether rare delocalization events are favored by the presence
of extended regions with anomalously weak disorder—as suggested by the avalanche sce-
nario [100, 243, 248–254]—remains an open problem. To make progress in this direction,
it would be valuable to apply our method to study the system’s response when coupled to a
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thermal bath [100, 251, 257, 258, 260, 447, 448]. Such an analysis could help reveal the
signatures in the Hilbert space propagators of rare ergodic bubbles in real space.

The methods proposed here can also be applied to other systems, for example, models of
interacting fermions in a quasi-periodic potential, similar to the one realized in cold-atom
experiments [361, 449, 450]. In this case, the only source of randomness comes from the
choice of the initial state. It would be useful to compare the statistics of rare resonances
found in the quasi-periodic case with those of uncorrelated random fields. This could
help discriminate between the effects of rare resonances created by large segments with
anomalously small values of the disorder in real space, and those due to rare paths with
anomalously strong transmission amplitudes in Hilbert space.
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A1 Details of the numerical simulations
The task at hand reduces to calculate the 0f elements for the resolvent matrix

G0f (E) = (EI−H)−1
0f , (139)

for the energy E in the middle of the spectrum. We have approximated this average energy
by E = TrH

N . The initial conditions denoted by ’0’ are selected by choosing basis states with
energy close to E. Numerically, we do this by selecting the states |0⟩ following

{|0⟩} ≡
{
|0⟩ : E|0⟩ = H00 ∈

[
E − E

η
,E +

E

η

]}
, (140)

where η has been chosen to be η = 64 for intermediate and large sizes L ≥ 14, while η = 32
for the smallest ones, L ≤ 12. As seen in Eq. (139), we could invert the whole matrix EI−H
and extract the entries of interest i.e. the portion of columns ’0’ associated to the chosen
initial conditions. However, inverting the full matrix of size N × N is computationally
expensive. Instead, we directly compute portion of interest by solving the linear system:

(EI−H)Y|0⟩ = δ|0⟩ , (141)
where δ|0⟩ is a vector of zeros except for the entry corresponding to the chosen initial
condition |0⟩, which is set to one. This linear system is solved using the MUMPS [451, 452]
or Pardiso [453] libraries, in their Julia interfaces MUMPS.jl and Pardiso.jl, respectively.
We have performed these calculations in both spin and Anderson bases. The number of
initial conditions N0, as well as the number of samples NS of the disordered fields hi is
given in the table below. They are presented as a function of the system-size L. The total
number of samples, Ntotal = NS × N0, over which the average E[· · · ] is computed, is also
shown—approximately—in the last column. In certain cases—particularly for ∆ = 1 in the
spin basis—we increased the number of samples where it was deemed necessary.

L N0 NS Ntotal

12 2L/2−2 125952 2× 106

14 2L/2−2 16384 5.25× 105

16 2L/2−2 5120 3.30× 105

18 2L/2−2 1280 1.60× 105

20 2L/2−2 512 1.30× 105

22 2L/2−1 128 1.30× 105

Table 2: Simulation values in the spin basis

L N0 NS Ntotal

8 2L/2−2 1638400 6.50× 106

12 2L/2−1 65536 2× 106

16 2L/2−1 2048 2.60× 105

20 2L/2−1 64 3.30× 104

Table 3: Simulation values in the Anderson basis

Moreover, for system sizes that are not divisible by four (e.g., L = 14, 18, 22), there are
no basis states that exactly satisfy the equator conditions, i.e., qS,A = 0. Consequently, we
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perform an interpolation by averaging T0—and its logarithm, ln T0—between the values
computed using the nearest states to the equator. These target states correspond to basis
states with overlaps

qS,A0f = ± 2

L
, (142)

we select these two sets of target states, and average the quantities of interest between them.
This procedure yields a consistent estimate of T0 (and ln T0) at the equator for system sizes
where exact equatorial states are not available.

