
Advanced Statistical Physics:

Disordered Systems

Exam

January, 2023

Surname :

Name :

Master :

Write your surname & name clearly and in CAPITAL LETTERS.

You can write in English, French, Italian or Spanish, as you prefer.

No books, notes, calculator nor mobile phone allowed.

Not only the results but especially the clarity and relevance of the explanations
will be evaluated.

Focus on the questions asked and answer them (and not some other issue).

If doubt exists as to the interpretation of any question, the candidate is urged to
consult the examiners in the room and to submit with the answer paper a clear statement
of any assumptions made.

The answers must be written neatly within the boxes.

The exam is long but do not panic, if you are blocked by some problem, jump to
the next one and come back later to the one you found difficult.

Bareme: 19 pt (questions) + 1.5pt (clarity of exposition) = 20.5
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The random field Ising model

Consider a single Ising spin s under a magnetic field h. The whole system is coupled to a thermal bath,
which is in equilibrium at inverse temperature β.

1. The time evolution of the spin is ruled by stochastic dynamics and it flips with time-scale τs = 10−12

sec. The magnetic field dynamics are also stochastic with time-scale for changes τh. Give a condition
on τh so that the field can be considered to be of quenched random nature.

1 – τh � τ ≥ τs with τ the observation time scale. 1pt

We now take the magnetic field h to be quenched random and distributed uniformly between −hm and hm
with hm > 0.

2. Write the Hamiltonian of this system.

3. Calculate the annealed free-energy.

4. Calculate the quenched free-energy.

5. Are they equal?

6. Is there a limit in which they coincide? Comment.

2 – The Hamiltonian is 0.5pt
H = −hs (1)

3 – The annealed free-energy is 1pt

−βfannealed = ln [Zh] = ln

∫ hm

−hm
dh

1

2hm

∑
s=±1

eβhs = ln

∫ hm

−hm
dh

1

2hm
2 cosh(βh)

= ln

(
2

βhm
sinh(βhm)

)
= ln 2− ln(βhm) + ln sinh(βhm) (2)

where we extracted the (adimensional) parameter βhm dependence.
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4 – The quenched free-energy is 1pt

−βfquenched = [ln Zh] =

∫ hm

−hm
dh

1

2hm
ln
∑
s=±1

eβhs =

∫ hm

−hm
dh

1

2hm
ln (2 cosh(βh))

= ln 2 +
1

βhm

∫ βhm

0
dy ln (cosh y) (3)

where we changed variables y = βh and now the (adimensional) parameter dependence is clear.

5 – For generic adimensional parameterβhm values they are not equal. From Jensen’s inequality
we know Fquenched ≥ Fannealed 1pt

6 – If we take β → 0 while keeping hm > 0, or we take hm → 0 with β finite, so that in both
cases βhm → 0, then −βfquenched = −βfannealed = ln 2 (given just by 1/kB times the entropy of the
Ising spin). In the infinite temperature limit, or the vanishing width of the random field distribution
that is the deterministic limit for the field, the kind of disorder average becomes irrelevant and the two
coincide. 1.5pt

Consider now an ensemble of N Ising spins placed on a regular cubic lattice with linear size L in d dimensions.
The nearest-neighbours on the lattice are ferromagnetically coupled and each spin is also coupled to a local
quenched random field taken from a probability distribution p(hi). The random fields on different sites are
independent.

7. Write the Hamiltonian of this system.

8. Is the free-energy of this system expected to be self-averaging? Explain the reasoning that leads to
your conclusion.

9. Can you envision a case in which the argument used in the previous question fails?

7 – H = −J
∑
〈ij〉

sisj −
∑
i
hisi 0.5pt

I take the convention so that the sum runs over each nearest neighbour couple only once.

8 – Yes. 2pt
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We cut the system in pieces of linear length a� `� ξ with ξ the correlation length.

Since the interactions are on nearest-neighbours on the lattice, they are short ranged. Moreover,
the local fields are i.i.d with no long-range correlations either.

We neglect the surface contribution to the total energy, since it scales as Ld−1 instead of Ld.
The total energy becomes a sum over independent terms.

