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1 Introduction
These lectures aim at discussing the physics of disordered systems but also to introduce

a number of general ideas and analytical methods that should be useful in other contexts
of analytic science.

The Lectures will focus on the statics and dynamics of classical spin systems with
random, quenched disordered, parameters in the potential energy. Extension to problems
with continuous variables are straightforward.

A number of classical textbooks deal with these systems and have already been pub-
lished. They will be cited in the text.

1.1 The meaning of disorder

The word disorder is used in two senses. On the one hand, one applies it to the
configurations of the system and uses it to characterise a phase in the phase diagram in
which the order parameter vanishes and there is no order of any kind. Clear examples of
disordered phases are the paramagnetic one in which the magnetisation vanishes or the
gas-liquid one in an atomic system, with no structural order.

On the other hand, one affects the term disorder to the energy function when it contains
a finite or infinite number of parameters taken from a probability distribution. It is quite
clear that this randomness will have strong effects on the statistical behaviour of the
variables that constitute the system.

We will use the term disorder in these two senses in these lectures, making clear when
we refer to one or the other. The theme of the course is the description of the equilibrium
phases and dynamic behaviour of systems with quenched random potentials, that is
to say, potential energies with some or many parameters that are random but do not
change in time.

The focus will be to understand the behaviour of the dynamic or fluctuating variables in
presence of different kinds of disordered, characterised by the way in which the randomness
enters the Hamiltonian and the kind of probabilities distribution functions used to draw
the disordered parameters. This is what is called the direct problem and it is the usual
focus of statistical mechanics.

1.2 Spin systems

Classical spin models give, on the one side, a theoretical description of material prop-
erties like, for example, the ferromagnetic - paramagnetic transition [1, 2, 3, 4, 5]. But
their interest is not restricted to physical problems. They are also used in other fields of
investigation, such as informatics and social sciences, to name just two. The role played
by quenched randomness in the statistical behaviour in generic systems can be deeply
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understood by the study of their effect on classical spin systems of various kinds. Before
discussing the technical aspects of disordered spin models we present, in the rest of this
Subsection, a number of relevant examples in different areas of science.

1.2.1 Physical examples

In the physical context, the spin variable represents the local magnetic moment that
can be a vector with three components (Heisenberg model), a vector constrained to
move on a plane (XY model) or a two-valued variable (Ising model). In all cases the
modulus of the vector is fixed. The spins typically lie on a lattice, and the geometry of
the lattice represents the relevant microscopic arrangement of the magnetic moments in
the material in question. Two dimensions appear in the model definition. The one of
the vector, that is conventionally called N , and the one the space, that is called d. The
definition of the model is completed by two facts. The attribution of an energy function,
that is a scalar function of the configuration of all the spins in the sample, H({~si}). For
the magnetic models we will discuss, the form of this energy function is

HJ({~si}) = −
∑
ij

Jij ~si · ~sj +
∑
i

~hi~si (1.1)

with just pair-wise interactions mediated by the coupling strengths or exchanges Jij.
The ~hi are external magnetic fields. The choice of a microscopic dynamics for the spins,
will determine the time-evolution of the sample at a microscopic and macroscopic level.
As there are no ‘Newton equations’ for classical spin variables, this choice is made phe-
nomenologically. For vector spins, one proposes the Bloch equation

d~si
dt

= ~si ∧ ~Bi (1.2)

with ~Bi the sum of the external and the internal magnetic field acting on the spin i (all
parameters have been ignored). For the latter ~Bint

i = δHJ/δ~si. ∧ denotes the vector
product. In the absence of interactions, this equation describes the precession of a spin
around the magnetic field. For Ising spins one typically uses stochastic dynamics (with a
master equation formalism or Monte Carlo rules) proposing that the spin is coupled to a
thermal bath that determines the transition probabilities. The quenched randomness can
be in HJ .

The quenched randomness is then introduced by drawing the interactions and/or fields
from probability distributions PJ(Jaij) and Ph(h

a
i ). In this way one constructs random

ferromagnets, spin-glasses, random field spin models, etc. apt to describe different
physical materials.
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1.2.2 Social sciences examples

In the social science context, one typically works with Ising spins, and the variable
represents the opinion of an elector, for example. This opinion can be yes or no. Exten-
sions to multi-valued cases also exist. The spins are placed on the vertices of a lattice or
a random graph.

Figure 1.1: Random graphs with N = 10 and different probabilities p.

In random graphs the disorder is in the choice of one instance of connectivity between
the agents. More precisely, a random graph is constructed as follows. First, one decides
the number of vertices that the graph will have, say, N . Next one establishes links or
edges between pairs of vertices with a given probability. For examples, for vertices i and
j a link is drawn with probability p and it is not drawn with probability 1− p.

Once the graph chosen, dynamic rules (with no physical constraint) for the update of
the variables are proposed and the evolution of the ensemble is then studied. In some of
these models, as the very well-known voter model [6], no energy function exists and all
configurations are equivalent in this sense. The ‘interaction’ between the agents occurs
only via the dynamic rule. The simplest possible rule is the following. Pick a voter at
random with flat probability 1/N , look at one of its neighbours on the graph also chosen
at random with equal probability 1/z and z the connectivity of the chosen site, set the
variable of the chosen spin to be equal to the one of the neighbour. Then repeat the
sequence until full consensus is achieved or some other stationary state is reached, or else
just study the dynamic properties of the ensemble. This is a purely dynamic problem.

1.2.3 Economy examples

In traditional economy models, a representative agent that takes its decisions in isola-
tion with no interaction with its fellows is used. This kind of modeling has been criticised

3



and more modern models tend to take into the many-body character of the problem. The
latter should include imitation and social pressure effects that lead to trends, fashion and
bubbles.

As it is well-known in physics, the collective behaviour of a large ensemble can be very
different from the one of isolated individuals. Collective effects can be beneficial but they
can also be detrimental to the group. They definitely have to be taken into account.

One such model considers a problem in which N individuals can take two possible
states (be them positive or negative opinion, for example), si = ±1. The decision of
agent i is supposed to depend on three facts: its personal opinion, modelled by a local
field hi (that could be time-dependent but we take it to be fixed), the public information
(common to all agents) described by a uniform field F (t), and the social pressure exerted
by its neighbours, given by

∑
j(i) Jijsj. Adding these terms together one has the overall

incentive on agent i. The evolution of the state of agent i is then proposed to be

si(t) = sign

hi + F (t) +
∑
j(i)

Jijsj(t− 1)

 (1.3)

The opinion of i becomes positive when the argument reaches the threshold 0. For Jij > 0
for all ij this is the dynamics of the random field Ising model at zero temperature (with
no thermal noise). In physics the spins typically sit on the vertices of a lattice but in this
kind of application the model can be defined on any kind of random graph.

1.2.4 Biological examples

In the biological context disordered models have been used to describe neural net-
works, i.e. an ensemble of many neurons (typically N ∼ 109 in the human brain) with a
very elevated connectivity. Indeed, each neuron is connected to ∼ 104 other neurons and
receiving and sending messages via their axons. Moreover, there is no clear-cut notion of
distance in the sense that axons can be very long and connections between neurons that
are far away have been detected. Hebb proposed that the memory lies in the connections
and the peculiarity of neural networks is that the connectivity must then change in time
to incorporate the process of learning.

The simplest neural network models represent neurons with Boolean variables or spins,
that either fire or are quiescent. The interactions link pairs of neurons and they are
assumed to be symmetric (which is definitely not true). The memory of an object, action,
etc. is associated to a certain pattern of neuronal activity. It is then represented by an
N -component vector in which each component corresponds to the activity of each neuron
(configuration of the spins). Finally, sums over products of these patterns constitute the
interactions. One can then study, for example, the number of chosen specific patterns
that the network can store and later recall, or one can try to answer questions on average,
as how many typical patterns can a network of N neurons store. The models then become
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fully-connected or dilute models of spins in interaction, just as in (1.1), with the exchanges

Jij =
1

p

p∑
µ=1

ξµi ξ
µ
j ξµi = ±1 with prob 1/2 . (1.4)

ξµi are the components of an N vector labelled by µ, the µth pattern stored by the network.
The quenched disorder is in the Jijs. This is the Hopfield model, based on Hebb’s rule.

Protein folding is the physical process by which a protein chain acquires its native
3-dimensional structure, a conformation that is usually biologically functional, in a re-
producible manner. The mechanism of protein folding remains a central open problem
in molecular biology. The question to answer would be: which is the 3d structure that
a given sequence of amino acids will take? Knowing its answer would have obvious im-
portant applications in bio technology. The relative slowness of folding has been ascribed
to the existence of many minima in a potential energy landscape in which a single point,
representing the state of the macromolecule, would evolve.

Figure 1.2: The folding of a protein on a 3d structure.

A protein is a macromolecule made of one or several amino acid chains also called
residues. When translated from a sequence of mRNA the protein exists as a linear chain
of amino acids, that still has to fold. The amino acids interact with each other, and
these interactions decide the structure that the protein will take. The energy landscape
describes the folding pathways in which the unfolded protein is able to assume its native
state.

A model with quenched random interactions is sometimes used to mimic this process.
The Hamiltonian or energy function of the states of the residues is

H[{αi}] = −
∑
i

εi(αi)−
∑
i

Ji,i+1(αi, αi+1)−
∑
ij

Ji,j(αi, αj;~ri, ~rj) (1.5)

The index i runs over the residues in the molecule. The first term characterises the state of
the amino acids themselves. The second term is a nearest-neighbour interaction along the
chain. The third term depends on the distance in real space between amino acids on the
chain that are not necessarily nearest neighbours along the chain. This is an exceedingly
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complex function of {αi, ~ri} and the study of the statistical mechanics of such a model is
very hard.

An alternative strategy is to replace this complex Hamiltonian by a stochastic one
(similarly to the way in which random matrix theory was introduced in nuclear physics
context). One samples total energies E of a system with N variables αi taking, say, m
states, interacting via (1.5) and constructs P (E,N). These are random energy levels and
in this way one can construct a random energy model, similar to the one that was
introduced as a simpler spin-glass model.

1.2.5 Computer science examples

Finally, we will mention the computer science application of spin models [7]. Opti-
misation problems can usually be stated in a form that requires the minimisation of a cost
(energy) function over a large set of variables. Typically these cost functions have a
very large number of local minima – an exponential function of the number of variables –
separated by barriers that scale with N and finding the truly absolute minimum is hardly
non-trivial. Many interesting optimisation problems have the great advantage of being
defined on random graphs and are then mean-field in nature. The mean-field machinery
that we will discuss at length is then applicable to these problems with minor (or not so
minor) modifications due to the finite connectivity of the networks.

Let us illustrate this kind of problems with two examples. The graph partitioning
problem consists in, given a graph G(N,E) with N vertices and E edges, to partition
it into smaller components with given properties. In its simplest realisation the uniform
graph partitioning problem is how to partition, in the optimal way, a graph withN vertices
and E links between them in two (or k) groups of equal size N/2 (or N/k) and the minimal
the number of edges between them. Many other variations are possible. This problem is
encountered, for example, in computer design where one wishes to partition the circuits
of a computer between two chips. More recent applications include the identification of
clustering and detection of cliques in social, pathological and biological networks.

Another example, that we will map to a spin model, is k-satisfiability (k-SAT). The
problem is to determine whether the variables of a given Boolean formula can be assigned
in such a way to make the formula evaluate to ‘TRUE’. Equally important is to determine
whether no such assignments exist, which would imply that the function expressed by the
formula is identically ‘FALSE’ for all possible variable assignments. In this latter case,
we would say that the function is unsatisfiable; otherwise it is satisfiable.

We illustrate this problem with a concrete example. Let us use the convention x for the
requirement x = TRUE and x for the requirement x = FALSE. For example, the formula
C1 : x1 OR x2 made by a single clause C1 is satisfiable because one can find the values x1

= TRUE (and x2 free) or x2 = FALSE (and x1 free), which make C1 : x1 OR x2 TRUE.
This formula is so simple that 3 out of 4 possible configurations of the two variables solve
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it. This example belongs to the k = 2 class of satisfiability problems since the clause is
made by two literals (involving different variables) only. It has M = 1 clauses and N = 2
variables.

Harder to decide formulæ are made of M clauses involving k literals required to take
the true value (x) or the false value (x) each, these taken from a pool of N variables. An
example in 3-SAT is

F =


C1 : x1 OR x2 OR x3

C2 : x5 OR x7 OR x9

C3 : x1 OR x4 OR x7

C4 : x2 OR x5 OR x8

(1.6)

All clauses have to be satisfied simultaneously so the formula has to be read

F: C1 AND C2 AND C3 AND C4 . (1.7)

It is not hard to believe that when α ≡ M/N � 1 the problems typically become
unsolvable while many solutions exist for α � 1. One could expect to find a sharp
threshold between a region of parameters α < αc where the formula is satisfiable and
another region of parameters α ≥ αc where it is not.

In random k-SAT an instance of the problem, i.e. a formula, is chosen at random
with the following procedure: first one takes k variables out of the N available ones.
Second one decides to require xi or xi for each of them with probability one half. Third
one creates a clause taking the OR of these k literals. Forth one returns the variables
to the pool and the outlined three steps are repeated M times. The M resulting clauses
form the final formula.

The Boolean character of the variables in the k-SAT problem suggests to transform
them into Ising spins, i.e. xi evaluated to TRUE (FALSE) will correspond to si = 1 (−1) .
The requirement that a formula be evaluated TRUE by an assignment of variables (i.e. a
configuration of spins) will correspond to the ground state of an adequately chosen energy
function. In the simplest setting, each clause will contribute zero (when satisfied) or one
(when unsatisfied) to this cost function. There are several equivalent ways to reach this
goal. For instance C1 above can be represented by a term (1− s1)(1 + s2)(1− s3)/8. The
fact that the variables are linked together through the clauses suggests to define k-uplet
interactions between them. We then choose the interaction matrix to be

Jai =


0 if neither xi nor xi ∈ Ca
1 if xi ∈ Ca
−1 if xi ∈ Ca

(1.8)

and the energy function as

HJ [{si}] =
M∑
a=1

δ(
N∑
i=1

Jaisi,−k) (1.9)
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where δ(x, y) is a Kronecker-delta that equals one when the arguments are identical and
zero otherwise. This cost function is easy to understand. The Kronecker delta contributes
one to the sum only if all terms in the sum

∑N
i=1 Jaisi are equal to −1. This can happen

when Jai = 1 and si = −1 or when Jai = −1 and si = 1. In both cases the condition on
the variable xi is not satisfied. Since this is required from all the variables in the clause,
the clause itself and hence the formula are not satisfied.

The energy (1.9) can be rewritten in a way that resembles strongly physical spin models,

HJ [{si}] =
M

2K
+

K∑
R=1

(−1)R
∑

i1<···<iR

Ji1...iRsi1 . . . siR (1.10)

and

Ji1...iR =
1

2K

M∑
a=1

Jai1 . . . JaiR . (1.11)

These problems are “solved" numerically, with algorithms that do not necessarily re-
spect physical rules. Thus, one can use non-local moves in which several variables are
updated at once – as in cluster algorithms of the Swendsen-Wang type used to beat crit-
ical slowing down close to phase transitions – or one can introduce a temperature to go
beyond cost-function barriers and use dynamic local moves that do not, however, satisfy
a detail balance. The problem is that with hard instances of the optimization problem
none of these strategies is successful. Indeed, one can expect that glassy aspects, such
as the proliferation of metastable states separated by barriers that grow very fast with
the number of variables, can hinder the resolutions of these problems in polynomial time,
that is to say a time that scales with the system size as N ζ , for any algorithm. These are
then hard combinatorial problems.

1.3 Inverse problems

The inverse problem consists in finding the set of interaction parameters that are
compatible with a set of observations of independent configurations of a system composed
of, say, N binary units, typically in the limit of N large [8]. The name is opposed to
the direct problem which the usual procedure in statistical mechanics, the one having
a Hamiltonian, studying the properties of the ensemble of interacting variables under
different conditions.

This problem is very timely. The impressive increase in computational capacities allows
the scientific community to collect enormous amounts of experimental or observational
data, with no detailed knowledge of which is the underlying ‘Hamiltonian’ that produces
it.

In concrete terms, assuming that the variables observed are of a given kind, say, Ising
ones, and observing a large number of sets (s1, . . . , sN), the question is which are the
Jij in the Hamiltonian (1.1) that would generate these data. Note that the form of the
interactions, pair-wise in this case, is also assumed.
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Big data are produced in many different areas of science. Two examples outside
physics are the following. The financial transactions are recorded with resolutions well
below one second, and the dynamics of networks of, e.g., social, economics, neural can be
tracked in real-time. These two examples, among many others, involve a large amount of
data with no underlying satisfactory model.

With the inverse problem one does not try to understand the reason for the interactions
between the units but, instead, one extracts accurate statistical models from empirical
datasets, and then uses the models to predict new data sets on the basis of the older ones.
The interactions between the units that are inferred are not all equal and therefore the
models derived are of the disordered kind.

Figure 1.3: A layered neural network or the perceptron.

An application of this approach is given by the study of neural networks, in which one
would like to understand how the brain works (e.g., the presence of collective states of the
network, the possibility to store and retrieve informations) by processing data describing
the behaviour of a huge set of elementary units (the neurons). It is a kind of reverse
engineering. This way of reasoning is also characterised as statistical learning and it
is at the basis of the field of deep learning that is just the training by examples of a
neural networks with a layered architecture.

Figure 1.4: A two dimensional random walk.
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Of course, inverse problems are not restricted to problems with discrete variables of
Ising spin kind. For example, one can also observe a random walk and try to infer the
random potential in which the particle moves.

1.4 Field theory

In the statistical physics treatment of spin models, the Ginzburg-Landau method
transforms the discrete sum over spin variables in the partition function into a functional
integral over a continuous field that represents the coarse-grained order parameter.
Functional field-theoretical methods can then be used to study the critical phenomenon
around the phase transition.

Landau proposed an extension ofWeiss mean-field theory for ferromagnets that has
a much wider range of application, includes space and allows to predict when it applies
and when it fails. In a few words, in the Landau theory one first identifies the order
parameter for the phase transition, that is to say, a quantity with zero average in the
disordered phase and non-zero average on the ordered side. Next, one proposes a field
theory for a coarse-grained field that represents the averaged relevant variable – giving
rise to the order parameter – over a mesoscopic scale ` that is, by definition, much larger
than the interatomic distance a.

A field theory for the spin problem can be rather simply derived by coarse-graining the
spins over a coarse-graining length `. This simply amounts to computing the averaged
spin on a box of linear size ` and volume vx = `d around the chosen point ~x,

~φ(~x) ≡ 1

`d

∑
j∈v~x

~sj . (1.12)

In the limit `� a where a is the lattice spacing many spins contribute to the sum. The
field ~φ is a continuous vector variable taking real values. An Ising bimodal variable is
instead transformed into a continuous real scalar variable taking values in [−1, 1]. (One
can construct a field φ that takes a different value per lattice site using overlapping coarse-
graining volumes in which case the coordinates of the space variable ~x vary by steps of
a, the lattice spacing. Instead, one can use non-overlapping coarse-graining volumes in
which case the coordinates of the space variable ~x vary by steps of `, the coarse-graining
linear size.) Studying the problem at long distances with respect to ` (or else taking a
continuum spatial limit) the problem transforms into a statistical field theory [3, 4, 5].
In general, we do not know how to compute F (φ). Landau’s proposal is to expand F (φ)

in powers of φ and its gradients ~∇φ and then determine, depending on the problem at
hand, which terms vanish and which among the non-vanishing ones are the most relevant.
The first question is answered using symmetry arguments.

In the field theory setting the quenched randomness can also be introduced as random
potentials, V (~φ), or random fields ~h.
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Having set the problem in terms of a field theory is handy since it allows one to use all
the techniques available from quantum field theory (perturbation theory, self-consistent
approximations, instanton methods, renormalisation group) with minimal changes. How-
ever, in the presence of quenched randomness, these have to be extended and comple-
mented by special methods that we will discuss in this Course.

1.5 The lectures

These lectures are organised as an introduction to the field of disordered systems, a
name intended to describe the models and materials in which there are random parameters
in the energy functional. These lead to strange features in the static and dynamic features
of these models that we will explain.

We will start with a short review of the main concepts of phase transitions that will
serve as a basis for the analysis of the static behaviour of disordered models. We will
discuss in detail some of the effects of frustration. Next we will add quenched disorder
to the Hamiltonian, or random interactions and fields, and see how these affect their
static behaviour. Finally, we will introduce dynamic methods and explain the dynamic
properties of these systems. We complete these notes with a number of appendices that
contain useful formulæ.
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2 Phase transitions
Take a piece of material in contact with an external reservoir. The material will be

characterised by certain observables, energy, magnetisation, etc.. To characterise macro-
scopic systems it is convenient to consider densities of energy, magnetisation, etc, by
diving the macroscopic value by the number of particles (or the volume) of the system.
The external environment will be characterised by some parameters, like the temperature,
magnetic field, pressure, etc. In principle, one is able to tune the latter and the former
will be a function of them.

Sharp changes in the behaviour of macroscopic systems at critical points (lines) in
parameter space have been observed experimentally. These correspond to phase transi-
tions [1, 2, 3, 4, 5], a non-trivial collective phenomenon appearing in the thermodynamic
limit. Phase diagrams as the one in Fig. 2.1 are used a visual help to identify the global
behaviour of a system according to the value of the control parameters.

Figure 2.1: A quite generic phase diagram.

The models that we discussed in the introduction may have static and dynamic phase
transitions. The former are the usual ones studied with statistical physics methods, that
is to say, by looking for non-analyticities of the free-energy density as a function of the
control parameters, say just β = 1/(kBT ),

−βf(β) = N−1 lnZ(β) with Z(β) =
∑
C

e−βH(C) (2.1)

where C represents all the system configurations. (We will always work in a canonical
setting.) One is interested in identifying the order parameter (in some cases this is easy,
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in others it is not), finding the critical parameters, studying the critical phenomenon that
is to say the behaviour of the order parameter and other properties close to the phase
transition, etc.

Let us now discuss some important concepts, order parameters, pinning fields, broken
ergodicity and broken symmetry [1, 2, 3, 4, 5], with the help of a concrete example, the
Ising model

HJ({si}) = −J
∑
〈ij〉

sisj (2.2)

with si = ±1. The discussion is however much more general.
The dynamic phase transitions occur in the properties of the system’s evolution. We

will not discuss them in this Section.

2.1 Order parameters

An order parameter is generically defined as a quantity – the average of an observable
– that typically vanishes in one phase and is different from zero in another one (or other
ones). One must notice though that the order parameter is not unique (any power of an
order parameter is itself an order parameter) and that there can exist transitions without
an order parameter as in the topological Kosterlitz-Thouless transition in the 2d XYmodel.
In the rest of this course we focus on problems that do have an order parameter defined
as the thermal average of some observable.

In the ferromagnetic Ising model the order parameter is the magnetisation density

m =
1

N

N∑
i=1

〈 si 〉 and 〈 si 〉 = Z−1
∑
C

si e
−βH(C) (2.3)

where N is the total number of spins and the angular brackets represent the thermal
average.

2.2 Thermodynamic limit

The abrupt change in the order parameter at a particular value of the external pa-
rameters, say temperature and magnetic field (T, h), is associated to the divergence of
some derivative of the free-energy with respect to one of these parameters. The partition
function is a sum of positive terms. In a system with a finite number of degrees of freedom
(as, for instance, in an Ising spin model where the sum has 2N terms with N the number
of spins) such a sum is an analytic function of the parameters. Thus, no derivative can
diverge. One can then have a phase transition only in the thermodynamic limit in which
the number of degrees of freedom diverges.
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2.3 Pinning field

In the absence of a magnetic field for pair interactions the energy is an even function of
the spins, H({si}) = H({−si}) and, consequently, the equilibrium magnetisation density
computed as an average over all spin configurations with their canonical weight, e−βH(C),
vanishes at all temperatures.

At high temperatures, m = 0 characterises completely the equilibrium properties of the
system since there is a unique paramagnetic state with vanishing magnetisation density.
At low temperatures instead if we perform an experiment we do observe a net magnetisa-
tion density. In practice, what happens is that when the experimenter takes the system
through the transition he/she cannot avoid the application of tiny external fields – the
experimental set-up, the Earth... – and there is always a small pinning field that actually
selects one of the two possible equilibrium states, with positive or negative magnetisa-
tion density, allowed by symmetry. In the course of time, the experimentalist should see
the full magnetisation density reverse, to ensure m = 0 in equilibrium. However, this is
not seen in practice since astronomical time-scales would be needed. We shall see this
phenomenon at work when solving mean-field models exactly.

2.4 Broken ergodicity

Introducing dynamics into the problem 1, ergodicity breaking can be stated as the fact
that the temporal average over a long (but finite) time window

At = lim
τ→∞

1

τ

∫ t+τ

t−τ
dt′A(t′) (2.4)

is different from the statical one, with the sum running over all configurations with their
associated Gibbs-Boltzmann weight:

At 6= 〈A 〉 . (2.5)

In practice the temporal average is done in a long but finite interval τ <∞. During this
time, the system is positively or negatively magnetized depending on whether it is in “one
or the other degenerate equilibrium states” (see Fig. 2.2). Thus, the temporal average of
the orientation of the spins, for instance, yields a non-vanishing result At = m 6= 0. If,
instead, one computes the statistical average summing over all configurations of the spins,
the result is zero, as one can see using just symmetry arguments, explained in Sec. 2.5.
The reason for the discrepancy is that with the time average we are actually summing over
half of the available configurations of the system. If time τ is not as large as a function
of N , the trajectory does not have enough time to visit all configurations in phase space.
One can reconcile the two results by, in the statistical average, summing only over the

1Note that Ising model does not have a natural dynamics associated to it. We shall see in Section ??
how a dynamic rule is attributed to the evolution of the spins.
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configurations with positive (or negative) magnetization density and recovering in this
way a non-vanishing result. We shall see this at work in a concrete calculation below.

Note that ergodicity breaking is a statement about the dynamics of a system.

Figure 2.2: Time dependence of the global magnetization.

2.5 Spontaneous broken symmetry

In the absence of an external field the Hamiltonian is symmetric with respect to the
simultaneous reversal of all spins, si → −si for all i. The phase transition corresponds to a
spontaneous symmetry breaking between the states of positive and negative magnetization.
One can determine the one that is chosen when going through Tc either by applying a small
pinning field that is taken to zero only after the thermodynamic limit, or by imposing
adequate boundary conditions like, for instance, all spins pointing up on the borders of
the sample. Once a system sets into one of the equilibrium states this is completely stable
in the N →∞ limit. The mathematical statement of spontaneous symmetry breaking is
then

lim
h→0+
〈 si 〉 = − lim

h→0−
〈 si 〉 6= 0 . (2.6)

Ergodicity breaking necessarily accompanies spontaneous symmetry breaking but the
reverse is not true; an example is provided by systems with quenched disorder. Indeed,
spontaneous symmetry breaking generates disjoint ergodic regions in phase space, related
by the broken symmetry, but one cannot prove that these are the only ergodic compo-
nents in total generality. Mean-field spin-glass models provide a counterexample of this
implication.

2.6 Energy vs entropy
Let us first use a thermodynamic argument to describe the high and low temperature

phases of a magnetic system.
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The free energy of a system is given by F = U − TS where U is the internal energy,
U = 〈H〉, and S is the entropy. Here and in the following we measure temperature in units
of kB and then set kB = 1. The equilibrium state may depend on temperature and it is
such that it minimises its free-energy F . A competition between the energetic contribution
and the entropic one may then lead to a change in phase at a definite temperature, i.e.
a different group of micro-configurations, constituting a state, with different macroscopic
properties dominate the thermodynamics at one side and another of the transition.

At zero temperature the free-energy is identical to the internal energy U . In a system
with ferromagnetic couplings between magnetic moments, the magnetic interaction is
such that the energy is minimised when neighbouring moments are parallel. Thus the
preferred configuration is such that all moments are parallel, the system is fully ordered
and U = −# pairs.

Switching on temperature thermal agitation provokes the reorientation of the moments
and, consequently, misalignments. Let us then investigate the opposite, infinite temper-
ature case, in which the entropic term dominates and the chosen configurations are such
that entropy is maximised. This is achieved by the magnetic moments pointing in ran-
dom independent directions. For example, for a model with N Ising spins, the entropy at
infinite temperature is S ∼ N ln 2.

Decreasing temperature magnetic disorder becomes less favourable. The existence or
not of a finite temperature phase transitions depends on whether long-range order, as the
one observed in the low-temperature phase, can remain stable with respect to fluctuations,
or the reversal of some moments, induced by temperature. Up to this point, the discussion
has been general and independent of the dimension d.

The competition argument made more precise allows one to conclude that there is no
finite temperature phase transition in d = 1 while it suggests there is one in d > 1. Take
a one dimensional ferromagnetic Ising model with closed boundary conditions (the case
of open boundary conditions can be treated in a similar way),

HJ [{si}] = −J
N∑
i=1

sisi+1 , (2.7)

and sN+1 = s1. At zero temperature it is ordered and its internal energy is just

Uo = −JN (2.8)

with N the number of links and spins. Since there are two degenerate ordered configura-
tions (all spins up and all spins down) the entropy is

So = ln 2 (2.9)

The internal energy is extensive while the entropy is just a finite number. At temperature
T the free-energy of the completely ordered state is then

Fo = Uo − TSo = −JN − T ln 2 . (2.10)
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Adding a domain of the opposite order in the system, i.e. reversing n spins, two bonds
are unsatisfied and the internal energy becomes

U2 = −J(N − 2) + 2J = −J(N − 4) , (2.11)

for any n. Since one can place the misaligned spins anywhere in the lattice, there are N
equivalent configurations with this internal energy. The entropy of this state is then

S2 = ln(2N) . (2.12)

The factor of 2 inside the logarithm arises due to the fact that we consider a reversed
domain in each one of the two ordered states. At temperature T the free-energy of a state
with one reversed spin and two domain walls is

F2 = U2 − TS2 = −J(N − 4)− T ln(2N) . (2.13)

The variation in free-energy between the ordered state and the one with one domain is

∆F = F2 − Fo = 4J − T lnN . (2.14)

Thus, even if the internal energy increases due to the presence of the domain wall, the
increase in entropy is such that the free-energy of the state with a droplet in it is much
lower, and therefore the state much more favorable, at any finite temperature T . We
conclude that spin flips are favorable and order is destroyed at any finite temperature.
The ferromagnetic Ising chain does not have a finite temperature phase transition.

A similar argument in d > 1 suggests that one can have, as indeed happens, a finite
temperature transition in these cases (see, e.g. [2]).
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3 Frustration
In this Section we discuss the phenomenon of frustration and its main consequences.

We focus on spin models.

3.1 Definition and properties

A system is said to be frustrated [9] whenever it cannot minimize its total classical
energy by minimizing the interaction energy between each group of interacting degrees
of freedom. For two-body interactions, the minimisation should be done pair by pair but
this is sometimes impossible, leading to frustration.

Frustration arises in many physical systems but it is most popular in the magnetic
context, where the geometry of the lattice [10] and/or the nature of the interactions make
the simultaneous minimisation of each term contributing to the energy impossible.

We will now focus on Ising models, si = ±1, with nearest-neighbour interactions me-
diated by coupling strengths Jij on a finite dimensional lattice

HJ [{si}] = −
∑
〈ij〉

Jijsisj . (3.1)

The sum runs over all pairs of nearest-neghbours on the lattice.
For the Ising Hamiltonian (3.1) with generic Jij (positive or negative) the minimum

possible energy is obtained from the requirements

Jijsisj > 0 for all ij (3.2)

but it is not always possible to find a configuration that satisfies all these contraints.

Property 3.1 frustration Define the Ising model on a triangular lattice, see Fig. 3.1-
left. Focus on one plaquette, see Fig. 3.1-right. Imagine that one exchange is negative,
J12 = −J and two are positive, J23 = J13 = J with J > 0, all with the same magnitude.
Taking into account the overall minus sign in Eq. (3.1), J12 favours anti-parallel alignment
(anti-ferromagnetism, AF) while J13 and J23 favour the same orientation (ferromagnetism,
FM). We list all possible spin configurations in Table 3.1, where we also give their energy
and the name of the links that are broken or unsatisfied. There is no configuration with
all links satisfied.

Property 3.2 energy spectrum The energy spectrum of the single triangular plaquette
with J12 = −J and J23 = J13 = J is very simple. We add the contribution of each pair of
spins only once. There are six degenerate ground states with energy E0 = −J and just
two excited states with energy E1 = 3J .
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Property 3.3 degeneracy & entropy
The six ground states are trivially divided in two classes related to each other by a

global spin flip (1. and 8.; 2. and 7.; 3. and 6.). The members of each pair of states share
the same broken bond. The two excited states are also related by the global reversal of
all spins, and the broken link is the same in the two configurations of a pair.

Property 3.4 excess energy & excess entropy Compared to a triangular plaquette
with no frustration, that is to say, one in which all links have positive strength J , the
ground state energy is increased by frustration. In the non-frustrated case E0 = −3J
while in the frustrated case E0 = −J . The ground state degeneracy is also increased by
frustration. While in the non-frustrated case there are just two ground states related by
symmetry, in the frustrated case there are six. One can pair these six states in groups of
two via the reversal of all spins.

# s1 s2 s3 E broken〈ij〉
1. 1 1 1 −J 12
2. -1 1 1 −J 13
3. 1 -1 1 −J 23
4. 1 1 -1 3J 12, 23, 13
5. -1 -1 1 3J 12, 23, 13
6. -1 1 -1 −J 23
7. 1 -1 -1 −J 13
8. -1 -1 -1 −J 12

Table 3.1: Ising spin configurations and their energy E = −∑〈ij〉 Jijsisj (the contribution of
each pair of spins is added only once) on a triangular plaquette with J12 = −J (AF) and two
positive, J23 = J13 = J (FM) exchanges. J > 0. The last column names the link that is broken
or unsatisfied.

The property just described with an example can be generalised. We first note that
J12J23J13 < 0 in the example. Take now the Ising model (3.1) with pairwise interactions
on any lattice or graph. Any loop of connected (nearest neighbour on the lattice or graph)
spins is frustrated if the product of the interaction strengths on the loop is negative,∏

(ij)∈loop

Jij < 0 (3.3)

On such a loop, no choice of spin values minimises the contribution to the energy of all
terms in the sum

∑
(ij) Jijsisj.

In frustrated models, the ground state is the configuration that minimises the number
of broken bonds or unsatisfied interactions.
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Exercise 3.1 Take an Ising model on a square lattice in two dimensions and choose the
couplings in such a way that (a) some plaquettes are frustrated, (b) all plaquettes are
frustrated.

The existence of frustration depends on the lattice geometry, the interactions and the
dimension of the variables. For example, the Ising AF model in which all exchanges are
Jij < 0 is not frustrated on the 2d square lattice but it is on the triangular lattice. The
“amount" of frustration depends on the spin variables as well. For instance, the XY AF
on the triangular lattice is less frustrated than the Ising one. Indeed, the energy of an
equilateral triangular plaquette is minimised by a configuration with the spins pointing
in directions at 120o, and it equals E0 = 3J cos 120o = −3/2 J , to be compared to −J in
the Ising case.

With this example at hand, one can also interpret the origin of frustration as con-
straints, or the impossibility of the microscopic variables to take all their possible values.
The Ising spins are more constrained than the XY ones, since they cannot rotate on the
plane but just take only two orientations.

Many interesting classes of classical and quantum magnetic systems are highly frus-
trated. This is the field of constrained magnetism [11, 12].

Anti-ferromagnets on a planar triangular lattice, spin-ice samples, the fully frustrated
model and an Ising ferromagnet frustrated by Coulomb interactions are frustrated mag-
netic materials that we discuss below.

3.2 Gauge invariance of Ising models

The gauge transformation

σi = εisi , J ′ij = εiJijεj , with εi = ±1 (3.4)

leaves the energy and the partition function of an Ising spin model with two-body inter-
actions invariant:

HJ [{si}] = HJ ′ [{σi}] ZJ = ZJ ′ . (3.5)
This invariance means that all thermodynamic quantities are independent of the particular
choice of the interactions.