A2 The computation of the error bars

The error bars shown in Fig. 3.12 are directly extracted from the variances E[T 2
0 ]− E[T0]

2

and E[(ln T0)
2]− E[ln T0]

2, and propagated accordingly for the functional forms of ϕa and
ϕq. For the annealed free-energy, the variance beyond β⋆ is ill-defined, making the error
bars near β⋆ to be numerically unreliable. As a result, the propagated errors associated with
the interpolated values of β⋆ and ϕa(β⋆) are extremely large and physically meaningless.
Therefore, we have employed an alternative approach to assess the reliability of the numerical
results produced by our method.

We assess the stability of the relevant quantities—β⋆, ϕa(β⋆), and ϕq(β = 2)—under
cumulative averaging. In other words, we calculate the relevant quantities with a cubic
spline interpolation when averaged over NS disorder realizations—each of them with N0

initial conditions—and we keep track of their behavior upon increasing NS. This is shown
in Fig. 23 for both spin (top panels) and Anderson (bottom panels) bases, for the values of
disorder width, interaction parameter and sizes shown in the keys.

Fig. 23: The values of β⋆, ϕa(β⋆), and ϕq(β = 2) as a function of the cumulative number
of disorder realizations NS over which the average E[· · · ] is taken over. For both spin (top
panels) and Anderson (bottom) bases.
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We observe that the data exhibit jumps whose size and frequency decrease with increased
sampling. The error bars are computed using the last range of values prior to the final
average, which we have chosen to be the second half of the cumulant sample sequence.

For example, in the case of L = 20 in the Anderson basis, where we use NS = 64 disorder
realizations, we store the values of β⋆(NS), ϕa(β⋆, NS), and ϕq(β = 2, NS) corresponding to
the cumulative averages for NS = 1, 2, . . . , NS = 64. We then consider the second half of
this sequence, i.e., from NS = 32 to NS = 64, and compute the error bars as the difference
between the maximum and minimum values of β⋆, ϕa(β⋆), and ϕq(β = 2) within this range.
Note that β⋆ and ϕa(β⋆) are obtained via cubic spline interpolation, for each average over
the NS samples. This measure attempts to assess the stability of the values β⋆, ϕa(β⋆), and
ϕq(β = 2) upon increasing the sampling of the averages E[T0(β)] and E[ln T0(β)].

After obtaining the associated error bars for the values β⋆, ϕa(β⋆), and ϕq(β = 2) in this
way, we proceed to obtain their respective critical disorder widths Wergo, WMBL and W typ

MBL.
The errors for Wergo and W typ

MBL are obtained from standard propagation of the errors. We
perform a linear interpolation among the values closest to β⋆ = 2 and ϕq(β = 2) = 0, and
propagate the errors accordingly.

On the other hand, when determiningWMBL, the variation of ϕa(β⋆,W ) near the point
where ϕa(β⋆,W ) = 0 is very small. This variation is negligible compared to the spacing
along the W -axis, which is ∆W = 1.5. As a result, the data do not effectively constrain the
parameters. This issue is commonly referred to as a flat direction in parameter space, or a
degeneracy among parameters in non-linear statistical models.

Such degeneracies cause the covariance matrix derived from error propagation to have
nearly zero eigenvalues, rendering it highly unstable and non-invertible. To address this,
we instead estimate the uncertainty using a bootstrap Monte Carlo resampling approach.
In this method, each data point of ϕa(β⋆,W ) is randomly perturbed within its error bar,
and for each perturbed dataset, the value of W at which ϕa(β⋆,W ) = 0 is recalculated. The
standard deviation of the new resulting data values forWMBL(L) provides the error estimate.
We use 104 resampling iterations in this procedure.

A3 The DPRM correlations
The mapping between the partition functions of directed polymers ZN(β), defined in Eq.
(3.119), and the biased Hilbert space Landauer transmissions T0(β) is made explicit through
the identification of

EP = − ln |G0f | , (143)
where P therefore corresponds to a ’path’ defined between vertices 0 and f in the Hilbert
space graph. As discussed in Sec. 3.5.2, the presence of shared edges among different paths
P and P ′ introduces correlations between their respective energies EP and EP ′. For the
quantum many-body problem the connected correlation ⟨EPEP ′⟩c is thus identified with
⟨ln |G0f | ln |G0f ′|⟩c, where the polymers P and P ′ are associated to the Hilbert space ’paths’
between vertices 0 to f , and 0 to f ′, respectively. We measure this connected correlation as
a function of the correlation distance—the rescaled overlaps—defined as

