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Randomness
Impurities

No material is perfect and totally free of impurities

(vacancies, substitutions, amorphous structures, etc.)

First distinction

— Weak randomness : phase diagram respected, criticality may change

— Strong randomness : phases modified

Second distinction

— Annealed : fluctuating (easier)

— Quenched : frozen, static (harder)

τ0 � tobs � τ qdeq
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Quenched disorder
Variables frozen in time-scales over which other variables fluctuate.

Time scales τ0 � tobs � τ qdeq

τ qdeq could be the diffusion time-scale for magnetic impurities the magnetic
moments of which will be the variables of a magnetic system ;

or the flipping time of impurities that create random fields acting on
other magnetic variables.

Weak disorder (modifies the critical properties but not the phases) vs.

strong disorder (that modifies both).

e.g. random ferromagnets vs. spin-glasses.
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Geometrical problems
Random graphs & Percolation
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Neural Networks
Real neural network

Neurons connected by synapsis on a random graph

Figures from AI, Deep Learning, and Neural Networks explained, A. Castrounis
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Neural Networks
Sketch & artificial network

The connections in wT may have a random component

The state of the neuron up (firing), down (quiescent) is a result of the calculation

In the artificial network on chooses the geometry (number of nodes in internal

layer, number of hidden layers, connections between layers)

Figures from AI, Deep Learning, and Neural Networks explained, A. Castrounis
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Spin-glasses
Magnetic impurities (spins) randomly placed in an inert host

~ri are random and time-independent since

the impurities do not move during experimental time-scales⇒

quenched randomness

Magnetic impurities in a metal host

spins can flip but not move

RKKY potential

V (rij) ∝
cos 2kF rij

r3
ij

sisj

very rapid oscillations about 0

positive & negative

slow power law decay.
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Spin-glasses
Models on a lattice with random couplings

Ising (or Heisenberg) spins si = ±1 sitting on a lattice

Jij are random and time-independent since

the impurities do not move during experimental time-scales⇒

quenched randomness

Magnetic impurities in a metal host

spins can flip but not move

Edwards-Anderson model

HJ [{si}] = −
∑
〈ij〉

Jijsisj

Jij drawn from a pdf with

zero mean & finite variance
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Neural networks
Models on graphs with random couplings

The neurons are Ising spins si = ±1 on a graph

Jij are random and time-independent since

the synapsis do not change during experimental time-scales⇒

quenched randomness

The neural net

spins can flip but not move

Hopfield model

HJ [{si}] = −
∑
〈ij〉 Jijsisj

memory stored in the synapsis

Jij = 1/Np
∑Np

µ=1 ξ
µ
i ξ

µ
j

the patterns ξµi
are drawn from a pdf with

zero mean & finite variance
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Optimization problems
Constrained satisfaction problems

Problems involving variables which must satisfy some constraints

e.g. equalities, inequalities or both

studied in computer science to

compute their complexity or develop algorithms to most efficiently solve them

Typically, N variables, which have to satisfy M constraints.

e.g. the variables could be the weights of a neural network, and each constraint
imposes that the network satisfies the correct input-output relation on one of M
training examples (e.g. distinguishing images of cats from dogs).

Statistical physics approach

thermodynamic limit N →∞ and M →∞ with α = M/N finite
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Optimization problems
K-Satisfiability

The problem is to determine whether the variables of a given Boolean formulaF

can be assigned in such a way to make the formula evaluate to TRUE (satisfied)

Example. Call the variable x

We use x for the evaluation x = TRUE and x for the requirement x = FALSE

Take the formula F = C1 : x1 OR x2 made by a single clause C1

it is satisfiable because one can find the values x1 = TRUE (and x2 free) or

x2 = FALSE (and x1 free), which make C1 : x1 OR x2 TRUE

This formula is so simple that 3 out of 4 possible configurations of the two variables

solve it. This example belongs to the k = 2 class of satisfiability problems since the

clause is made by two literals (involving different variables) only. It has M = 1 clauses

and N = 2 variables.
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Optimization problems
K-Satisfiability