Whenever it exists a set of εis such that frustration can be eliminated from all loops in
the model, the effects of quenched disorder are less strong than in trully frustrated cases,
as happens, for example, in the case of the Mattis model:

HMattis = −
∑
ij

Jijsisj with Jij = J(|~rij|)ξiξj , (3.6)

J(|~rij|) > 0, and the ξi taken from a probability distribution with a bimodal form, such
that ξi = ±1. It is straightforward to see that under the transformation to new Ising
variables

σi = ξisi ∀i , (3.7)
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the Hamiltonian (3.6) becomes

HMattis = −
∑
ij

J(~rij|)σiσj (3.8)

and it is no longer frustrated. (Note that the partition sum runs, in both representations,
over Ising variables, si = ±1 or σi = ±1.)

3.3 Extensive entropy of the ground state

Frustration makes the energy of the ground states be higher than the one of similar
unfrustrated models. Moreover, frustration also enforces a large multiplicity of ground
states, often associated with an excess entropy at zero temperature. We show how these
two features arise in a number of celebrated statistical mechanics models. We also exhibit
two other phenomena generated by frustration: the existence of critical phases and the
one of modulated phases.

3.3.1 The antiferromagnet on a triangular lattice

The model is defined as
H = −J

∑
〈ij〉

sisj (3.9)

with si = ±1, J < 0 and the sum running over first neighbours on the triangular lattice,
see Fig. 3.1.

The minimal energy of any triangular plaquette, say ε0, is reached by configurations
such that there are two pairs of anti-parallel spins and one pair of parallel spins, εAF

0 =
−2J + J = −J . A triangular plaquette with ferromagnetic interactions would have
εFM

0 = −3J . An increment of 2J per plaquette is caused by frustration.
A very crude counting of the number of ground states, Ω0, just considers the plaquettes

as independent. The argument is originally due to Pauling to estimate the water ice zero-
point entropy [17] and goes as follows:
– By simple inspection one can first reckon that, in the thermodynamic limit, there are
as many plaquettes pointing up as spins (we avoid subtleties linked to boundary effects
by taking N →∞):

# spins = #up-plaquettes = N . (3.10)

– The total number of (unconstrained) spin configurations in a system with N spins is
2N . However, not all these configurations are energy minima.
- An approximation for the total number of configurations that are energy minima is given
by the multiplication of this total number by a deflation weight factor equal to

deflation weight per plaquette =

(
# ground states

# states

)
(3.11)
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?

Figure 3.1: Left: the triangular lattice and a ground-state configuration. Each spin has six
neighbours. The central one (surrounded in green) has zero local field hloc

i =
∑

j(nn i) sj = 0.
Right: a triangular plaquette with anti-ferromagnetic interactions.

on each up-plaquette. This factor has to be taken to the power of the total number of
plaquettes.
This counting yields

Ω0 = (# single spin states)# spins
(

# ground states on a plaquette
# states on a plaquette

)#up-plaquettes

(3.12)
Say there are N spins on the lattice. A plaquette has three spins and three pair

interactions. The total number of configurations of the three Ising spins on a triangular
plaquette is 23 = 8. In the lowest energy configuration two pairs of spins are anti-parallel
and one is parallel, see Fig. 3.1. The lowest energy configuration is obtained in six
possible ways = 3 (which is the ‘parallel’ spin) times 2 (global spin reversal). The fraction
of minimal energy per all configurations of a plaquette is then 6/8. Then,

Ω0 = 2N (6/8)N (3.13)

and the entropy of the ground states is

S0 = kB ln Ω0 = kBN ln 3/2 ' 0.405 kBN . (3.14)

Such extensive residual zero temperature entropy is associated to a massive level of con-
figurational spin disorder, that also gives rise to no phase transition down to zero tem-
perature [13, 14]. One classifies the frustration in this example as being geometric: it
is the regular periodic structure of the (triangular) lattice that inhibits the long-range
antiferromagnetic order.

The exact solution of this model was given by Wannier in the 50s [14], following the
steps of Onsager’s solution to the square lattice ferromagnetic model. He obtained the
residual entropy, S0 = 0.3383R, he showed that there is no order at any finite temperature
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and that the zero-temperature behaviour is “critical" in the sense that the correlation
function decays algebraically, C(r) ' r−1/2.

Exercise 3.2 Take a square lattice in two dimensions and choose the couplings in such
a way that all plaquettes are frustrated. Compare the minimal energy of the frustrated
square plaquette to the one of an elementary unit with the same magnitude of coupling
strengths but signs such that it is not frustrated. Compare also their entropy.

Exercise 3.3 Look at the simple arguments in [15] used to evaluate the zero-point entropy
of an antiferromagnet in a magnetic field.

3.3.2 The six vertex model

In vertex models the degrees of freedom (Ising spins, q-valued Potts variables, etc.) sit
on the edges of a lattice. The interactions take place on the vertices and involve the spins
of the neighbouring edges.

Take an L×L square lattice with periodic boundary conditions. Label the coordinates
of the lattice sites (m,n). This lattice is bipartite, namely, it can be partitioned in two
sub-lattices A1 and A2 such that the sites with m + n even belong to A1, those with
m + n odd belong to A2, and each edge connects a site in A1 to one in A2. The degrees
of freedom sit on the links between two sites or, in other words, on the ÒmedialÓ lattice
whose sites are placed on the midpoints of the links of the original lattice. The midpoints
are hence labeled by (m + 1/2, n) and (m,n + 1/2). Thus, the degrees of freedom are
arrows aligned along the edges of a square lattice, which can be naturally mapped into
Ising spins, say sm+1/2,n = ±1. Without loss of generality, we choose a convention such
that s = +1 corresponds to an arrow pointing in the right or up direction, depending on
the orientation of the link, and conversely s = −1 corresponds to arrows pointing down
or left.

In the six-vertex model (or 2d spin-ice) arrows (or Ising spins) are constrained to satisfy
the two-in two-out rule. Each node on the lattice has four spins attached to it with two
possible directions, as shown in Fig. 3.2.

The model was proposed to describe ferroelectric systems by giving different statistical
weights to different vertices: wk ∝ e−βεk with εk the energy of each of the k = 1, ..., 6
vertices. β = 1/(kBT ) is the inverse temperature. Spin reversal symmetry naturally
imposes w1 = w2 = a for the first pair of ferromagnetic (FM) vertices, w3 = w4 = b
for the second pair of FM vertices, and w5 = w6 = c for the anti-ferromagnetic (AF)
ones, see Fig. 3.2. We have here introduced the conventional names a, b, and c of the
Boltzmann weights of the three kinds of vertices. It is customary to parametrize the
phase diagram and equilibrium properties in terms of a/c and b/c, as shown in the phase
diagram in Fig. 3.3. It is important to note, however, that in the context of experiments
in artificial spin-ice type samples, vertex energies are fixed and the control parameter is
the temperature.

The free-energy density of the model with periodic boundary conditions can be com-
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Figure 3.2: The six vertex configurations of the six vertex model and a configuration with the
arctic curve.
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Figure 3.3: The phase diagram of the six vertex model.

puted with the transfer matrix technique and the Bethe Ansatz to solve the eigenvalue
problem [18, 19]. The effect of the boundary conditions is very subtle in these systems,
as some thermodynamic properties depend upon them, in contrast to what happens in
usual short-range statistical physics models. (These systems present macroscopic phase
separation in real space. A frozen region fixed by the boundary conditions is separated
from a fluctuating phase by the so-called arctic curve. A similar phenomenon exists in
crystal growth [16].)

Excess ice entropy

Take the case a = b = c in which all vertices are equivalent, the so-called spin-ice
point. A simple counting argument was put forward by Pauling to estimate the number
of configurations that satisfy the two-in two-out constraint [17]. It is very similar to
the one already exposed for the planar antiferromagnet on the triangular lattice. Take
a system with N vertices. On the square lattice each vertex has z = 4 neighbouring
vertices attached to it. The number of links is zN/2 as each link is shared by two vertices.
In principle, each link can take two configurations for Ising spins, therefore, ignoring
the constraint, there are 2zN/2 possible arrow configurations. The constraint definitely
diminishes the number of allowed configurations but it cannot be taken into account
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Spin ice Anderson 1956

• Ho2Ti2O7 (and Dy2Ti2O7) are pyrochlore Ising magnets
which do not order at T ! ΘW Bramwell+Harris

• Residual low-T entropy: Pauling entropy for water ice
S0 = (1/2) ln(3/2) Ramirez et al.:

Figure 3.4: Left: Entropy of a spin-ice sample [20]. Right: the tetrahedra cell in water and spin
ice. In the former case, the large open circles represent the O atoms and the small filled ones
the H atoms. In the latter case, the arrows represent the moments of the magnetic atoms.

exactly in this kind of simplified argument. Pauling’s proposal was to consider it in a
kind of mean-field way, by simple proposing that the number of configurations is reduced
by a factor given by the ratio between the allowed vertex configurations and all vertex
configurations (6/16) for each vertex. Finally,

Ω0 = 2zN/2 (6/16)N ⇒ S0 = kBN ln
3

2
' 0.405 kBN . (3.15)

The exact solution of Lieb yields S0 = −3N/2kB ln 3/4 ' 0.431 kBN [18, 19].
A comparison between Pauling’s estimate for the zero-point entropy and its actual

measurement via

∆S = S(T2)− S(T1) =

∫ T2

T1

dT ′
C(T ′)

T ′
(3.16)

in a spin-ice sample is shown in Fig. 3.4. This is a magnetic material with a similar
crystalline structure to the one of water ice, thus its name.

Critical phases

The statistical properties of the model can be studied for generic values of the parame-
ters a, b and c. A phase diagram with two FM ordered phases (large values of a or b with
respect to c), one AF phase (large value of c) and one disordered phase (similar values
of all the parameters) are found. The disordered phase is very peculiar as it is critical
meaning that the spatial correlations decay algebraically with distance:

C(r) ' r−η (3.17)

with η a function of the control parameters a/b and a/c. This is also called a Coulomb
phase.
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the vertex as a whole, there are four distinct topologies for the
configurations of the four moments with a total multiplicity of 16, as
shown in Fig. 1c. We label the configurations I–IV in the order of
increasing magnetostatic energy, but no configuration can minimize
all of the dipole–dipole interactions (even type I only minimizes the
energy for four of the six pairs in a vertex), and thus the system is
frustrated.
The lowest energy vertex configurations (I and II) have two of the

moments pointing in toward the centre of the vertex, and two
pointing out. Although the interactions between all pairs of spins
on the vertex are not equivalent, these energetics are analogous to the
two-in/two-out ice rules for the atomic moments on a tetrahedron in
spin ice. For arrays with a lattice constant of 320 nm, the energy
difference between vertices of types I and III is more than twice as
large as the energy difference between vertices of types I and II, and
the energy difference between types I and IV is more than six times as
large (based on OOMMF calculations of relaxed magnetostatic
energies). The two-in/two-out motifs (types I and II) therefore
dominate within a large manifold of closely spaced low-energy
magnetic states. Topological considerations further favour the
creation of magnetic states that are dominated by frustratedmixtures
of types I and II. For example, a domain boundary between regions of
types I and II is essentially seamless, requiring no vertices of types III
or IV. The situation contrasts sharply with that of a traditional Ising
ferromagnet or antiferromagnet, wherein magnetic domain walls
contain highly unfavourable anti-aligned spin pairs.
Magnetic force microscopy (MFM) allowed us to image the

orientations of all of the moments in a large area (10 mm £ 10 mm),
far from the edges of the arrays. To enable the system to settle into a
low energy configuration, we followed a protocol developed by
previous authors16,18 and rotated the samples in a magnetic field
which decreased stepwise from above to below the coercive field.
MFM images of the system after such field treatment revealed no
measurable residual magnetic moment for the array, and a ten-fold
variation of the step dwell times did not significantly alter the
distribution of vertex types described below.

In Fig. 2 we show an atomic force microsope (AFM) image and an
MFM image of a portion of a typical array. The black and white spots
in the MFM image, which indicate the north and south poles of the
ferromagnetic islands, confirm the single-domain nature of the
islands and demonstrate the dominance of the shape anisotropy in
aligning the magnetization of each island along its long axis. From
the MFMdata, we can easily determine the moment configuration of
the array (as indicated by the arrows in Fig. 1a). These data
demonstrate that the many vertex types anticipated in Fig. 1c can
be directly observed in the actual system. In order to probe the nature
of frustration in this system, we studied how the properties varied
with the spacing between the islands, counting between 1,000 and
3,000 islands in measurements of 2–4 different arrays for each lattice
spacing. This allowed us direct control over the frustrated inter-
actions, something which is not easily attainable in geometrically
frustrated magnetic materials.
An immediate question is whether our arrays obeyed the ice

rules—that is, did a preponderance of the vertices fall into a two-
in/two-out configuration (type I or II)? By simple counting argu-
ments (see Fig. 1c) we can predict the expected distribution of
different vertex types if the moments were non-interacting and
randomly oriented. One would expect only 37.5% of the vertices to
have a two-in/two-out configuration if the orientations were ran-
dom; an excess of such vertices would indicate that interactions are
determining the moment configuration. We compute the excess
percentage for each type of vertex, defined as the difference between
the percentage observed and that expected for a random distribution.
We plot this excess versus lattice spacing in Fig. 3a for each of the four
vertex types, as well as for types I and II combined. The excess
percentage of vertices with a two-in/two-out configuration (types I
and II) was well over 30% for the smallest lattice spacing; in other
words, over 70% of all vertices had a spin-ice-like configuration. This
excess percentage decreased monotonically with increasing lattice
spacing (decreasing interactions), approaching zero for our largest
lattice spacing, as would be expected for non-interacting (randomly
oriented) moments. In fact, the excess for all vertex types approached
zero as the lattice spacing increased, lending credence both to our
understanding of the system and to the effectiveness of the rotating-
field method in enabling facile local re-orientation of the moments.
To further understand the nature of frustration in this system, we

also studied the pairwise correlations between the Ising-like
moments of the islands. Defining a correlation function is somewhat
complicated by the anisotropic nature of our lattice and that of the
dipole interaction. We thus define a set of correlation functions
between distinct types of neighbouring pairs. The closest pairing is

Figure 1 | Illustration of frustration on the square lattice used in these
experiments. Each island in the lattice is a single-domain ferromagnet with
its moment pointing along the long axis, as indicated by the arrow. a, The
geometry of the lattice studied. The arrows indicate the directions of
moments corresponding to the MFM image of Fig. 2b. b, Vertices of the
lattice with pairs of moments indicated, illustrating energetically favourable
and unfavourable dipole interactions between the pairs. c, The 16 possible
moment configurations on a vertex of four islands, separated into four
topological types. The percentages indicate the expected fraction of each
type if the individual moment orientations on an array were completely
random.

Figure 2 | AFM and MFM images of a frustrated lattice. a, An AFM image
of a typical permalloy array with lattice spacing of 400 nm. b, AnMFM image
taken from the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, II and III in pink,
blue and green respectively.
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Figure 3.5: Left: Sketch of artificial spin-ice preparation. Right: A typical configuration.

3.4 The fully frustrated model & the dimer models

The Hamiltonian is the Ising usual one

HJ [{si}] = −
∑
〈ij〉

Jij sisj (3.18)

with nearest neighbour interactions on the lattice. The exchanges Jij have all the same
modulus |Jij| = J and their product over ‘elementary polygons’ is negative. The elemen-
tary polygons are four-bond-squares for the square and simple cubic lattice, triangles for
the FCC lattice, and hexagons for the diamond lattice [21]. By exploiting the transfor-
mation σi = εisi and J ′ij = εiεjJij with εi = ±1, the values of the new exchanges J ′ij
can be rendered periodic. For a square lattice with periodic boundary conditions, there
are many ways to achieve the latter. More precisely, there are four equivalence classes,
corresponding to whether the product of the Js along a loop winding around a direction
of the lattice is +1 or −1.

Exercise 3.4 Take the square lattice in two dimensions. Show that there is a choice
of {εi} such that the interactions can be taken to be ferromagnetic on all rows, and
ferromagnetic and anti-ferromagnetic on alternating columns.

As the interactions can be arranged regularly on the lattice, the free energy can be
computed with standard methods. This model can be solved with the transfer matrix
technique in 2d. Villain showed that it has no thermodynamic instability at any finite
T . However, the model is special at T = 0 as it has a high degeneracy of the ground
state. The configurations of minimal energy have only one unsatisfied bond, such that
J ′ijσiσj < 0. Each bond is shared by two plaquettes so the question of counting the
number of ground states is equivalent to counting in how many ways on can place the
broken bonds on the lattice with the constraint of having only one per plaquette. This is
the so-called dimer model and its degeneracy was discussed in [22]. On the square lattice,
S0 = ln Ω0 = NC/π with C the Catalan number. The ground state energy is E0 = −NJ
as exactly one quarter of the links are unsatisfied. In the thermodynamic limit, the low
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temperature expansion of the free-energy density reads

βf(β) = βe0 − s0 + c1βe
−4βJ (3.19)

The equilibrium correlation length is expected to diverge as ξeq ' e2βJ/2. The model has
no long-range order of any kind, even at T = 0.

On other lattices, or for other kinds of spins, a finite temperature transition can be
found.

These examples showed the phenomenon

Fluctuations 7→ degeneracies 7→ zero-point entropy

This result seems to violate the third law of thermodynamics, that states S(T → 0) = 0.
This is however not so, as quantum fluctuations will come to help at sufficiently low
temperatures and restate this limit.

3.4.1 Other cases

Exercise 3.5 An Ising spin model with N = 5 spins and two body interactions Jij is
defined on a random graph. The exchanges

J12 = −1.00 J25 = 0.4 J23 = −0.1
J35 = 0.81 J34 = −0.7 J45 = 0.03

couple the spins labeled with i and j.
1. Give a schematic representation of this system.
2. Is it frustrated? Justify the answer.
3. We will call this system A. Take now another system, that we will call B, in which

all the interactions are ferromagnetic, with the same absolute values. Which ground
state energy is lower, the one of A or the one of B?

4. Which ground state entropy is lower?
5. Are the results of questions (c) and (d) generic? Why?

3.4.2 The Coulomb frustrated Ising ferromagnet - periodic order

In many systems a short-range tendency to order is opposed by a long-range force that
frustrates this order. The low-temperature phase of these systems is characterised by
stripe of checkerboard order. A model in this class is an Ising ferromagnet with short-
range exchanges frustrated by antiferromagnetic Coulomb interactions. More precisely,
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the model is described by the Hamiltonian [23]

HJ,Q[{si}] = −J
2

∑
〈ij〉

sisj +
Q

2

∑
i 6=j

v(~rij)sisj, (3.20)

where, J,Q > 0 are the ferromagnetic and antiferromagnetic coupling strengths between
the Ising spin variables si = ±1 placed on the sites of a three-dimensional cubic lattice.
The first sum is restricted to nearest neighbours (each pair is added twice) while the
second one runs over all pairs of spins on the lattice. ~rij is the vector joining sites i and
j, and v(~r) is a Coulomb-like interaction term with v(~r) ∼ 1/|~r| for |~r| → ∞.

Because of the Coulomb interaction, the existence of the thermodynamic limit requires
that the total magnetization of the system be zero. As a consequence, the ferromag-
netic order is forbidden at all temperatures and for any nonzero value of the frustration
parameter Q/J . In three dimensions, the system has an order-disorder transition at fi-
nite temperature with a complex frustration-temperature phase diagram with a variety
of modulated phases.

The Hamiltonian (3.20) is quadratic in the spin variables. The interactions are not
local in real space but they depend only on the distance between the two spins involved
in each term. H can be written as

HJ,Q[{si}] = −
∑
i 6=j

V (~rij)sisj with V (~rij) =
J

2
δ(~rij, aêij)−

Q

2
v(~rij) , (3.21)

a the lattice spacing, êij the unit vector linking the site i to the site j and δ(x, y) the
Kronecker delta-function. It is then convenient to diagonalise the Hamiltonian by going
to Fourier space

HJ,Q[{si}] =
J

2

∑
~k

V̂ (~k)|ŝ(~k)|2 (3.22)

where ŝ(~k) is the lattice Fourier transform of the Ising spin variables si placed on the
lattice, see App. A.1. We now choose the Fourier representation of the Coulomb-like
interaction to be

v(~r) =
4π

N

∑
~k

exp(−i~k~r)
2
∑

α=x,y,z(1− cos kα)
, (3.23)

where N is the number of lattice sites and the sum over ~k = (kx, ky, kz) is restricted to
the first Brillouin zone. Then

V̂ (~k) = −2
∑

α=x,y,z

cos kα +
4πQ

J

[
1

2
∑

α=x,y,z(1− cos kα)
− v(~r = ~0)

]
(3.24)

where the subtraction of v(~r = ~0) serves to cure any problems at ~r = ~0, see [23] for more
details.
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For Q = 0 the model reduces to the standard Ising ferromagnet, and the ground
state is ferromagnetically ordered. Oppositely, for J = 0 the model is equivalent to a
Coulomb lattice gas (with the mapping between spin and occupation number variables,
ni = (1 − si)/2) and the ground-state is a Néel antiferromagnetic state. When Q 6= 0,
the Coulomb interaction prevents the existence of a ferromagnetic phase, and in the
thermodynamic limit, the total magnetisation (charge) is constrained to be zero. Instead,
phases with modulated order, with periodic patterns of “up” and “down” spins subject to
the constraint of zero magnetisation, are formed.

Mean-field approximation

In order to describe phases with spatial modulation one needs to keep the local charac-
ter of the local magnetisation at site i, mi = 〈si〉, in the mean-field approximation recalled
in App. B. The free-energy density is

f({mi}) = − J
N

∑
i 6=j

V (rij)mimj −
∑
i

[
1 +mi

2
ln

1 +mi

2

1−mj

2
ln

1−mj

2

]
. (3.25)

Calling m̂(~k) its Fourier transform, the mean-field free energy density f reads

f = − J

2N

∑
~k 6=0

V̂ (~k)|m̂(~k)|2 − kBT

N

∑
i

ln(2 cosh(βHi)) . (3.26)

The local mean-field equations read

mi = tanh(βHi) with Hi = −J
∑
j 6=i

Vijmj (3.27)

the effective field on site i. In the case Q = 0, Hi = −J∑j(nn i) mj−hi with hi an external
local magnetic field, if there is one.

Close to a second-order phase transition the magnetisations are expected to be small
and (3.27) can be linearised,

mi ≈ βHi ⇒ m̂(~k) ≈ βĤ(~k) and H(~k) = −JV̂ (~k)m̂(~k) . (3.28)

This equation has two kinds of solutions. The paramagnetic one, m̂(~k) = 0 for all ~k and
non-trivial ones, m̂(~k) 6= 0, at least for some ~k. The former one is the high-temperature
solution, and the latter appear at the critical temperature Tc.

For a given value of the frustration parameter, Q, the critical temperature Tc(J,Q)
that is then given by

Tc(J,Q) = −J min~kV̂ (~k) = −JVc(Q/J), (3.29)

where the minimum of V̂ (~k), Vc(Q/J), is attained for a set of nonzero wave-vectors
{~kc(Q/J)} that characterise the ordering at Tc(J,Q).
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Figure 3.6: Examples of lamellar (a), (b) and (d) and columnar (c) order in block-polymer
systems [24]. The mean-field and Monte Carlo phase diagrams of the model discussed in this
Section [23] (note the different normalisation (factor 2 between the two phase diagrams).

For the inverse lattice Laplacian expression of the long-range frustrating interaction in
d = 3, the ~kc(Q/J)′s vary continuously with Q/J :

~kc = (± arccos(1−
√
πQ/J), 0, 0) for 0 ≤ Q/J < 4/π

~kc = (π,± arccos(3−
√
πQ/J), 0) for 4/π ≤ Q/J < 16/π

~kc = (π, π,± arccos(5−
√
πQ/J)) for 6/π ≤ Q/J < 36/π

~kc = (π, π, π) for 36/π ≤ Q/J

(3.30)

and all permutations of the x, y, z coordinates in Eqs. (3.30). The above ordering wave-
vectors correspond, respectively, to lamellar (full FM order in two directions, for small
Coulomb AF frustration), tubular (full FM order in only one direction, for slightly larger
Coulomb AF frustration), orthorhombic, and cubic or Néel (for still large AF long-range
frustration) phases, see Fig. 3.6. The corresponding critical temperature Tc(Q) is then
given by

Tc(Q/J) = J
(

6− 4
√
πQ/J + 4πQv(0)

)
for 0 ≤ Q/J ≤ 36/π (3.31)

Tc(Q/J) = J (−6 + 4πQ/J(v(0)− 1/12)) for 36/π ≤ Q/J (3.32)

The mean-field approximation gives a line of second-order phase transition from the disor-
dered to the modulated phases. For vanishing small frustrations, the critical temperature
goes continuously to T 0

c , the critical temperature of the pure Ising ferromagnet. More
details on this problem can be found in [23].

The mean-field analysis of this model showed the existence of a complex phase diagram
and very different kinds of order depending on the coupling strengths J and Q and their
relative value. The effect of frustrations exhibited in this model can be summarised as

Frustration 7→ complex phase diagram with fancy phases

30



3.5 Order by disorder

Fluctuations tend to disorder typical systems. However, in a class of magnetic systems
order is induced by fluctuations, be then thermal or quantum. The order by disorder
phenomenon was introduced in [28] and discussed in general in [29]. It arises in systems
with infinitely degenerate rather than unique classical ground state. This property can
be due to the spatial geometry of the lattice, or the peculiar organisation of the coupling
strengths and it is intimately related to frustration. The principal effect of frustration is to
ensure that the classical ground state manifold is of higher symmetry than the underlying
Hamiltonian. Quantum or thermal fluctuations can dynamically break this additional
symmetry, restoring that of the Hamiltonian.

3.5.1 The domino model

The domino model is an Ising model on a rectangular lattice with two kinds of atoms
placed along alternating columns and nearest-neighbour interactions. The tree interaction
strengths are: JAA > 0 between nearest-neighbour A atoms on a vertical A column,
JBB < 0 between nearest-neighbour B atoms on a vertical B column, and JAB > 0
between nearest-neighbour A and B atoms on a horizontal row. One can easily check
that no spin configuration minimises all pair contributions to the energy of any square
plaquette. This model is fully frustrated since all plaquettes are.

Periodic boundary conditions are imposed along the two directions. The system has
N spins, N ′′ columns and N ′ = N/N ′′ sites per column or lines.

The condition 0 < JAB < |JBB| < JAA will be required from the exchanges.

Exercise 3.6 Compare the energy of all possible spin configurations on a square plaque-
tte.

Ferromagnetic and anti-ferromagnetic order are favoured along the A and B columns,
respectively. There are two possibilities for each. In contrast, no special order in the
horizontal direction will be selected at T = 0. The number of configurations that satisfy
these requirements is Ω0 = 2N

′′ and the zero-point entropy (kB = 1)

S0 = ln Ω0 = N ′′ ln 2 (3.33)

is sub-extensive (as N ′′/N = 1/N ′ → 0 in the thermodynamic two-dimensional limit; for
example, for a square lattice N ′ = N ′′ = L and N = L2). The average magnetisation and
staggered magnetisation vanish in the thermodynamic limit, as one can easily see from
the typical ground state configuration in Fig. 3.7-left. The ground state (equilibrium at
T = 0) is therefore globally disordered.

The free-energy density can be computed with the transfer matrix method [30, 31],
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Figure 3.7: Left: The domino model and one of its ground states. Ferromagnetic bonds are
full lines, antiferromagnetic bonds are dashed lines. Right: the magnetisation as a function of
temperature. From [28].

and it has a singularity at a critical temperature Tc given by

sinh(2βc|JAA + JBB|) sinh(4βcJAB) = 1 . (3.34)

The low-T phase can be analysed from this exact solution or it can be be characterised
with a low temperature decimation. Basically, an effective model,

Heff
J ′ [{sAi }] =

∑
〈ij〉

J ′ijs
A
i s

A
j (3.35)

is obtained by summing over the spins in the B columns, sBi ,

Z =
∑

{sAi },{sBi }

e−βHJ [{sAi ,sBi }] ≈
∑
{sAi }

e−βH
eff
J′ [{s

A
i }] = Zeff (3.36)

This calculation is not done exactly, but it is approximated by considering only the very
low energy states. More precisely, given a column B sandwiched between two columns
A, the two possible ground state orientations of the A columns are considered (parallel,
FM or anti-parallel, AF) and the very low excitations in the B columns are summed over
in the two cases. The ratio ZFM/ZAF is then compared to Zeff for a Heff

J ′ with effective
horizontal couplings. The new coupling strengths J ′ij are expressed in terms of the original
ones and they are positive in both horizontal and vertical direction when

0 < JAB < |JBB| < JAA . (3.37)

Therefore, the system of A spins orders ferromagnetically at low temperatures, withmA →
1 for T → 0. On the other hand the B spins have vanishing (ferromagnetic or staggered)
magnetisation, mB = 0, for T → 0. In conclusion, m = (mA + mB)/2 → 1/2 for T → 0,
contrary to m = 0 at T = 0.

Order by disorder is graphically represented as follows. At T = 0 the manifold of
ground states in phase space has volume Ω0 = 2N

′′ . Among all these ground states there
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are two states with global ferromagnetic up or down order on the A columns. These two
very special states are selected at T = ε by the entropic contribution to the free-energy.

The phenomenon of order by disorder in frustrated magnetic systems is not restrained
to thermal fluctuations. Quantum, and even quenched noise may sometimes increase
ordering in systems where energetics ensure a nontrivially degenerate classical disordered
ground state.

Frustration 7→ order by disorder

3.6 Discussion

A theoretical approach to the physics of real glasses is based on the concept of frus-
tration, which in this context describes an incompatibility between the extension of the
locally preferred order in a liquid and tiling of the whole space. The real glass problem
concerns the understanding of the behaviour of an ensemble of, say, particles in inter-
action which have been cooled fast enough to avoid nucleation (via a first order phase
transition) into a stable crystal.

The ground state of four identical particles interacting via an isotropic potential is a
perfect tetrahedron with the particles sitting at the vertices. However, it is not possible to
fill space with such tetrahedra, see Fig. 3.8. The atom near the gap is frustrated because
it cannot simultaneously sit in the minima provided by the pair potentials of its near
neighbours. This frustration implies that there is no regular lattice of perfect tetrahedra
which fills ordinary three-dimensional space. Familiar close-packed regular lattices, like
the fcc structure, contain octahedra as well as tetrahedra. The octahedra are necessary to
obtain a global tesselation of space, even though they do not minimise the energy locally.

Figure 3.8: Frustration in a tetrahedral packing. Figure taken from [26].

This idea was put forward by D. Nelson [25] and its development over the years is
discussed in [26] and [27].
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4 Percolation
The understanding of fluid flow in porous media needs, as a first step, the understanding

of the static geometry of the connected pores. The typical example, that gave the name
to the problem, is coffee percolation, where a solvent (water) filter or trickle through the
permeable substance that is the coffee grounds and in passing picks up soluble constituents
(the chemical compounds that give coffee its color, taste, and aroma).

Another problem that needs the comprehension of a static random structure is the
one of conduction across a disordered sample. Imagine that one mixes randomly a set of
conducting and insulating islands. Whether the mix can conduct an electric current from
one end to the other of the container is the question posed, and the answer depends on
the structure formed by the conducting islands.

Figure 4.1: A measurement of the topography (left) and local current (right) in an inhomo-
geneous mixture of good and bad conducting polymers [36]. The brighter the zone the more
current passing through it. Several grains are contoured in the left image.

Percolation [32, 33, 34, 35] is a simple geometric problem with a critical threshold. It
is very helpful since it allows one to become familiar with important concepts of critical
phenomena such as fractals, scaling, and renormalisation group theory in a very intu-
itive way. Moreover, it is not just a mathematical model, since it is at the basis of the
understanding of the two physical problems mentioned above among many others.

In this Section we describe its simplest setting as well as some of its variants.

4.1 Dilution

Site dilute lattices with missing vertices are intimately related to the site percolation
problem. Imagine that one builds a lattice by occupying a site with probability p (and
not occupying it with probability 1− p). For p = 0 the lattice will be completely empty
while for p = 1 is will be totally full. For intermediate values of p, on average, order pLd
sites will be occupied, with L the linear size of the lattice. Site percolation theory is about
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the geometric and statistical properties of the structures thus formed. In particular, it
deals with the behaviour of the clusters of nearest neighbour occupied sites.

Similarly, one can construct bond dilute lattices and compare them to the bond perco-
lation problem.

The site percolation problem describes, for example, a binary alloy or dilute ferromag-
netic crystal, also called a doped ferromagnet. The question in this context is how much
dilution is needed to destroy the ferromagnetic order in the sample at a given temper-
ature. The bond percolation problem corresponds to a randomly blocked maze through
which the percolation of a fluid can occur. Many other physical problems can be set in
terms of percolation: the distribution of grain size in sand and photographic emulsions,
the vulcanisation of rubber and the formation of cross-linked gels, the propagation of an
infection, etc.

The main interest lies on characterising the statistical and geometric properties of the
clusters on a lattice of linear size L as a function of the probability p. The clusters are
connected ensembles of nearest neighbour sites. Their easiest geometric property is their
size, defined as the number of sites that compose them. Other geometric properties are
also interesting and we will define them below.

The percolation problem is specially interesting since it has a threshold phenomenon,
with a critical value pc at which a first spanning cluster that goes from one end of the
lattice to the opposite in at least one of the Cartesian directions appears. For p < pc there
are only finite clusters, for p > pc there is a spanning cluster as well as finite clusters.

The first natural question is whether the value pc depends on the particular sample
studied or not, that is to say, whether it suffers from sample-to-sample fluctuations. All
samples are different as the sites erased or the links cut are not the same. The threshold
value is therefore a random variable and it does not take the same value for different
samples. The ‘surprise’ is that the mean-square deviations of pc from its mean value
vanish as a power law with the system size,

δ2
pc(N) ≡ 1

N
N∑
k=1

(p(k)
c − pc)2 ' C2N−ν , pc ≡

1

N
N∑
k=1

p(k)
c , (4.1)

with k labelling different measurements and N counting its total number. N the number
of sites in the sample. (C turns out to be 0.54 and ν = 1.3 in d = 2.) In the infinite
system size limit, pc does not fluctuate from sample to sample.

One can then count the number of sites belonging to the largest cluster and compare
this number to the total number of sites in the sample:

rL(p) ≡ Nmax(p)

N
. (4.2)

This is, again, a fluctuating quantity that, in the infinite system size limit does no longer
fluctuate and defines

r∞ ≡ lim
L→∞

rL(p) . (4.3)
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Lattice n psite
c pbond

c

Honeycomb 3 0.70 0.65
Square 4 0.59 0.50
Kagomé 4 0.65
Bowtie-a 5 0.55
Triangular 6 1/2 0.35

Table 4.2: Connectivities, n, and critical thresholds for percolation, pc, for several two dimen-
sional lattices shown in the figure on the right (the honeycomb lattice is missing). (In the case of
the bow-tie lattice, n = 5 is the average between the connectivities of the sites with connectivities
4 and 6.)

The precise definition of the critical threshold pc involves the infinite size limit and it
can be given by

r∞(p) = lim
L→∞

rL(p) =

{
0 for p < pc
> 0 for p > pc

(4.4)

where r∞(p) denotes the fraction of sites belonging to the largest cluster in the finite
lattice with linear size L. In the magnetic application of percolation, this means that the
magnetisation vanishes for p < pc and it takes the value that the magnetisation takes on
the largest cluster for p > pc (as in both cases the magnetisation on the finite clusters is
independent and averages to zero).

An equivalent definition of the critical threshold pc is given by

P∞(p) = lim
L→∞

PL(p) =

{
0 for p < pc
1 for p > pc

(4.5)

where PL(p) denotes the probability of there being a percolating cluster in the finite lattice
with linear size L.