ζS,A0f = 1− qS,A0f . (144)

In this case, |f⟩ will vary according to the correlation distance to the initial state |0⟩. The
connected correlation is then computed as follows:

⟨ln |G0f | ln |G0f ′ |⟩c ≡
E[ln |G0f | ln |G0f ′|]− E[ln |G0f |]2 ,

(145)
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where the average E[· · · ] is computed for several initial conditions, disorder realizations
and among different nodes |f⟩ within the same correlation distance from the chosen initial
condition.

In Fig. 24 we show the connected ’energy’ correlations ⟨ln |G0f | ln |G0f ′|⟩c as a function of
the correlation distance ηS,A0f . For small disorder (W = 1), the correlations remain uniform,
appearing as a plateau in both bases. This behavior reflects the fact that, at low disorder, the
system is ergodic and there is a proliferation of Hilbert space paths that enable delocalization.
At stronger disorders (W = 8 and W = 16), the connected correlations between ’energies’
increase significantly, reflecting the O(1) preferred paths that extend far away in Hilbert
space and allow for transmission events.

In the original classical problem of directed polymers in infinite dimensional graphs, this
correlation grows linearly with the real space distance of the extending polymer. The exact
behaviour in our case is difficult to assess definitively, as the analogous ’polymer’ in Hilbert
space has a length L/4, that for the largest system size with no interpolation (L = 20)
corresponds to five flip-flop events in the chain.

Fig. 24: Correlations of the equivalent polymer energy for the XXZ model. For both spin
(left) and Anderson (right) bases, as a function of their respective correlation discante ζS,A.

A4 Supplementary results for the Anderson basis
In this Section, we present results for the Anderson basis that were omitted from the main
text. Specifically, they include: (i) An example of the curves where the characteristic length
is extracted for β⋆(ζA) = 2 and ϕa(β⋆(ζ

A)) = 0, at the largest size L = 20. This is equivalent
to Fig. 3.16 for the Anderson basis. And (ii) the eigenstate decays with respect to the most
probable basis state, presented in Sec. 3.7,

A4.1 Dependence on the target basis states
Here, we present examples of the dependence of β⋆ and ϕa(β⋆) as a function of the correlation
distance ζA, for L = 20. The crossings β⋆(ζA) = 2 and ϕa(β⋆, ζ

A) = 0 define the characteristic
correlation distances shown on the right panel of Fig. 3.17 for L = 20. An equivalent process
was performed for L = 12, 16.
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Fig. 25: Calculation of (a) β⋆ and (b) ϕa(β⋆) as functions of the correlation distance ζS, for
∆ = 1 and L = 20. The values of the disorder widths considered are shown in the legend.
Horizontal gray dashed lines indicate the reference values β⋆ = 2 and ϕa(β⋆) = 0. These
lines are used to extract the corresponding characteristic correlation distances.

A4.2 The eigenstate amplitude decays
In this case, we did not perform an exact diagonalization. Instead, we extracted the same
eigenstates shown in Fig. 3.19 and rotated them using the transformation to the Anderson
basis (see Eq. (3.80)).

Fig. 26: Decay of the basis state probability as a function of the correlation distance ζAIJ
between the most probable state I and the other states J that share the same correlation
distance ζA. Equivalent construction as in Fig. 3.19 but using the Anderson basis.
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Conclusions and Perspectives
The central theme of this thesis has been the exploration of numerical and theoretical
methods for addressing challenges posed by various ergodicity-breaking mechanisms in
physical systems exhibiting quenched disorder.

Originally developed in distinct contexts, these methods have driven important break-
throughs in their respective domains: (i) The mapping between percolation and thermody-
namic transitions in FK–CK clusters [50–52] is a well-established framework for characteriz-
ing the critical behavior of the ferromagnetic Ising model and its lattice gas counterpart, as
well as for designing efficient simulation algorithms to sample critical equilibrium configura-
tions [53–55]; (ii) The SWAP method, first introduced for glass-forming particle systems,
has dramatically improved the sampling of equilibrium configurations in low temperature
regimes that would otherwise be inaccessible; (iii) Finite-size analyses of quenched and
annealed free-energy densities have long been employed to identify the freezing transition
β⋆ in mean-field disordered systems [433, 434].