Harder to decide formulæ are made of M clauses involving k literals re-

quired to take the true value (x) or the false value (x) each, these taken from a

pool of N variables. An example in k = 3-SAT is

F =


C1 : x1 OR x2 OR x3

C2 : x5 OR x7 OR x9

C3 : x1 OR x4 OR x7

C4 : x2 OR x5 OR x8

All clauses have to be satisfied simultaneously so the formula has to be read

F : C1 AND C2 AND C3 AND C4

When α ≡ M/N � 1 the problems typically become unsolvable while many

solutions exist for α� 1. A sharp threshold at αc for N,M →∞
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Optimization problems
Random K-Satisfiability

An instance of the problem, i.e. a formula F , is chosen at random with

the following procedure :

First one takes k variables out of the N available ones.

Second one decides to require xi or xi for each of them with probability 1/2

Third one creates a clause taking the OR of these k literals.

Forth one returns the variables to the pool and the outlined three steps are

repeated M times.

The M resulting clauses form the final formula.

Change of focus from worse case (most difficult formula) to typical case (just

one such constructed formula)
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Optimization problems
Random K-Satisfiability as a physical model

Boolean variables⇒ Ising spins

xi evaluated to TRUE (FALSE) corresponds to si = 1 (−1)

The requirement that a formula be evaluated TRUE by an assignment of va-

riables (i.e. a configuration of spins)⇒ ground state of an adequately chosen

energy function = cost function

In the simplest setting, each clause will contribute zero (when satisfied) or one

(when unsatisfied) to this cost function.

There are several equivalent ways to reach this goal. The fact that the variables

are linked together through the clauses suggests to define k-uplet interactions

between them.
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Optimization problems
Random K-Satisfiability as a physical model

A way to represent a clause in an energy function, for instance,
C1 : x1 OR x2 OR x3

as an interaction between spins. In this case
(1− s1)(1 + s2)(1− s3)/8

This term vanishes if s1 = 1 or s2 = −1 or s3 = 1 and does not contribute to

the total energy, that is written as a sum of terms of this kind.

It is then simple to see that the total energy can be rewritten in a way that

resembles strongly physical spin models,

2KHJ [{si}] = M +
K∑
R=1

(−1)R
∑

i1<···<iR

Ji1...iRsi1 . . . siR

Ji1...iR =
M∑
a=1

Jai1 . . . JaiR and Jai = ±1 according to xi or xi in clause a

and zero otherwise
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Optimization problems
K-Satisfiability & complexity theory

Special interest in computational complexity theory

K-Sat for K≥ 3 is in the NP complexity class

No algorithm (as yet) has been found that can find an assignment for the

variables xi in polynomial time

one can verify in polynomial time whether an assignment satisfies the given

formula

K-SAT is an NP-complete problem

all other problems in the NP complexity class can be formally reduced to

the K-SAT problem
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Pinning by impurities
Competition between elasticity and quenched randomness

d-dimensional elastic manifold in a transverseN -dimensional quenched

random potential.

Oil

Water

Interface between two phases ;
vortex line in type-II supercond ;
stretched polymer.

Distorted Abrikosov lattice

Goa et al. 01

17



Randomness
Properties

— Spatial inhomogeneity

— Frustration

(spectrum pushed up, degeneracy of ground state)

— Probability distribution of couplings, fields, etc.

— Self-averageness
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Frustration
Properties

HJ [{s}] = −
∑
〈ij〉 Jijsisj Ising model

+

++ + +

+

+

+ +

+

Disordered Geometric

Efrust
gs > EFM

gs and Sfrustgs > SFMgs

Frustration enhances the ground-state energy and entropy

One can expect to have metastable states too

One cannot satisfy all couplings simultaneously if
∏

loop Jij < 0
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Heterogeneity

Each variable, spin or other, feels a different local field, hi =
∑z

j=1 Jijsj ,

contrary to what happens in a ferromagnetic sample, for instance.

Homogeneous Heterogeneous

hi = 4J ∀ i. hj = −2J hk = 0 hl = 2J .

Each sample is a priori different but,
do they all have a different thermodynamic and dynamic behavior?
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Self-averageness

The disorder-induced free-energy density distribution approaches a Gaussian

with vanishing dispersion in the thermodynamic limit :

limN→∞fN (β, J) = f∞(β) independently of disorder

— Experiments : all typical samples behave in the same way.