The percolation threshold pc depends on the lattice geometry and its dimensionality.
Moreover, it is not the same for bond percolation and site percolation. Exact results are
known for special lattices as the Cayley tree. Examples of how these results are found are
given in [32]. Numerical data for finite dimensional lattices are complemented by rigorous
upper and lower bounds and the outcome of series expansions for the mean cluster value.
Harris showed that pc ≥ 1/2 for the bond percolation problem on a planar square lattice
and the numerics suggests pc = 1/2. Fisher put several bounds on pc on various 2d
lattices for the site and bond problem. In particular, pc ≥ 1/2 for site percolation on
planar regular lattices with no crossings. The values of pc for some bidimensional lattices
are given in Table 4.2.

The value of the percolation threshold, decreases for increasing spatial dimensionality.
For cubic lattices, pc = 1 in d = 1, pc ' 0.59 in d = 2 and pc ' 0.32 in d = 3. This
implies that the case p = 1/2 is below threshold in d = 2 for all the lattices in Table 4.2
but above threshold in the cubic lattice in d = 3.
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If one conducts a laboratory or a numerical experiment in a finite size array, the ma-
jority of the threshold values measured fall in a window centred at pc of width δ(N). The
infinite size limit is estimated by first taking the average at finite N and then performing
an infinite size extrapolation

pc(N) = pc + CN−γ . (4.6)

As, in general, the value pc = pc(N → ∞) cannot be computed analytically, numerical
simulations are used to obtain it. The best algorithm to find the largest cluster is given
in [37].

The problem is quantitative characterised by a number of observables that depend on
the control parameter p. The critical threshold pc plays a role similar to the one of a
thermodynamic transition in a physical problem. Several observables vanish and behave
as order parameters and others diverge and behave as susceptibilities when the control
parameter p approaches its critical value. Moreover, they do algebraically as in usual
critical phenomena. Indeed, there is a large degree of universality in random percolation
models: pc is model dependent but the critical exponents depend only on the spatial
dimension of the lattice. Microscopic details do not influence the behaviour close to pc.

The cluster interfaces are also an interesting characterisation of the geometry of the
clusters. The domain wall of a spin cluster is its external and internal contour, constructed
as follows. One first generates a dual lattice by placing a site at the centre of each plaquette
of the original lattice. Next, the links on the dual lattice that cross broken bonds on the
original lattice are joined together. In this way, one finds a closed loop on the dual lattice
that runs along the external, and possibly also internal, boundary of a spin cluster. The
hull of a cluster is restricted to the external part of the contour, that is to say, one excludes
the contribution of the holes of the cluster. The hull-enclosed area is the area, i.e. the
total number of sites, inside the hull (the holes within the domains are thus filled). The
lengths of the different contours existing on the dual lattice are computed by counting
the number of broken bonds crossed by the boundary. The external perimeter is built by
closing the narrow gates of the hull, making in this way a smoother version of the contour
by eliminating the deep fjords.

Take a geometric object with a given property (area, length, etc.) generically called
x that takes values X. For large but not necessarily infinite L, close to criticality, its
probability distribution per lattice site or number density, nx(X), takes the form

nx(X) ' X−αxfx(X
σx(p− pc)) + nfs(X/L

Dx) . (4.7)

The second term in the rhs are the finite size corrections while the first term is the only
one remaining in the infinite size limit L → ∞. The scaling function fx is required to
decay fast (it could be an exponential) for large arguments and to approach a constant
for small arguments. At pc the decay is purely algebraic. (p− pc)1/σx acts as cut-off and
controls the crossover from a behaviour of “critical clusters" (power-law distributed) to
that of non-critical clusters. A way to check this scaling form is to search data collapse
by plotting

Xαx nx(X) vs Xσx(p− pc) (4.8)
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Figure 4.2: A percolating cluster highlighted in black and the hull of a cluster. The domain
wall will add to the red line the internal interface and the external perimeter will close the two
fjords.

for the best choices of αx and σx. The master curve yields the scaling function fx that
depends on the observable x as also do the exponents αx and σx. For example, nx(X) can
be the number of clusters with area s = S, Ns(S), normalised by the number of lattice
sites, ns(S) = Ns(S)/N .

Exercise 4.1 Set the percolation problem on a one dimensional lattice. Show that pc = 1.
Demonstrate Eq. (4.7) for x being the cluster size s in the infinite system size limit,
L → ∞. Show that σs = 1 and find the scaling function fs(y). Identify an exponential
cut-off and compute the characteristic length sξ from its decay.

The probability that a site belong to any cluster is, on the one side, equal to p and, on
the other side, it can be written in terms of ns(S). For p < pc there are only finite size
clusters and the sum rule

∞∑
S=1

S ns(S) = p (4.9)

holds.

Exercise 4.2 Verify the sum rule (4.9) in d = 1.

One can prove that the average size of the cluster diverges when approaching pc from
below, see [34] for an explicit calculation, and the way in which it does is also characterised
by a critical exponent

〈S〉(p) ' |pc − p|−γs . (4.10)

On the other side, one can use the definition and scaling Ansatz for ns(S) to show that
〈S〉(p) ' |p− pc|(αs−3)/σs . Therefore, the equivalence of these two expressions requires

γs =
3− αs
σs

. (4.11)

Note that γs > 0 implies αs < 3.
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The pair connectedness correlation function g(~r) is defined as the probability that a
site at distance ~r from an occupied site belong to the same cluster. The correlation length
can be computed from

ξ2 =

∑
~r r

2g(~r)∑
~r g(~r)

. (4.12)

Close to the threshold the correlation length diverges as

ξ ' |p− pc|−ν . (4.13)

Exercise 4.3 Show that in d = 1, g(r) = pr and ξ = −1/ ln p ' (1− p)−1 close to pc.

Another sum rule that one can easily show is
∑

~r g(~r) = 〈S〉.
The strength of the percolating cluster, r(p), measures the proportion of sites on the

lattice that belong to the infinite cluster and plays the role of an order parameter for the
percolation transition. It vanishes as

r(p) ' (p− pc)β for p
>∼ pc (4.14)

and the transition is continuous. For p > pc an occupied site can belong to the infinite
cluster or it can be in one of the many finite clusters. Therefore, the sum rule (4.9) is
modified to

r(p) +
∞∑
S=1

S ns(S) = p (4.15)

where the sum runs only on finite clusters. From (4.14) and (4.15) with the scaling form
of ns(S) one shows

r(p) ' |p− pc|(αs−2)/σs ⇒ β =
αs − 2

σs
. (4.16)

Several geometric properties of the clusters can also be studied. Take a site at ~ri in
a cluster. The centre of mass of a cluster with mass S and the radius of gyration of the
same cluster are

~rcm = S−1

S∑
j=1

~rj R2
g = S−1

S∑
j=1

|~rj − ~rcm|2 (4.17)

Exercise 4.4 Prove that R2
g = (2S2)−1

∑
ij |~ri − ~rj|2 with ~ri and ~rj the positions of two

sites i and j on the cluster.

The mass of the percolating cluster, that is to say the number of sites S in it, depends
on L the linear size of the system. One can write it as ML(p) = LdPL(p) where PL(p) was
defined above in the infinite size limit and its definition is now extended to finite system
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size. At pc the correlation length diverges and the percolating cluster is a fractal object.
Accordingly, ML(pc) does not scale as Ld but, instead, as

ML ' LDs for L� ξ (4.18)

with Ds a fractal dimension. If, instead, the linear size of the system is larger than the
correlation length, one can divide the full system in cubic boxes of linear size ` ≈ ξ. Inside
each box, the cluster is fractal and its mass scales as M` ≈ `Ds = ξDs . Adding together
the independent contributions from all boxes,

ML ' (L/ξ)d `Ds for L� ξ (4.19)

These two limits can be joined into a single equation

ML(ξ) ' LDs m

(
L

ξ

)
with m(y) '

{
const y � 1
yd−Ds y � 1

(4.20)

These relations imply that large clusters at p 6= pc appear fractal at length scales smaller
than ξ and regular at longer length scales.

For generic clusters of size S and radius of gyration Rg the relation (4.18) generalises
to

S ' RDs
g (4.21)

Equation (4.20) is an example of finite size scaling, that for a generic observable X
takes the form

X(p, L) = ξ−βx/ν Fx[(p− pc)L1/ν ] = ξ−βx/ν Fx[(L/ξ)
1/ν ] (4.22)

where βx is a quantity-dependent critical exponent and ν is the exponent of the power
law divergence of the incipient cluster size. The scaling function Fx should have the limits
Fx(y � 1) = 1 and Fx(y � 1) = y−βx/ν .

Many quantities diverge at pc and they can be expressed as a sum over clusters of all
sizes. The main contribution to these sums comes from the size scale sξ ' |p− pc|−1/σ, as
can be read from the scaling form of ns(S). Since one also expects this size to be given
by sξ ' ξD in terms of the fractal dimension D, one has

ξDs ' ξ1/(νσs) ⇒ Ds = 1/(νσs) (4.23)

As in standard phase transitions, the exponents αx, σx, β, ν depend on the dimension
of space but do not depend on the lattice geometry. In dimension one and two they take
specially simple values. They are integer in d = 1 and fractions in d = 2. In particular,
the fractal dimension of the clusters areas is Ds = 1 in d = 1 and Ds = 91/48 in d = 2.
The interfaces (hulls, external perimeters, etc.) also have fractal properties that can be
characterised with fractal exponents.

Physical phase transitions also admit a geometric description. In the 70s the surprise
was that the clusters that characterise the phase transition are not the geometric ones.
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Figure 4.3: Two paths of occupied bonds in the directed percolation problem, one along which
a fire propagates from left to right and another one that does not allow propagation.

The idea was to study the clusters of the reversed fluctuations in the Ising model. While
these percolate at Tc in 2d, they do at a Tp that is strictly below Tc in 3d. This indicates
that the geometric clusters are not the correct one to describe criticality. Fortuin and
Kasteleyn proposed to erase or keep the links between points belonging to the clusters with
a probability distribution that depends on temperature. Having done this, the clusters
reduce their size and while they still percolate at Tc in 2d they do at a higher temperature
in 3d that coincides with Tc. The analysis of their critical exponents (α, σ, ν, . . . ) proved
that they yield the correct thermodynamic exponents (β, γ, δ, . . . ).

4.2 Directed percolation

A figure extracted from [32] shows the definition of the directed percolation problem.

4.3 Bootstrap & diffusion percolation

In the bootstrap percolation model the sites of a lattice are initially occupied with a
probability p. This configuration is taken as the initial state for the dynamics based on
some simple local rules, in which the occupation status of a point is updated according to
the configuration of its neighbours. This model is used to mimic the spreading of diseases,
for example.

In its most common setting the dynamic rule is the following. Empty sites remain
empty for ever. The sites that do not have at least m occupied neighbours are emptied.
This procedure goes on until no occupied site can be further removed or the lattice is void
of particles. This stage corresponds to the infinite time limit. The critical pc for bootstrap
percolation is the value of the parameter p below which no infinite cluster is found in the
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infinite time limit and for an infinite size system. For all lattices pBP
c (m) is greater than

or equal to the pc of random site percolation. If m = 0, no particle extraction is possible,
and pBP

c (0) = pc. The existence of a spanning cluster in a given configuration does not
ensure that this cluster cannot be broken by the dynamic rule.

An alternative definition of bootstrap percolation states that it is a cellular automaton
with a discrete time deterministic dynamics in which at each time unit the configuration
is updated according to a local and translation invariant rule.

In the dual diffusion percolation model the sites of the lattice are also occupied initially
with a given probability p. In successive time steps empty sites with at least n occupied
neighbours are occupied at their turn. Occupied sites remain occupied. In this problem,
the percolation threshold pDP

c (n) is the value of p at which an infinite cluster of occupied
sites appears after the site-addition procedure, in the thermodynamic limit. It is also clear
that for all lattices pDP

c (n) is lower than or equal to the pc of random percolation. If n > z,
the coordination of the lattice, no particle inclusion is possible, and pBP

c (n > z) = pc.
These two problems are dual to each other if one identifies removed sites with less than

m neighbours with added sites with at least z + 1−m occupied neighbours.
There are choices of m or n, d and the lattice structure such that the BP or DP

percolation transitions are of first order, meaning that the density of occupied sites at the
threshold is finite (instead of zero as in a continuous transition).

Rigorous analysis of the, say, diffusion percolation problem on the hypercubic lattice
establish that one can always fill the lattice for any choice of n > 0. In particular, for
n = 2, and an initial condition chosen with p = c/ lnL the probability of filling the lattice
is one if c > π2/18 and zero otherwise. Note the very special finite size effects in this
problem.

4.4 Away from the lattice

It is also possible to define percolation problems on the continuous space. This can be
done, for example, but setting circles of equal radius R randomly on a plane. Two disks
are considered to be nearest-neighbours if the centre of one falls into the other one. The
path linking such centres then identified. Remote disks can be then connected via these
paths and the question is whether the longest path runs from one border of the sample
to an opposite one. In this problem there are, a priori, two independent parameters: the
concentration of the disks, i.e. their number over the size of the plane, N/L2, and their
radius, R. The control parameter turns out to be the dimensional quantity NR2/L2. This
model is used to describe conduction in impurity semiconductors [32].

4.5 Mapping to the Potts model

The bond percolation problem can be easily mapped to the Potts model, a simple
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generalisation of the Ising model,

HJ [si] =
∑
〈ij〉

δsisj (4.24)

with spins si that take q values, si = 1, . . . , q and δab the Kronecker delta function, δab = 1
if a = b and δab = 0 otherwise. The case q = 2 corresponds to the Ising model. In the
limit q → 1 the bond percolation properties are recovered in the way that we will describe
below. This results is due to Kasteleyn and Fortuin [38, 39]. This connection between
these two apparently different problems illustrates the use of an analytical continuation
from integer q to real q as a tool to solve one problem (percolation) using a non-physical
extension of another one (the Potts model). A similar mapping, though slightly more
complicated, exists for the site percolation problem.

Each configuration of the bond percolation problem is associated to a sub-graph G′ of
the embedding graph G on which the problem is defined, that appears with probability

π(G′) = pE(G′) (1− p)M−E(G′) (4.25)

where E(G′) is the number of edges in G′ and M is the total number of edges in the
original graph. Each sub-graph G′ is not necessarily formed by a single component, so
we will later call c(G′) the number of clusters in the sub-graph G′. (A cluster is defined
as the ensemble of edges that are occupied and joined by a vertex on the lattice.) Any
averaged property of the bond percolation problem can then be computed as

〈A〉 =
∑
G′

A(G′)π(G′) =
∑
G′

A(G′)pE(G′) (1− p)M−E(G′) (4.26)

A could be, for example, the number of clusters.
The partition function of the Potts model reads

ZJ =
∑
{si}

e−βHJ [{si}] =
∑
{si}

eβJ
∑
〈ij〉 δsisj =

∑
{si}

∏
〈ij〉

eβJδsisj

=
∑
{si}

∏
〈ij〉

(1 + vδsisj) (4.27)

with
v = eβJ − 1 . (4.28)

The last identity can be readily checked, by considering the two possible outcomes for
each factor in the product:

si = sj ⇒ eβJ , (4.29)
si 6= sj ⇒ 1 . (4.30)

Note that if one took q = 1, that is to say if si = 1 for all i, the partition function is
identical to one, ZJ = 1.
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The product
∏
〈ij〉 (1 + vδsisj) under the sum

∑
{si} can now be expanded. Each term

in the resulting sum is represented by a subgraph on the lattice in which all its edges
coincide with the vδsisj factors in the term. Let us explain how this works listing the first
terms in the sum for a square lattice:
- the first term is just the product of number-of-edges=M 1s and equals 1. The sum over
the spin configurations is fully unconstrained and yields a factor qN .
- the second kind of term is the product of M -1 1s and a factor vδsisj and equals vδsisj .
There areM ways of choosing this non-trivial factor. Moreover, it will give a non-vanishing
result only if si = sj and there are q possibilities for this to happen. All these terms can
be associated to isolated clusters with only two sites on the lattice. All the other spins on
the graph are unconstrained and the sum over their configurations yields a factor qN−2.
Therefore, these terms are accompanied by an overall qN−1 factor.
- the third kind of term is the product of M -2 1s and two factors vδsisj and vδsksl . There
are now three options for the two edges 〈ij〉 and 〈kl〉. They can be separated, when all
indices are different, yielding two isolated clusters with two sites each. They can be joined
together by one site, when e.g. i 6= j = k 6= l, and form a single cluster with three sites.
They cannot be such that i = k and j = l since there is no double counting of links. The
Kronecker delta imposes that all the spins on each individual cluster in the graph take the
same value (out of the q possible ones) while the spins that are not on vertices belonging
to the clusters are free to take any of the q possibilities.
The construction goes on along these lines.

The product is then represented as a sum over all possible subgraphs on the original
graph. Each edge on each sub-graph is accompanied by a factor v. The sum over the spin
configurations yields a factor q for each cluster in the sub-graph and a factor qn with n
the number of sites that do not belong to any cluster. In short,

ZJ =
∑
G′

vE(G′)qc(G
′) (4.31)

where we called E(G′) the number of edges and c(G′) the number of clusters in the
sub-graph G′, including as independent single-site clusters the sites that are alone. This
model, for generic q is called the random cluster model.

The free-energy density of the Potts model is

−βfJ = N−1 lnZJ = N−1 ln
∑
G′

vE(G′)qc(G
′) ≡ N−1 ln 〈〈qc(G′)〉〉 , (4.32)

where we introduced the symbol 〈〈. . . 〉〉 to indicate the average over the subgraphs with
weight vE(G′). Now, we approximate this average in the q ' 1 limit:

ln 〈〈qc(G′)〉〉 = ln 〈〈eln qc(G
′)〉〉 = ln 〈〈ec(G′) ln q〉〉 . (4.33)

Using
ln q = ln[1 + (q − 1)] ' (q − 1) +O((q − 1)2) (4.34)
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then

ln 〈〈qc(G′)〉〉 ' ln 〈〈ec(G′)(q−1)〉〉 ' ln [1 + 〈〈c(G′)(q − 1)〉〉] ' (q − 1)〈〈c(G′)〉〉 (4.35)

Therefore,

−βfJ = N−1 lnZJ ' (q − 1)〈〈c(G′)〉〉 = (q − 1)
∑
G′

vE(G′)c(G′) . (4.36)

The remaining average will be then average number of clusters in the percolation problem
provided the statistical weight vE(G′) in the Potts model be proportional to the one in the
percolation problem (apart from an irrelevant constant (1− p)M that does not depend on
the sub-graph configuration) (

p

1− p

)E(G′)

= vE(G′) (4.37)

that implies
v =

p

1− p or p = 1− e−βJ . (4.38)
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5 Random fields, random interactions
No material is perfectly homogeneous: impurities of different kinds are distributed

randomly throughout the samples. In ultra-cold atom systems, so much studied nowadays,
disorder can be realized, for example, using speckle laser light.

A natural effect of disorder should be to lower the critical temperature. Much atten-
tion has been payed to the effect of weak disorder on phase transitions, that is to say,
situations in which the nature of the ordered and disordered phases is not modified by
the impurities but the critical phenomenon is. On the one hand, the critical exponents of
second order phase transitions might be modified by disorder, on the other hand, disorder
may smooth out the discontinuities of first order phase transitions rendering them of sec-
ond order. Strong disorder instead changes the nature of the low-temperature phase and
before discussing the critical phenomenon one needs to understand how to characterize
the new ordered ‘glassy’ phase.

In this Section we shall discuss several types of quenched disorder and models that
account for it. We shall also overview some of the theoretical methods used to deal with
the static properties of models with quenched disorder, namely, scaling arguments and
the droplet theory, mean-field equations, and the replica method.

5.1 Quenched and annealed disorder

First, one has to distinguish between quenched or frozen-in and annealed disorder.
Imagine that one mixes some random impurities in a melt and then very slowly cools it
down in such a way that the impurities and the host remain in thermal equilibrium. If one
wants to study the statistical properties of the full system one then has to compute the
full partition function in which one sums over all configurations of original components
and impurities. This is called annealed disorder. In the opposite case in which upon
cooling the host and impurities do not equilibrate but the impurities remain blocked in
random fixed positions, one talks about quenched disorder. Basically, the relaxation time
associated with the diffusion of the impurities in the sample is so long that these remain
trapped:

τo ∼ 10−12 − 10−15 sec� tobs ∼ 104 sec� tdiff , (5.1)

where τo is the microscopic time associated to the typical scale needed to reverse a spin.
The former case is easier to treat analytically but is less physically relevant. The latter

is the one that leads to new phenomena and ideas that we shall discuss next.
Quenched disorder is static. Instead, in annealed disorder the impurities are in ther-

mal equilibrium in the experimental time-scales, and they can simply be included in the
statistical mechanic description of the problem.
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Figure 5.1: A frustrated (left) and an unfrustrated (center) square plaquette. A frustrated
triangular plaquette (right).

5.2 Properties

5.2.1 Lack of homogeneity

It is clear that the presence of quench disorder, in the form of random interactions,
fields, dilution, etc. breaks spatial homogeneity and renders single samples heterogenous.
Homogeneity is recovered though, if one performs an average of all possible realizations
of disorder, each weighted with its own probability.

5.2.2 Frustration

Depending on the value of the distance rij the numerator in Eq. (5.10) can be positive or
negative implying that both ferromagnetic and antiferromagnetic interactions exist. This
leads to frustration, which means that in any configuration some two-body interactions
remain unsatisfied. In other words, there is no spin configuration that minimizes all terms
in the Hamiltonian. An example with four sites and four links is shown in Fig. 5.1-left,
where we took three positive exchanges and one negative one all, for simplicity, with the
same absolute value, J . Four configurations minimize the energy, Ef = −2J , but none
of them satisfies the lower link. One can easily check that any closed loop such that
the product of the interactions takes a negative sign is frustrated. Frustration naturally
leads to a higher energy and a larger degeneracy of the number of ground states. This is
again easy to grasp by comparing the number of ground states of the frustrated plaquette
in Fig. 5.1-left to its unfrustrated counterpart shown on the central panel. Indeed, the
energy and degeneracy of the ground state of the unfrustrated plaquette are Eu = −4J
and nu = 2, respectively.

Frustration may also be due to pure geometrical constraints. The canonical example
is an antiferromagnet on a triangular lattice in which each plaquette is frustrated, see
Fig. 5.1-right.

In short, frustration arises when the geometry of the lattice and/or the nature of the
interactions make impossible to simultaneously minimize the energy of all pair couplings
between the spins. Any loop of connected spins is said to be frustrated if the product of
the signs of connecting bonds is negative. In general, energy and entropy of the ground
states increase due to frustration.
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5.2.3 Self-averageness

If each sample is characterized by its own realization of the exchanges, should one
expect a totally different behavior from sample to sample? Fortunately, many generic
static and dynamic properties of spin-glasses (and other systems with quenched disorder)
do not depend on the specific realization of the random couplings and are self-averaging.
This means that the typical value is equal to the average over the disorder:

Atyp
J = [AJ ] (5.2)

in the thermodynamic limit. Henceforth, we use square brackets to indicate the average
over the random couplings. More precisely, in self-averaging quantities sample-to-sample
fluctuations with respect to the mean value are expected to be O(N−a) with a > 0.
Roughly, observables that involve summing over the entire volume of the system are
expected to be self-averaging. In particular, the free-energy density of models with short-
ranged interactions is expected to be self-averaging in this limit.

An example: the disordered Ising chain

The meaning of this property can be grasped from the solution of the random bond Ising
chain defined by the energy function HJ [{si}] = −∑i Jisisi+1 with spin variables si = ±,
for i = 1, . . . , N and random bonds Ji independently taken from a probability distribution
P (Ji). For simplicity, we consider periodic boundary conditions. The disorder-dependent
partition function reads

ZJ =
∑
{si=±1}

eβ
∑
i Jisisi+1 (5.3)

and this can be readily computed introducing the change of variables σi ≡ sisi+1. (Note
that these new variables are not independent, since they are constrained to satisfy

∏
i ηi =

1. This constraint is irrelevant in the thermodynamic limit.) One finds

ZJ =
∏
i

2 cosh(βJi) ⇒ −βFJ =
∑
i

ln cosh(βJi) +N ln 2 . (5.4)

The partition function is a product of i.i.d. random variables and it is itself a random
variable with a log-normal distribution. The free-energy density instead is a sum of i.i.d.
random variables and, using the central limit theorem, in the large N limit becomes a
Gaussian random variable narrowly peaked at its maximum. The typical value, given by
the maximum of the Gaussian distribution, coincides with the average, limN→∞(f typ

J −
[ fJ ]) = 0 with fJ = FJ/N .

General argument

A simple argument justifies the self-averageness of the free-energy density in generic
finite dimensional systems with short-range interactions. Let us divide a, say, cubic sys-
tem of volume V = Ld in n subsystems, say also cubes, of volume v = `d with V = nv.
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If the interactions are short-ranged, the total free-energy is the sum of two terms, a con-
tribution from the bulk of the subsystems and a contribution from the interfaces between
the subsystems: −βFJ = lnZJ = ln

∑
conf e

−βHJ (conf) = ln
∑

conf e
−βHJ (bulk)−βHJ(surf) ≈

ln
∑

bulk e
−βHJ (bulk) + ln

∑
surf e

−βHJ (surf) = −βF bulk
J − βF surf

J (we neglected the contribu-
tions from the interaction between surface and bulk). If the interaction extends over a
short distance σ and the linear size of the boxes is `� σ, the surface energy is negligible
with respect to the bulk one and −βFJ ≈ ln

∑
bulk e

−βHJ (bulk). In the thermodynamic
limit, the disorder dependent free-energy is then a sum of n = (L/`)d random num-
bers, each one being the disorder dependent free-energy of the bulk of each subsystem:
−βFJ ≈

∑n
k=1 ln

∑
bulkk

e−βHJ (bulkk). In the limit of a very large number of subsystems
(L� ` or n� 1) the central limit theorem implies that the total free-energy is Gaussian
distributed with the maximum reached at a value F typ

J that coincides with the average
over all realizations of the randomness [FJ ]. Morever, the dispersion about the typ-
ical value vanishes in the large n limit, σFJ/[FJ ] ∝ √n/n = n−1/2 → 0. Similarly,
σfJ/[fJ ] ∼ O(n−1/2) where fJ = FJ/N is the intensive free-energy. In a sufficiently large
system the typical FJ is then very close to the averaged [FJ ] and one can compute the
latter to understand the static properties of typical systems.

Lack of self-averageness in the correlation functions

Once one has [FJ ], one derives all disordered average thermal averages by taking deriva-
tives of the disordered averaged free-energy with respect to sources introduced in the
partition function. For example,

[ 〈 si 〉 ] = − ∂[FJ ]

∂hi

∣∣∣∣
hi=0

, (5.5)

[ 〈 sisj 〉 − 〈 si 〉〈 sj 〉 ] = −T ∂2[FJ ]

∂hihj

∣∣∣∣
hi=0

, (5.6)

with HJ → HJ −
∑

i hisi. Connected correlation functions, though, are not self-averaging
quantities. This can be seen, again, studying the random bond Ising chain. Take i < j.
One can easily check that

〈 sisj 〉J − 〈 si 〉J〈 sj 〉J = Z−1
J

∂

∂βJj−1

. . .
∂

∂βJi
ZJ = tanh(βJi) . . . tanh(βJj) , (5.7)

where we used 〈 si 〉 = 0 (valid for a distribution of random bonds with zero mean) and the
dots indicate all sites on the chain between the ending points i and j, i.e. i+1 ≤ k ≤ j−1.
The last expression is a product of random variables and it is not equal to its average (5.6)
– not even in the large separation limit |~ri − ~rj| → ∞.

5.2.4 Annealed disorder
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The thermodynamics of a system with annealed disorder is obtained by averaging the
partition function over the impurity degrees of freedom,

Z = [ZJ ] (5.8)

since one needs to do the partition sum over the disorder degrees of freedom as well.

5.3 Models

5.3.1 Bethe lattices and random graphs

The Bethe lattice is a tree, in which each site has z neighbours and each branch gives
rise to z − 1 new branches. Two important properties of these lattices are:
- there are no closed loops.
- the number of sites on the border is of the same order of magnitude as the total number
of sites on the lattice.
- All sites on the lattice are equivalent, there is no notion of a central site.

Exercise 5.1 Show that the total number of sites on the Bethe lattice with z = 3 and g
generations (or the distance from the site designed as the central one) is ntot = 3 2g − 1
and the number of sites on the border is nborder = 3 2g−1. The surface to volume ratio
tends to 1/2.

Exercise 5.2 Take a hypercubic lattice in d dimensions and estimate the surface to
volume ratio. Show that this ratio tends to a finite value only if d→∞.

A random graph is obtained by starting with a set of n isolated vertices and adding
successive edges between them at random. A popular ensemble is the one denoted G(n, p),
in which every possible edge occurs independently with probability 0 < p < 1. Random
graphs with fixed connectivity are also commonly used.

Random graphs are used in social sciences modeling (nodes representing individuals and
edges the friendship relationship), technology (interconnections of routers in the Internet,
pages of the WWW, or production centers in an electrical network), biology (interactions
of genes in a regulatory network) [40, 41]. Disordered systems are usually defined on
random graphs, especially the ones motivated by the combinatorial optimisation.

5.3.2 Dilute spin models

Lattice models with site or link dilution are

Hsite dil
J = −J∑〈ij〉 sisjεiεj , H link dil

J = −J∑〈ij〉 sisjεij , (5.9)

with P (εi = 1, 0) = p, 1 − p in the first case and P (εij = 1, 0) = p, 1 − p in the second.
These models are intimately related to Percolation theory. Physically, dilution is realised
by vacancies or impurity atoms in a crystal.
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5.3.3 Spin-glass models

Spin-glasses are alloys in which magnetic impurities substitute the original atoms in
positions randomly selected during the chemical preparation of the sample [43, 45, 46].
The interactions between the impurities are of RKKY type:

Vrkky = −J cos(2kF rij)

r3
ij

sisj (5.10)

with rij = |~ri− ~rj| the distance between them and si a spin variable that represents their
magnetic moment. Clearly, the initial location of the impurities varies from sample to
sample. The time-scale for diffusion of the magnetic impurities is much longer than the
time-scale for spin flips. Thus, for all practical purposes the positions ~ri can be associated
to quenched random variables distributed according to a uniform probability distribution
that in turn implies a probability distribution of the exchanges. This is called quenched
disorder.

In early 70s Edwards and Anderson proposed a rather simple model that should capture
the main features of spin-glasses. The interactions (5.10) decay with a cubic power of the
distance and hence they are relatively short-ranged. This suggests to put the spins on
a regular cubic lattice model and to trade the randomness in the positions into random
nearest neighbour exchanges taken from a Gaussian probability distribution:

Hea
J = −

∑
〈ij〉

Jijsisj with P (Jij) = (2πσ2)−
1
2 e−

J2
ij

2σ2 . (5.11)

The precise form of the probability distribution of the exchanges is supposed not to be
important, though some authors claim that there might be non-universality with respect
to it.

Another natural choice is to use bimodal exchanges

P (Jij) = pδ(Jij − J0) + (1− p)δ(Jij + J0) (5.12)

with the possibility of a bias towards positive or negative interactions depending on the
parameter p. A tendency to non-zero average Jij can also be introduced in the Gaussian
pdf.

A natural extension of the EA model in which all spins interact has been proposed by
Sherrington and Kirkpatrick

HSK
J = −

∑
i 6=j

Jijsisj −
∑
i

hisi (5.13)

and it is called the SK model. The interaction strengths Jij are taken from a Gaussian
pdf and they scale with N in such a way that the thermodynamic limit is non-trivial:

P (Jij) = (2πσ2
N)−

1
2 e
−

J2
ij

2σ2
N σ2

N = σ2N . (5.14)
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The first two-moments of the exchange distribution are [Jij] = 0 and [J2
ij] = J2/(2N).

This is a case for which a mean-field theory is expected to be exact.

5.3.4 Glass models

A further extension of the EA model is called the p spin model

HJp−spin = −
∑

i1<···<ip

Ji1...ipsi1 . . . sip −
∑
i

hisi (5.15)

with p ≥ 3. The sum can also be written as
∑

i1<i2<···<ip = 1/p!
∑

i1 6=i2 6=ip . The exchanges
are now taken from a Gaussian probability distribution

P (Jij) = (2πσ2
N)−

1
2 e
−

J2
ij

2σ2
N σ2

N = J2p!/(2Np−1) . (5.16)

with [Ji1...ip ] = 0 and [J2
i1...ip

] = J2p!
2Np−1 . Indeed, an extensive free-energy is achieved by

scaling Ji1...ip with N−(p−1)/2. This scaling can be justified as follows. The ‘local field’
hi = 1/(p− 1)!

∑
ii2 6=ip Jii2...ipmi2 . . .mip should be of order one. At low temperatures the

mi’s take plus and minus signs. In particular, we estimate the order of magnitude of this
term by working at T = 0 and taking mi = ±1 with probability 1

2
. In order to keep the

discussion simple, let us take p = 2. In this case, if the strengths Jij, are of order one,
hi is a sum of N i.i.d. random variables, with zero mean and unit variance2, and hi has
zero mean and variance equal to N . Therefore, one can argue that hi is of order

√
N .

To make it finite we then chose Jij to be of order 1/
√
N or, in other words, we impose

[ J2
ij ] = J2/(2N). The generalization to p ≥ 2 is straightforward.
We classify this model in the “glass” class since it has been shown that its behaviour

mimics the one of so-called fragile glasses.

5.3.5 Vector spins

Extensions to vector spins with two (XY), three (Heisenberg) or N components also
exist. In the former cases can be relevant to describe real samples. One usually keeps the
modulus of the spins fixed to be 1 in these cases.

But there is another way to extend the spin variables and it is to use a spherical
constraint,

−∞ ≤ si ≤ ∞
∑
i=1

s2
i = N . (5.17)

In this case, the spins si are the components of an N -dimensional vector, constrained to
be an N -dimensional sphere.

2The calculation goes as follow: 〈Fi 〉 =
∑
j Jij〈mj 〉 = 0 and 〈F 2

i 〉 =
∑
jk JijJik〈mjmk 〉 =

∑
j J

2
ij
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5.3.6 Optimization problems

Cases that find an application in computer science are defined on random graphs with
fixed or fluctuating finite connectivity. In the latter case one places the spins on the
vertices of a graph with links between couples or groups of p spins chosen with a probability
c. These are dilute spin-glasses on graphs (instead of lattices).

5.3.7 Random bond ferromagnets

Let us now discuss some, a priori simpler cases. An example is the Mattis random
magnet with generic nergy (5.15) in which the interaction strengths are given by

Ji1...ip = ξi1 . . . ξip with ξj = ± with prob = 1/2 (5.18)

for any p and any kind of graph. In this case a simple gauge transformation, ηi ≡ ξisi,
allows one to transform the disordered model in a ferromagnet, showing that there was
no true frustration in the system.

Random bond ferromagnets (RBFMs) are systems in which the strengths of the inter-
actions are not all identical but their sign is always positive. One can imagine such a
exchange as the sum of two terms:

Jij = J + δJij , with J > 0 and δJij small and random . (5.19)

There is no frustration in these systems either.
As long as all Jij remain positive, this kind of disorder should not change the two bulk

phases with a paramagnetic-ferromagnetic second-order phase transition. Moreover the
up-down spin symmetry is not broken by the disorder. The disorder just changes the local
tendency towards ferromagnetism that can be interpreted as a change in the local critical
temperature. Consequently, this type of disorder is often called random-Tc disorder, and
it admits a Ginzburg-Landau kind of description, with a random distance from criticality,
δu(x),

F [m(~r)] =

∫
ddr
{
−hm(~r) + [r + δr(x)]m2(~r) + (∇m(~r))2 + um4(~r) + . . .

}
.. (5.20)

The disorder couples to the m2 term in the free-energy functional. In quantum field
theory, this term is called the mass term and, therefore, random-Tc disorder is also called
random-mass disorder. (In addition to random exchange couplings, random-mass disorder
can also be realized by random dilution of the spins.)