In this thesis, these approaches have been adapted and applied to new classes of systems
with quenched disorder: (i) examining the behavior of FK–CK clusters in the presence of
frustration; (ii) extending the SWAP algorithm to spin systems, with emphasis on its impact
in frustrated cases; (iii) employing finite-size analyses of ‘biased Hilbert space Landauer
transmissions’ T0(β)—in both its quenched and annealed versions—in order to account for
the influence of rare, long-range many-body resonances in the determination of the critical
disorder width WMBL(L) [281].

Applying these tools in new contexts has not only deepened our understanding of the
physical systems under study but also offered new insights into the methods themselves.
Beyond the methodological transfer, this work underscores the profound physical connections
between physical systems that might at first appear unrelated: for example, the parallels
between localization transitions and directed polymers [289, 350, 419, 425, 427, 430], and
between spin glasses and structural glasses [19, 21, 454]. These connections illustrate the
unified phenomenology of disordered systems, where progress in one domain can shed light
on challenges in another.

Summary of main results
Chapter 1: The Critical Clusters of Frustrated Spin Systems. We revisited the Fortuin-
Kasteleyn-Coniglio-Klein (FK–CK) cluster construction and extended it to the frustrated
random-bond Ising model on the Bethe lattice. By analytically continuing the FK–CK bond
probabilities to negative values, we demonstrated that these clusters continue to encode the
correct thermodynamic critical behavior near the paramagnetic–ferromagnetic transition,
even under frustration. Importantly, we identified fundamental limitations for algorithmic
implementations: the presence of negative statistical weights renders direct cluster-based
Monte Carlo updates infeasible, despite the clusters remaining physically meaningful. We
further explored alternative cluster definitions (e.g., α-clusters) and showed that commonly
used indicators—such as coinciding percolation and thermodynamic transitions—can be
misleading, as they may be artificially reproduced without carrying the genuine critical
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correlations associated to the transition. This chapter thus provides both a constructive
generalization of FK–CK clusters to frustrated systems and a cautionary perspective on
attempts to formulate cluster algorithms in such settings.

Chapter 2: SWAP Dynamics for Frustrated Spin Systems. Inspired by advances in
structural glass simulations, we adapted the SWAP algorithm to spin-lattice systems by intro-
ducing an auxiliary ∆-model in which Ising spins are assigned continuous length variables.
Non-local exchange moves of these lengths accelerate equilibration in two-dimensional
Edwards–Anderson spin glasses, particularly at low temperatures, where standard dynamics
relaxes extremely slowly. Compared to parallel tempering, our approach achieves a sub-
stantial speedup in sampling ground states of the ∆-model, especially when combined with
temperature annealing schemes. In contrast, no improvement is observed for non-frustrated
ferromagnetic systems, where energy barriers are simpler and equilibration proceeds effi-
ciently via local dynamics alone. However, the acceleration observed here is considerably
more modest than that reported in the original particle systems, suggesting that the dynam-
ical constraints present in the latter may indeed play a fundamental role in the much larger
speedup observed in structural glasses.

Chapter 3: The Importance of Rare Events in Many-Body Localization. We investigated
the many-body localization (MBL) transition in the random-field XXZ chain using a large-
deviation framework developed in analogy with mean-field disordered glassy systems [281].
This method isolates the contribution of rare, long-range resonances in Hilbert space by
introducing an auxiliary parameter β that tunes the weight of extreme events in the propa-
gator statistics. Applying this framework, we identified three regimes in the (W,∆) phase
diagram: (i) an ergodic phase characterized by uniform delocalization, (ii) an intermediate
regime dominated by rare long-range resonances that mediate delocalization in atypical
disorder realizations, and (iii) a genuinely localized phase stable against such rare events.
The finite-size phase diagram exhibits systematic drifts of the crossover lines with system
size, suggesting that in the thermodynamic limit the intermediate regime may collapse into
a direct Ergodic–MBL transition. Furthermore, by visualizing resonant transmission paths
on the Hilbert space graph, we connected the delocalization mechanism to rare pathways
reminiscent of those found in classical directed polymer models [421, 425], reinforcing the
analogy between glassy and localization physics [289, 350].