We separate the partition sum in products over these boxes.

The log in the free-energy becomes a sum over independent random terms.

Then we use the central limit theorem to claim that the variance of the free-energy over its av-
erage squared vanishes in the N � 1 limit.

9- For example, at the critical point, where the correlation length diverges and one cannot con-
sider the boxes to be independent. Or when there are long-range interactions. 1pt

In Fig. 1 we reproduce a plot of the ratio between the variance, σ2w, and the average squared, µ2w, of different
sample-to-sample (different disorder realization) fluctuating quantities w:

Rw ≡
σ2w
µ2w

. (4)

The plot is taken from N. G. Fytas and A. Malakis, arXiv:1011.4823 The data are taken at the pseudo
critical parameters (Tc, hc) of the finite L random field Ising model in three dimensions.

Figure 1: The ratio (4) for the magnetic susceptibility maximum χ and the specific heat C (a), the magnetization M
and the mean energy per spin which is denoted 〈e〉 (b), as a function of inverse linear size 1/L of the system. In all
cases the data are taken at the pseudo critical parameters (Tc, hc) of the finite L system. The lines are fits.
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10. What do you conclude about the self-averageness of these quantities?

11. Which could be the reason for lack of self-averageness in these measurements?

10 – Only the averaged energy per spin in (b) tends to zero for 1/L. If this is a thermal aver-
age, then it does not correspond to Re and we cannot conclude about its fluctuations. If by ”mean”
one refers to just energy density, and the points represent Re then they tend to zero for 1/L and one
concludes that it is a self-averaging quantity.

The RM increases with 1/L→ 0 which tells us that it does not self-average.

In (a) the straight lines may go to zero but if they do it’s very very slowly, so conclusions are
not clear. 1pt

11 – The system is at the critical point, the correlation length diverges. 1pt

12 - Show with a simple argument that ferromagnetic order is not expected to exist in d ≤ 2 for the RFIM.
Help yourself with a drawing and a plot to explain it.

1.5pt (argument) + 1.5pt (drawings)

It’s the Imry Ma argument. Order the system in one ferromagnetic state, turn round a bubble
with linear size ` and assume it is compact, as well as its interface. The free-energy change at very low
T is

∆F (`) ∼ ∆E(`) = −h`d/2 + J`d−1 (5)

for d > 1, where I ignored numerical factors of geometric origin and normalization too.

The form of this function depends on d and there is a change in d = 2.

If d < 2, ∆F vanishes at ` = 0, takes negative values at `
>∼ 0, attains a minimum at

`min ∼
(
h

J

)2/(d−2)
=

(
J

h

)2/(2−d)
(6)
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vanishes at an `0 > `min which scales with h/J in the same way, and then diverges towards infinity at
`→∞.

Thus, for d < 2 it is favourable to make domains with linear size `
<∼ (J/h)2/(2−d) and disorder

the sample.

For d > 2, the form of the curve is the opposite. It starts positive from zero, reaches a maxi-
mum and then turns round to minus infinity at `→∞.

One does not disorder the sample since the ∆F (`) is positive at small ` and one cannot create
fluctuations of this sort. Extremely large sizes would be needed to disorder the sample at very low
temperatures.

See the lectures for the plots
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Take a simple harmonic oscillator with just potential energy

H =
1

2
mω2x2 , (7)

and consider that the frequency ω > 0 is quenched and distributed according to

p(ω) =


ω

σ2
e−

1
2
ω2

σ2 ω > 0

0 otherwise

(8)