5.3.8 Random field ferromagnets

Link randomness is not the only type of disorder encountered experimentally. Random
fields, that couple linearly to the magnetic moments, are also quite common; the classical
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model is the ferromagnetic random field Ising model (RFIM):

Hrfim
J = −J

∑
〈ij〉

sisj −
∑
i

sihi with P (hi) = (2πσ2)−
1
2 e−

h2
i

2σ2 . (5.21)

The dilute antiferromagnet in a uniform magnetic field is believed to behave similarly to
the ferromagnetic random field Ising model. Experimental realizations of the former are
common and measurements have been performed in samples like Rb2Co0.7Mg0.3F4.

Note that the up-down Ising symmetry is not preserved in models in the RFIMm and
any spin model such that the disorder couples to the local order parameter.

In the Ginzburg-Landau description this model reads

F [m(~r)] =

∫
ddr
{
−h(x)m(~r) + rm2(~r) + (∇m(~r))2 + um4(~r) + . . .

}
(5.22)

where h(~r) is the local random variable that breaks the up-down spin symmetry. Whether
or not the symmetry is broken globally depends on the probability distribution of the
random fields. A particularly interesting situation arises if the distribution is even in h
such that the up-down symmetry is globally preserved in the statistical sense.

Random-field disorder is generally stronger than random-mass disorder.
The random fields give rise to many metastable states that modify the equilibrium and

non-equilibrium behaviour of the RFIM. In one dimension the RFIM does not order at all,
in d = 2 there is strong evidence that the model is disordered even at zero temperature, in
d = 3 it there is a finite temperature transition towards a ferromagnetic state. Whether
there is a glassy phase near zero temperture and close to the critical point is still and
open problem.

The RFIM at zero temperature has been proposed to yield a generic description of
material cracking through a series of avalaches. In this problem one cracking domain
triggers others, of which size, depends on the quenched disorder in the samples. In a
random magnetic system this phenomenon corresponds to the variation of the magneti-
zation in discrete steps as the external field is adiabatically increased (the time scale for
an avalanche to take place is much shorter than the time-scale to modify the field) and
it is accessed using Barkhausen noise experiments. Disorder is responsible for the jerky
motion of the domain walls. The distribution of sizes and duration of the avalanches is
found to decay with a power law tail and cut-off at a given size. The value of the cut-off
size depends on the strength of the random field and it moves to infinity at the critical
point.

5.3.9 Random manifolds

Once again, disorder is not only present in magnetic systems. An example that has
received much attention is the so-called random manifold. This is a d dimensional directed
elastic manifold moving in an embedding N + d dimensional space under the effect of a
quenched random potential. The simplest case with d = 0 corresponds to a particle
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moving in an embedding space with N dimensions. If, for instance N = 1, the particle
moves on a line, if N = 2 it moves on a plane and so on and so forth. If d = 1 one has a
line that can represent a domain wall, a polymer, a vortex line, etc. The fact that the line
is directed means it has a preferred direction, in particular, it does not have overhangs.
If the line moves in a plane, the embedding space has (N = 1) + (d = 1) dimensions. One
usually describes the system with an N -dimensional coordinate, ~φ, that locates in the
transverse space each point on the manifold, represented by the internal d-dimensional
coordinate ~r,

The elastic energy is Helas = γ
∫
ddx

√
1 + (∇φ(~r))2 with γ the deformation cost of a

unit surface. Assuming the deformation is small one can linearise this expression and get,
upto an additive constant, Helas = γ

2

∫
ddr (∇φ(~r))2.

Disorder is introduced in the form of a random potential energy V (~φ(~r), ~r) characterised
by its pdf.

The random manifold model is then

HV (~φ) =

∫
ddr
[γ

2
(∇φ(~r))2 + V (~φ(~r), ~r)

]
. (5.23)

If the random potential is the result of a large number of impurities, the central limit
theorem implies that its probability density is Gaussian. Just by shifting the energy scale
one can set its average to zero, [V ] = 0. As for its correlations, one typically assumes,
for simplicity, that they exist in the transverse direction only:

[V (~φ(~r), ~r)V (~φ′(~r′), ~r′) ] = δd(~r − ~r′)V(~φ, ~φ′) . (5.24)

If one further assumes that there is a statistical isotropy and translational invariance of the
correlations, V(~φ, ~φ′) = W/∆2 V(|~φ− ~φ′|/∆) with ∆ a correlation length and (W∆d−2)1/2

the strength of the disorder. The disorder can now be of two types: short-ranged if V
falls to zero at infinity sufficiently rapidly and long-range if it either grows with distance
or has a slow decay to zero. An example involving both cases is given by the power
law V(z) = (θ + z)−γ where θ is a short distance cut-off and γ controls the range of the
correlations with γ > 1 being short-ranged and γ < 1 being long-ranged.

This model also describes directed domain walls in random systems. One can derive
it in the long length-scales limit by taking the continuum limit of the pure Ising part
(that leads to the elastic term) and the random part (that leads to the second disordered
potential). In the pure Ising model the second term is a constant that can be set to zero
while the first one implies that the ground state is a perfectly flat wall, as expected. In
cases with quenched disorder, the long-ranged and short-ranged random potentials mimic
cases in which the interfaces are attracted by pinning centres (‘random field’ type) or the
phases are attracted by disorder (‘random bond’ type), respectively. For instance, random
bond disorder is typically described by a Gaussian pdf with zero mean and delta-correlated
[V (~φ(~r), ~r), V (~φ′(~r′), ~r′)] = W∆d−2 δd(~r − ~r′)δ(~φ− ~φ′).
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5.4 Properties of finite dimensional disordered systems

Once various kinds of quenched disorder introduced, a number of questions on their
effect on the equilibrium and dynamic properties arise. Concerning the former:

• Are the equilibrium phases qualitatively changed by the random interactions?

• Is the phase transition still sharp, or is it smeared because different parts of the
system undergo the transition independently?

• If there is still a phase transition, does its order (first order vs. continuous) change?

• If the phase transition remains continuous, does the critical behavior, i.e., the values
of the critical exponents, change?

Now, for the latter:

• Is the dynamic behaviour of the system modified by the quenched randomness?

In the following we explain a series of classical results in this field: the Harris criterium,
the proof of non-analyticity of the free-energy of quenched disordered systems below their
critical temperature given by Griffiths, the analysis of droplets and their domain wall
stiffness, and the derivation of some exact results using the gauge invariance.

We first focus on impurities or defects that lead to spatial variations with respect to
the tendency to order but do not induce new types of order, that is to say, no changes are
induced in the two phases at the two sides of the transition. Only later we consider the
spin-glass case.

5.4.1 The Harris criterium

The first question to ask is how does the average disorder strength behave under coarse-
graining or, equivalently, how is it seen at long distances. This is the question answered
by the Harris argument.

The Harris’ criterion [51] states that if the specific-heat of a pure system

Cpure(T ) ' |T − T pure
c |−α (5.25)

presents a power-like divergence with

αpure > 0 , (5.26)

the disorder may induce a new universality class. Otherwise, if αpure < 0, disorder is
irrelevant in a renormalisation group sense and the critical behaviour of the model remains
unchanged. The criterium does not decide in the marginal case αpure = 0 case. Note that
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Figure 5.2: Left: scheme of the Harris construction. The disordered system is divided into cells
with linear length ξdis, its correlation length. Right: a typical configuration of the dilute Ising
ferromagnet. Figures taken from [50].

the Harris criterium is a necessary condition for a change in critical behaviour but not a
sufficient one.

The hyper-scaling relation 2− dνpure = αpure allows to rewrite the Harris criterium as

critical behaviour =

{
unchanged if νpure > 2/d
changed if νpure < 2/d

(5.27)

where νpure is the correlation length exponent

〈s0s~r〉 ' e−r/ξpure and ξ ' |T − T pure
c |−νpure , (5.28)

of the pure system.

0

T T

T

pure

loc

dis

Figure 5.3: A sketch of critical temperatures.

The proof of the Harris result is rather simple and illustrates a way of reasoning that
is extremely useful [51, 50]. Take the full system with frozen-in disorder at a temperature
T slightly above its critical temperature T dis

c . Divide it into equal pieces with linear size
ξdis, the correlation length at the working temperature. By construction, the spins within
each of these blocks behave as a super-spin since they are effectively parallel. Because
of disorder, each block k has its own local critical temperature T (k)

c determined by the
interactions (or dilution) within the block. Harris proposes to compare the fluctuations in
the local critical temperatures ∆T loc ≡ T

(k)
c − T dis

c with respect to the global critical one
T dis
c , with the distance from the critical point ∆Tc ≡ T − T dis

c > 0, taken to be positive:
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• If ∆T loc
c < ∆Tc, all blocks have critical temperature below the working one, T (k)

c <
T , and the system is ‘uniform’ with respect to the phase transition.

• If ∆T loc
c > ∆Tc, some blocks are in the disordered (paramagnetic) phase and some

are in the ordered (ferromagnetic) phase, making a uniform transition impossible.
The inhomogeneity in the system may then be important.

Require now ∆T loc
c < ∆Tc to have an unmodified critical behaviour. Use also that an

unmodified critical behaviour implies ξdis = ξpure = ξ and, consequently, νdis = νpure.
∆T loc

c can be estimated using the central limit theorem. Indeed, as the local T loc
c

is determined by an average of a large number of random variables in the block (e.g.,
the random Jij in the Hamiltonian), its variations decay as the square root of the block
volume, ∆T loc

c ' ξ−d/2. On the other hand, ∆Tc ' ξ−1/νpure . Therefore,

∆T loc
c < ∆Tc ⇒ dνpure > 2 . (5.29)

The interpretation of this inequality is the following. If the Harris criterion dνpure > 2
is fulfilled, the ratio ∆T loc

c /∆Tc goes to zero as the critical point is approached. The
system looks less and less disordered on larger length scales, the effective disorder strength
vanishes right at criticality, and the disordered system features the same critical behaviour
as the clean one. An example of a transition that fullfills the Harris criterion is the
ferromagnetic transition in a three-dimensional classical Heisenberg model. Its clean
correlation length exponent is νpure ≈ 0.69 > 2/d = 2/3.

In contrast, if dνpure < 2, the ratio ∆T loc
c /∆Tc increases upon approaching the phase

transition. The blocks differ more and more on larger length scales. Eventually, some
blocks are on one side of the transition while other blocks are on the other side. This makes
a uniform sharp phase transition impossible. The clean critical behavior is unstable and
the phase transition can be erased or it can remain continuous but with different critical
behaviour. More precisely, the disordered system can be in a new universality class
featuring a correlation length exponent that fullfills the inequality dνdis > 2. Many phase
transitions in classical disordered systems follow this scenario, for example the three-
dimensional classical Ising model. Its clean correlation length exponent is νpure ≈ 0.63
which violates the Harris criterion. In the presence of random-mass disorder, the critical
behavior changes and νdis ≈ 0.68.

In the marginal case dνpure = 2, more sophisticated methods are required to decide the
stability of the clean critical point.

Chayes et al. [52] turned this argument around to show rigorously that for all the con-
tinuous phase transitions in presence of disorder, the correlation-length critical exponent
of the disordered system, νdis verifies νdis ≥ 2/d, independently of whether or not the
critical behaviour is the same as in the uniform system and even when the system does
not have a uniform analogue.

Finally, note that the Harris criterion dνpure > 2 applies to uncorrelated or short-range
correlated disorder. If the disorder displays long-range correlations in space, the inequality
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needs to be modified because the central-limit theorem estimate of ∆T loc
c changes. Long-

range correlated disorder is especially important in quantum phase transitions.

5.4.2 The Griffiths phase

The critical temperature of a spin system is usually estimated from the high tempera-
ture expansion and the evaluation of its radius of convergence (see App. C.1). However,
Griffiths showed that the temperature at which the free-energy of models with quenched
disorder starts being non-analytical falls above the critical temperature where the order
parameter detaches from zero [49]. The argument applies to models with second order
phase transitions.

Griffiths explained his argument using the dilute ferromagnetic Ising model. First, he
argued that the critical temperature of the disordered model should decrease for increas-
ing p, the probability of empty sites. This is ‘intuitively obvious’ since no spontaneous
magnetisation can occur at a finite temperature if the probability of occupied sites is less
than the critical percolation probability at which an ‘infinite cluster’ first appears. See
Fig. 5.4 where the phase diagram of the dilute Ising ferromagnet is shown.

p

T

10 pc

T (p)c

Tc
0

PM

FM

Griffiths
region

Figure 5.4: The phase diagram of the dilute ferromagnetic Ising model. p is the probability
of empty sites in this figure, taken from [50]. With increasing dilution the ordered phase is
eventually suppressed.

In the following paragraph we sketch Griffiths’ argument and we use his notation
in which p is the probability of occupying a site. For any concentration p < 1 the
magnetisation m is not an analytic function of h at h = 0 at any temperature below
T pure
c , the critical temperature of the regular Ising model p = 1. As he explains, this

fact is most easily explained for p < pc. The magnetisation m per lattice site in the
thermodynamic limit has the form

m =
1

N

N∑
i=1

〈si〉 =
∑
c

P (c)m(c) (5.30)
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where P (c) is the probability that a particular site on the lattice belongs to a cluster c
that is necessarily finite for p < pc, and m(c) is the magnetisation density of the cluster
c, that is to say m(c) = N−1(c)

∑
i∈c〈si〉 with N(c) the number of sites in the cluster.

Griffiths uses the Yang-Lee theorem, see App. C, to express m(c) as

m(c) = 1 +
2z

N(c)

∑
i∈c

1

ξi − z
with z = e−2βh (5.31)

and ξi, i = 1, . . . , N(c), complex numbers with |ξi| = 1. The total magnetisation density
is then of the same form

m = 1 + zf(z) f(z) =
∑
i

ηi(ξi − z)−1 (5.32)

with ηi = 2P (c)/N(c). He then argues that this form is analytic for z < 1 but non-analytic
at z = 1 that corresponds to h = 0.

A more intuitive understand of what is going on in the temperature region above the
critical temperature of the disordered model, T dis

c , and below the critical temperature the
pure one, T pure

c , can be reached as follows [50]. The effects of quenched disorder show up
already in the paramagnetic phase of finite dimensional systems. Below the critical point
of the pure case (no disorder) finite regions of the system can order due to fluctuations
in the couplings or, in a dilute ferromagnetic model, they can be regions where all sites
are occupied, as shown in Fig. 5.2. As such rare regions are finite-size pieces of the clean
system, their spins align parallel to each other below the clean critical temperature T pure

c .
Because they are of finite size, these regions cannot undergo a true phase transition by
themselves, but for temperatures between the actual transition temperature T dis

c and T pure
c

they act as large superspins.
Note that using the ideas of percolation theory, one can estimate the scaling of P (c) with

its size. Recall the one dimensional case. Take a segment of length L + 2 on the lattice.
A cluster of size L will occupy the internal sites with empty borders with probability
pL(1− p)2. This is because one needs L contiguous sites to be occupied and its boundary
sites be empty. In larger dimensions, this probability will be approximately pLd(1−p)Ld−1

with the first factor linked to the filled volume and the second to the empty surface. In
the large L limit one can make a harsh approximation and use ' exp{ln[pL

d
(1−p)Ld−1

]} =
exp[ln pL

d
+ ln(1− p)Ld−1

] ' exp[−c(p)Ld] with c(p) = ln 1/p.

The sum in eq. (5.30) is made of two contributions. On the one hand, there are
the large clusters that are basically frozen at the working temperature. On the other,
there are the free spins that belong to small clusters and are easy to flip at the working
temperature. Let us focus on the former. Their magnetic moment is proportional to
their volume m(c) ' µLd. The energy gain due to their alignment with the field is
∆E(c) = −hm(c) = −hµLd where h is a small uniform field applied to the system, say
to measure its susceptibility.
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Figure 5.5: Rare regions in a random ferromagnet, figure taken from [50]. On the left, a ferro-
magnetically ordered region in the paramagnetic bulk (T > T dis

c ). On the right, a paramagnetic
band in a system that is ordered ferromagnetically in a patchwork way (T < T dis

c ).

The separation of the clusters in the two groups is then controlled by ∆E(c): the small
clusters with |∆E(c)| < kBT can be flipped by thermal fluctuations, and the large clusters
with |∆E(c)| > kBT and are frozen.

Then effect of the frozen clusters for which |∆E(c)| > kBT is then

m(T, h) ≈
∑

|∆E(c)|>kBT

P (c)m(c) ≈
∫ ∞
Lc

dL e−c(p)Ld µLd (5.33)

and Ldc ≈ kBT/(µh). This integral can be computed by the saddle-point method, see
App. A.7, and it is dominated by the lower border. The result is

m(T, h) ≈ e−c(p)Ldc = e−c(p)kBT/(µh) (5.34)

and this contribution has an essential singularity in the h→ 0 limit.
It is important to note that the clusters that contribute to this integral are rare regions

since they occur with probability P (c) ' e−c(p)Ld that is exponentially small in their
volume. Still they are the cause of the non-analytic behaviour of m(h).

The magnetic susceptibility χ can be analyzed similarly. Each locally ordered rare
region makes a Curie contribution m2(c)/kBT to χ. The total rare region susceptibility
can therefore be estimated as

χ(T, h) ∼
∫ ∞
Lc

dL e−c(p)Ldµ2 L2d/(kBT ) ≈ e−c(p)kBT/(µh) . (5.35)

This equation shows that the susceptibility of an individual rare region does not increase
fast enough to overcome the exponential decay of the rare region probability with increas-
ing size L. Consequently, large rare regions only make an exponentially small contribution
to the susceptibility.

Rare regions also exist on the ordered side of the transition T < Tc. One has to consider
locally ordered islands inside holes that can fluctuate between up and down because they
are only very weakly coupled to the bulk ferromagnet outside the hole, see Fig. 5.5. This
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conceptual difference entails a different probability for the rare events as one needs to find
a large enough vacancy-rich region around a locally ordered island.

There are therefore slight differences in the resulting Griffiths singularities on the two
sides of the transition. In the site-diluted Ising model, the ferromagnetic Griffiths phase
comprises all of the ferromagnetic phase for p > 0. The phase diagram of the dilute
ferromagnetic Ising model is sketched in Fig. 5.4.

5.4.3 Scenario for the phase transitions

The argument put forward by Harris is based on the effect of disorder on average
over the local critical temperatures. The intuitive explanation of the Griffiths phase
shows the importance of rare regions on the behaviour of global observables such as the
magnetisation or the susceptibility, The analysis of the effect of randomness on the phase
transitions should then be refined to take into account the effect of rare regions (tails in
the distributions). Different classes of rare regions can be identified according to their
dimension drr. This leaves place for three possibilities for the effect of (still weak in the
sense of not having frustration) disorder on the phase transition.

• The rare regions have dimension drr smaller than the lower critical dimension of the
pure problem, drr < dL; therefore the critical behaviour is not modified with respect
to the one of the clean problem.

• When the rare regions have dimension equal to the lower-critical one, drr = dL, the
critical point is still of second order with conventional power law scaling but with
different exponents that vary in the Griffiths phase. At the critical point the Harris
criterium is satisfied dνdis > 2.

• Infinite randomness strength, appearing mostly in problems with correlated disorder,
lead to a complete change in the critical properties, with unconventional activated
scaling. This occurs when drr > dL.

In the derivation of this scenario the rare regions are supposed to act independently,
with no interactions among them. This picture is therefore limited to systems with short-
range interactions.

5.4.4 Domain-wall stiffness and droplets

Let us now just discuss one simple argument that is at the basis of what is needed to
derive the results of the droplet theory for spin-glasses without entering into the compli-
cations of the calculations.

At very high temperature the configurations are disordered and one does not see large
patches of ordered spins.
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Close but above the critical temperature Tc finite patches of the system are ordered
(in all possible low-temperature equilibrium states) but none of these include a finite
fraction of the spins in the sample and the magnetization density vanishes. However,
these patches are enough to generate non-trivial thermodynamic properties very close to
Tc and the richness of critical phenomena.

At criticality one observes ordered domains of the two equilibrium states at all length
scales – with fractal properties.

Below the critical temperature thermal fluctuations induce the spin reversal with re-
spect to the order selected by the spontaneous symmetry breaking. It is clear that the
structure of droplets, meaning patches in which the spins point in the opposite direction
to the one of the background ordered state, plays an important role in the thermodynamic
behaviour at low temperatures.

M. Fisher and others developed a droplet phenomenological theory for critical phe-
nomena in clean systems. Later D. S. Fisher and D. Huse extended these arguments to
describe the effects of quenched disorder in spin-glasses and other random systems; this
is the so-called droplet model.

Domain-wall stiffness

Ordered phases resist spatial variations of their order parameter. This property is
called stiffness or rigidity and it is absent in high-temperature disordered phases.

More precisely, in an ordered phase the free-energy cost for changing one part of the
system with respect to another part far away is proportional to kBT and usually diverges
as a power law of the system size. In a disordered phase the information about the
reversed part propagates only a finite distance (of the order of the correlation length, see
below) and the stiffness vanishes.

Concretely, the free-energy cost of installing a domain-wall in a system, gives a mea-
sure of the stiffness of a phase. The domain wall can be imposed by special boundary
conditions. Compare then the free-energy of an Ising model with linear length L, in its
ordered phase, with periodic and anti-periodic boundary conditions on one Cartesian di-
rection and periodic boundary conditions on the d− 1 other directions of a d-dimensional
hypercube. The ± boundary conditions forces an interface between the regions with pos-
itive and negative magnetisations. At T = 0, the minimum energy interface is a d− 1 flat
hyper-plane and the energy cost is

∆E(L) ' σLθ with θ = d− 1 (5.36)

and σ = 2J the interfacial energy per unit area or the interfacial tension of the domain
wall.

Droplets - generalisation of the Peierls argument

In an ordered system at finite temperature domain walls, surrounding droplet fluc-
tuations, or domains with reversed spins with respect to the bulk order, are naturally
generated by thermal fluctuations. The study of droplet fluctuations is useful to establish
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whether an ordered phase can exist at low (but finite) temperatures. One then studies
the free-energy cost for creating large droplets with thermal fluctuations that may desta-
bilise the ordered phase, in the way usually done in the simple Ising chain (the Peierls
argument).

Indeed, temperature generates fluctuations of different size and the question is whether
these are favourable or not. These are the droplet excitations made by simply connected
regions (domains) with spins reversed with respect to the ordered state. Because of the
surface tension, the minimal energy droplets with linear size or radius L will be compact
spherical-like objects with volume Ld and surface Ld−1. The surface determines their
energy and, at finite temperature, an entropic contribution has to be taken into account
as well. Simplifying, one argues that the free-energy cost is of the order of Lθ, that is
Ld−1 in the ferromagnetic case but can be different in disordered systems.

Summarising, in system with symmetry breaking the free-energy cost of an excitation
of linear size L is expected to scale as

∆F (L) ' σ(T )Lθ . (5.37)

The sign of θ determines whether thermal fluctuations destroy the ordered phase or
not. For θ > 0 large excitations are costly and very unlikely to occur; the order phase
is expected to be stable. For θ < 0 instead large scale excitations cost little energy and
one can expect that the gain in entropy due to the large choice in the position of these
excitations will render the free-energy variation negative. A proliferation of droplets and
droplets within droplets is expected and the ordered phase will be destroyed by thermal
fluctuations. The case θ = 0 is marginal and its analysis needs the use of other methods.

As the phase transitions is approached from below the surface tension σ(T ) should
vanish. Moreover, one expects that the stiffness should be independent of length close to
Tc and therefore, θc = 0.

Above the transition the stiffness should decay exponentially

∆F (L) ' e−L/ξ (5.38)

with ξ the equilibrium correlation length.

5.4.5 Stability of ordered phases

A ferromagnet under a magnetic field

Let us study the stability properties of an equilibrium ferromagnetic phase under an
applied external field that tends to destabilize it. If we set T = 0 the free-energy is just
the energy. In the ferromagnetic case the free-energy cost of a spherical droplet of radius
R of the equilibrium phase parallel to the applied field embedded in the dominant one
(see Fig. 5.6-left) is

∆F (R) = −2ΩdR
dhmeq + Ωd−1R

d−1σ0 (5.39)
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where σ0 is the interfacial free-energy density (the energy cost of the domain wall) and
Ωd is the volume of a d-dimensional unit sphere. We assume here that the droplet has a
regular surface and volume such that they are proportional to Rd−1 and Rd, respectively.
The excess free-energy reaches a maximum

∆Fc =
Ωd

d

Ωd
d−1

Ωd
d

(
d− 1

2dhmeq

)d−1

σd0 (5.40)

at the critical radius
Rc =

(d− 1)Ωd−1σ0

2dΩdhmeq

, (5.41)

see Fig. 5.6-right (h > 0 and meq > 0 here, the signs have already been taken into
account). The free-energy difference vanishes at

∆F (R0) = 0 ⇒ R0 =
Ωd−1σ0

2Ωdhmeq

. (5.42)

Several features are to be stressed:

• The barrier vanishes in d = 1; indeed, the free-energy is a linear function of R in
this case.

• Both Rc and R0 have the same dependence on hmeq: they monotonically decrease
with increasing hmeq vanishing for hmeq →∞ and diverging for hmeq → 0.

• In dynamic terms that we shall discuss later, the passage above the barrier is done
via thermal activation; as soon as the system has reached the height of the barrier
it rolls on the right side of ‘potential’ ∆F and the favorable phase nucleates.

• As long as the critical size Rc is not reached the droplet is not favorable and the
system remains positively magnetized.

The Imry-Ma argument for the random field Ising model

Take a ferromagnetic Ising model in a random field, defined in eq. (5.21). In zero
applied field and low enough temperature, if d > 1 there is a phase transition between a
ferromagnetic and a paramagnetic phase at a critical value of the variance of the random
fields, σ2

h = [h2
i ] ∝ h2, that sets the scale of the values that these random fields can take.

Under the effect of a random field with very strong typical strength, the spins align with
the local external fields that point in both directions and the system is paramagnetic. It
is, however, non-trivial to determine the effect of a relatively weak random field on the
ferromagnetic phase at sufficiently low temperature. The long-range ferromagnetic order
could be preserved or else the field could be enough to break up the system into large but
finite domains of the two ferromagnetic phases.
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Figure 5.6: Left: the droplet. Right: the free-energy density f(R) of a spherical droplet with
radius R.

A qualitative argument to decide whether the ferromagnetic phase survives or not in
presence of the external random field is due to Imry and Ma [53]. Let us fix T = 0 and
switch on a random field. If a compact domain D of the opposite order (say down) is
created within the bulk of the ordered state (say up) the system pays an energy due to
the unsatisfied links lying on the boundary that is

∆Eborder ∼ 2JRd−1 (5.43)

where R is the radius of the domain and d− 1 is the dimension of the border of a domain
embedded in d a dimensional volume, assuming the interface is not fractal. By creating
a domain boundary the system can also gain a magnetic energy in the interior of the
domain due to the external field:

∆Erandom field ∼ −hRd/2 (5.44)

since there are N ∝ Rd spins inside the domain of linear scale R (assuming now that the
bulk of the domain is not fractal) and, using the central limit theorem, −h∑j∈D si ∼
−h
√
N ∝ −hRd/2. h ≈ σh is the width of the random field distribution.

Dimension lower than two. In d = 1 the energy difference is a monotonically decreasing
function of R thus suggesting that the creation of droplets is very favourable and there
is no barrier to cross to do it. Indeed, for any d < 2, the random field energy increases
faster with R than the domain wall energy. Even for weak random fields, there will
be a critical R beyond which forming domains that align with the local random field
becomes favourable. Consequently, the uniform ferromagnetic state is unstable against
domain formation for arbitrary random field strength. In other words, in dimensions
d < 2 random-field disorder prevents spontaneous symmetry breaking.

Dimension larger than two. The functional form of the total energy variation ∆E =
∆Eborder + ∆Erandom field as a function of R is characterised by ∆E → 0 for R → 0 and
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∆E →∞ for R→∞. The function has a minimum at

Rc ∼
(

hd

4J(d− 1)

)2/(d−2)

(5.45)

and crosses zero at R0 to approach ∞ at R → ∞. The comparison between these two
energy scales yields

2JRd−1
0 ∼ hR

d/2
0 ⇒ R0 ∼

(
h

2J

) 2
d−2

(5.46)

This equation clearly shows a change in d = 2, with

lim
h/J→0

R0(h/J) =

{
0 if d > 2 ,
∞ if d < 2 .

(5.47)

Therefore, in d > 2 the energy difference first decreases from ∆E(R = 0) = 0 to
reach a negative minimum at Rc, and then increases back to pass through zero at R0 and
diverge at infinity. This indicates that the creation of domains at zero temperature is not
favourable in d > 2. Just domains of finite length, up to R0 can be created. Note that R0

increases with h/J in d > 2. Therefore, a higher field tends to generate larger droplets
and thus disorder more the sample.

The marginal case d = 2 is more subtle and more powerful techniques are needed to
decide.

With this argument one cannot show the existence of a phase transition at hc nor the
nature of it. The argument is such that it suggests that order can be supported by the
system at zero temperature and small fields in d > 2.

Again, we stress that these results hold for short-range correlated disorder.
There are rigorous proofs that random fields destroy long-range order (and thus prevent

spontaneous symmetry breaking) in all dimensions d ≤ 2 for discrete (Ising) symmetry
and in dimensions d ≤ 4 for continuous (Heisenberg) symmetry. The existence of a phase
transition from a FM to a PM state at zero temperature in 3d was shown in [54].

An elastic line in a random potential

The interfacial tension, σ, will tend to make an interface, forced into a system as flat
as possible. However, this will be resisted by thermal fluctuations and, in a system with
random impurities, by quenched disorder.

Let us take an interface model of the type defined in eq. (5.23) with N = 1. If one
assumes that the interface makes an excursion of longitudinal length L and transverse
length φ the elastic energy cost is

Eelast =
c

2

∫
ddx (∇φ(~x))2 ⇒ ∆Eelast ∼ cLd(L−1φ)2 = cLd−2φ2 (5.48)

Ignore for the moment the random potential. Thermal fluctuations cause fluctuations
of the kind shown in Fig. 5.7. The interfaces roughens, that is to say, it deviates from
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Figure 5.7: Illustration of an interface modeled as a directed manifold. In the example, the
domain wall separates a region with positive magnetisation (above) from one with negative
magnetisation (below). The line represents a lowest energy configuration that deviates from a
flat one due to the quenched randomness. An excitation on a length-scale L is shown with a
dashed line. The relative displacement is δh ≡ δφ ' Lα and the excitation energy ∆E(L) ' Lθ.
Figure taken from [55].

being flat. Its mean-square displacement between two point ~x and ~y, or its width on a
scale L satisfies

〈[φ(~x)− φ(~y)]2〉 ' T |~x− ~y|2ζT (5.49)

with ζT the roughness exponent.
The elastic energy cost of an excitation of length L is then

∆Eelast(L) ' cLd−2φ2(L) ' cTLd−2L2ζT (5.50)

and this is of order one if
ζT =

2− d
2

. (5.51)

In the presence of quenched randomness, the deformation energy cost competes with
gains in energy obtained from finding more optimal regions of the random potential.
Naively, the energy gain due to the randomness is∫

ddx V ' [W 2Ld]1/2 ' WLd/2 (5.52)

and the balance with the elastic cost, assumed to be the same as with no disorder, yields

cTLd−2L2ζD ' WLd/2 ⇒ ζD =
4− d

2
(5.53)

This result turns out to be an upper bound of the exponent value [55]. It is called the Flory
exponent for the roughness of the surface. One then concludes that for d > 4 disorder is
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Figure 5.8: The interface width and the roughness exponent in a magnetic domain wall in a
thin film. The value measured ζD ' 0.6 is compatible with the Flory value 2/3 expected for a
one dimensional domain wall in a two dimensional space (N = 1 and d = 1 in the calculations
discussed in the text.) [56].

irrelevant and the interface is flat (φ → 0 when L → ∞). Since the linearization of the
elastic energy [see the discussion leading to eq. (5.23)] holds only if φ/L � 1, the result
(5.53) may hold only for d > 1 where α < 1.

Destruction of first order phase transitions under randomness

A first order phase transition is characterized by macroscopic phase coexistence at the
transition point. For example, at the liquid-gas phase transition of a fluid, a macroscopic
liquid phase coexists with a macroscopic vapour phase. Random-mass disorder locally
favors one phase over the other. The question is whether the macroscopic phases survives
in the presence of disorder or the system forms domains (droplets) that follow the local
value of the random-mass.

Consider a single domain or droplet (of linear size L) of one phase embedded in the
other phase. The free energy cost due to forming the surface is

∆Fsurf ∼ σLd−1 (5.54)

where σ is the surface energy between the two phases. The energy gain from the random-
mass disorder can be estimated via the central limit theorem, resulting in a typical mag-
nitude of

|∆Fdis| ∼ W 1/2Ld/2 (5.55)

where W is the variance of the random-mass disorder.
The macroscopic phases are stable if |∆Fdis| < ∆Fsurf , but this is impossible in dimen-

sions d ≤ 2 no matter how weak the disorder is. In dimensions d > 2, phase coexistence
is possible for weak disorder but will be destabilized for sufficiently strong disorder.
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We thus conclude that random-mass disorder destroys first-order phase transitions in
dimensions d ≤ 2. In many examples, the first-order transition is replaced by (‘rounded
to’) a continuous one, but more complicated scenarios cannot be excluded.

The 3d Edwards-Anderson model in a uniform magnetic field

A very similar reasoning is used to argue that there cannot be spin-glass order in an
Edwards-Anderson model in an external field [69, 70]. The only difference is that the
domain wall energy is here assumed to be proportional to Ly with an a priori unknown
d-dependent exponent y that is related to the geometry of the domains.

Comments

These arguments are easy to implement when one knows the equilibrium states (or one
assumes what they are). They cannot be used in models in which the energy is not a
slowly varying function of the domain wall position.

5.4.6 Consequences of the gauge invariace

H. Nishimori used the gauge transformation explained in Sec. 3.2 to derive a series of
exact results for averaged observables of finite dimensional disordered systems [46].

The idea follows the steps by which one easily proves, for example, that the averaged
local magnetization of a ferromagnetic Ising model vanishes, that is to say, one applies a
transformation of variables within the partition sum and evaluates the consequences over
the averaged observables. For example,

〈si〉 =
∑
{sj}

si e
βJ

∑
ij sisj = 〈si〉 =

∑
{sj}

(−si) eβJ
∑
ij sisj = −〈si〉 . (5.56)

This immediately implies 〈si〉 = 0 and, more generally, the fact that the average of any
odd function under {si} → {−si} vanishes exactly.

In the case of disordered systems, one is interested in observables that are averaged
over the random variables weighted with their probability distribution. The gauge trans-
formation that leaves the Hamiltonian unchanged involves a change of spins accompanied
by a transformation of the exchanges:

si = ηisi J ij = ηiηjJij (5.57)

with ηi = ±1. The latter affects their probability distribution as this one, in general, is
not gauge invariant. For instance, the bimodal pdf P (Jij) = pδ(Jij−J)+(1−p)δ(Jij +J)
can be rewritten as

P (Jij) =
eKpJij/J

2 coshKp

with e2Kp =
p

1− p , (5.58)
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as one can simply check. τij ≡ Jij/J are just the signs of the Jij. Under the gauge
transformation P (Jij) transforms as

P (J ij)dJ ij = P (Jij)dJij ⇒ P (J ij) = P (Jij(J ij))
dJij

dJ ij
(5.59)

that implies

P (J ij) =
eKpJij/(ηiηjJ)

2 coshKp

1

ηiηj
⇒ P (J ij) = ηiηj

eKpJijηiηj/J

2 coshKp

(5.60)

For instance, applying the gauge transformation to the internal energy of an Ising spin-
glass model with bimodal disorder, after a series of straightforward transformations one
finds

[〈HJ〉]J = −NBJ tanhKp (5.61)

with NB the number of bonds in the lattice, under the condition βJ = Kp. This relation
holds for any lattice. The constraint βJ = Kp relates the inverse temperature J/(kBT )
and the probability p = (tanhKp + 1)/2. The curve βJ = Kp connects the points
(p = 1, T = 0) and (p = 1/2, T → ∞) in the (p, T ) phase diagram and it is called the
Nishimori line.