Future directions

The construction of clusters in frustrated systems undergoing a paramagnetic to ferromag-
netic transition cannot be implemented numerically using the original definition with the
bond probability pB, since pB becomes negative. This prevents the application of Wolff- or
Swendsen–Wang-type algorithms [53–55], which would otherwise accelerate the dynamics.
Nevertheless, the inability to generate physically relevant clusters through standard construc-
tive schemes does not imply that they cannot be generated at all. Alternative approaches
remain possible. One promising direction is the use of AI-based generative models or other
machine-learning techniques to learn, rather than explicitly construct, the clusters. Exactly
solvable models on Bethe lattices provide particularly valuable benchmarks for testing such
methods. Another benchmark of this approach can be extended into two-dimensional
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models. These can be solved exactly using transfer matrix techniques for systems of finite
transverse size, allowing for the construction physical clusters, albeit with finite-size effects.

Our results show that critical clusters may only form between parallel spins. In systems
with antiferromagnetic couplings, however, configurations where parallel spins are connected
by such couplings are strongly suppressed by the Boltzmann weight at low temperatures.
As a result, they contribute very little to the spin–spin correlation functions. Paradoxically,
these same configurations can still make a significant contribution to the cluster correlation
functions. If a bond is present, the corresponding cluster weight may be negative; if the bond
is absent, the bonding probability can even exceed one, implying a large effective weight.
Such configurations therefore cannot be ignored in the cluster representation. In other
words, generating physically meaningful clusters requires sampling rare spin configurations
that have extremely low statistical weight.

Although there is no formal proof that any cluster construction in spin glasses reproduces
the relevant thermal correlations, the possibility of artificially defining clusters that appear
to coincide with the transition remains. While the detection of the spin glass transition tem-
perature TSG—independently of ρ—by tuned multiple-replica clusters is indeed intriguing,
it should be interpreted with care, as it may represent yet another artificial smoking gun
rather than a genuine physical signature.

In the context of the SWAP method, this encouraging result for two-dimensional systems
opens a clear path toward adapting the algorithm to higher-dimensional models. Notable
candidates include the 3d Edwards–Anderson (EA) model and the EA model on random
regular graphs (RRG), both of which exhibit a spin-glass phase at nonzero temperatures.
Investigating the impact of the SWAP method in these cases could yield particularly valuable
insights. The RRG case is especially appealing, as the critical temperature of the ∆-model is
expected to be well approximated by calculations on the Bethe lattice. This, in turn, would
allow for a detailed assessment of the dependence Tc(∆) in finite-dimensional systems.

Although the overall magnitude of frustration is reduced, the probability distribution of
the converged couplings J ∗

ij remains symmetric and does not seem to represent an “easier
instance” compared to standard choices such as Gaussian or bimodal distributions. A fuller
characterization of these random bonds would require estimating the associated stiffness
exponent, known to be θ = −0.2793(3) for continuous distributions [237, 238]. In the present
work, we could not estimate this exponent directly, since the ground states generated by
SWAP correspond to different J ∗

ij instances, preventing the standard domain-wall analysis
of ground-state energies. Nevertheless, it could still be obtained by computing ground states
of the J ∗

ij instances produced by SWAP using conventional techniques. Pursuing this line
of investigation would firmly establish the validity of SWAP in producing non-pathological
spin-glass samples.

The influence of rare disorder realizations on the stability of the MBL transition is
now well established. However, a proper characterization of the structure of rare disorder
realizations that give rise to anomalously large delocalization probabilities remains to be
performed. This task is highly computationally demanding when using standard sampling
techniques. A promising direction would be to employ importance sampling strategies [446]:
by biasing the sampling towards disorder configurations that enhance the likelihood of rare
resonances, one could develop a genuine large-deviation framework and obtain a more
accurate statistical characterization of the spatial structure of these rare events.