— Theory : one can perform a (hard) average of disorder, [. . . ],

−βNf∞(β) = limN→∞[lnZN (β, J)]

From here, we see that, e.g., the energy density is self-averaging

Replica theory

−βf∞(β) = limN→∞ limn→0
[ZnN (β, J)]− 1

Nn
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Self-averageness
The question

Given two samples with different quenched randomness

(e.g. different interaction strengths Jijs or random fields hi)

but drawn from the same (kind of) distribution

is their behaviour going to be totally different?

Which quantities are expected to be the same and which not?
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Self-averageness
Observables & distributions

Given a quantity AJ , which depends on the quenched randomness J , it

is distributed according to

P (A) =

∫
dJ p(J) δ(A− AJ)

This pdf is expected to be narrower and narrower (more peaked) as

N →∞

Therefore, one will observe Atyp = As.t. maxA P (A)

However, it is difficult to calculate Atyp, what about calculating

[A] =
∫
dAP (A)A?
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Self-averageness
Warm-up exercise

A function is convex function iff ∀x1, x2 and t ∈ [0, 1] :

f(tx1 + (1− t)x− 2) ≤ tf(x1) + (1− t)f(x2) .
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Self-averageness
Warm-up exercise
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Self-averageness
Warm-up exercise
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Self-averageness
Example : the disordered Ising chain

HJ [{si}] = −
∑
i

Jisisi+1 Ji distributed p(Ji) with any pdf

Compute the partition function ZJ by introducing σi = sisi+1

ZJ [{si}] =
∑
si=±1

eβ
∑
i Jisisi+1 =

∑
σi=±1

eβ
∑
i Jiσi =

N∏
i=1

2 cothβJi

(boundary condition effects negligible for N →∞)

It is a product of N random numbers

The free-energy is−βFJ [{si}] =
∑N

i=1 ln cothβJi +N ln 2

It is a sum of N random numbers
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Self-averageness
Example : the disordered Ising chain

HJ [{si}] = −
∑
i

Jisisi+1 Ji distributed p(Ji) with any pdf

The partition function & the free energy density are different objects

ZJ [{si}] =

N∏
i=1

2 cothβJi −βfJ [{si}] =
1

N

N∑
i=1

ln cothβJi+ln 2

Take Ji to be i.i.d with zero mean [Ji] = 0 & finite variance [J2
i ] = σ2 and

use the Central Limit Theorem :

X = 1
N

∑
i xi is Gaussian distributed with average 〈X〉 = 〈xi〉 and variance

〈(X − 〈X〉)2〉 = σ2/N

Therefore fJ is Gaussian distributed and its variance vanishes for N →∞
Moreover, f typ

J = [fJ ]

28



Self-averageness
Systems with short-range interactions

Divide a, say, cubic system of volume V = Ld in n sub-cubes, of volume

v = `d with V = nv

L
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Self-averageness
Systems with short-range interactions

For short-range interactions the total free-energy is the sum of two terms, a

contribution from the bulk of the subsystems and a contribution from the inter-

faces between the subsystems :

−βFJ = lnZJ = ln
∑
conf

e−βHJ (conf) ≈ ln
∑
conf

e−βHJ (bulk)−βHJ (surf)

= ln
∑
bulk

e−βHJ (bulk) + ln
∑
surf

e−βHJ (surf) = −βF bulk
J − βF surf

J

where the≈ indicates that we dropped the contributions of interactions between

the bulk and the interfaces (surf)
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Self-averageness
Systems with short-range interactions

If the interaction extends over a short distance l and the linear size of the boxes

is ` � l, we also assume that the surface energy is negligible with respect to

the bulk one (same for possible entropic contributions) and

−βFJ ≈ −βF bulk
J = ln

∑
bulk

e−βHJ (bulk)

The disorder dependent free-energy is a sum of n = (L/`)d independent

random numbers, each one being the disorder dependent free-energy of the

bulk of each subsystem :

−βFJ ≈
∑n

k=1 ln
∑

bulkk
e−βHJ (bulkk)

In the limit of a very large number of subsystems (L � ` or n � 1) the CLT

⇒ the free-energy density is Gaussian distributed with

f typ
J = [ fJ ]
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Self-averageness
Systems with short-range interactions

The dispersion about the typical value of the total free-energy vanishes in the

large n limit, σFJ/[FJ ] ∝
√
n/n = n−1/2 → 0

The one of the free-energy density, or intensive free-energy, fJ = FJ/N , as

well, σfJ/[fJ ] = O(n−1/2)

In a sufficiently large system the typical free-energy density f typ
J is then very

close to the averaged [ fJ ] and one can compute the latter to understand the

static properties of typical systems.