13. Calculate the partition function Zω at fixed ω.

14. Express the free-energy Fω at fixed ω.

15. Calculate the disorder averaged free-energy [Fω].

13 - The Partition function is 0.5pt

Zw =
∫∞
−∞ dx e

−β 1
2
mω2x2 =

(
2π

βmω2

)1/2

14 - The free-energy 0.5pt

−βFw = ln

(
2π

βmω2

)1/2

15 - and the disorder average 1pt

−β[Fw] =
∫∞
0

dω
σ
ω
σ e
− 1

2
ω2

σ2 ln

(
2π

βmω2

)1/2

=
∫∞
0 dy y e−

1
2
y2 ln

(
2π

βmσ2y2

)1/2

that simplifies to −β[Fw] = ln

(
2π

βmσ2

)1/2

− 1
2

∫∞
0 dy y e−

1
2
y2 ln y2

and changing variables u = y2

−β[Fw] = ln

(
2π

βmσ2

)1/2

− 1
4

∫∞
0 du e−

1
2
u lnu = ln

(
2π

βmσ2

)1/2

− 1
4 (−2γ + ln 4)

with the Euler constant γ ≡ −
∫∞
0 dy e−y ln y

Finally, −β[Fw] = ln

(
π

βmσ2

)1/2

+ 1
2γ Note that I wrote the arguments of the ln’s always in

dimensionless form.
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Now, we study this problem with the replica trick.

16. Give the expression of the averaged free-energy as computed with the replica method.

17. Calculate the average over disorder of the n times replicated partition function, [Znw].
Useful equations are

n∏
a=1

∫
dqa f(

∑
a

q2a) = Sn−1

∫ ∞
0

dr rn−1 f(r2)

Sn−1 = 2πn/2/Γ(n/2)∫ ∞
0
dr

rn−1

1 + r2
=

1

2
Γ(n/2)Γ(1− n/2) and Γ(1) = 1

18. Does [Fw] obtained with the replica calculation coincide with expression found in point 15., following
the direct calculation?

16 – −β[Fw] = lim
n→0

[Znw]− 1

n
0.5pt

17 – The disorder averaged replicated partition function is 1.5pt

[Znw] =
∫∞
0

dω
σ
ω
σ e
− 1

2
ω2

σ2

n∏
a=1

∫∞
−∞ dxa e

−β 1
2
mω2

∑
a x

2
a =

n∏
a=1

∫∞
−∞ dxa

∫∞
0

dω
σ
ω
σ e
− 1

2
ω2

σ2 e−β
1
2
mω2

∑
a x

2
a

[Znw] =
n∏
a=1

∫∞
−∞ dxa

∫∞
0 dy y e−

1
2
y2(1+βmσ2

∑
a x

2
a)

[Znw] =
n∏
a=1

∫∞
−∞ dxa

1

1 + βmσ2
∑

a x
2
a

=
(
βmσ2

)−n/2 n∏
a=1

∫∞
−∞ dqa

1

1 +
∑

a q
2
a

Now, we change variables to spherical coordinates r2 =
∑

a q
2
a,

[Znw] =
(
βmσ2

)−n/2 ∫
dΩn−1

∫∞
0 dr rn−1

1

1 + r2
=
(
βmσ2

)−n/2
Sn−1

∫∞
0 dr

rn−1

1 + r2

that becomes

[Znw] =
(
βmσ2

)−n/2 2πn/2

Γ(n/2)
1
2Γ(n/2)Γ(1− n/2)

that cancelling in numerator and denominator the common factor becomes

[Znw] =

(
π

βmσ2

)n/2
Γ(1− n/2)
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Taking now the n→ 0 limit of these two factors:(
π

βmσ2

)n/2
' 1 +

n

2
ln

(
π

βmσ2

)
+O(n2)

and

Γ
(

1− n

2

)
= Γ(1)− n

2
Γ′(1) +O(n2) = 1 +

n

2
γ +O(n2)

with the same Euler constant as in the previous calculation.

Putting the two together

[Znw] =

[
1 + n ln

(
π

βmσ2

)1/2
] [

1 +
n

2
γ
]

+O(n2)

= 1 + n ln

(
π

βmσ2

)1/2

+
n

2
γ +O(n2)

and we finally get

lim
n→0

[Znw]− 1

n
7→ ln

(
π

βmσ2

)1/2

+ γ
2

(It was OK if you did not remember the relation between the γ constant and the Γ′(1), and
just focused on the parameter dependence of the result.)

18 – which is the same result as with the direct calculation 0.5pt
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