The proof of the relation above goes as follows. The full pdf of the interactions is

P ({Jij}) =
∏
〈ij〉

P (Jij) (5.62)

and the average of any disorder dependent quantity is expressed as

[AJ ] =
∑

{Jij=±J}

∏
〈ij〉

P (Jij)AJ (5.63)

The disorder average Hamiltonian reads

[〈HJ〉]J =
∑
{Jij}

eKp
∑
〈ij〉 Jij/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑
〈ij〉 Jijsisj∑

{si} e
β
∑
〈ij〉 Jijsisj

(5.64)

withNB the number of bonds in the graph or lattice. Performing the gauge transformation

[〈HJ〉]J =
∑
{Jij}

eKp
∑
〈ij〉 Jijηiηj/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑
〈ij〉 Jijsisj∑

{si} e
β
∑
〈ij〉 Jijsisj

(5.65)

where gauge invariance of the Hamiltonian has been used and the spins and interactions
have been renamed Jij and si. As this is independent of the choice of the parameters {ηi}
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used in the transformation, one can sum over all possible 2N choices and divide by this
number keeping the result unchanged:

[〈HJ〉]J =
1

2N

∑
{Jij}

∑
{ηi} e

Kp
∑
〈ij〉 Jijηiηj/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑
〈ij〉 Jijsisj∑

{si} e
β
∑
〈ij〉 Jijsisj

(5.66)

If β is chosen to be β = Kp/J the sum over the spins in the denominator (the partition sum
in the normalisation) cancels out the sum over the parameters ηi introduced via the gauge
transformation. The sum over Jij and the remaining sum over the spin configurations can
be rewritten

[〈HJ〉]J =
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)∑
{si}

∏
〈ij〉

∑
{Jij=±J}

eβJijsisj . (5.67)

Changing now variables in the sum over Jij = ±J to τij = Jijsisj = ±J ,

[〈HJ〉]J =
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)∑
{si}

∏
〈ij〉

∑
τij=±J

eβτij

=
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)
2N(2 coshKp)

NB , (5.68)

where the sum over the spin configurations yields the 2N factor and the sum over the
independent τij configurations yields the last factor. Finally, taking the derivative with
respect to β:

[〈HJ〉]J = −NBJ tanhKp (5.69)

with Kp = βJ , defining the Nishimori line in the phase diagram.
For Gaussian distributed quenched randomness there also exists a Nishimori line and

the averaged internal energy can also be computed exactly on this line.
Many other relations of this kind exist and are explained in [46].

72



6 Solvable disordered models
There are few solvable disordered models. Even if rather far from describing realistic

systems in detail, these models are of great help to test several features of disordered
systems that we expect to find in more realistic cases.

In this Section we describe the static properties of a family of solvable models that
include the spherical ferromagnet and spin-glass. These models illustrate a mechanism
for slow relaxation that is due to the existence of saddles and flat directions in phase
space.

6.1 Spherical spin models

Spherical spin models are not very realistic but have the advantage of rendering the
models easy to solve analytically. In the spherical approximation the Ising constraint is
relaxed and the individual spins are taken to be unbounded continuous variables −∞ ≤
si ≤ ∞ subject to the global constraint

∑N
i=1 s

2
i = N that is imposed on average. One

can then represent the configuration of the system with an N -dimensional vector, ~s =
{s1, . . . , sN}, pointing on an N -dimensional sphere with radius

√
N . The spherical model

with generic two-body interactions in a local magnetic field is defined by the quadratic
Hamiltonian

HJ = −1

2

∑
i 6=j

Jijsisj −
∑
i

hisi . (6.1)

The first sum is over all distinct pairs of spins and the interactions Jij are symmetric but
otherwise arbitrary.

The spherical constraint is enforced by an adding an extra term to the energy

HJ → HJ +
z

2

(
N∑
i=1

s2
i −N

)
(6.2)

with z a complex Lagrange multiplier. In this way, the constrained is enforced on average
and not strictly, as in the partition sum one sums over all configurations of the spins and
not only over the ones on the sphere.

We shall see below that the density of eigenvalues of the interaction matrix Jij deter-
mines the phase transition and most of the static and dynamic properties of the spherical
models. All density of states with a finite support, ρ(λµ) 6= 0 in [λmin, λmax] lead to sim-
ilar static and dynamic behaviours while the ones with long tails yield a rather different
phenomenology.

One can now distinguish ordered and disordered spherical spin models. The spherical
ferromagnet introduced by Berlin and Kac [58] is such that the spins lie on the vertices
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of a cubic d dimensional lattice with lattice spacing a that one usually sets to one. The
interactions are ferromagnetic nearest-neighbour couplings with strength, say, unity. In
the limit N → ∞ the density of eigenvalues λµ of the corresponding interaction matrix
Jij is

ρ(λµ) = π−1

∫ ∞
0

dy cos(λµy) [Jo(2y)]d θ(2d− |λµ|) , (6.3)

where Jo(y) is the zero-th order Bessel function. The definition of spherical antiferromag-
nets is slightly more complicated but is is also possible.

In the disordered case the interactions Jij are taken from a probability distribution.
Since one is usually interested in describing the spin-glass state its average, [Jij], is set
to zero. The scaling of its variance, [J2

ij], is chosen in such a way to have a sensible
thermodynamic limit.

If the model is fully connected, meaning that all entries Jij are typically different
from zero, the variance scales as J2/(2N). One such model is the one with a Gaussian
distribution of exchanges and it was introduced by Kosterlitz, Thouless and Jones [59]
as a spherical spin-glass (although, as we will see later, it is not really a spin-glass).
When N →∞ the eigenvalues of a typical member of this Gaussian orthogonal ensemble,
that we call λµ, with µ = 1, . . . , N , are distributed according to the Wigner semi-circle
law [60]3,

ρ(λµ) =
1

2πJ

√
4J2 − λ2

µ θ(2J − |λµ|) . (6.4)

In the following we measure temperature in units of the interaction strength J and thus
we set J = 1.

A dilute system in which each spin interacts with only a finite fraction of other ones in
the sample is modelled with

P (Jij) = (1− p/N) δ(Jij) + p/N ρ(Jij) . (6.5)

One can visualize this model as one with the spins occupying the vertices of a random
graph with average connectivity p. When p→ N one recovers the complete graph and the
fully-connected case. If ρ(Jij) has support on positive values of Jij only one has a dilute
random ferromagnet. If ρ(Jij) is Gaussian centred in zero one has a dilute spin-glass.
In this case the density of eigenvalues has a symmetric central band in [−λc(p), λc(p)], a
crossover extending beyond |λc(p)| that is not known in detail, and two tails that vanish
as ρ(λµ) ∼ exp[−pλ2

µ lnλ2
µ] when λµ → ±∞. The tails are due to large fluctuations of

the local connectivity. For k � 2p a site with k neighbors gives rise to an eigenvalue
λµ ∼

√
k/p with a localized eigenvector ~vµ on it. When p → N → ∞, λc(p) → λmax =

max{λ1, . . . , λN} and the tails disappear [62].
The magnetic field hi might be quenched and random, uniform and stationary, or

time-dependent.
3The spectrum of a large symmetric random matrix can be evaluated with several methods, including

the replica trick, as explained in [61].
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6.1.1 The potential energy landscape

Let us label the eigenvalues of Jij in such a way that they are ordered: λ1 ≤ λ2 ≤ · · · ≤
λN . We call their associated eigenvectors ±~vµ with µ = 1, . . . , N . (We take orthonormal
eigenvectors such that v2

µ = 1.) In the absence of a magnetic field, all eigenstates of the
interaction matrix are stationary points of the energy hyper-surface,

∂HJ

∂si

∣∣∣∣
~s∗

= −
N∑

j(6=i)

Jijsj + zsi|~s∗ = 0 ∀i , ⇒ ~s∗ = ±
√
N~vµ , z

∗ = λµ ,∀µ .

These stationary points are the metastable states in the models and their number is linear
in N , the number of spins.

The Hessian of the potential energy surface on each stationary point is

∂HJ

∂si∂sj

∣∣∣∣
~s∗

= −Jij + zδij|~s∗ = −Jij + λµδij . (6.6)

This matrix can be easily diagonalized, one finds Dνη = (−λν + λµ)δνη. Thus, on the
stationary point, ~s∗ = ±~vµ, the Hessian has one vanishing eigenvalue (when ν = µ),
µ − 1 positive eigenvalues (when ν < µ), and N − µ negative eigenvalues (when ν > µ).
Positive (negative) eigenvalues of the Hessian indicate stable (unstable) directions. This
implies that each saddle point labeled by µ has one marginally stable direction, µ − 1
stable directions and N − µ unstable directions. (In other words, the number of stable
directions plus the marginally stable one is given by the index µ labelling the eigenvalue
associated to the stationary state.) In conclusion, there are two maxima, ~s∗ = ±

√
N~v1,

in general two saddles ~s∗ = ±
√
N~vI with I = µ− 1 stable directions and N − I unstable

ones, with I running with µ as I = µ − 1 and µ = 2, . . . , N and finally two (marginally
stable) minima, ~s∗ = ±

√
N~vN . In the large N limit the density of eigenvalues of the

Hessian at each metastable state µ is a translated semi circle law.
The energy of a generic configuration under no applied field is

HJ = −1

2

∑
µ

(λµ − z)s2
µ −

z∗

2
N . (6.7)

The zero-temperature energy-density of each stationary point is

H∗J = −1

2
(λµ − z∗)s∗2 −

z∗

2
N = −1

2
λµN . (6.8)

The energy difference between the minima and the lowest saddles depends on the distri-
bution of eigenvalues.

A magnetic field reduces the number of stationary points from a macroscopic number
to just two. Indeed, the stationary state equation now reads

∂HJ

∂si

∣∣∣∣
~s∗

= −
N∑

j(6=i)

Jijsj + zsi − hi|~s∗ = 0 , ∀i , ⇒ s∗i = (z∗ − J)−1
ij hj
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and z∗ is fixed by imposing the spherical constraint on ~s∗. One then finds two solutions
for the Lagrange multiplier that lie outside the interval of variation of the eigenvalues of
the Jij matrix: |z∗| > λN . The stability analysis shows that the stationary points are
just one fully stable minimum and a fully unstable maximum. The elimination of the
saddle-points has important consequences on the dynamics of the system.

6.1.2 The free-energy density

The partition function reads

ZJ =
N∏
i=1

∫ ∞
−∞

dsi e
β/2

∑
i 6=j Jijsisj+β

∑
i hisi

1

2πi

∫ c+i∞

c−i∞
dz e−

βz
2 (

∑N
i=1 s

2
i−N)

where c is a real constant to be fixed below.
It is convenient to diagonalise the matrix Jij with an orthogonal transformation and

write the exponent in terms of the projection of the spin vector ~s on the eigenvectors of
Jij, sµ ≡ ~s ·~vµ This operation can be done for any particular realisation of the interaction
matrix. In the disordered case this means that one uses a fixed realisation of the random
exchanges. The new variables sµ are also continuous and unbounded and the partition
function can be recast as

ZJ =
N∏
µ=1

∫ ∞
−∞

dsµ
1

2πi

∫ c+i∞

c−i∞
dz e

∑N
µ=1 β(λµ−z)s2µ/2+β

∑N
µ=1 hµsµ+βzN/2 (6.9)

with hµ ≡ ~h · ~vµ and ~h = (h1, . . . , hN). Assuming that one can exchange the quadratic
integration over sµ with the one over the Lagrange multiplier, and that c is such that the
influence of eigenvalues λµ > c is negligible, one obtains

ZJ =
1

2πi

∫ c+i∞

c−i∞
dz e−N[−βz/2+(2N)−1

∑
µ ln[β(z−λµ)/2]−βN−1

∑
µ(z−λµ)−1h2

µ] . (6.10)

In the saddle-point approximation the Lagrange multiplier is given by

1 = 〈〈 kBT (zsp − λµ)−1 + h2
µ (zsp − λµ)−2 〉〉 (6.11)

and this equation determines the different phases in the model. We indicate with double
brackets the sum over the eigenvalues of the matrix Jij that in the limit N →∞ can be
traded for an integration over its density:

1

N

N∑
µ=1

g(λµ) =

∫
dλµ ρ(λµ) g(λµ) = 〈〈 g(λµ) 〉〉 . (6.12)

Let us first discuss the problem in the absence of a magnetic field. The high temperature
solution can be smoothly continued to lower temperatures until the critical temperature,

(kBTc)
−1 = 〈〈 (zsp − λµ)−1 〉〉 (6.13)
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is reached where zsp reaches the value of the maximum eigenvalue and it sticks to this
value for all T < Tc:

zsp = λmax T ≤ Tc , (6.14)

A magnetic field with a component on the largest eigenvalue, ~h · ~vmax 6= 0, acts as an
ordering field and erases the phase transition.

The thermal average of the projection of the spin vector on each eigenvalue vanishes
in the high temperature phase and reads

〈sµ〉 =

{
[N(1− T/Ts)]

1
2 λµ = λmax ,

0 λµ < λmax ,
(6.15)

below the phase transition. The configuration condenses onto the eigenvector associated
to the largest eigenvalue of the exchange matrix that carries a weight proportional to

√
N .

The mean magnetization per site is zero at all temperatures but the thermal average of
the square of the local magnetisation (that will define the Edwards-Anderson parameter)
is not when T < Tc:

〈m2
i 〉 = 1− T/Tc ⇒ qEA ≡ [〈m2

i 〉]J = 1− T/Tc . (6.16)

The condensation phenomenon occurs for any distribution of exchanges with a finite
support. If the distribution has long tails the energy density diverges and the behaviour
is more subtle.

The order parameters m (for the ferromagnets) or qEA (for the spin-glass) vanish at Tc.
The static transition is of second order. All thermodynamic properties can be computed
from the free-energy density. In particular, the low temperature asymptotic energy-density
is

Eeq =
1

2
(kBT − zsp) =

1

2
(kBT − λmax) , (6.17)

and the entropy diverges at low temperatures as lnT , just as for the classical ideal gas,
as usual in classical continuous spin models.

The disordered averaged free-energy density can also be computed using the replica
trick that we will introduce later. When N → ∞ a replica symmetric Ansatz yields a
marginally stable solution with identical physical properties to the ones discussed above.
For this model the replica approach is exact.

6.2 The O(N ) model

In this case the spins are generalised to have N components and the large N limit is
taken. More precisely, the Hamiltonian is given by

HJ = −
∑
〈ij〉

Jij~si · ~sj −
∑
i

~hi~si (6.18)
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where the spins
~si = (si, . . . , s

N
i ) (6.19)

have N components and length N 1/2

N∑
a=1

(sai )
2 = N (6.20)

In the ferromagnetic finite d case, this procedure defines the celebrated O(N ) model, that
becomes fully solvable in the large N →∞ limit.

The large N limit is usually taken in the field theoretical (coarse-grained Ginzburg-
Landau) representation of the free-energy

F [φ] =

∫
ddx

[
1

2
(~∇~φ)2 +

m0

2
(~φ)2 + λ0((~φ)2)2

]
(6.21)

where ~φ = (φ1, . . . , φN ),

~φ2 =
N∑
α=1

φ2
α ,

(~∇~φ)2 =
d∑
a=1

N∑
α=1

∂φα
∂xa

∂φα
∂xa

(6.22)

and the vector position in d dimensions is ~x = (x1, . . . , xd). We have not included ran-
domness here. This can be done by including a random potential V [~φ], for example. The
cases N = 2 and N = 3 correspond to the XY and Heisenberg models, respectively. The
mean field theory for this model yields critical exponents which are independent of N ,
but the renormalisation group below d = 4 gives N -dependent results.

In the N → ∞ limit the model becomes exactly solvable. Note that by counting
powers of N one easily remarks that the last quartic term is of higher order than the two
previous ones. This will be cured with a special scaling of the parameter λ0.

The simplest way to see that this model is solvable is to notice that, by the central
limit theorem, the random variable φ2 =

∑N
α=1 φ

2
α is a sum over a large number of terms,

that by symmetry should be identically distributed, and have then a normal (Gaussian)
distribution. This means, in particular, that the fourth cumulant (φ2)2−3〈φ2〉φ2 vanishes,
so we can replace the last term in the action by 3λ0〈φ2〉φ2. This makes the free-energy
Gaussian, with an effective mass

m2
eff = ξ−2

eq = m2
0 + 6λ0〈φ2〉 . (6.23)

In a spatially homogeneous state, the average 〈φ2〉 should be independent of the space
point on which is it is measured and, in particular, it should be identical to its value at
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the origin, 〈φ2(~x)〉 = 〈φ2(~0)〉. Moreover, since we argued that φ2 is Gaussian distributed,
its average can be readily computed, and for any of its components,

〈φ2
α(~0)〉 =

∫
|k|<Λ

ddk

(2π)d
1

k2 +m2
eff

(6.24)

where we have included a (ultra-violet) cut-off Λ that can be related to the inverse lattice
spacing of the original microscopic theory. Replacing in (6.23)

m2
eff = m2

0 + 6λ0N
∫
|k|<Λ

ddk

(2π)d
1

k2 +m2
eff

(6.25)

and the factor N is due to the sum over α. This equation admits a non-trivial result for
λ = 6λ0N finite, that is to say, λ0 ∝ N−1.

This problem can be studied statically within the canonical formalism. If the volume
V is kept finite the equilibrium order parameter probability distribution is given by the
Gibbs state [64]

Peq[~φ(~k)] =
1

Z
exp

− 1

2kBTV

∑
~k

(k2 + ξ−2
eq )~φ(~k) · ~φ(−~k)

 (6.26)

where ξeq is the correlation length

ξ−2
eq = −m2

0 +
λ

N 〈
~φ2(~x)〉eq (6.27)

with 〈· · · 〉eq standing for the average taken with (6.26). (In this expression we have not
distinguished one vector direction to signal the symmetry breaking [65] but we considered
the symmetric measure in which one sums over all such states.) Note that this is, indeed,
a Gaussian measure.

In order to analyze the properties of Peq[~φ(~k)] it is necessary to extract from (6.27) the
dependence of ξ−2

eq on T , m0, λ0 and V . Evaluating the average, the above equation yields

ξ−2
eq = −m2

0 +
λ

V

∑
~k

kBT

k2 + ξ−2
eq

. (6.28)

The solution of this equation is well known [19] and here we summarize the main features,
as presented in [64]. Separating the ~k = 0 term under the sum, for very large volume we
may rewrite

ξ−2
eq = −m2

0 + λkBTB(ξ−2
eq ) +

λkBT

V ξ−2
eq

(6.29)

where

B(ξ−2
eq ) = lim

V→∞

1

V

∑
~k

1

k2 + ξ−2
eq

=

∫
ddk

(2π)d
e−

k2

Λ2

k2 + ξ−2
eq

(6.30)
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regularising the integral by introducing the high momentum (ultra-violet) cutoff Λ. The
function B(x) is a non negative monotonically decreasing function with the maximum
value at x = 0

B(0) =

∫
ddk

(2π)d
e−

k2

Λ2

k2
= (4π)−

d
2

2

d− 2
Λd−2 . (6.31)

By graphical analysis one can easily show that (6.29) admits a finite solution for all kBT .
However, there exists the critical value of the temperature Tc defined by

−m2
0 + λkBTcB(0) = 0 (6.32)

such that for T > Tc the solution is independent of the volume, while for T ≤ Tc it
depends on the volume. Using

B(x) = (4π)−
d
2x

d
2
−1e

x
Λ2 Γ

(
1− d

2
,
x

Λ2

)
(6.33)

where Γ(1 − d
2
, x

Λ2 ) is the incomplete gamma function, for 0 < T−Tc
Tc
� 1 one finds ξeq ∼

(T−Tc
Tc

)−ν , i.e. close but above Tc, where ν = 1/2 for d > 4 and ν = 1/(d − 2) in d < 4,
with logarithmic corrections for d = 4. At Tc one has ξeq ∼ V λ with λ = 1/4 for d > 4
and λ = 1/d for d < 4, again with logarithmic corrections in d = 4. Finally, below Tc one
finds ξ2

eq = M2V
kBT

where M2 = φ2
0

(
Tc−T
Tc

)
and φ2

0 = m2
0/λ.

Let us now see what are the implications for the equilibrium state. As Eq. (6.26) shows,
the individual Fourier components are independent random variables, with a Gaussian
distribution with zero average. The variance is given by

1

N 〈
~φ(~k) · ~φ(−~k)〉eq = V S(~k) (6.34)

where
S(~k) =

kBT

k2 + ξ−2
eq

(6.35)

is the equilibrium structure factor. For T > Tc, all ~k modes behave in the same way, with
the variance growing linearly with the volume. For T ≤ Tc, instead, ξ−2

eq is negligible with
respect to k2 except at ~k = 0, yielding

S(~k) =

{
Tc
k2 (1− δ~k,0) + cV 2λδ~k,0 for T = Tc ,
T
k2 (1− δ~k,0) +M2V δ~k,0 for T < Tc ,

(6.36)

where c is a constant. This produces a volume dependence in the variance of the ~k = 0
mode growing faster than linear. Therefore, for T ≤ Tc the ~k = 0 mode behaves differently
from all the other modes with ~k 6= 0. For T < Tc the probability distribution (6.26) takes
the form

Peq[~φ(~k)] =
1

Z
e−

~φ2(0)

2M2V 2 e
− 1

2kBTV

∑
~k
k2~φ(~k)·~φ(−~k)

. (6.37)
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Therefore, crossing Tc there is a transition from the usual disordered high temperature
phase to a low temperature phase characterized by a macroscopic variance in the distri-
bution of the ~k = 0 mode. The distinction between this phase and the mixture of pure
states, obtained below Tc when N is kept finite can be discussed but we will not do it
here.

Although the effective Hamiltonian is ‘almost’ quadratic, the phase transition in the
form of a Bose-Einstein-like condensation on the ~k = ~0 mode is due to the self-consistent
constraint.

6.3 Connection between the two models

The behaviour of the large N O(N ) model is very similar to what derived for the
spherical spin-glass model [59]. Why is this so? The reason is that the behaviour of both
models are pseudo-quadratic models, for which the behaviour is controlled by the way in
which the distribution of modes decays to zero. In the field theory these are the wave-
vectors modulii k while in the spherical model these are the eigenvalues of the random
interaction matrix close to the edge of their distribution.

More precisely, requiring
ρ(λµ)dλµ = %(k)dk (6.38)

with λµ = 2J − λµ,

ρ(λµ) =
1

2πJ

√
4J2 − λ2

µ '
1

πJ

√
Jλµ ,

%(k) = kd−1 , (6.39)

and k2 = λµ from the equivalence between the quadratic term in the Hamiltonian of the
spherical model and the free-energy of th e field theory, then this implies

k2 ∝ kd−1 (6.40)

and the two models are equivalent, in this sense, in d = 3.
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7 Spin-glasses
Let us now discuss a problem in which disorder is so strong as to modify the nature of

the low temperature phase [42, 43, 44, 45, 47, 48]. If this is so, one needs to define a new
order parameter, capable of identifying order in this phase.

7.1 Static properties

7.1.1 The ferromagnetic order parameter

The paramagnetic-ferromagnetic transition in a model with no quench randomness is
characterised by the local magnetisation, mi = 〈 si 〉, or the global magnetisation density,
m = N−1

∑N
i=1mi, that detach from zero at Tc if the thermodynamic average 〈 . . . 〉 is

computed on ‘half’ phase space to counteract the global spin reversal symmetry of the
Hamiltonian. Otherwise, both quantities are identical to zero at all temperatures.

In finite size systems m is distributed around the (two) equilibrium infinite-size limit
values, with peaks that get narrower and narrower for larger and larger system sizes. The
local magnetisations mi are also distributed around the (two) equilibrium infinite-size
limit m values.

7.1.2 The spin-glass order parameter

The spin-glass equilibrium phase is one in which spins ‘freeze’ in randomly-looking
configurations. In finite dimensions these configurations are spatially irregular. A snap-
shot looks statistical identical to a high temperature paramagnetic configuration in which
spins point in any direction (two if the spins are Ising like). However, while at high tem-
peratures the spins flip rapidly and another snapshot taken immediately after would look
completely different from the previous one, at low temperatures two snapshots taken at
close times are highly correlated. Similarly, two snapshots taken at the same very long
time but on different realisations of the same experiment, that is to say, after quenching
the same sample in the same way, are also very similar.

Let us use the language of Ising models in the following.
In a spin-glass state the local magnetisation is expected to take a non-zero value,

mi = 〈 si 〉 6= 0, where the average is interpreted in the restricted sense introduced in the
discussion of ferromagnets, that we shall call here within a pure state.4 Instead, the total
magnetisation density, m = N−1

∑N
i=1 mi, vanishes since one expects to have as many

averaged local magnetisation pointing up (mi > 0) as pointing down (mi < 0) with each
4the notion of a pure state will be made more precise below. A mathematical definition can be given

by it lies beyond the scope of these lectures.
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Figure 7.1: A spin configuration in a Heisenberg spin-glass and in an Ising ferromagnet.

possible value of |mi|. Therefore,
mi 6= 0 but m = 0 . (7.1)

Thus, the total magnetisation density, m, of a spin-glass vanishes at all temperatures and
it is not a good order parameter.

The spin-glass transition is characterised by a finite peak in the linear magnetic sus-
ceptibility and a diverging non-linear magnetic susceptibility. Let us discuss the former
first and show how it yields evidence for the freezing of the local magnetic moments.
For a generic magnetic model such that the magnetic field couples linearly to the Ising
spin, HJ [{si}] → HJ [{si}] −

∑
i hisi, the linear susceptibility is related, via the static

fluctuation-dissipation theorem to the correlations of the fluctuations of the magnetisa-
tion:

χij ≡
∂〈 si 〉h
∂hj

∣∣∣∣
h=0

= β 〈 (si − 〈 si 〉)(sj − 〈 sj 〉) 〉 . (7.2)

The averages in the rhs are taken without perturbing field. This relation is proven by
using the definition of 〈 si 〉h and simply computing the derivative with respect to hj.

Exercise 7.1 Prove Eq. (7.2).

In particular,
χii = β 〈 (si − 〈 si 〉)2 〉 = β

(
1−m2

i

)
≥ 0 , (7.3)

with mi = 〈 si 〉. The total susceptibility measured experimentally is χ ≡ N−1
∑

ij χij.
On the experimental side we do not expect to see O(1) sample-to-sample fluctuations in
this global quantity. On the analytical side one can use a similar argument to the one
presented in Sect. 5.2.3 to argue that χ should be self-averaging (it is a sum over the
entire volume of site-dependent terms). Thus, the experimentally observed susceptibility
of sufficiently large samples should be given by

χ = [χ ] = N−1
∑
ij

[χij ] ≈ N−1
∑
i

[χii ] = N−1
∑
i

β
(
1− [m2

i ]
)
, (7.4)
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since we can expect that cross-terms cancel under the disorder average.5 The fall of χ at
low temperatures with respect to its value at Tc, i.e. the cusp observed experimentally,
signals the freezing of the local magnetizations, mi, in the non-zero values that are more
favourable thermodynamically. Note that this argument is based on the assumption that
the measurement is done in equilibrium. The linear ac susceptibility of a spin-glass sample
is shown in the left panel in Fig. 7.2.

Thus, the natural global order parameter that characterises the spin-glass transition is

q ≡ N−1
∑
i

[m2
i ] (7.5)

as proposed in the seminal 1975 Edwards-Anderson paper [72]. q vanishes in the high
temperature phase since all mi are zero but it does not in the low temperature phase since
the square power takes care of the different signs. Averaging over disorder eliminates the
site dependence. Thus, q is also given by

q = [m2
i ] . (7.6)

These definitions, reasonable as they seem at a first glance, hide a subtle distinction that
we discuss below.

7.1.3 Two or many pure states

Let us keep disorder fixed and imagine that once the global spin inversion symmetry
has been taken into account there still remain more than one pure or equilibrium states
in the selected sample. Consider the disorder-dependent quantity

qJ = N−1
∑
i

m2
i (7.7)

where the mi depend on the realisation of the exchanges but we do not write the subindex
J explicitly to lighten the notation. Then, two possibilities for the statistical average in
mi = 〈 si 〉 have to be distinguished:

• If we interpret it in the same restricted sense as the one discussed in the param-
agnetic - ferromagnetic transition of the usual Ising model, i.e. under a pinning
field that selects one chosen pure state, in (7.7) we define a disorder dependent
Edwards-Anderson parameter,

qαJ EA = N−1

N∑
i

(mα
i )2 , (7.8)

5Note that χij can take negative values. Moreover, the sum over i 6= j has O(N2) terms of different
sign and then central limit theorem implies that, if they are uncorrelated, the result is O(N) that once
normalised by N yields a value O(1). The further average over the Jij yields the vanishing result.
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Figure 7.2: Left: The ac-susceptibility of Fe0.5Mn0.5T iO3 at logarithmically evenly spaced
frequencies from 0.017 Hz to 1.7 kHz (top to bottom) [47]. Right: Temperature dependence
of −χ3 (vertical axis) above Tc measured at 10 Hz in static fields of 0 (open circles) and 90 G
(solid circles) as a function of reduced temperature τ (lower axis). The slope is −γ. Plot of the
susceptibility ratios −χ′5h2/χ′3, −χ′7h2/χ′5 (top axis) as a function of −χ3 (vertical axis) in zero
field. The slope is 1 + β/γ [67, 68].

where we label α the selected pure state. Although qαJ EA could depend on α it turns
out that in all known cases it does not and the α label in qαJ EA is superfluous. In
addition, qJEA could fluctuate from sample to sample since the individual mi’s do.
It turns out that in the thermodynamic limit qJEA does not fluctuate. Therefore,
later we will use

qEA = qJEA . (7.9)

• If, instead, the statistical average in mα
i runs over all possible equilibrium states (on

half the phase space, that is to say, eliminating spin-reversal) the quantity (7.7) has
non-trivial contributions from overlaps between different states. Imagine each state
has a probability weight wJα (in the ferromagnetic phase of the Ising model one has
only one (two) pure states with w1 = w2 = 1/2) then

qJ = N−1

N∑
i=1

(∑
α

wJαm
α
i

)2

. (7.10)

In the ferromagnetic transition q = qEA = m2, and qEA and q are identical order
parameters.

In the disorder case, qJαEA takes the same value on all equilibrium states independently
of there being only two (as in the usual ferromagnetic phase) or more (as we shall see
appear in fully-connected spin-glass models). Therefore it does not allow us to distinguish
between the two-state and the many-state scenarii. Instead, qJ does.
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It is important to note that which are the pure states in the model depends on the
quenched disorder realization.

The parameter q in Eq. (7.5), that involves a further average over quenched disorder,
is then

q = [ qJ ] . (7.11)

Having defined a disorder-dependent order parameter, qJ , and its disorder average, q,
that explains the decay of the susceptibility below Tc, we still have to study whether this
order parameter characterises the low temperature phase completely. It will turn out that
the knowledge of the disorder-averaged q is not enough, at least in fully-connected and
dilute spin-glass models. Indeed, one needs to consider the disorder-dependent probability
distribution of the fluctuating qJ , PJ(qJ), see Fig. 7.3. The more pertinent definition of an
order parameter as being given by such a probability distribution allows one to distinguish
between the simple, two-state, and the complex, many-state, scenarii.

In practice, a way to compute the probability distribution of the order parameter is by
using an overlap – or correlation – between two spin configurations, say {si} and {σi},
defined as

qJsσ = N−1
∑
i

〈 siσi 〉 (7.12)

where 〈 . . . 〉 is an unrestricted thermal average. qJsσ takes values between −1 and 1. It
equals one if {si} and {σi} differ in a number of spins that is smaller than O(N), it
equals −1 when the two configurations are totally anti-correlated – with the same proviso
concerning a number of spins that is not O(N) – and it equals zero when {si} and {σi}
are completely uncorrelated. Other values are also possible. Note that the self-overlap of
a configuration with itself is identically one for Ising spins.

The overlap can be computed by running a Monte Carlo simulation, equilibrating a
sample and recording many equilibrium configurations. With them one computes the
overlap and should find a histogram with two peaks at qEA and −qEA (the values of the
overlap when the two configurations fall in the same pure state or in the sign reversed
ones) and, in cases with many different pure states, other peaks at other values of qJsσ.
This is observed in the 3d EA model as exemplified in Fig. 7.3. Note that qJsσ is related
to the q definition above. A related definition is the one of the Hamming distance:

dJsσ = N−1

N∑
i=1

〈 (si − σi)2 〉 = 2(1− qJsσ) . (7.13)

Figure 7.3 shows the probability distribution PJ(q) obtained from a MC simulation of
the 3d EA model. The external peaks are at qEA, cases in which the two copies are taken
in the same equilibrium state. In the first panel there are only two states, one and its
reversed. In the other figures other peaks appear associated with the existence of more
than one state and the overlap between them. They are sampled differently in the various
panels since the temperature of the simulation is changed.
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Figure 7.3: Monte Carlo simulations of the 3d Edwards-Anderson model. The disorder-
dependent overlap probability distribution function, PJ(q), for different choices of the random
couplings. Figure taken from [77].
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Figure 7.4: Monte Carlo simulations of the 3d Edwards-Anderson model. The disorder averaged
overlap distribution function, [PJ(q)], for different system sizes given in the key. Figure taken
from [78].

Instead, Fig. 7.4 displays the disorder averaged P (q) for a 3d Edwards-Anderson model
at low temperatures. The dotted line is the theoretical prediction for the Sherrington-
Kirkpatrick model that we will discuss below. It has a sharp peak at qEA and a non-
vanishing continuous weight at all values of q < qEA. The various lines represent numerical
data for different system sizes. The questions is whether the intermediate part will remain
non-vanishing in the infinite size limit or whether it will eventually vanish.

7.1.4 Pinning fields

In the discussion of the ferromagnetic phase transition we established that one of the
two equilibrium states, related by spin reversal symmetry, is chosen by a small pinning
field that is taken to zero after the thermodynamic limit, limh→0 limN→∞.

In a problem with quenched disorder it is no longer feasible to choose and apply a
magnetic field that is correlated to the statistical averaged local magnetization in a single
pure state since this configuration is not known! Moreover, the remanent magnetic field
that might be left in any experience will not be correlated with any special pure state of
the system at hand.

Which is then the statistical average relevant to describe experiments? We shall come
back to this point below.

7.1.5 Divergent susceptibility

In a pure magnetic system with a second-order phase transition the susceptibility of
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the order parameter to a field that couples linearly to it diverges when approaching the
transition from both sides. In a paramagnet, one induces a local magnetisation with a
local field

mi = 〈 si 〉 =
N∑
j=1

χijhj (7.14)

with χij the linear susceptibilities, the magnetic energy given by E = E0 −
∑

i sihi, and
the field is set to zero at the end of the calculation. Using this expression, the order
parameter in the high temperature phase becomes

q = qEA =
1

N

N∑
i=1

[m2
i ] =

1

N

N∑
i=1

N∑
j=1

N∑
k=1

[χijχikhjhk ] (7.15)

If the applied fields are random and taken from a probability distribution such that
hjhk = σ2δjk one can replace hjhk by σ2δjk and obtain

q =
1

N

N∑
i=1

[m2
i ] =

1

N

N∑
i=1

N∑
j=1

[χ2
ij ] σ2 ≡ χSG σ

2 . (7.16)

σ2 acts as a field conjugated to the order parameter qEA. (One can also argue that a
uniform field looks random to a spin-glass sample and therefore the same result holds.
It is more natural though to use a trully random field since a uniform one induces a net
magnetization in the sample.) The spin-glass susceptibility is then defined as

χSG ≡
1

N

∑
ij

[χ2
ij ] =

β2

N

∑
ij

[ (〈 sisj 〉 − 〈 si 〉〈 sj 〉)2 ] =
β2

N

∑
ij

[ 〈 sisj 〉2 ] (7.17)

and one finds that it diverges as T → T+
c as expected in a second-order phase transition.