Similarly, understanding whether rare delocalization events are favored by the presence
of extended regions with anomalously weak disorder—as suggested by the avalanche sce-
nario [100, 243, 248–254]—remains an open problem. To make progress in this direction,
it would be valuable to apply our method to study the system’s response when coupled to a
thermal bath [100, 251, 257, 258, 260, 447, 448]. Such an analysis could help reveal the
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signatures in the Hilbert space propagators of rare ergodic bubbles in real space.
The picture of rarefied transmission paths in Hilbert space offers a compelling lens

on the many-body localization (MBL) transition. Building on the analogy with Anderson
localization in two dimensions [289], disorder-pinned dominant paths may reorganize
abruptly, producing avalanches—akin to those of directed polymers—when the energy is
varied. In our framework, such depinning events correspond to singular changes in the
correlations between Hilbert-space Landauer transmissions at different energies. Identifying
these avalanches and shocks in the quantum many-body problem remains an open challenge.

Finally, the picture of rarefied transmission paths in Hilbert space presents an intriguing
direction for further exploration. The original analogy with Anderson localization in two
dimensions [289] expands into how these dominant paths pinned by disorder can change
suddenly and abruptly producing avalanches—as conceived in the classical setting of directed
polymers—when the energy is varied. The depinning transition of the polymers through
avalanches can be directly related to the singular behavior of the overlap correlation function
between eigenstates at different energies which, in our case, corresponds to the correlation
between the Hilbert space Landauer transmissions at different values of the energy—for a
given disorder realization. It would be therefore interesting to investigate whether some
signatures of these avalanches and shocks are present also in the quantum many-body
problem.
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Sujet : Rupture d’ergodicité dans la matière désordonnée :
Nouvelles méthodes à travers des systèmes physiques

Résumé : L’hypothèse ergodique se situe au cœur de la mécanique statistique, mais de nombreux
systèmes physiques s’en écartent lorsqu’ils sont hors d’équilibre. Les mécanismes à l’origine de cette
brisure d’ergodicité donnent naissance à des phénomènes physiques riches, mais posent également
des défis considérables, en particulier pour les simulations numériques. Au fil des années, diverses
méthodes ont été développées pour relever ces défis dans des contextes spécifiques. Cette thèse
s’appuie sur ces approches établies et les adapte afin d’étudier des problèmes dans des systèmes
physiques où de telles techniques ne sont pas encore courantes. Ce faisant, nous cherchons à mettre
en évidence de nouvelles perspectives, tant sur les méthodes elles-mêmes que sur les systèmes
désordonnés que nous examinons. Notre travail se concentre sur trois problèmes principaux dans
l’étude plus large de la rupture d’ergodicité dans les systèmes désordonnés: Localisation à plusieurs
corps, rupture spontanée de symétrie dans les systèmes de spins frustrés et les verres de spin.

Mots clés : rupture d’ergodicité ; transitions de phase ; verres de spin ; algorithme swap ;
localisation à plusieurs corps ; grandes déviations, simulations Monte Carlo.

Subject : Ergodicity breaking in disordered matter: Novel
methods across physical systems

Abstract: The ergodic hypothesis lies at the heart of statistical mechanics, yet many physical
systems deviate from it under out-of-equilibrium conditions. The mechanisms behind this ergodicity
breaking give rise to rich physical phenomena but also pose significant challenges, particularly
for numerical simulations. Over the years, a variety of methods have been developed to address
these challenges in specific contexts. This thesis builds on these established approaches, adapting
them to investigate problems in physical systems where such techniques are not yet standard. By
doing so, we aim to uncover new insights into both the methods themselves and the disordered
systems we are studying. Our work focuses on three main problems within the broader study
of ergodicity breaking in disordered systems: Many-body localization, spontaneous symmetry
breaking in frustrated spin systems and spin glasses.

Keywords: ergodicity breaking; phase transitions; spin glasses; swap algorithm; many-
body localization; large deviations, Monte Carlo simulations.
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