Much easier to do analytically. More later.
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Self-averageness
Failure and quenched vs. Annealed

Go back to the one dimensional disordered Ising chain and show that

the partition function and the spatial correlations

are not self-averaging.

The annealed free-energy is defined as−βF annealed = ln[ZJ ]

The quenched free-energy is defined as−βF quenched = [lnZJ ]

Jenssen’s inequality applied to the convex function− ln y implies

− ln[ZJ ] ≤ −[lnZJ ]

and for the free-energies one deduces

F annealed = −β−1 ln[ZJ ] ≤ −β−1[lnZJ ] = F quenched
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Methods
disordered systems

Statics

TAP Thouless-Anderson-Palmer

Replica theory

 fully-connected (complete graph)

Gaussian approx. to field-theories

Cavity or Peierls approx.
}

dilute (random graph)

Bubbles & droplet arguments

functional RG1

 finite dimensions

Dynamics
Generating functional for classical field theories (MSRJD).

Schwinger-Keldysh closed-time path-integral for quantum dissipative models

(the previous is recovered in the ~→ 0 limit).

Perturbation theory, renormalization group techniques, self-consistent approx.
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Randomness
Properties

— Spatial inhomogeneity

Not all sites behave in the same way

— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen

— Quenched disorder : static pdfs of couplings, fields, etc.

f annealed ≤ fquenched

— Self-averageness

limN→∞[f
quenched] = limN→∞ f

typ

— Complex free-energy landscapes
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Self-averageness
Systems with short-range interactions

Divide a, say, cubic system of volume V = Ld in n sub-cubes, of volume

v = `d with V = nv

L

−βFJ ≈
L/∑̀
k=1

ln
∑

bulkk

e−βHJ (bulkk)

For L� ` the CLT

⇒ fJ is Gaussian distributed and

f typ
J = [ fJ ]
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Randomness
Properties

— Spatial inhomogeneity

Not all sites behave in the same way

— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen

— Quenched disorder : static pdfs of couplings, fields, etc.

f annealed ≤ fquenched

— Self-averageness

limN→∞[f
quenched] = limN→∞ f

typ

— Complex free-energy landscapes
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Low temperature phases
Phenomenology : homogeneity vs inhomogeneity

In a ferromagnet in equilibrium at temperature T < Tc, 〈si〉 = m(T ) ∀i
or 〈si〉 = −m(T ) ∀i in the two homogeneous, symmetric and degenerate

equilibrium states
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Low temperature phases
Phenomenology : homogeneity vs inhomogeneity

In a ferromagnet in equilibrium at temperature T < Tc, 〈si〉 = m(T ) ∀i
or 〈si〉 = −m(T ) ∀i in the two homogeneous, symmetric and degenerate

equilibrium states

If one were to follow the time evolution of each spin in one of the two equilibrium

states at T < Tc, one would see si(t) = m(T ) + δi(t) with δi(t) small

time-dependent fluctuation and the overline states for a running time average

si(t) = τ−1
∫ t+τ
t dt′ si(t

′)

si

t
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Low temperature phases
Phenomenology : homogeneity vs inhomogeneity

In a spin-glass in equilibrium at temperature T < Tc, one expects 〈si〉 =

mi(T ), with a different value for each i, in each inhomogeneous and degenerate

equilibrium state.

There may be many different ensembles {mi(T )} that are equilibrium states

(degeneracy, similar to what we saw in the frustrated magnets for the ground

states but here in the full low T phase)

There is also the up-down symmetry {mi(T )} 7→ {−mi(T )}
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Low temperature phases
Phenomenology : homogeneity vs inhomogeneity

In a spin-glass in equilibrium at temperature T < Tc, one expects 〈si〉 =

mi(T ), with a different value for each i, in each inhomogeneous and degenerate

equilibrium state.