(Note that there is no cancelation of crossed terms because of the square.) Indeed, the
divergence of χSG is related to the divergence of the non-linear magnetic susceptibility that
is measurable experimentally and numerically. An expansion of the total mangnetization
in powers of a uniform field h acting as E → E − h∑i si is

Mh = χh− χ(3)

6
h3 + . . . , (7.18)

and the first non-linear susceptibility is then given by

−χ(3) ≡ ∂3Mh

∂h3

∣∣∣∣
h=0

= −β−1 ∂
4 lnZh
∂h4

∣∣∣∣
h=0

= −β
3N

3

〈(∑
i

si

)4〉
c

(7.19)

with the subindex c indicating that the quartic correlation function is connected. Above
Tc, mi = 0 at zero field,

χ(3) = β3
∑
ijkl

(〈 sisjsksl 〉 − 3〈 sisj 〉〈 sksl 〉) =
β3

N
3

(
4N − 6

∑
ij

〈 sisj 〉2
)
, (7.20)
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and one can identify χSG when i = k and j = l plus many other terms that we assume
are finite. Then,

χ(3) = β(χSG −
2

3
β2) . (7.21)

This quantity can be accessed experimentally. A careful experimental measurement of
χ(3), χ(5) and χ(7) demonstrated that all these susceptibilities diverge at Tc [67, 68], see
the right panel in Fig. 7.2.

7.1.6 Phase transition and scaling

Having identified an order parameter, the linear and the non-linear susceptibility one
can now check whether there is a static phase transition and, if it is of second order,
whether the usual scaling laws apply. Many experiments have been devoted to this task.
It is by now quite accepted that Ising spin-glasses in 3d have a conventional second order
phase transition. Still, the exponents are difficult to obtain and there is no real consensus
about their values. There are two main reasons for this: one is that as Tc is approached
the dynamics becomes so slow that equilibrium measurements cannot really be done.
Critical data are thus restricted to T > Tc. The other reason is that the actual value of
Tc is difficult to determine and the value used has an important influence on the critical
exponents. Possibly, the most used technique to determine the exponents is via the scaling
relation for the non-linear susceptibility:

χnl = tβf

(
h2

tγ+β

)
(7.22)

with t = |T − Tc|/Tc and one finds, approximately, the values given in Table 7.3 to be
compared with the values for the ferromagnetic transitions summarized in Table 7.3.

d β γ δ α ν η

FM ∞ 1 1 2 -1 1/2 0
FM 3 0.326 1.237 4.790 0.110 0.630 0.036
SK ∞ 1 1 2 -1 1/2 0
Exp 3 1 2.2 3.1 x

Table 7.3: Critical exponents in the Ising ferromagnetic and spin-glass transitions. d → ∞
corresponds to the mean-field results and the Sherrington-Kirkpatrick model. Experiments mea-
suring the critical exponents of an Ising spin-glass were reported in [80], for example, and are
given in the last row.

No cusp in the specific heat of spin-glasses is seen experimentally. Since one expects
a second order phase transition this means that the divergence of this quantity must be
very weak.

90



Figure 7.5: List of critical exponents of the 3d EA model. The last results for ν and η were
determined with numerical simulations using system sizes L = 3− 28 [79].

The critical exponents satisfy the usual relations

γ = ν(2− η) α = 2− νd
β = (2 + α− γ)/2 2βδ = 2 + α + γ

(7.23)

7.1.7 The droplet theory

The droplet theory is a phenomenological model that assumes that the low temperature
phase of a spin-glass model has only two equilibrium states related by an overall spin flip.
It is then rather similar to a ferromagnet, only that the nature of the order in the two
equilibrium states is not easy to see, it is not just most spins pointing up or most spins
pointing down with some thermal fluctuations within. At a glance, one sees a disordered
paramagnetic like configuration and a more elaborate order parameter has to be measured
to observe the order. The spin-glass phase is then called a disguised ferromagnet and a
usual spontaneous symmetry breaking (between the two equilibrium states related spin
reversal symmetry) leading to usual ergodicity breaking is supposed to take place at Tc.

Once this assumption has been done, renormalisation group arguments are used to
describe the scaling behaviour of several thermodynamic quantities. The results found
are then quantitatively different from the ones for a ferromagnet but no novelties appear.

7.2 The TAP approach

Disordered models have quenched random interactions. Due to the fluctuating values
of the exchanges, one expects that the equilibrium configurations be such that in each
equilibrium state the spins freeze in different directions. The local averaged magnetizations

91



need not be identical, on the contrary one expects 〈 si 〉 = mi and, if many states exist,
each of them can be identified by the vector (m1, . . . ,mN).

Let us focus on the Sherrington-Kirkpatrick model, defined by

HSK
J = −1

2

∑
i 6=j

Jijsisj −
∑
i

hext
i si (7.24)

with interaction strengths Jij taken from a Gaussian pdf and scaled with N in such a way
that the thermodynamic limit is non-trivial:

P (Jij) = (2πσ2
N)−

1
2 e
−

J2
ij

2σ2
N (7.25)

and external applied field hext
i . The first two-moments of the exchange distribution are

[Jij] = 0 and [J2
ij] = σ2

N = J2/(2N).
One may try to use the naive mean-field equations (B.2.21), generalised to local vari-

ational parameters mi, to characterise the low temperature properties of these models at
fixed quenched disorder:

mi = tanh
(
βhloc

i

)
= tanh

∑
j(6=i)

βJijmj + βhext
i

 .

and determine then the different {mα
i } = (mα

1 , . . . ,m
α
N) values from them, with the label α

indicating the possibility of there being many solutions to these equations. It is important
to reckon that, in this discussion, the mi = 〈si〉 are assumed to be average in each
thermodynamic state (with no mixture between them).

It has been shown by Thouless-Anderson-Palmer (TAP) [74] that these equations
are not completely correct even in the fully-connected disordered case: a term which is
called the Onsager reaction term is missing. This term represents the reaction of the
spin i: the magnetisation of the spin i produces a field h′j(i) = Jjimi = Jijmi on spin
j; this field induces a magnetisation m′j(i) = χjjh

′
j(i) = χjjJijmi on the spin j. This

magnetisation, in turn, produces a field h′i(j) = Jijm
′
j(i) = JijχjjJijmi = χjjJ

2
ijmi on

the site i. The equilibrium fluctuation-dissipation relation between susceptibilities and
connected correlations implies χjj = β 〈 (sj − 〈 sj 〉)2 〉 = β(1 − m2

j) and one then has
h′i(j) = β(1−m2

j)J
2
ijmi. The idea of Onsager – or cavity method – is that one has to study

the ordering of the spin i in the absence of its own effect on the rest of the system. Thus,
the total field produced by the sum of h′i(j) = β(1 − m2

j)J
2
ijmi over all the spins j with

which it can connect, has to be subtracted from the mean-field created by the other spins
in the sample, i.e.

hloc
i =

∑
j

Jijmj + hext
i − βmi

∑
j

J2
ij(1−m2

j) (7.26)
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where hext
i is the external field. The equations then read

mi = tanh

∑
j(6=i)

βJijmj − β2miJ
2
ij(1−m2

j) + βhext
i

 .

The reason why the reaction term does not appear in the mean-field equations for
ferromagnets is that it is sub-leading with respect to the first one. We now discuss why
it is not in the disordered case. Let us study the order of magnitude, as powers of N of
each term in the r.h.s. In the first term∑

j(6=i)

Jijmj '
∑ 1√

N
mj ' 1 (7.27)

because of the central limit theorem. In the second term∑
j( 6=i)

J2
ij(1−m2

j) '
∑ 1

N
(1−m2

j) ' 1 (7.28)

because all terms in the sum are positive definite. Thus, in disordered systems the reaction
term is of the same order of the usual mean-field; a correct mean-field description has to
include it. In the ferromagnetic case this term can be neglected since it is sub-leading in
N , since J2

ij = J2/N2 in this case.
The argument leading to the Onsager reaction term can be generalised to include the

combined effect of the magnetisation of spin i on a sequence of spins (or p − 1 spins) in
the sample, i.e. the effect on i on j and then on k that comes back to i in the SK model.
These higher order terms are indeed negligible only if the series of all higher order effects
does not diverge. The ensuing condition is 1 > β2 (1− 2qEA +N−1

∑
im

4
i ) for the SK

model.
Using the fact that there is a sum over a very large number of elements, J2

ij can be
replaced by its site-independent variance [J2

ij] = p!J2/(2N) in the last term in (7.27).
Introducing the Edwards-Anderson parameter qEA = N−1

∑
i=1 m

2
i the TAP equations

follow:

mi = tanh

(
β
∑
j 6=i

Jijmj − β2J2mi(1− qEA) + βhi

)
. (7.29)

The generalisation of the argument leading to the reaction term to p spin interactions

HJ [{si}] = −
∑

i1<···<ip

Ji1...ipsi1 . . . sip [ J2
i1...ip

] =
J2p!

2Np−1
(7.30)

is not so straightforward. An alternative derivation has been given by Biroli [75]. The
TAP equations for p-spin fully connected models read

mi = tanh

 ∑
i2 6=···6=ip

(
β

(p− 1)!
Jii2...ipmi2 . . .mip − β2miJ

2
ii2...ip

(1−m2
i2

) . . . (1−m2
ip)

)
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where we set hext
i = 0. The first contribution to the internal field is proportional to

Ji12...ip ∼ N−(p−1)/2 and once the p − 1 sums performed it is of order one. The reaction
term instead is proportional to J2

ii2...ip
and, again, a simple power counting shows that it

is O(1). Using the fact that there is a sum over a very large number of elements, J2
i1...ip

can be replaced by its site-independent variance [J2
i1...ip

] = p!J2/(2Np−1) in the last term
in (7.31). Introducing the Edwards-Anderson parameter qEA = N−1

∑
i=1m

2
i the TAP

equations follow:

mi = tanh

 β

(p− 1)!

∑
i2 6=···6=ip

Jii2...ipmi2 . . .mip −
β2J2p

2
mi(1− qEA)p−1 + βhi

 .

The importance of the reaction term becomes clear from the analysis of the linearised
equations, expected to describe the second order critical behaviour for the SK model
(p = 2) in the absence of an applied field. The TAP equations become

mi ∼ β
∑
j

Jijmj − β2J2mi + βhi . (7.31)

A change of basis to the one in which the Jij matrix is diagonal leads to mλ ∼ β(λ −
βJ2)mλ + βhλ. The notation we use is such that Jλ is an eigenvalue of the Jij matrix
associated to the eigenvector ~vλ. mλ represents the projection of ~m on the eigenvector
mλ, mλ = ~vλ · ~m, with ~m the N -vector with components mi. The staggered susceptibility
then reads

χλ ≡
∂mλ

∂hλ

∣∣∣∣
h=0

= β
(
1− βJλ + (βJ)2

)−1
. (7.32)

Random matrix theory tells us that the eigenvalues of the random matrix Jij are dis-
tributed with the semi-circle law. For the normalisation of the Jij’s that we used, the
largest eigenvalue is Jmax

λ = 2J [60]. The staggered susceptibility for the largest eigen-
value diverges at βcJ = 1. Note that without the reaction term the divergence appears
at the inexact value T ∗ = 2Tc (see Sect. 7.4 for the replica solution of the SK model).

The TAP equations are the extremisation conditions on the TAP free-energy density:

f tap
J ({mi}) = − 1

p!

∑
i1 6=···6=ip

Ji1...ipmi1 . . .mip −
β

4p

∑
i1 6=···6=ip

J2
i1...ip

(1−m2
i1

) . . . (1−m2
ip)

−
∑
i

himi + T

N∑
i=1

[
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

]
(7.33)

where presented for the generalised p-spin model. The free-energy density as a function
of the local magnetizations mi defines what is usually called the free-energy landscape.
Note that this function depends on N � 1 variables, mi, and these are not necessarily
identical in the disordered case in which the interactions between different groups of spins
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Figure 7.6: Schematic representation of a rugged free-energy landscape. Application to protein
folding [76].

are different. The stability properties of each extreme {mα
l } are given by the eigenvalues

of the Hessian matrix

HJ
ij ≡

∂f tap
J ({mk})
∂mi∂mj

∣∣∣∣
{mαl }

. (7.34)

The number of positive, negative and vanishing eigenvalues determine then the number of
directions in which the extreme is a minimum, a maximum or marginal. The sets {mα

l }
for which f tap

J ({mα
l }) is the absolute minima yield a first definition of equilibrium or pure

states.
The TAP equations apply to {mi} and not to the configurations {si}. The values of

the {mα
i } are determined as extrema of the TAP free-energy density, f tap

J ({mi}), and
they not need to be the same as those of the energy, HJ({si}), a confusion sometimes
encountered in the glassy literature. The coincidence of the two can only occur at T → 0.

7.2.1 The complexity or configurational entropy

There are a number of interesting questions about the extrema of the TAP free-energy
landscape, or even its simpler version in which the Onsager term is neglected, that help
us understanding the static behaviour of disordered systems:

• For a given temperature, T , how many solutions to the mean-field equations exist?
The total number of solutions can be calculated using

NJ(T ) =
∏
i

∫ 1

−1

dmi δ(mi −mα
i ) =

∏
i

∫ 1

−1

dmi δ(eqJi )

∣∣∣∣det
∂eqJi
∂mj

∣∣∣∣ . (7.35)
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{mα
i } are the solutions to the TAP equations that we write as {eqJi = 0}. The

last factor is the normalization of the delta function after the change of variables,
it ensures that we count one each time the integration variables touch a solution
to the TAP equations independently of their stability properties. We made explicit
the fact the this quantity depends on temperature.

We define the complexity or configurational entropy as the logarithm of the number
of solutions at temperature T divided by N :

ΣJ(T ) ≡ N−1 lnNJ(T ) . (7.36)

The normalization with N suggests that the number of solutions is actually an
exponential of N . We shall come back to this very important point below.

• Does NJ(T ) depend on T and does it change abruptly at particular values of T that
may or may not coincide with static and dynamic phase transitions?

• One can define a free-energy level dependent complexity

ΣJ(f, T ) ≡ N−1 lnNJ(f, T ) (7.37)

where NJ(f, T ) is the number solutions in the interval [f, f + df ] at temperature T .

• From these solutions, one can identify the minima as well as all saddles of different
type, i.e. with different indices K. These are different kinds of metastable states.
Geometry constrains the number of metastable states to satisfy Morse theorem that
states

∑NJ
l=1(−1)κl = 1, where κl is the number of negative eigenvalues of the Hessian

evaluated at the solution l, for any continuous and well-behaved function diverging
at infinity in all directions. (For example, in a one-dimensional double-well function,
one has (−1)0 + (−1)1 + (−1)0 = 1.)

One can then count the number of solutions to the TAP equations of each index,
NJ(K,T ), and define the corresponding complexity

ΣJ(K,T ) ≡ N−1 lnNJ(K,T ) , (7.38)

or even work at fixed free-energy density

ΣJ(K, f, T ) ≡ N−1 lnNJ(K, f, T ) . (7.39)

Even more interestingly, one can analyse how are the free-energy densities of different
saddles organized. For instance, one can check whether all maxima are much higher
in free-energy density than saddles of a given type, etc.

• What is the barrier, ∆f = f1 − f0, between ground states and first excited states?
How does this barrier scale with the actual free-energy difference, ∆f between these
states? To answer this question one has to estimate the nucleation radius for the
reversal of a droplet under an applied field, for instance.
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The definitions of complexity given above are disorder-dependent. One might then
expect that the complexity will show sample-to-sample fluctuations and be characterized
by a probability distribution. The quenched complexity, Σquenched, is then the most likely
value of ΣJ , and it is defined through

maxP (ΣJ) = P (Σquenched) . (7.40)

In practice, this is very difficult to compute. Most analytic results concern the annealed
complexity

Σann ≡ N−1 ln [NJ ] = N−1 ln[ eNΣJ ] . (7.41)

One can show that the annealed complexity is smaller or equal than the quenched one.

7.2.2 Weighted averages

Having identified many solutions to the TAP equations one needs to determine now
how to compute statistical averages. A natural proposal is to give a probability weight to
each solution, wα, and to use it to average the value of the observable of interest:

〈O 〉 =
∑
α

wJα Oα with Oα = O({mα
i }) (7.42)

where α labels the TAP solutions, Oα is the value that the observable O takes in the TAP
solution α, and wJα are their statistical weights, satisfying the normalization condition∑

αw
J
α = 1. Two examples can illustrate the meaning of this average. In a spin-glass

problem, if O = si, then Oα = mα
i . In an Ising model in its ferromagnetic phase, if O = si,

then Oα = mα
i = ±m and wα = 1/2. Within the TAP approach one proposes

wJα =
e−βF

J
α∑

γ e
−βFJγ

(7.43)

with F J
α the total free-energy of the α-solution to the TAP equations. The discrete sum

can be transformed into an integral over free-energy densities, introducing the degeneracy
of solutions quantified by the free-energy density dependent complexity:

〈O 〉 =
1

ZJ

∫
df e−Nβf NJ(f, T ) O(f) =

1

ZJ

∫
df e−N(βf−ΣJ (f,T )) O(f) . (7.44)

The normalization is the ‘partition function’

ZJ =

∫
df e−Nβf NJ(f, T ) =

∫
df e−N(βf−ΣJ (f,T )) . (7.45)

We assumed that the labelling by α can be traded by a labelling by f that implies that
at the same free-energy density level f the observable O takes the same value. In the

97



N → ∞ limit these integrals can be evaluated by saddle-point, provided the parenthesis
is positive. In order to simplify the calculations, the disorder-dependent complexity is
generally approximated with the annealed value introduced in eq. (7.41).

The equilibrium free-energy

The total equilibrium free-energy density, using the saddle-point method to evaluate
the partition function ZJ in eq. (7.45), reads

−βfJeq = N−1 lnZJ = min
f

[f − kBTΣJ(f, T )] ≡ min
f

ΦJ(f, T ) . (7.46)

It is clear that ΦJ(f, T ) is the Landau free-energy density of the problem with f playing
the rôle of the energy and ΣJ of the entropy. If we use f = (E− kBTS)/N = e−Ts with
E the actual energy and S the microscopic entropy one has

ΦJ(f, T ) = e− kBT (s+ ΣJ(f, T )) . (7.47)

Thus, ΣJ is an extra contribution to the total entropy that is due to the exponentially
large number of metastable states. Note that we do not distinguish here their stability.

Note that ΣJ is subtracted from TAP free-energy level f . Thus, it is possible that
in some cases states lying at a higher free-energy density f but being very numerous
have a lower total Landau free-energy density Φ than lower lying states that are less
numerous. Collectively, higher states dominate the equilibrium measure in these cases.
This phenomenon actually occurs in p-spin models, as explained below.

The order parameter

Now that we know that there can be a large number of states (defined as extrema of
the TAP free-energy) we have to be careful about the definition of the spin-glass order
parameter.

The Edwards-Anderson parameter is understood as a property of a single state. Within
the TAP formalism one then has

qJ
α
EA = N−1

∑
i

(mα
i )2 with mα

i = 〈si〉α (7.48)

being restricted to spin configurations in state α. An average of this quantity over all
extrema of the free-energy density yields

∑
αw

J
α qJ

α
EA =

∑
αw

J
α N

−1
∑

i(m
α
i )2.

Instead, the statistical equilibrium magnetisation, mi = 〈si〉 =
∑

αw
J
αm

α
i , squared is

qJ ≡ 〈 si 〉2 = m2
i =

(∑
α

wJαm
α
i

)2

=
∑
αβ

wJαw
J
β m

α
im

β
i . (7.49)

If there are multiple phases, the latter sum has crossed contributions from terms with
α 6= β. These sums, as in a usual paramagnetic-ferromagnetic transition have to be taken
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over half space-space, otherwise global up-down reversal would imply the cancellation of
all cross-terms.

Clearly
qαJ EA 6= qJ and

∑
α

wJα q
α
J EA 6= qJ . (7.50)

7.3 Metastable states in two families of models

7.3.1 High temperatures

For all models, at high temperatures f(mi) is characterized by a single stable absolute
minimum in which all local magnetizations vanish, as expected; this is the paramagnetic
state. The mi = 0 for all i minimum continues to exist at all temperatures. However, even
if it is still the global absolute minimum of the TAP free-energy density, fJTAP, at low
temperatures it becomes unstable thermodynamically, and it is substituted as the equilib-
rium state, by other non-trivial configurations with mi 6= 0 that are the absolute minima
of Φ. Note the difference with the ferromagnetic problem for which the paramagnetic
solution is no longer a minimum below Tc.

7.3.2 Low temperatures

At low temperature many equilibrium states appear (and not just two as in an Ising
ferromagnetic model) and they are not related by symmetry (as spin reversal in the Ising
ferromagnet or a rotational symmetry in the Heisenberg ferromagnet). These are char-
acterized by non-zero values of the local magnetizations mi that are different in different
states.

At low-temperatures both the naive mean-field equations and the TAP equations have
an exponential in N number of solutions and still an exponential in N number of them
correspond to absolute minima of the mi-dependent free-energy density. This means
that ΣJ(T ) and even ΣJ(0, f0, T ) are quantities O(1). These minima can be identified
as different states that could be accessed by applying the corresponding site-dependent
pinning fields.

The derivation and understanding of the structure of the TAP free-energy landscape
is quite subtle and goes beyond the scope of these Lectures. Still, we shall briefly present
their structure for the SK and p-spin models to give a flavor of their complexity.

The SK model

The first calculation of the complexity in the SK model appeared in 1980 [?, 82].
After 35 years of research the structure of the free-energy landscape in this system is
still a matter of discussion. At present, the picture that emerges is the following. The
temperature-dependent annealed complexity is a decreasing function of temperature that
vanishes only at Tc but takes a very small value already at ∼ 0.6Tc. Surprisingly enough,
at finite but large N the TAP solutions come in pairs of minima and saddles of type one,
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Figure 7.7: Left: sketch of the temperature dependent complexity, ΣJ(T ), of the SK. It actually
vanishes only at Tc but it takes a very small value already at ∼ 0.6 Tc. Right: pairs of extrema
in the SK model with N large and N →∞ limit.

that is to say, extrema with only one unstable direction. These states are connected by a
mode that is softer the larger the number of spins: they coalesce and become marginally
stable in the limit N → ∞. Numerical simulations show that starting from the saddle-
point and following the ‘left’ direction along the soft mode one falls into the minimum;
instead, following the ‘right’ direction along the same mode one falls into the paramagnetic
solution. See Fig. 7.7 for a sketch of these results. The free-energy difference between the
minimum and saddle decreases for increasing N and one finds, numerically, an averaged
∆f ∼ N−1.4. The extensive complexity of minima and type-one saddles is identical in the
large N limit, ΣJ(0, T ) = ΣJ(1, T ) + O(N−1) [83] in such a way that the Morse theorem
is respected. The free-energy dependent annealed complexity is a smooth function of
f with support on a finite interval [f0, f1] and maximum at fmax. The Bray and Moore
annealed calculation (with supersymmetry breaking) yields fmax = −0.654, Σmax

J = 0.052,
Σ′′(fmax) = 8.9. The probability of finding a solution with free-energy density f can be
expressed as

pJ(f, T ) =
NJ(f, T )

NJ(T )
=
eNΣJ (f,T )

NJ(T )
∼
√
NΣ′′J(fmax)

2π
e−

N
2
|Σ′′J (fmax)|(f−fmax)2

, (7.51)

where we evaluated the total number of solutions, NJ(T ) =
∫
df eNΣJ (f,T ), by steepest

descent. The complexity, approximated by its annealed value, vanishes linearly close to
f0: ΣJ(f, T ) ∼ λ(f − f0) with λ < β.

Only the lowest lying TAP solutions contribute to the statistical weight. The complex-
ity does not contribute to Φ in the large N limit:

Φ = βf − Σann(f, T ) ' βf − (f − f0)λ

∂Φ

∂f
' β − λ > 0 iff β > λ (7.52)
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Figure 7.8: The complexity as a function of f for the SK model.

and Φmin ' βfmin = βf0. See Fig. 7.8. The ‘total’ free-energy density in the exponential
is just the free-energy density of each low-lying solution.

The (spherical) p-spin model

The number and structure of saddle-points is particularly interesting in the p ≥ 3 cases
and it is indeed the reason why these models, with a random first order transition, have
been proposed to mimic the structural glass arrest. The p ≥ 3 model has been studied
in great detail in the spherical case, that is to say, when spins are not Ising variables but
satisfy the global constraint,

∑N
i=1 s

2
i = N .

Although in general the minima of the mean-field free energy do not coincide with the
minima of the Hamiltonian, they do in the spherical p-spin model. Their positions in the
phase space does not depend on temperature, while their self-overlap does. At T = 0
a state (stable or metastable) is just a minimum (absolute or local) of the energy. For
increasing T energy minima get dressed up by thermal fluctuations, and become states but
they do nor cross nor merge. Thus, the states can be labeled by their zero-temperature
energy density e0.

The complexity is given by

Σ(e) =
1

2

[
− ln

pz2

2
+
p− 1

2
z2 − 2

p2z2
+

2− p
p

]
, (7.53)

where z is
z =

[
−e0 −

√
e02 − e2

c

]
/(p− 1) . (7.54)

The complexity vanishes at
e0 = emin = f(p) , (7.55)
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Figure 7.9: The TAP free-energy as a function of T in the spherical p-spin model. (1) : free
energy of the paramagnetic solution for T > T ∗, ftot for T < T ∗ ; (2) : free energy of the lowest
TAP states, with zero temperature energy emin; (3) : free energy of the highest TAP states,
corresponding to ec; (4) : an intermediate value of e0 leads to an intermediate value of f at
any temperature; (5) : feq(T ); the difference between curves (5) and (1) gives the complexity
TSc(feq(T ), T ) [93].
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the ground state of the system, and it is real for zero-temperature energies e < eth with

eth = ec = −
√

2(p− 1)

p
. (7.56)

emin is the zero-T energy density that one finds with the replica calculation using a 1-step
RSB Ansatz, as we shall see below. The finite-T energy density of a state α is

eα = q
p
2
α e

0
α −

1

2T

[
(p− 1)qpα − pqp−1

α + 1
]
. (7.57)

This means that

• There can be only a finite number of states with e < e0.

• It can be shown that below eth minima dominate on average.

• Above eth one can show that there are states but these are unstable.

Each zero-temperature state is characterized by a unit N -vector sαi and it gives rise to
a finite-T state characterized by mα

i =
√
q(e, T )sαi with q(e, T ) given by

qp−2(1− q)2 = T 2 (e+
√
e2 − e2

th)2

(p− 1)2
. (7.58)

(q(e, T = 0) = 1 and at finite T the solution with q closest to 1 has to be chosen.) The
self-overlap at the threshold energy, e− eth, is then

qp−2
th (1− qth)2 = T 2 2

p(p− 1)
. (7.59)

Another way for the q equation to stop having solution, is by increasing the temper-
ature, T > Tmax(e0), at fixed bare energy e0. This means that, even though minima
of the energy do not depend on the temperature, states, i.e. minima of the free energy
do. When the temperature becomes too large, the paramagnetic states becomes the only
pure ergodic states, even though the energy landscape is broken up in many basins of the
energy minima. This is just one particularly evident demonstration of the fundamental
different between pure states and energy minima. Tmax(e0) is obtained as the limiting
temperature for which eq. (7.58) admits a solution. It is given by

Tmax(e0) =

(
2

p

) p− 1

−e0 −
√
e02 − e2

th

(p− 2

p

) p−2
2

. (7.60)

Tmax is a decreasing function of e0. The last states to disappear then are the ones with
minimum energy emin, ceasing to exist at TTAP ≡ Tmax(emin).
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Below a temperature Td, an exponential (in N) number of metastable states contribute
to the thermodynamics in such a non-trivial way that their combined contribution to the
observables makes it the one of a paramagnet. Even if each of these states is non-trivial
(the mi’s are different from zero) the statistical average over all of them yields results that
are identical to those of a paramagnet. For example, the free-energy density is −1/(4T )
as in the mi = 0 paramagnetic solution. One finds

Td =

√
p(p− 2)p−2

2(p− 1)p−1
. (7.61)

In the p-spin models there is a range of temperatures in which high lying states dominate
this sum since they are sufficiently numerous so as to have a complexity that renders
the combined term βf − ΣJ(f, T ) smaller (in actual calculations the disorder dependent
complexity is approximated by its annealed value).

At a lower temperature Ts (Ts < Td) there is an entropy crisis, less than an exponential
number of metastable states survive, and there is a static phase transition to a glassy state.

In short:

• Above Td the (unique) paramagnetic solution dominates, q = 0 and Φ = f =
−1/(4T ).

• In the interval T ∈ [Ts, Td] an exponentially large number of states (with q 6= 0 given
by the solution to pqp−2(1 − q) = 2T 2) dominate the partition sum. Φ = −1/(4T )
appearing as the continuation of the paramagnetic solution.

• At T < Ts the lowest TAP states with e0 = emin control the partition sum. Their
total free-energy Φ is different from −1/(4T ).

This picture is confirmed with other analytical studies that include the use of pinning
fields adapted to the disordered situation [84], the effective potential for two coupled real
replicas [85], and the dynamic approach [86], and the numerical exhaustive determination
of all stationary points of the Hamiltonian in systems with size N ≤ 20 [87]

Low temperatures, entropy crisis

The interval of definition of ΦJ(e, T ) is the same as ΣJ(e), that is e ∈ [emin : eth].
Assuming that at a given temperature T the energy eeq(T ) minimizing ΦJ lies in this
interval, what happens if we lower the temperature? Remember that the complexity is an
increasing function of E, as of course is f(e, T ). When T decreases we favor states with
lower free energy and lower complexity, and therefore eeq decreases. As a result, it must
exist a temperature Ts, such that, eeq(Ts) = emin and thus, ΣJ(eeq(T )) = ΣJ(emin) = 0.
Below Ts the bare energy eeq cannot decrease any further: there are no other states below
the ground states emin. Thus, eeq(T ) = emin for each temperature T ≤ Ts. As a result, if
we plot the complexity of equilibrium states ΣJ(eeq(T )) as a function of the temperature,
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we find a discontinuity of the first derivative at Ts, where the complexity vanishes. A
thermodynamic transition takes place at Ts: below this temperature equilibrium is no
longer dominated by metastable states, but by the lowest lying states, which have zero
complexity and lowest free energy density.

We shall show that Ts is the transition temperature found with a replica calculation.
The temperature where equilibrium is given for the first time by the lowest energy states, is
equal to the static transition temperature. Above Ts the partition function is dominated
by an exponentially large number of states, each with high free energy and thus low
statistical weight, such that they are not captured by the overlap distribution P (q). At
Ts the number of these states becomes sub-exponential and their weight nonzero, such
that the P (q) develops a secondary peak at qs 6= 0.

The threshold

The analysis of the Hessian on the threshold level reveals that these states are saddles
with an extensive number of flat directions. The threshold level is then like a large flat
plateau in a mountain ladscape.

Finite dimensions

In finite-dimensional systems, only equilibrium states can break the ergodicity, i.e.
states with the lowest free energy density. In other words, the system cannot remain
trapped for an infinite time in a metastable state, because in finite dimension free energy
barriers surrounding metastable states are always finite.

The extra free energy of a droplet of size r of equilibrium phase in a background
metastable phase has a positive interface contribution which grows as rd−1, and a negative
volume contribution which grows as rd,

∆f = σrd−1 − δf rd (7.62)

where here σ is the surface tension and δf is the bulk free energy difference between the
two phases. This function has always a maximum, whose finite height gives the free energy
barrier to nucleation of the equilibrium phase (note that at coexistence δf = 0 and the
barrier is infinite). Therefore, if initially in a metastable states the system will, sooner or
later, collapse in the stable state with lower free energy density. For this reason, in finite
dimension we cannot decompose the Gibbs measure in metastable components. When this
is done, it is always understood that the decomposition is only valid for finite times, i.e
times much smaller than the time needed for the stable equilibrium state to take over. On
the other hand, in mean-field systems (infinite dimension), barriers between metastable
states may be infinite in the thermodynamic limit, and it is therefore possible to call pure
states also metastable states, and to assign them a Gibbs weight wJα. We will analyse
a mean-field spin-glass model, so that we will be allowed to perform the decomposition
above even for metastable states.

Comments
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There is a close relationship between the topological properties of the model and its
dynamical behavior. In particular, the slowing down of the dynamics above but close to Td
is connected to the presence of saddles, whose instability decreases with decreasing energy.
In fact, we have seen that the threshold energy level eth separating saddles from minima,
can be associated to the temperature Tth = Td, marking the passage from ergodicity to
ergodicity breaking. In this context the dynamical transition can be seen as a topological
transition. The plateau of the dynamical correlation function, which has an interpretation
in terms of cage effect in liquids, may be reinterpreted as a pseudo-thermalization inside
a saddle with a very small number of unstable modes.

7.4 The replica method

A picture that is consistent with the one arising from the naive mean-field approxi-
mation but contradicts the initial assumption of the droplet model arises from the exact
solution of fully-connected spin-glass models. These results are obtained using a method
called the replica trick that we will briefly present below.

In Sect. 5.2.3 we argued that the typical properties of a disordered system can be
computed from the disorder averaged free-energy

[FJ ] ≡
∫
dJ P (J)FJ . (7.63)

One then needs to average the logarithm of the partition funtion. In the annealed approx-
imation one exchanges the ln with the average over disorder and, basically, considers the
interactions equilibrated at the same temperature T as the spins:

[ lnZJ ] ∼ ln[ZJ ] . (7.64)

This approximation turns out to be correct at high temperatures but incorrect at low
ones.

The replica method allows one to compute [FJ ] for fully-connected models. It is based
on the smart use of the identity

lnZJ = lim
n→0

Zn
J − 1

n
. (7.65)

The idea is to compute the right-hand-side for finite and integer n = 1, 2, . . . and then
perform the analytic continuation to n→ 0. Care should be taken in this step: for some
models the analytic continuation may not be unique. (Recall the calculation done using
the Potts model with q → 1 that allows one to recover results for the percolation problem.)
It turns out that this is indeed the case for the emblematic Sherrington-Kirkpatrick model,
as discussed by van Hemmen and Palmer [88] though it has also been recently shown that
the free-energy f(T ) obtained by Parisi [89] with the replica trick is exact! [90, 91]
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The disorder averaged free-energy is given by

−β[FJ ] = −
∫
dJ P (J) lnZJ = − lim

n→0

1

n

(∫
dJ P (J)Zn

J − 1

)
, (7.66)

where we have exchanged the limit n → 0 with the integration over the exchanges. For
integer n the replicated partition function, Zn

J , reads

Zn
J =

∑
{sai }

e−β[HJ ({s1i })+···+HJ ({sni }] . (7.67)

Here
∑
{sai }
≡∑{s1i=±1} · · ·

∑
{sni =±1}. Z

n
J corresponds to n identical copies of the original

system, that is to say, all of them with the same realisation of disorder. Each copy is
characterised by an ensemble of N spins, {sai }. We label the copies with a replica index
a = 1, . . . , n. For p-spin disordered spin models Zn

J takes the form

Zn
J =

∑
{sai }

e
β
p!

∑n
a=1

[ ∑
i1 6=···6=ip

Ji1...ips
a
i1
...saip+

∑
i his

a
i

]
. (7.68)

The average over disorder amounts to computing a Gaussian integral for each set of spin
indices i1 6= · · · 6= ip, with [J2

i1...ip
] = J2p!/(2Np−1)6. One finds

[Zn
J ] =

∑
{sai }

e
β2J2

2Np−1p!

∑
i1 6=···6=ip

(
∑
a s

a
i1
...saip )2+β

∑
a

∑
i his

a
i ≡

∑
{sai }

e−βF ({sai }) . (7.69)

The function βF ({sai }) is not random. It depends on the spin variables only but it includes
terms that couple different replica indices. Indeed,∑

i1 6=···6=ip

∑
a

sai1 . . . s
a
ip

∑
b

sbi1 . . . s
b
ip =

∑
ab

∑
i1 6=···6=ip

(sai1s
b
i1

) . . . (saips
b
ip) (7.70)

We first note that all terms are identical to one for a = b since s2
i = 1. The sum over

the spin indices (ignoring the constraint i1 6= · · · 6= ip that will, in any case give a
subdominant contribution in the N → ∞ limit) and the replica indices of such terms
yields Npn. Focusing then on the cases a 6= b, Ignoring the constraint i1 6= · · · 6= ip, there
are N factors here

βF ({sai }) ≈ −
Nβ2J2

2p!

[∑
a6=b

(
1

N

∑
i

sai s
b
i

)p

+ n

]
− β

∑
a

∑
i

his
a
i . (7.71)

In writing the last expression we have dropped terms that are sub-leading in N . (In
complete analogy with what is done for the pure p spin ferromagnet. They correspond to

6We use
∫
dJαe

−J2
α/(2σ

2)−Jαx ∝ ex2σ2/2

107



adding terms with self-interactions in the Hamiltonian.) The constant term −Nnβ2J2/2
originates in the terms with a = b, for which (sai )

2 = 1.
To summarise, we started with an interacting spin model. Next, we enlarged the num-

ber of variables from N spins to N × n replicated spins by introducing n non-interacting
copies of the system. By integrating out the disorder we decoupled the sites but we payed
the price of coupling the replicas. Hitherto the replica indices act as a formal tool in-
troduced to compute the average over the bond distribution. Nothing distinguishes one
replica from another and, in consequence, the ‘free-energy’ F ({sai }) is invariant under
permutations of the replica indices.

The next step to follow is to identify the order parameters and transform the free-
energy into an order-parameter dependent expression to be rendered extremal at their
equilibrium values. In a spin-glass problem we already know that the order parameter is
not the global magnetisation as in a pure magnetic system but the parameter q – or more
generally the overlap between states. Within the replica calculation an overlap between
replicas

qab ≡ N−1
∑
i

sai s
b
i (7.72)

naturally appeared in eq. (7.71). The idea is to write the free-energy density as a function
of the order parameter qab and look for their extreme in complete analogy with what is
done for the fully-connected ferromagnet, see B. This is, of course, a tricky business, since
the order parameter is here a matrix with number of elements n going to zero! A recipe for
identifying the form of the order parameter (or the correct saddle-point solution) has been
proposed by G. Parisi in the late 70s and early 80s [89]. This solution has been recently
proven to be exact for mean-field models by two mathematical physics, F. Guerra [90]
and M. Talagrand [91]. Whether the very rich physical structure that derives from this
rather formal solution survives in finite dimensional systems remains a subject of debate.

Introducing the Gaussian integral (Hubbard-Stratonovich transformation)∫
dqab e

βJqab
∑
i s
a
i s
b
i−

N
2
q2
ab = e

N
2 ( 1

N
βJ

∑
i s
a
i s
b
i)

2

(7.73)

for each pair of replica indices a 6= b, one decouples the site indices, i, and the averaged
replicated partition function can be rewritten as

[Zn
J ] =

∫ ∏
a6=b

dqab e
−βF (qab) (7.74)
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and

βF (qab) = −Nβ
2J2

2

[
−
∑
a6=b

qpab + n

]
−N ln ζ(qab) , (7.75)

ζ(qab) =
∑
sa

e−βH(qab,sa) , (7.76)

H(qab, sa) = −J
∑
ab

qabsasb − h
∑
a

sa , (7.77)

where for simplicity we set hi = h. The factor N in front of ln ζ comes from the decoupling
of the site indices. Note that the transformation (7.73) serves to uncouple the sites and
to obtain the very useful factor N in front of the exponential. The partition function

Z(qab) =
∑
{sa}

e−βH(qab,sa) (7.78)

is the one of a fully-connected Ising model with interaction matrix qab. As it is posed, this
problem remains unsolvable. However, important steps forward will be possible taking
advantage of the n→ 0 limit.

Saddle-point evaluation

Having extracted a factor N in the exponential suggests to evaluate the integral over qab
with the saddle-point method. This, of course, involves the a priori dangerous exchange
of limits N → ∞ and n → 0. The replica theory relies on this assumption. One then
writes

lim
N→∞

−[ fJ ]→ − lim
n→0

1

n
f(qsp

ab) (7.79)

and searches for the solutions to the n(n− 1)/2 extremization equations

δf(qab)

δqcd

∣∣∣∣
qsp
ef

= 0 . (7.80)

In usual saddle-point evaluations the saddle-point one should use is (are) the one(s) that
correspond to absolute minima of the free-energy density. In the replica calculation the
number of variables is n(n − 1)/2 that becomes negative! when n < 1 and makes the
saddle-point evaluation tricky. In order to avoid unphysical complex results one needs to
focus on the saddle-points with positive (or at least semi-positive) definite Hessian

H ≡ ∂f(qab)

∂qcd∂qef

∣∣∣∣
qsp
gh

, (7.81)

and these sometimes corresponds tomaxima (instead of minima) of the free-energy density.
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The saddle-point equations are also self-consistency equations

qsp
ab = 〈sasb〉H(qab,{sa}) = [ 〈sasb〉 ] (7.82)

where the second member means that the average is performed with the single site many-
replica Hamiltonian H(qab, {sa}) and the third member is just one of the averages we
would like to compute.

The partition function in eq. (7.77) cannot be computed for generic qab since there is
no large n limit to exploit. On the contrary, n→ 0. Thus, one usually looks for solutions
to eqs. (7.80) within a certain family of matrices qab. We discuss below the relevant
parametrizations.

Replica symmetry (RS)

In principle, nothing distinguishes one replica from another one. This is the reason
why Sherrington and Kirkpatrick looked for solutions that preserve replica symmetry:

qab = q , for all a 6= b . (7.83)

Inserting this Ansatz in (7.75) and (7.77) and taking n→ 0 one finds

q =

∫ ∞
−∞

dz√
2π

e−z
2/2 tanh2

(
β

√
pqp−1

2
z + βh

)
. (7.84)

This equation resembles strongly the one for the magnetisation density of the p-spin
ferromagnet, eq. (B.3.30). The free-energy density for p = 2 is

f = −β
4

(1− q)2 −
∫ ∞
−∞

dz√
2π

e−z
2/2 ln[2 cosh(βq1/2z + βh)] . (7.85)

Let us first discuss the case p = 2, i.e. the SK model. In the absence of a magnetic
field, one finds a second order phase transition at Ts = J from a paramagnetic (q = 0) to
a spin-glass phase with q 6= 0. In the presence of a field there is no phase transition. SK
soon realized though that there is something wrong with this solution: the entropy at zero
temperature is negative, S(0) = −1/(2π), and this is impossible for a model with discrete
spins, for which S is strictly positive. de Almeida and Thouless later showed that the
reason for this failure is that the replica symmetric saddle-point is not stable, since the
Hessian (7.81) is not positive definite and has negative eigenvalues [92]. The eigenvalue
responsible for the instability of the replica symmetric solution is called the replicon.

Comparison with the TAP equations shows that the RS Ansatz corresponds to the
assumption that the local fields hi =

∑
ii1 ...iip

Ji1...ipmi1 . . .mip+h are independent and have
a Gaussian distribution with average h and variance σ2 = J2qp−1. Numerical simulations
clearly show that this assumption is invalid.

Interestingly enough, the numerical values for several physical quantities obtained with
the replica symmetric solution do not disagree much with numerical results. For instance,
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Figure 7.10: Left: a one-step replica symmetry breaking (1RSB) Ansatz. Right: a two-step
replica symmetry breaking Ansatz. The elements on the main diagonal vanish identically. In the
1RSB case the diagonal blocks have size m×m. In the 2RSB the proceudre is repeated and one
has blocks of size m1 ×m1 with smaller diagonal blocks of size m2 ×m2.

the ground state zero-temperature energy density is Ers
gs = −0.798 while with numerical

simulations one finds Egs ∼ −0.76.
For the p > 2 model one finds that the replica symmetric solution is stable at all

temperatures. However, the problem of the negative entropy remains and should be
solved by another solution. The transition must then have aspects of a first-order one,
with another solution appearing at low temperatures and becoming the most convenient
one at the transition.

One step replica symmetry breaking

The next challenge is to device a replica symmetry breaking Ansatz, in the form of
a matrix qab that is not invariant under permutations of rows or columns. There is no
first principles way of doing this, instead, the structure of the Ansatz is the result of trial
and error. Indeed, a kind of minimal way to break the replica symmetry is to propose a
structure in blocks as the one shown in Fig. 7.10-left. The diagonal elements are set to
zero as in the RS case. Square blocks of linear size m close to the main diagonal are filled
with a paramater q1. The elements in the rest of the matrix take a different value q0 and
one takes 0 ≤ q0 ≤ q1. The matrix qab depends on three parameters q0, q1, m and one
has to find the values such that the free-energy density is maximized! The conditions for
a extreme are

∂f(q0, q1,m)

∂q0

=
∂f(q0, q1,m)

∂q1

=
∂f(q0, q1,m)

∂m
= 0 . (7.86)

In the SK model (p = 2) the 1RSB Ansatz yields a second order phase transition
(q0 = q1 = 0 and m = 1 at criticality) at a critical temperature Ts = J , that remains
unchanged with respect to the one predicted by the RS Ansatz. The 1RSB solution is
still unstable below Ts and in all the low temperature phase. One notices, however, that
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the zero temperature entropy, even if still negative and incorrect, takes a value that is
closer to zero, S(T = 0) ≈ −0.01, the ground state energy is closer to the value obtained
numerically, and the replicon eigenvalue even if still negative has an absolute value that
is closer to zero. All this suggest that the 1RSB Ansatz is closer to the exact solution.

Instead, in all cases with p ≥ 3 the 1RSB Ansatz is stable below the static critical
temperature Ts and all the way up to a new characteristic temperature 0 < Tf < Ts.
Moreover, one can prove that in this range of temperatures the model is solved exactly
by this Ansatz. The critical behaviour is quite peculiar: while the order parameters q0

and q1 jump at the transition from a vanishing value in the paramagnetic phase to a
non-zero value right below Ts, all thermodynamic quantities are continuous since m = 1
at Ts and all q0 and q1 dependent terms appear multiplied by 1−m. This is a mixed type
of transition that has been baptised random first-order. Note that disorder weakens the
critical behaviour in the p ≥ 3-spin models. In the limit p → ∞ the solutions become
m = T/Tc, q0 = 0 and q = 1.

k-step replica symmetry breaking

The natural way to generalize the 1RSB Ansatz is to propose a k-step one. In each step
the off-diagonal blocks are left unchanged while the diagonal ones of size mk are broken as
in the first step thus generating smaller square blocks of size mk+1, close to the diagonal.
At a generic k-step RSB scheme one has

0 ≤ q0 ≤ q1 ≤ · · · ≤ qk−1 ≤ qk ≤ 1 , (7.87)
n = m0 ≥ m1 ≥ · · · ≥ mk ≥ mk+1 , (7.88)

parameters. In the n→ 0 limit the ordering of the parameters m is reversed

0 = m0 ≤ m1 ≤ · · · ≤ mk ≤ mk+1 . (7.89)

In the SK model one finds that any finite k-step RSB Ansatz remains unstable. How-
ever, increasing the number of breaking levels the results continue to improve with, in
particular, the zero temperature entropy getting closer to zero. In the p ≥ 3 case instead
one finds that the 2RSB Ansatz has, as unique solution to the saddle-point equations,
one that boils down to the 1RSB case. This suggests that the 1RSB Ansatz is stable as
can also be checked with the analysis of the Hessian eigenvalues: the replicon is stricly
positive for all p ≥ 3.

Full replica symmetry breaking

In order to construct the full RSB solution the breaking procedure is iterated an infinite
number of times. The full RSB Ansatz thus obtained generalizes the block structure to
an infinite sequence by introducing a function

q(x) = qi , mi+1 < x < mi (7.90)
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Figure 7.11: The function q(x) for a replica symmetric (left), one step replica symmetry breaking
(center) and full replica symmetry breaking Ansätze.

with 0 ≤ x ≤ 1. Introducing q(x) sums over replicas are traded by integrals over x; for
instance

1

n

∑
a6=b

qlab =

∫ 1

0

dx ql(x) . (7.91)

The free-energy density becomes a functional of the function q(x). The extremization
condition is then a hard functional equation. A Landau expansion – expected to be valid
close to the assumed second order phase transition – simplifies the task of solving it. For
the SK model one finds

q(x) =

{
x
2
, 0 ≤ x ≤ x1 = 2q(1) ,

qEA ≡ qmax = q(1) , x1 = 2q(1) ≤ x ≤ 1 ,
(7.92)

at first order in |T − Tc|, with q(1) = |T − Tc|/Tc and x1 = 2q(1). The stability analysis
yields a vanishing replicon eigenvalue signalling that the full RSB solution is marginally
stable.

One can also recover the particular case of the 1RSB using a q(x) with two plateaux,
at q0 and q1 and the breaking point at x = m.

Marginality condition

In the discussion above we chose the extreme that maximize the free-energy density
since we were interested in studying equilibrium properties. We could, instead, use a
different prescription, though a priori not justified, and select other solutions. For exam-
ple, we can impose that the solution is marginally stable by requiring that the replicon
eigenvalue vanishes. In the p = 2 this leads to identical results to the ones obtained with
the usual prescription since the full-RSB Ansatz is in any case marginally stable. In the
p-spin models with p ≥ 3 instead it turns out that the averaged properties obtained in this
way correspond to the asymptotic values derived with the stochastic dynamics starting
from random initial conditions. This is quite a remarkable result.

7.4.1 Interpretation of replica results
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Let us now discuss the implications of the solution to fully-connected disordered models
obtained with the, for the moment, rather abstract replica formalism.

The interpretation uses heavily the identification of pure states. Their definition is a
tricky matter that we shall not discuss in detail here. We shall just assume it can be
done and use the analogy with the ferromagnetic system – and its two pure states – and
the TAP results at fixed disorder. As we already know, which are the pure states, its
properties, number, etc. can depend on the quenched disorder realization and fluctuate
from sample to sample. We shall keep this in mind in the rest of our discussion.

Let us then distinguish the averages computed within a pure state and over all config-
uration space. In a ferromagnet with no applied magnetic field this is simple to grasp:
at high temperatures there is just one state, the paramagnet, while at low temperatures
there are two, the states with positive and negative magnetization. If one computes the
averaged magnetization restricted to the state of positive (negative) magnetization one
finds meq > 0 (meq < 0); instead, summing over all configurations meq = 0 even at low
temperatures. Now, if one considers systems with more than just two pure states, and
one labels them with Greeks indices, averages within such states are denoted 〈O〉α while
averages taken with the full Gibbs measure are expressed as

〈O 〉 =
∑
α

wJα 〈O 〉α . (7.93)

wJα is the probability of the α state given by

wJα =
e−βF

J
α

ZJ
, with ZJ =

∑
α

e−βF
J
α (7.94)

and thus satisfying the normalization condition
∑

αw
J
α = 1. F J

α can be interpreted as
the total free-energy of the state α. These probabilities, as well as the state dependent
averages, will show sample-to-sample fluctuations.

One can then define an overlap between states:

qJαβ ≡ N−1
∑
i

〈si〉α〈si〉β = N−1
∑
i

mα
im

β
i (7.95)

and rename the self-overlap the Edwards-Anderson parameter

qJαα ≡ N−1
∑
i

〈si〉α〈si〉α ≡ qJEA (7.96)

(assuming the result is independent of α). The statistics of possible overlaps is then
characterized by a probability function

PJ(q) ≡
∑
αβ

wJαw
J
β δ(q − qJαβ) , (7.97)
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where we included a subindex J to stress the fact that this is a strongly sample-dependent
quantity. Again, a ferromagnetic model serves to illustrate the meaning of PJ(q). First,
there is no disorder in this case so the J label is irrelevant. Second, the high-T equilibrium
phase is paramagnetic, with q = 0. P (q) is then a delta function with weight 1 (see the
left panel in Fig. 7.12). In the low-T phase there are only two pure states with identical
statistical properties and qEA = m2. Thus, P (q) is just the sum of two delta functions
with weight 1/2 (central panel in Fig. 7.12).

Next, one can consider averages over quenched disorder and study

[PJ(q) ] ≡
∫
dJ P (J)

∑
αβ

wJαw
J
β δ(q − qJαβ) . (7.98)

How can one access PJ(q) or [PJ(q) ]? It is natural to reckon that

PJ(q) = Z−2
∑
σs

e−βHJ ({σi})e−βHJ ({si}) δ

(
N−1

∑
i

σisi − q
)

(7.99)

that is to say, PJ(q) is the probability of finding an overlap q between two real replicas of
the system with identical disordered interactions in equilibrium at temperature T . This
identitiy gives a way to compute PJ(q) and its average in a numerical simulation: one
just has to simulate two independent systems with identical disorder in equilibrium and
calculate the overlap.

But there is also, as suggested by the notation, a way to relate the pure state structure
to the replica matrix qab. Let us consider the simple case

[mi ] =

Z−1
J

∑
{si}

si e
−βHJ ({si})

 =

 Zn−1
J

Zn
J

∑
{s1i }

s1
i e
−βHJ ({s1i })


=

 1

Zn
J

∑
{sai }

s1
i e
−β

∑n
a=1 HJ ({sai })

 (7.100)

where we singled out the replica index of the spin to average. This relation is valid for all
n, in particular for n→ 0. In this limit the denominator approaches one and the average
over disorder can be simply evaluated

[mi ] =
∑
{sai }

s1
i e
−βHeff({sai }) (7.101)

and introducing back the normalization factor Zn = 1 =
∑
{sai }

e−β
∑n
a=1 HJ ({sai }) that

becomes Zn = [
∑
{sai }

e−β
∑n
a=1HJ ({sai }) ] = e−βHeff({sai }) we have

[mi ] = 〈 sai 〉Heff
(7.102)
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with a any replica index. The average is taken over the Gibbs measure of a system
with effective Hamiltonian Heff . In a replica symmetric problem in which all replicas are
identical this result should be independent of the label a. Instead, in a problem with
replica symmetry breaking the averages on the right-hand-side need not be identical for
all a. This could occur in a normal vectorial theory with dimension n in which not
all components take the same expected value. It is reasonable to assume that the full
thermodynamic average is achieved by the sum over all these cases,

[mi ] = lim
n→0

1

n

n∑
a=1

〈 sai 〉Heff
. (7.103)

Let us now take a less trivial observable and study the spin-glass order parameter q

q ≡ [ 〈 si 〉2 ] =

Z−1
J

∑
{si}

si e
−βHJ ({si}) Z−1

J

∑
{σi}

σi e
−βHJ ({σi})


=

 Zn−2

Zn

∑
{si},{σi}

siσi e
−βHJ ({si})−βHJ ({σi})


=

 1

Zn
J

∑
{sai }

s1
i s

2
i e
−β

∑n
a=1 HJ ({sai })

 (7.104)

In the n→ 0 limit the denominator is equal to one and one can then perform the average
over disorder. Introducing back the normalization one then has

q = 〈 sai sbi 〉Eeff({sai }) (7.105)

for any arbitrary pair of replicas a 6= b (since 〈 sai sai 〉 = 1 for Ising spins). The average is
done with an effective theory of n interacting replicas characterized by Eeff({sai }). Again,
if there is replica symmetry breaking the actual thermal average is the sum over all possible
pairs of replicas:

q = lim
n→0

1

n(n− 1)

∑
a6=b

qab . (7.106)

A similar argument allows one to write

q(k) = [ 〈 si1 . . . sik 〉2 ] = lim
n→0

1

n(n− 1)

∑
a6=b

qkab . (7.107)

One can also generalize this argument to obtain

P (q) = [PJ(q) ] = lim
n→0

1

n(n− 1)

∑
a6=b

δ(q − qab) (7.108)
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Figure 7.12: [PJ(q) ] in a paramagnet (left), in a ferromagnet or a replica symmetric system
(centre) and for system with full RSB (right).

Thus, the replica matrix qab can be ascribed to the overlap between pure states.
Note that a small applied field, though uncorrelated with a particular pure state, is

necessary to have non-zero local magnetizations and then non-zero q values.
The function P (q) then extends the concept of order parameter to a function. In

zero field the symmetry with respect to simultaneous reversal of all spins translates into
the fact that PJ(q) must be symmetric with respect to q = 0. [PJ(q) ] can be used to
distinguish between the droplet picture prediction for finite dimensional spin-glasses – two
pure states – that simply corresponds to

[PJ(q) ] =
1

2
δ(q − qEA) +

1

2
δ(q + qEA) (7.109)

(see the central panel in Fig. 7.12) and a more complicated situation in which [PJ(q) ]
has the two delta functions at ±qEA plus non-zero values on a finite support (right panel
in Fig. 7.12) as found in mean-field spin-glass models.

The linear susceptibility

Taking into account the multiplicity of pure states, the magnetic susceptibility, eq. (7.4),
and using (7.93) becomes

Tχ = T [χJ ] = 1− 1

N

∑
i

[ 〈 si 〉2 ] = 1−
∑
αβ

[wJαw
J
β ] qαβ =

∫
dq (1− q)P (q) . (7.110)

There are then several possible results for the susceptibility depending on the level of
replica symmetry breaking in the system:

• In a replica symmetric problem or, equivalently, in the droplet model,

χ = β(1− qEA) . (7.111)

This is also the susceptibility within a pure state of a system with a higher level of
RSB.
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• At the one step RSB level, this becomes

χ = β [1− (1−m)qEA] . (7.112)

• For systems with full RSB one needs to know the complete P (q) to compute χ, as
in (7.110).

Note that in systems with RSB (one step or full) the susceptibility is larger than β(1−qEA).
A system with qEA = 1 in the full low-temperature phase (as the REM model or p→∞

limit of the p spin model, see below) has just one configuration in each state. Systems
with qEA < 1 below Tc have states formed by a number of different configurations that
is exponentially large in N . (Note that qEA < 1 means that the two configurations differ
in a number of spins that is proportional to N .) The logarithm of this number is usually
called the intra-state entropy.

Even if the number of pure states can be very large (exponential in N) only a fraction
of them can have a non-negligible weight. This is the case if one finds, for example,∑

αw
2
α < +∞

Symmetry and ergodicity breaking

In all p ≥ 2 spin models there is a phase transition at a finite Ts at which the rather
abstract replica symmetry is broken. This symmetry breaking is accompanied by ergod-
icity breaking as in the usual case. Many pure states appear at low temperatures, each
one has its reversed si → −si counterpart, but not all of them are related by real-space
symmetry properties.

The one-step RSB scenario

In this case the transition has first-order and second-order aspects. The order param-
eters q0 and q1 jump at the critical point as in a first-order transition but the thermody-
namic quantities are continuous.

The full RSB scenario

Right below Tc an exponential in N number of equilibrium states appear. The transi-
tion is continuous, the order parameter approaches zero right below Tc. Lowering further
the temperature each ergodic component breaks in many other ones. In this sense, the
full spin-glass phase, T < Tc, is ‘critical’ and not only the single point Tc.

7.4.2 The pinning field

We can nevertheless choose a possible direction, given by another field σ(x), and com-
pute the free–energy of our system when it is weakly pinned by this external quenched
field

Fφ [σ, g, β] = − 1

β
log

∫
dφ(x) e−βH[φ]− g

2

∫
dx(σ(x)−φ(x))2

(7.113)
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Figure 7.13: The susequent phase transitions in the SK model.

where g > 0 denotes the strength of the coupling. This free-energy (7.113) will be small
when the external perturbing field σ(x) lies in a direction corresponding to the bottom
of a well of the unperturbed free-energy. Therefore, we should be able to obtain useful
information about the free-energy landscape by scanning the entire space of the config-
urations σ(x) to locate all the states in which the system can freeze after spontaneous
ergodicity breaking (g → 0). According to this intuitive idea, we now consider the field
σ(x) as a thermalized variable with the “Hamiltonian” Fφ [σ, g, β]. The free-energy of the
field σ at inverse temperature βm where m is a positive free parameter therefore reads

Fσ(m,β) = lim
g→0+

− 1

βm
log

∫
dσ(x) e−βmFφ[σ,g,β] (7.114)

When the ratio m between the two temperatures is an integer, one can easily integrate
σ(x) in Eq.(7.114) after having introduced m copies φρ(x) (ρ = 1...m) of the original field
to obtain the relation

Fσ(m,β) = lim
g→0+

− 1

βm
log

∫ m∏
ρ=1

dφρ(x) e−β
∑
ρH[φρ]+ 1

2

∑
ρ,λ g

ρλ
∫
dxφρ(x)φλ(x) (7.115)

where gρλ = g( 1
m
− δρλ). Let us define two more quantities related to the field σ : its

internal energy W (m,β) = ∂(mFσ)
∂m

and its entropy S(m,β) = βm2 ∂Fσ
∂m

. Since the case
m = 1 will be of particular interest, we shall use hereafter Fhs(β) ≡ W (m = 1, β) and
Shs(β) ≡ S(m = 1, β) where hs stands for “hidden states”. We stress that S(m,β) and
β2 ∂Fφ

∂β
which are respectively the entropies of the fields σ and φ are two distinct quantities

with different physical meanings.
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When the pinning field σ(x) is thermalized at the same temperature as φ(x), that is
when m = 1, one sees from Eq.(7.115) that Fφ(β) = Fσ(m = 1, β). The basic idea of this
letter is to decompose Fσ into its energetic and entropic contributions to obtain

Shs(β) = β

[
Fhs(β)− Fφ(β)

]
(7.116)

To get some insights on the significance of the above relation, we shall now turn to the
particular case of disordered mean-field systems. We shall see how it rigorously gives back
some analytical results derived within the mean-field TAP and dynamical approaches. We
shall then discuss the physical meaning of identity (7.116) for the general case of glassy
systems.

7.4.3 Coupling replicas and the effective potential

Let us take a spin-configuration, {s}, in equilibrium at temperature T ′, that is to say,
drawn from the canonical probability distribution P [{s}] = exp(−β′H[{s}])/Z(T ′). One
computes the free-energy cost to keep the system at a fixed overlap p̃ = qs,σ with {s} at
a temperature T (in general different from T ′):

VJ(β, p̃, {s}) = − T
N

lnZJ(β, p̃, {s})− fJ(T ); (7.117)

ZJ(β, p̃, {s}) ≡
∑
{σ}

e−βHJ [{σ}] δ (p̃− qs,σ) (7.118)

βNfJ(T ) = lnZJ(β) = ln
∑
{s}

e−βHJ [{s}] . (7.119)

(fJ(T ) is the disorder-dependent free-energy density without constraint.) In this problem
the spins si are quenched variables on the same footing as the random interactions in the
Hamiltonian. One then assumes that V is self-averaging with respect to the quenched
disorder and the probability distribution of the reference configuration {s}. One then
computes the two averages:

NV (β, β′, p̃) ≡ N [VJ(β, p̃, {s})]J,{s} =

∑
{s}

e−β
′HJ [{s}]

ZJ(β′)
(−T lnZJ(β, p̃, {s})− fJ(T ))


J

.

(7.120)
This average can be done using the replica method:

NV (β, β′, p̃) = −T lim
n→0

lim
m→0

∑
{s}

e−β
′HJ [{s}]ZJ(β′)n−1

(
ZJ({s}; p̃, {s})m − 1

m

)
J

.

(7.121)

120



The analytic continuation is performed from integer n and m. One then has

Z(n,m) =

∑
{sa}

∑
{σα}

exp

[
β′

n∑
a=1

H[{sa}] + β

m∑
α=1

H[{σα}]
]

m∏
α=1

δ

(∑
i

s1
iσ

α
i −Np̃

)
J

.

(7.122)
After averaging over the disorder strength distribution one introduces the order parame-
ters:

Qab =
1

N

∑
i

sai s
b
i , Rαγ =

1

N

∑
i

σαi σ
γ
i Paα =

1

N

∑
i

sai σ
α
i , (7.123)

with a, b = 1, ..., n and α, γ = 1, ...,m. Combining the order parameters in the single
(n+m)× (n+m) matrix

Q =

(
Q P
P T R

)
(7.124)

one finds

1

N
logZ(n,m) =

1

2

[
β′2

n∑
a=1,b=1

Qp
ab + β2

m∑
α=1γ=1

Rp
α,γ) + 2ββ′

n∑
a=1

m∑
α=1

P p
aα)

]
+

1

2
Tr lnQ.

(7.125)
We shall not present the details of the RSB Ansatz here.

One studies different ranges of β and β′ and analyses the minima of V with respect to
p̃.

The effective potential for four different temperatures, T = T ′ for p = 3 is shown in [85]
From top to bottom, the curves represent the potential at temperature higher then Td,
equal to Td between Td and TS, and right at TS. We can see from the figure that for
T > Td the potential is monotonically increasing, and the only extremum of the potential
is the minimum at p̃ = 0. At the temperature Td where the dynamical transition happens,
the potential develops for the first time a minimum with p̃ ≡ r 6= 0. It is interesting to
observe that the energy in this flex point is equal to the asymptotic value of the energy in
the out-of-equilibrium dynamics. The same is true for the parameter r which turns out
to be equal to the dynamical Edward-Anderson parameter.

The condition for the potential of having a flex coincides with the marginality condition.
Indeed the flex implies a zero eigenvalue in the longitudinal sector and at x = 1 the replicon
and the longitudinal eigenvalues are degenerate. The marginality condition is well known
to give exact results for the transition temperatures in p-spin spherical models.

We have observed that in general more then one minimum can be present in the po-
tential. In the p-spin model it happens that two minima develop at the same temperature
Td. The rightmost one, that we will call primary is the one with p̃ = r, while the other,
secondary, has p̃ < r. For temperatures smaller than Td the minima have a finite depth,
i.e. are separated by extensive barriers from the absolute minimum.
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The primary minimum is easily interpreted. There the system denoted by s is in the
same pure state as the system σ. In the region TS < T < TD the number of pure states
is exponentially large in N : N = eNΣ(T ). Consequently the probability of finding two
system in the same state is exponentially small and proportional to e−NΣ(T ). The free
energy cost to constrain two systems to be in the same state is then proportional to the
logarithm of this probability, namely we have

Vprimary = TΣ(T ). (7.126)

Coherently at the statical transition temperature T = TS one finds Vprimary = 0. The
quantity Σ has been computed for the p-spin model as the number of solution of the
TAP equation with given free energy and coincides with our calculation. The secondary
minima, could aso be associated to metastable states, but at present we do not have an
interpretation for them. This conclusion on the equivalence of the potential with the
number of solution of the TAP equation hold also in the ROM.

The study of the potential for temperatures smaller than TS would require to take into
account RSB effects, which would complicate a bit the analysis. However it is physically
clear that the shape of the potential in that region it is not different qualitatively from
the one at T = TS. It has a minimum where r = p̃ are equal to the Edwards Anderson
parameter and the value of potential is zero.

The study of the effective potential at different gives information about the chaotic
properties of the models. We shall not develop it here.

7.5 The random energy model

The random energy model (REM) describes a system with 2N independent energy
levels, Ei, with a Gaussian probability density

p(E) = (2πNJ2)−1/2 e−E
2

(2NJ2) . (7.127)

All p-spin Ising models do indeed have 2N energy levels with such a Gaussian distribution.
Indeed,

p(E) =

∫
DJii...ip P (Ji1...ip)δ(E −

∑
i1...ip

Jii...ipsi1 . . . sip) = (2πNJ2)−1/2 e−E
2

(2NJ2)

(7.128)
independently of the spin configuration. For finite p different energy levels are not inde-
pendent random variables but they do become independent in the limit p→∞:

p(E1, . . . , Ek) = p(E1) . . . p(Ek) , (7.129)

for any integer k.
The free-energy, −βF ({Ei}) depends on the realisation of the 2N energy levels. In

the large N limit one can prove that the free-energy density is a self-averaging quantity,
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Figure 7.14: The energy-density, specific heat, susceptility of the REM.

limN→∞[ f({Ei}) ] − f({Ei}) = 0 and limN→∞[ f 2({Ei}) ] − (f({Ei}))2 = 0. One then
computes the average

−β[F ] =

∫ ∏
i

dEi P (Ei) lnZ({Ei}) (7.130)

with

Z({Ei}) ≡
2N∑
i=1

e−βEi =

∫
dE δ(E − Ei) e−βE . (7.131)

One finds a freezing phase transition at Tc = 1/(2 ln 2) where the temperature-dependent
energy density, E(T )/N , gets blocked at a constant value −E0/N = −J

√
ln 2 and the spe-

cific heat and entropy vanish. The magnetic susceptibility goes from the high temperature
Curie law χ = 1/T to the constant value χ = 1/Tc at Tc.

The number of states in the interval [E,E + dE] is

N0(E)dE = 2N(2πNJ2)−1/2 e−E
2

(2NJ2) = eN(ln 2−(E/N)2/2J2) (7.132)

If the parenthesis is negative, N0(E) → 0 in the thermodynamic limit, if it vanishes
identically N0(E) is a constant and, otherwise, N0(E) diverges exponentially. One then
has a critical energy-density e2

c = 2J2 ln 2 above which there are no energy levels. Below
this level there are

N (E ′ < E) =

∫ NE
−∞

dE ′ N0(E ′) =

∫ NE
−∞

dE ′ eN(ln 2−(E′/N)2/2J2) ≈ eN(ln 2−(E/N)2/2J2)(7.133)

since the integral is dominated by the upper limit. Il one defines the complexity of the
model as

Σ(E) = kB lnN (E) = kB (7.134)
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It is clear that the lowest energy levels, Ei = E0 + εi, with εi finite dominate the
partition sum (7.131) at low temperatures. One obtains the probability distribution p(Ei)
by linearizing (7.127):

p(ε) =

{
βc e

−βc(ε−εc) ε < εc ,
0 ε > εc ,

(7.135)

with εc a cut-off energy. The behaviour of the low-T phase is independent of εc and well
defined in the limit N → ∞, εc → ∞ with Ne−βcεc finite. In this limit the density of
levels at any ε becomes constant.
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A Some useful formulæ

A.1 Fourier transform

Finite volume

We define the Fourier transform (FT) of a function f(~x) defined in a volume V as

f̃(~k) =

∫
V

ddx f(~x) e−i
~k~x (A.1.1)

This implies

f(~x) =
1

V

∑
~k

f̃(~k) ei
~k~x (A.1.2)

where the sum runs over all ~k with components ki satisfying ki = 2mπ/L with m an
integer and L the linear size of the volume V .

Infinite volume

In the large V limit these equations become

f̃(~k) =

∫
V

ddx f(~x) e−i
~k~x (A.1.3)

f̃(~x) =

∫
V

ddk

(2π)d
f(~k) ei

~k~x (A.1.4)

On a lattice

Take now a function f~x defined on a lattice. Its Fourier transform is

f̃(~k) =
∑
~x

f~x e
−i~k~x (A.1.5)

with the inverse

f~x =

∫
ddk

2π
f(~k) ei

~k~x (A.1.6)

and
∫
ddk/(2π)d =

∏d
i=1

∫ π
−π dk1/(2π)· · ·

∫ π
−π dkd/(2π) with these integrals running over

the first Brillouin zone in reciprocal space.

Time domain
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The convention for the Fourier transform is the time-domains is

f(τ) =

∫ ∞
−∞

dω

2π
e−iωτ f(ω) , (A.1.7)

f(ω) =

∫ ∞
−∞

dτ e+iωτ f(τ) . (A.1.8)

Properties

The Fourier transform of a real function f(~x) satisfies f̃ ∗(~k) = f̃(−~k).
The Fourier transform of the theta function reads

θ(ω) = ivp
1

ω
+ πδ(ω) . (A.1.9)

The convolution is

[f · g](ω) = f ⊗ g(ω) ≡
∫
dω′

2π
f(ω′)g(ω − ω′) . (A.1.10)

A.2 Stirling

Stirling formula for the factorial of a large number reads:

lnN ! ∼ N lnN − lnN , for N � 1 . (A.2.1)

A.3 Moments

Introducing a source h that couples linearly to a random variable x one easily computes
all moments of its distribution p(x). Indeed,

〈xk 〉 =
∂k

∂hk

∫
dx p(x)ehx

∣∣∣∣
h=0

. (A.3.1)

A.4 Gaussian integrals

The Gaussian integral is

I1 ≡
∫ ∞
−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 = 1 . (A.4.1)

It is the normalization condition of the Gaussian probability density written in the normal
form. One has ∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x = µ ,∫ ∞
−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x2 = σ2 . (A.4.2)
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From (A.4.1) one has ∫ ∞
−∞

dx√
2πσ2

e−
x2

2σ2 +µx

σ2 = e
σ2µ2

2 . (A.4.3)

The generalization to N variables

IN ≡
∫ ∞
−∞

N∏
i=1

dxie
− 1

2
~xtA~x+~xt~µ (A.4.4)

with

~x =


x1

x2

. . .
xN

 , ~µ =


µ1

µ2

. . .
µN

 , A =


A11 . . . A1N

A21 . . . A2N

. . .
AN1 . . . ANN

 ,

and
−1

2
~xtA~x+ ~xt~µ (A.4.5)

is the most generic quadratic form. Note that A plays here the role σ−2 in the single
variable case. One can keep the symmetric part (A + At)/2 of the matrix A only since
the antisymmetric part (A−At)/2 yields a vanishing contribution once multiplied by the
vectors ~x and its transposed. Focusing now on a symmetric matrix, At = A, that we still
call A we can ensure that it is diagonalizable and all its eigenvalues are positive definite,
λi > 0. One can then define A1/2 as the matrix such that A1/2A1/2 = A and its eigenvalues
are the square root of the ones of A. Writing ~xtA~x = (~xtA1/2)(A1/2~x) = ~y~y, the integral
IN in (A.4.4) becomes

IN =

∫ ∞
−∞

N∏
i=1

dyiJe
− 1

2
~yt~y+~yt(A−1/2µ) (A.4.6)

where J = det(A1/2)−1 = (detA)−1/2 is the Jacobian of the change of variables. Calling
~µ′ the last factor one has the product of N integrals of the type I1; thus

IN = (2π)N/2(detA)−1/2e
1
2
~µtA−1~µ (A.4.7)

Finally, the functional Gaussian integral is the continuum limit of the N -dimensional
Gaussian integral

~x ≡ (x1, . . . , xN)→ φ(~x) (A.4.8)

and
I =

∫
Dφ e− 1

2

∫
ddxddy φ(~x)A(~x,~y)φ(~y)+

∫
ddxφ(~x)µ(~x) . (A.4.9)

The sum runs over all functions φ(~x) with the spatial point ~x living in d dimensions.
The first and the second term in the exponential are quadratic and linear in the field,
respectively. In analogy with the IN case the result of the path integral is

I ∝ e
1
2

∫
ddxddy µ(~x)A−1(~x,~y)µ(~y) (A.4.10)
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where we ignore the proportionality constant. Indeed, this one depends on the definition of
the path-integral measure Dφ. Usually, the actual value of this constant is not important
since it does not depend on the relevant parameters of the theory. The inverse A−1 is
defined by ∫

ddy A−1(~x, ~y)A(~y, ~z) = δ(~x− ~z) . (A.4.11)

A.5 Wick’s theorem

Take a Gaussian variable x with mean 〈x 〉 = µ and variance σ2 = 〈x2 〉 − 〈x 〉2. Its
pdf is

p(x) = (2πσ2)−1/2 e−(x−µ)2/(2σ2) . (A.5.1)

All moments 〈xk 〉 can be computed with (A.3.1). One finds

〈 ehx 〉 = e
h2σ2

2
+hµ (A.5.2)

and then

〈xk 〉 =
∂k

∂hk
e
h2σ2

2
+µh

∣∣∣∣
h=0

(A.5.3)

from where

〈x 〉 = µ , 〈x2 〉 = σ2 + µ2 ,
〈x3 〉 = 3σ2µ+ µ3 , 〈x4 〉 = 3σ4 + 6σ2µ2 + µ4

etc. One recognizes the structure of Wick’s theorem: given k factors x one organises them
in pairs leaving the averages µ aside. The simplest way of seeing Wick’s theorem in action
is by drawing examples.

The generalization to N Gaussian variables is immediate. Equation (A.5.2) becomes

〈 e~h~x 〉 = e
1
2
~hA−1~h+~h~µ (A.5.4)

and the generalization of (A.5.3) leads to

〈xi 〉 = µi , 〈xixj 〉 = A−1
ij + µiµj , (A.5.5)

etc. In other words, whereever there is σ2 in the single variable case we replace it by A−1
ij

with the corresponding indices.
The generalization to a field theory necessitates the introduction of functional deriva-

tives that we describe below. For completeness we present the result for a scalar field in
d dimensions here

〈φ(~x) 〉 = µ(~x) , 〈φ(~x)φ(~y) 〉 = A−1(~x, ~y) + µ(~x)µ(~y) , (A.5.6)

etc.
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A.6 Functional analysis

A functional F [h] is a function of a function h : ~x→ h(~x). The variation of a functional
F when one changes the function h by an infinitesimal amount allows one to define the
functional derivative. More precisely, one defines δF ≡ F [h+ δh]− F [h] and one tries to
write this as δF =

∫
ddx α(~x)δh(~x) + 1

2

∫
ddxddy β(~x, ~y) δh(~x)δh(~y) + . . . and one defines

the functional derivative of F with respect to h evaluated at the spatial point ~x as

δF

δh(~x)
= α(~x) ,

δ2F

δh(~x)δh(~y)
= β(~x, ~y) (A.6.1)

etc. All usual properties of partial derivatives apply.

A.7 The saddle-point method

Imagine one has to compute the following integral

I ≡
∫ b

a

dx e−Nf(x) , (A.7.1)

with f(x) a positive definite function in the interval [a, b], in the limit N →∞. It is clear
that due to the rapid exponential decay of the integrand, the integral will be dominated
by the minimum of the function f in the interval. Assuming there is only one absolute
minimum, x0, one then Taylor expands f(x) upto second order

f(x) ∼ f(x0) +
1

2
f ′′(x0)(x− x0)2 (A.7.2)

and obtains

I ∼ e−Nf(x0)

∫ b

a

dx e−N
1
2
f ′′(x0)(x−x0)2

= e−Nf(x0)[Nf ′′(x0)]−1/2

∫ yb

ya

dy e−
1
2

(y−y0)2

, (A.7.3)

with y0 ≡
√
Nf ′′(x0)x0 and similarly for ya and yb. The Gaussian integral is just an error

function that one can find in Tables.
This argument can be extended to multidimensional integrals, cases in which there is

no absolute minimum within the integration interval, cases in which the function f is not
positive definite, etc.
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B Mean-field theory
In spite of their apparent simplicity, the statics of ferromagnetic Ising models has been

solved analytically only in one and two dimensions. The mean-field approximation allows
one to solve the Ising model in any spatial dimensionality. Even if the qualitative results
obtained are correct, the quantitative comparison to experimental and numerical data
shows that the approximation fails below an upper critical dimension du. It is however
very instructive to see the mean-field approximation at work.

We will study a generic Ising spin Hamiltonian

HJ [{si}] = −
∑
i1...ip

Ji1...ipsi1 . . . sip

and we will scale the coupling constants Ji1...ip with the number of spins in the sample so
as to ensure that the extensive property of the energy, H = O(N). For the moment we
do not restrict the sum over the spins, it will be determined by the type of interaction.

B.1 Ignoring correlations

The usual way of deriving the mean-field approximation is to write

si = mi + δsi (B.1.4)

with δsi = si −mi, and mi = 〈 si 〉 the local magnetisation density. The next step is to
replace this expression in each term contributing to the sum over spins in the Hamiltonian
that, for concreteness, we take to have pair interactions (p = 2), and keep only first order
terms in powers of δsi

sisj ' mimj +miδsj +mjδsi = misj +mjsi −mimj . (B.1.5)

The extension to p-spin interactions is straightforward. This leads to a model with N
non-interacting Ising spins coupled to mi-dependent local fields:∑

ij

Jijsisj ≈ −
∑
ij

Jijmimj + 2
∑
ij

Jijsimj (B.1.6)

This way of presenting the approximation makes its “mean field” character transparent.
The fact that correlations between different spins are neglected will become clear. This
approximation cannot be accurate when the correlations are strong, i.e. close to the
critical point.

130



Having truncated the Hamiltonian we are now able to compute the partition sum, as
the model just became one of independent spins in an effective local field

heff
i = 2

∑
j(i)

Jijmj . (B.1.7)

The second sum runs over the spins j that interact with the selected spin i. The partition
sum reads

Z ≈ e−β
∑
ij Jijmimj

∑
{si=±1}

eβ
∑N
i=1 si(4

∑
j(i) Jijmj+hi)

= e−β
∑
ij Jijmimj

N∏
i=1

2 cosh

β
4
∑
j(i)

Jijmj + hi

 (B.1.8)

where we added an external local field heff
i 7→ heff

i + hi as a pinning field or as a source
to compute correlation functions (see below).7 Therefore, the free-energy density −βf =
N−1 lnZ is

f({mi}) ≈
1

N

∑
ij

Jijmimj −
kBT

N

N∑
i=1

ln

2 cosh

β
4
∑
j(i)

Jijmj + hi

 . (B.1.9)

With j(i) we indicate the spins j that interact with i. How many these are, and where
they are situated in the sample, depend on the range of the interactions.

Exercise B.2 Prove 〈si〉 = mi for all i. Hint: use a “source" H 7→ H −∑i hisi and
express 〈si〉 as β−1∂ lnZ/∂hi|hi=0 = −∂f/∂hi.
Exercise B.3 Study the scaling, with N , of the two terms contributing to f for different
kinds of interaction ranges.

B.1.1 Uniform interactions and fields

If we now take all interactions to be equal, Jij = J , and hi = h, all spins see the same
environment. In consequence, we can assume that all the mi are equal, mi = m. Then,

f(m) ≈ J

N

∑
ij

m2 − kBT ln

2 cosh

β
4J

∑
j(i)

m+ h

 (B.1.10)

The result of the two sums depends of the range of the interactions in the Hamiltonian.
One can easily see that for the fully-connected model, the free-energy density will be order

7The reason for the additional factor 2 in front of the sum
∑
j(i) is that

∑
ij = 2

∑
i

∑
j(i).
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one only if we scale J 7→ J/N . Instead, for models with finite range interactions the sum
over j has a finite number of terms and f is O(1) and on a lattice with coordination z

f(m) ≈ 2Jz m2 − kBT ln {2 cosh [β (4Jzm+ h)]} (B.1.11)

One can see that the more spins interact with the chosen one the closer the spin sees
an average field, i.e. the mean-field. The number of interacting spins increases with
the range of interaction and the dimension of space in a problem with nearest neighbour
interactions on a lattice.

The free-energy density is a function of the parameters {mi} that are not fixed yet.
The next step is to look for the extreme values of f({mi}) to fix them. We will carry out
this analysis after presenting alternative ways to derive the mean-field free-energy density
as a function of the {mi}s.
Exercise B.4 Take the limit kBT → 0 in Eq. (B.1.11) evaluated at h = 0 and show that
the minima of the free-energy density are located at m = ±1 as they should. This kind
of calculation can be used as a check to verify the factors in Eq. (B.1.11).

The connected correlation function of two spins sk and sl, for the problem with Jij = J ,
in the absence of an applied field is

〈sksl〉c = 〈sksl〉 − 〈sk〉〈sl〉
=

1

Z
∑
{sn}

sksl e
−βJ

∑
ij(mimj−2simj)

− 1

Z
∑
{sn}

sk e
−βJ

∑
ij(mimj−2simj)

1

Z
∑
{sn}

sl e
−βJ

∑
ij(mimj−2simj) (B.1.12)

The first remark is that the sum over {sn} indicates N sums over the states of each spin.
The sums that are not the ones associated to sk and sl are identical in the numerators and
denominators and therefore cancel. The factors e−βJ

∑
ij mimj also cancel since they appear

in identical form in numerators and denominators. If the spins k and l are different, the
first sum factorises

〈sksl〉c =

∑
sk
sk e

2βJ
∑
j(k) skmj

∑
sl
sl e

2βJ
∑
j(l) slmj∑

sk,sl
e2βJ

∑
j(k) skmj−2βJ

∑
j(l) slml

−
∑

sk
ske

2βJ
∑
j(k) skmj∑

sk
e2βJ

∑
j(k) skmj

∑
sl
sle

2βJ
∑
j(l) slmj∑

sl
e2βJ

∑
j(l) slmj

(B.1.13)

and this result is identical to zero.

B.2 The naive mean-field approximation
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Take an Ising model on any lattice or graph. The naive mean-field approximation
consists in assuming that the probability density of the system’s spin configuration can
be factored in a product of independent factors [5]

P ({si}) =
N∏
i=1

Pi(si) with Pi(si) =
1 +mi

2
δsi,1 +

1−mi

2
δsi,−1 (B.2.14)

and mi = 〈 si 〉, where the thermal average has to be interpreted in the restricted sense,
i.e. taken over one ergodic component, in a way that mi 6= 0. Note that one introduces
an order-parameter dependence in the probabilities.

Exercise B.5 Prove that P is correctly normalised and mi = 〈si〉 where 〈. . . 〉 is now
computed with the weight P . Compute 〈sisj〉 and discuss the result.

B.2.1 The free-energy density

Using this assumption one can compute the total free-energy

F = U − TS (B.2.15)

where the average is taken with the factorized probability distribution (B.2.14) and the
entropy S is given by

S = −kB
∑
{si=±1}

P ({si}) lnP ({si}) . (B.2.16)

The entropy is

S = −kB
∑
si=±1

N∏
k=1

Pk(sk) ln
N∏
l=1

Pl(sl) = −kB
N∑
l=1

∑
sl=±1

Pl(sl) lnPl(sl)

= −kB
∑
i

(
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

)
. (B.2.17)

In general one finds the internal energy

U = −
∑
i1...ip

Ji1...ip 〈si1 . . . sip〉−h
∑
i

〈si〉 = −
∑
i1...ip

Ji1...ip mi1 . . .mip−h
∑
i

mi , (B.2.18)

B.2.2 On a lattice

One can also use this approximation to treat finite dimensional models. Applied to the
d-dimensional pure ferromagnetic Ising model with nearest-neighbour interactions on a
generic lattice Jij = J for nearest-neighbours and zero otherwise. One finds the internal
energy

U = −J
∑
〈ij〉

〈sisj〉 − h
∑
i

〈si〉 = −J
∑
〈ij〉

mimj − h
∑
i

mi . (B.2.19)
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For a uniformly applied magnetic field, all local magnetisations equal the total density
one, mi = m, and one has the “order-parameter dependent” free-energy density:

f(m) = −2Jzm2 − hm+ kBT

(
1 +m

2
ln

1 +m

2
+

1−m
2

ln
1−m

2

)
(B.2.20)

with z the coordination of the lattice (we used
∑
〈ij〉 · = 2

∑
i

∑
j(i) · = 2Nz·). Although

this equation looks different from eq. (B.1.11) it is just a rewriting of it and it leads to
the same extreme, as we show below.

B.2.3 The extrema

The extrema, df(m)/dm = 0, are given by8

m = tanh (β4zJm+ βh) . (B.2.21)

The stable states are those that also satisfy d2f/dm2 > 0.

Exercise B.6 Prove that the equation that fixes the extrema of eq. (B.2.20) and (B.1.11)
is indeed eq. (B.2.21).

This equation of state predicts a second order phase transition at kBTc = 4zJ when
h = 0. This transition is seen as the value of the parameters at which the equation passes
from having just one solution at m = 0 to having three solutions, one still at m = 0,
and the other two at m 6= 0, always at h = 0. Since the way in which the non-vanishing
solutions appear is continuous, the transition is also called continuous.

The relation kBTc = 4zJ correctly captures the fact that Tc is proportional to J and
that it depends on the lattice geometry. For a cubic lattice z = 2d, and the dependence
on d is qualitatively correct in the sense that Tc increases with increasing d. However, the
actual value is incorrect in all finite dimensions. In particular, this treatment predicts a
finite Tc in d = 1 which is clearly wrong. The critical behaviour is also incorrect in all
finite d, with exponents that do not depend on dimensionality and take the mean-field
values. Still, the nature of the qualitative paramagnetic-ferromagnetic transition in d > 1
is correctly captured. Having an expression for the free-energy density as a function of the
order parameter, which is determined by eq. (B.2.21), one can compute all observables
and, in particular, their critical behaviour.

The Taylor expansion of the free-energy in power of m, close to the critical point where
m ∼ 0, yields the familiar cross over from a function with a single minima at m to the
double well form:

f(m) ∼ 1

2
(kBT − 4zJ)m2 +

kBT

12
m4 − hm . (B.2.22)

Indeed, below kBT = 4zJ = Tc the sign of the quadratic term becomes negative and the
function develops two minima away from m = 0.

8Note that this approximation amounts to replacing the exact equation mi = 〈tanhβ(h+
∑
j Jijsj)〉

by mi = tanhβ(h+
∑
j Jijmj).
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Exercise B.7 Plot the full f(m) and the approximate one and discuss the similarities
and differences.

Exercise B.8 Study the small m behaviour of f(m) in eq. (B.1.11) and compare.

Expanding the mean-field equation close to m ' 0 one deduces m ∝ (Tc − T )1/2 close
to Tc, meaning that the critical exponent β takes the value 1/2. Taking the derivative of
m with respect to h and the limit h → 0± one easily finds that χ diverges as |T − Tc|−1

and γ = 1.

Exercise B.9 Obtain these and all other mean-field exponents.

B.3 The fully-connected p-spin FM model

A set of models for which the mean-field approximation is exact are those defined on a
the complete graph, also called fully-connected. We discuss here the generic p-spin model
and we later specialise to the ferromagnetic class.

B.3.1 Naive mean-field

Using the factorization of the joint probability density that defines the mean-field
approximation, we have already found

F ({mi}) = −
∑

i1 6=···6=ip

Ji1...ipmi1 . . .mip −
∑
i

himi

+kBT
N∑
i=1

(
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

)
(B.3.23)

where in the first sum we wrote explicitly that there are no self interactions. Recall that
a Taylor expansion of the entropic contribution around mi = 0 leads to a polynomial ex-
pression that is the starting point in the Landau theory of second order phase transitions.

The local magnetizations, mi, are then determined by requiring that they minimize
the free-energy density and a positive definite Hessian,

∂f({mj})
∂mi

= 0
∂2f({mj})
∂mi∂mj

(B.3.24)

(i.e. with all eigenvalues being positive at the extremal value). The first equation yields

mi = tanh

pβ ∑
i2 6=···6=ip

Jii2...ipmi2 . . .mip + βhi

 . (B.3.25)

If Ji1...ip = J/(p!Np−1) for all p uplets and the applied field is uniform, hi = h, one can
take mi = m for all i and these expressions become (B.3.27) and (B.3.30) below, respec-
tively. (Note that a factor p! has been added to the denominator in order to normalise
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the interactions in such a way that each p-uplet is counted only once in the sum. This is
especially useful if one wants to study the p→∞ limit.) The mean-field approximation is
exact for the fully-connected pure Ising ferromagnet, as we shall show below. [Note that
the fully-connected limit of the model with pair interactions (p = 2) is correctly attained
by taking J → J/(2N) and z = 2d→ N in (B.2.21) leading to Tc = J .]

B.3.2 Exact solution

Let us solve the ferromagnetic model exactly. The sum over spin configurations in the
partition function can be traded for a sum over the variable, x = N−1

∑N
i=1 si, that takes

values x = −1,−1 + 2/N,−1 + 4/N, . . . , 1 − 4/N, 1 − 2/N, 1. Neglecting subdominant
terms in N , one then writes

Z =
∑
x

e−Nβf(x) (B.3.26)

with the x-parameter dependent ‘free-energy density’

f(x) = − J
p!
xp − hx+ kBT

(
1 + x

2
ln

1 + x

2
+

1− x
2

ln
1− x

2

)
. (B.3.27)

The first two terms are the energetic contribution while the third one is of entropic origin
since N !/(N(1 + x)/2)!(N(1 − x)/2)! spin configurations have the same magnetization
density. The average of the parameter x is simply the averaged magnetization density:

〈x 〉 =
1

N

N∑
i=1

〈 si 〉 = m (B.3.28)

Exercise B.10 Prove this statement.

In the large N limit, the partition function – and all averages of x – can be evaluated
in the saddle-point approximation (see Appendix A.7)

Z ≈
∑
α

e−Nβf(xαsp) , (B.3.29)

where xαsp are the absolute minima of f(x) given by the solutions to ∂f(x)/∂x|xsp = 0,

xsp = tanh

(
βJ

(p− 1)!
xp−1

sp + βh

)
, (B.3.30)

together with the conditions d2f(x)/dx2|xαsp > 0. Note that the contributing saddle-points
should be degenerate, i.e. have the same f(xαsp) for all α, otherwise their contribution is
exponentially suppressed. The sum over α then just provides a numerical factor of two
in the case h = 0. Now, since

xsp = −∂f(x)/∂h|xsp = 〈x 〉 = m , (B.3.31)
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Figure 2.15: The free-energy density f(m) of the p = 2 (left), p = 3 (center) and p = 4 (right)
models at three values of the temperature T < Tc (light dashed line), T = Tc (dark dashed line)
and T > Tc (solid line) and with no applied field. (The curves have been translated vertically.)

as we shall show in Eq. (B.3.32), the solutions to the saddle-point equations determine
the order parameter. We shall next describe the phases and phase transition qualitatively
and we will later justify this description analytically.

Model in a finite field

In a finite magnetic field, eq. (B.3.30) has a unique positive – negative – solution for
positive – negative – h at all temperatures. The model is ferromagnetic at all temperatures
and there is no phase transition in this parameter.

2nd order transition for p = 2

In the absence of a magnetic field this model has a paramagnetic-ferromagnetic phase
transition at a finite Tc. The order of the phase transition depends on the value of p.
This can be seen from the temperature dependence of the free-energy density (B.3.27).
Figure 2.15 displays f(x) in the absence of a magnetic field at three values of T for the
p = 2 (left), p = 3 (center) and p = 4 (right) models (we call the independent variable
m since the stationary points of f(x) are located at the magnetization density of the
equilibrium and metastable states, as we shall show below). At high temperature the
unique minimum is m = 0 in all cases. For p = 2, when one reaches Tc, the m = 0
minimum splits in two that slowly separate and move towards higher values of |m| when
T decreases until reaching |m| = 1 at T = 0 (see Fig. 2.15-left). The transition occurs
at Tc = J as can be easily seen from a graphical solution to eq. (B.3.30), see Fig. 2.16-
left. Close but below Tc, the magnetization increases as m ∼ (Tc − T )

1
2 . The linear

magnetic susceptibility has the usual Curie behavior at very high temperature, χ ≈ β,
and it diverges as χ ∼ |T −Tc|−1 on both sides of the critical point. The order parameter
is continuous at Tc and the transition is of second-order thermodynamically.

1st order transition for p > 2

For p > 2 the situation changes. For even values of p, at T ∗ two minima (and two
maxima) at |m| 6= 0 appear. These coexist as metastable states with the stable minimum
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Figure 2.16: Graphical solution to the equation fixing the order parameter x for p = 2 (left),
p = 3 (center) and p = 4 (right) ferromagnetic models at three values of the temperature
T < T ∗, T = T ∗ and T > T ∗ and with no applied field. Note that the rhs of this equation is
antisymmetric with respect to m→ −m for odd values of p while it is symmetric under the same
transformation for even values of p. We show the positive quadrant only to enlarge the figure.
T ∗ is the temperature at which a second minimum appears in the cases p = 3 and p = 4.

at m = 0 until a temperature Tc at which the three free-energy densities coincide, see
Fig. 2.15-right. Below Tc the m = 0 minimum continues to exist but the |m| 6= 0 ones are
favored since they have a lower free-energy density. For odd values of p the free-energy
density is not symmetric with respect to m = 0. A single minimum at m∗ > 0 appears at
T ∗ and at Tc it reaches the free-energy density of the paramagnetic one, f(m∗) = f(0),
see Fig. 2.15-center. Below Tc the equilibrium state is the ferromagnetic minimum. For
all p > 2 the order parameter is discontinuous at Tc, it jumps from zero at T+

c to a finite
value at T−c . The linear magnetic susceptibility also jumps at Tc. While it equals β on
the paramagnetic side, it takes a finite value given by eqn. (B.3.33) evaluated at m∗ on
the ferromagnetic one. In consequence, the transition is of first-order.

Pinning field, broken ergodicity and spontaneous broken symmetry

The saddle-point equation (B.3.30) for p = 2 [or the mean-field equation (B.2.21)]
admits two equivalent solutions in no field. What do they correspond to? They are the
magnetisation density of the equilibrium ferromagnetic states with positive and negative
value. At T < Tc if one computes m = N−1

∑N
i=1〈 si 〉 =

∑
x e
−βNf(x)x summing over the

two minima of the free-energy density one finds m = 0 as expected by symmetry. Instead,
if one computes the averaged magnetisation density with the partition sum restricted to
the configurations with positive (or negative) x one finds m = |msp| (or m = −|msp|).

In practice, the restricted sum is performed by applying a small magnetic field, com-
puting the statistical properties in the N → ∞ limit, and then setting the field to zero.
In other words,

m± ≡
1

N

N∑
i=1

〈 si 〉± =

(
1

βN

∂ lnZ

∂h

)∣∣∣∣
h→0±

= − ∂f(xsp)

∂h

∣∣∣∣
h→0±

= ±|xsp| . (B.3.32)

By taking the N →∞ limit in a field one selects the positive (or negatively) magnetised
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states.
For all odd values of p the phase transition is not associated to symmetry breaking, since

there is only one non-degenerate minimum of the free-energy density that corresponds to
the equilibrium state at low temperature. The application of a pinning field is then
superfluous.

For any even value of p and at all temperatures the free-energy density in the absence of
the field is symmetric with respect to m→ −m , see the left and right panels in Fig. 2.15.
The phase transition corresponds to a spontaneous symmetry breaking between the states
of positive and negative magnetisation. One can determine the one that is chosen when
going through Tc either by applying a small pinning field that is taken to zero only after
the thermodynamic limit, or by imposing adequate boundary conditions. Once a system
sets into one of the equilibrium states this is completely stable in the N → ∞ limit. In
pure static terms this means that one can separate the sum over all spin configurations into
independent sums over different sectors of phase space that correspond to each equilibrium
state. In dynamic terms it means that temporal and statistical averages (taken over all
configurations) in an infinite system do not coincide.

The magnetic linear susceptibility for generic p is given by

χ ≡ ∂m

∂h

∣∣∣∣
h→0±

=
∂xsp

∂h

∣∣∣∣
h→0±

=
β

cosh2( βJ
(p−1)!

xp−1
sp )− βJ

(p−2)!
xp−2

sp

. (B.3.33)

For p = 2, at T > Tc, xsp = 0 the susceptibility is given by (T−J)−1 predicting the second
order phase transition with a divergent susceptibility at Tc = J . Approaching Tc from
below the two magnetized states have the same divergent susceptibility, χ ∼ (Tc − T )−1.

For p > 2, at T > Tc, xsp = 0 and the susceptibility takes the Curie form χ = β. The
Curie law, χ = β, jumps to a different value at the critical temperature due to the fact
that xsp jumps.

B.4 Related problems

The mean-field solution of the random-field Ising model is described in
https://inordinatum.wordpress.com/2013/01/20/mean-field-solution-of-the-random-field-
ising-model/
see also
T. Schneider and E. Pytte, Random-field instability of the ferromagnetic state, Phys. Rev.
B 15, 1519 (1977).
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C Classical results in statistical physics

C.1 High temperature expansion

The partition function of the Ising ferromagnet reads

Z =
∑
si=±1

eβJ
∑
〈ij〉 sisj =

∑
si=±1

∏
〈ij〉

eβJsisj (C.1.34)

Using the identity eβJsisj = a(1+bsisj) with a = cosh(βJ) and b = tanh(βJ) and the fact
that b is order β, an expansion if powers of b can be established. The average of products
of the spins s’s that remains can be non-zero only if each spin appears an even number of
times s. The expansion can then be represented as graphs on the lattice, a representation
that makes the enumeration of terms easier.

C.2 Lee-Yang theorem

The LeeÐYang theorem states that if partition functions of models with ferromagnetic
interactions are considered as functions of an external field, then all zeros are purely
imaginary (or on the unit circle after a change of variable) [94].

C.3 Critical behaviour

Second order phase transitions are characterised by the diverge of the correlation length.
In normal conditions, far from the critical point, the correlation function of the fluctuations
of an observable decay as an exponential of the distance between the measuring points:

C(~r) ≡ 〈[O(~r + ~r′)− 〈(O(~r + ~r′)〉][O(~r′)− 〈(O(~r′)〉)〉]〉 ' e−r/ξ . (C.3.35)

ξ is the correlation length that diverges at the critical point as

ξ ' |T − Tc|−ν (C.3.36)

with ν a critical exponent. A power-law singularities in the length scales leads to power-
law singularities in observable quantities. We summarise in Table C.4 all the critical
exponents associated to various quantities in a second order phase transition. The values
of the critical exponents generally do not depend on the microscopic details but only on
the space dimensionality and the symmetries of the system under consideration.

The collection of all these power laws characterizes the critical point and is usually
called the critical behavior.
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exponent definition conditions

Specific heat α c ∝ |u|−α u→ 0, h = 0

Order parameter β m ∝ (−u)β u→ 0−, h = 0

Susceptibility γ χ ∝ |u|−γ u→ 0, h = 0

Critical isotherm δ h ∝ |m|δsign(m) h→ 0, u = 0

Correlation length ν ξ ∝ |r|−ν r → 0, h = 0

Correlation function η G(~r) ∝ |~r|−d+2−η r = 0, h = 0

Table C.4: Definitions of the commonly used critical exponents. m is the order parameter, e.g.
the magnetization, h is an external conjugate field, e.g. a magnetic field, u denotes the distance
from the critical point, e.g. |T − Tc|, and d is the space dimensionality.

Whether fluctuations influence the critical behavior depends on the space dimension-
ality d. In general, fluctuations become less important with increasing dimensionality.

In sufficiently low dimensions, i.e. below the lower critical dimension dl, fluctuations
are so strong that they completely destroy the ordered phase at all (nonzero) temperatures
and there is no phase transition. Between dl and the upper critical dimension du, order
at low temperatures is possible, there is a phase transition, and the critical exponents
are influenced by fluctuations (and depend on d). Finally, for d > du, fluctuations are
unimportant for the critical behavior, and this is well described by mean-field theory. The
exponents become independent of d and take their mean-field values. For example, for
Ising ferromagnets, dl = 1 and du = 4, for Heisenberg ferromagnets dl = 2 and du = 4.

C.4 Finite size scaling

Finite-size scaling controls the finite-size effects close to second order phase transitions.
Say that the critical point, Tc, is approached by tuning the control parameter T , and that
a correlation length, ξ, diverges as ξ ' |T − Tc|−ν close to Tc. A generic observable X is
expected to scale as

XL(T ) ' (T − Tc)−χx g((p− pc)L1/ν) ∝ ξχx/ν g((L/ξ)1/ν) (C.4.37)

close to Tc, with

g(y) '
{

const for y → 0
yχx/ν for y →∞ (C.4.38)

thus ensuring

XL(T ) '
{
ξχx/ν for L� ξ
Lχx/ν for L� ξ

(C.4.39)
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C.4.1 One dimensional case

Take the disordered Ising chain

H = −
N∑
i=1

(Jisisi+1 + hisi) (C.4.40)

with Ji and hi random exchanges and random fields taken from probability distribution.
Impose periodic boundary conditions such that sN+1 = s1. The partition function can be
evaluated with the transfer matrix method introduced by Kramers and Wannier [30] and
Onsager [31]. Indeed,

ZN =
∑
{si=±1}

T1s1s2T2s2s3 . . . TNsNs1 = Tr
N∏
i=1

Ti (C.4.41)

where Ti are 2×2 matrices in which one takes the two row and column indices to take the
values ±1. Then

Ti =

(
eβ(Ji+hi) eβ(−Ji+hi)

eβ(−Ji−hi) eβ(Ji−hi)

)
(C.4.42)

Note that, for random exchanges and/or fields Eq. (C.4.41) is a product of random ma-
trices. Methods from random matrix theory can then be used to study disordered spin
chains [71].

The free-energy per spin is given by

−βfN = − 1

N
lnZN = − 1

N
lnTr

N∏
i=1

Ti (C.4.43)

The thermodynamic quantities energy per spin, magnetic susceptibility and other can be
computed from this expression. The local quantities, such as local averaged magnetization
or correlation functions are evaluated with the help of the spin operator

Σ =

(
1 0
0 −1

)
(C.4.44)

as

〈si〉 =
1

ZN
Tr T1T2 . . . Ti−1ΣTi . . . TN (C.4.45)

〈sisj〉 =
1

ZN
Tr T1 . . . Ti−1ΣTi . . . Tj−1ΣTj . . . TN (C.4.46)

Disordered exchanges and no magnetic fields
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This problem was solved above with the change of variables σi = sisi+1. Let us see
now how one can solve it with the transfer matrix method. For hi = 0, all matrices can
be diagonalized with the change of basis, PUiP−1 = Ti with

P =

(
1 1
1 −1

)
Ui =

(
2 cosh βJi 0

0 2 sinh βJi

)
(C.4.47)

and P−1 = P/2. One then has

ZN =

(
N∏
i=1

(2 cosh βJi)

)(
N∏
i=1

(1 + tanh βJi)

)
≈

N∏
i=1

(2 cosh βJi) (C.4.48)

More details on this kind of chains can be found in [71].
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D The random field Ising model on the complete graph
Consider the fully connected random field Ising model

H[{si}] = − J
N

∑
i 6=j

sisj −
∑
i

hisi (D.0.1)

with Gaussian distributed random fields such that

[e−sh]h =

∫ ∞
−∞

dh√
2πσ2

h

e
− h2

2σ2
h e−sh = e

σ2
hs

2

2 . (D.0.2)

The disorder averaged free energy density can be computed with the replica trick [95]

−β[f ]h = lim
N→∞

lim
n→0

[Zn]h − 1

nN
. (D.0.3)

The average of the replicated partition sum reads

[Zn]h =
∑
sai =±1

e
βJ
N

∑
a

∑
i6=j s

a
i s
a
j
[
eβ

∑
i

∑
a s

a
i hi
]
h

=
∑
sai =±1

e
βJ
N

∑
a

∑
i6=j s

a
i s
a
j

∏
i

e
β2σ2

h
2

∑
a

∑
b s
a
i s
b
i . (D.0.4)

We now decouple the term in the first exponential by using a Hubbard-Stratonovich
transformation. First we rewrite the sum as∑

i 6=j

sai s
a
j =

∑
ij

sai s
a
j −

∑
i

(sai )
2 = (

∑
i

sai )
2 −N (D.0.5)

and we focus on the first term only, that we decouple using

e
βJ
N

∑
a(
∑
i s
a
i )2

=
1

(2π)n/2

∫
dxa e

xa
√

2βJN
∑
i s
a
i−

1
2
x2
a . (D.0.6)

The averaged replicated partition function is

[Zn]h =

(
N

2π

)n/2 ∑
sai =±1

∫
dx̃a e

−N
2

∑
a x̃

2
a+
√

2βJ
∑
i

∑
a x̃as

a
i +

β2σ2
h

2

∑
i(
∑
a s

a
i )2

(D.0.7)

where we rescaled xa 7→
√
Nx̃a. It became the one of independent spins sai with partition

sum
Z1(x̃a) =

∑
s=±1

e
√

2βJ
∑
a x̃asa+β2J2

2
(
∑
a sa)2

(D.0.8)

The averaged replicated partition sum is now

[Zn]h = e−βJ
(
N

2π

)n/2 ∫
dx̃a e

−N[ 1
2

∑
a x̃

2
a+lnZ1(x̃a)] (D.0.9)
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