If one were to follow the time evolution of each spin in one of the possibly many

equilibrium states at T < Tc, one would see si(t) = mi(T ) + δi(t) with

δi(t) small time-dependent fluctuation and the overline states for a running time

average si(t) = τ−1
∫ t+τ
t dt′ si(t

′)

si

mj(T )

mk(T )
t
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Randomness
Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {mi}
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen

— Quenched disorder : static pdfs of couplings, fields, etc.

f annealed ≤ fquenched

— Self-averageness

limN→∞[f
quenched] = limN→∞ f

typ

— Complex free-energy landscapes
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Randomness
Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {mi}
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen

— Quenched disorder : static pdfs of couplings, fields, etc.

f annealed ≤ fquenched

— Self-averageness

limN→∞[f
quenched] = limN→∞ f

typ

— Complex free-energy landscapes
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Mean-field theory
Fully connected Ising models

General model

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj with Ising variables si = ±1

O(1) scaling of the local fields⇒ scaling of Jij

What is a local field?

It is the field felt by a selected site

hi = 1
2

∑
j(6=i)

Jijsj

and we require it to beO(1)
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Mean-field theory
Fully connected Ising models

General model

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj with Ising variables si = ±1

O(1) scaling of the local fields⇒ scaling of Jij

In the Curie-Weiss ferromagnetic case

Jij =
J

N
such that hi =

J

2N

∑
j(6=i)

sj = O(1)

in the two ferromagnetic si = 1 ∀i or si = −1 ∀i phases
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Mean-field theory
Fully connected Ising models

General model

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj with Ising variables si = ±1

O(1) scaling of the local fields⇒ scaling of Jij

In the Curie-Weiss ferromagnetic case

Jij =
J

N
such that hi =

J

2N

∑
j(6=i)

sj = O(1)

in the ferromagnetic si = 1 ∀i or si = −1 ∀i phases

In the Sherrington-Kirkpatrick disordered case

Jij = O(
J√
N

) such that hi ∼
J

2
√
N

∑
j(6=i)

sj = O(1)

in the PM or spin-glass phases si = ±1 ∀i
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Mean-field theory
Fully connected Ising models

General model

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj with Ising variables si = ±1

O(1) scaling of the local fields⇒ scaling of Jij

In the Sherrington-Kirkpatrick disordered case

Jij = O(
J√
N

) such that hi ∼
J

2
√
N

∑
j(6=i)

sj = O(1)

in the PM or spin-glass phases, say, si = ±1 with equal probability

One can use a Gaussian pdf

P (Jij) = (2πσ2)−1/2 exp[−J2
ij/(2σ

2)] with σ2 = J2/N
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Mean-field theory
Fully connected Ising models

Even more general models (recall the K-sat problem)

HJ [{si}] = − 1
3!

∑
i 6=j 6=k

Jijksisjsk with Ising variables si = ±1

O(1) scaling of the local fields⇒ scaling of Jijk

In the p = 3 Curie-Weiss ferromagnetic case

Jijk =
J

Np−1
such that hi ∼

J

2Np−1

∑
jk(6=i)

sjsk = O(1)

in the two ferromagnetic si = 1 ∀i or si = −1 ∀i phases

In the p = 3 disordered case

Jijk = O(
J√
Np−1

) such that hi ∼
J

2
√
Np−1

∑
j 6=k(6=i)

sjsk = O(1)

in the PM or spin-glass phases si = ±1 with equal probability
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Randomness
Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {mi}
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen

— Quenched disorder : static pdfs of couplings

Gaussian pdf of Jij with σ2 = J2/N

— Self-averageness

limN→∞[f
quenched] = limN→∞ f

typ

— Complex free-energy landscapes
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Randomness
Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {mi}
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen

— Quenched disorder : static pdfs of couplings

Gaussian pdf of Jij with σ2 = J2/N

— Self-averageness

limN→∞[f
quenched] = limN→∞ f

typ

— Complex free-energy landscapes : beyond Ginzburg-Landau
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Mean-field theory for PM-FM
Fully connected Curie-Weiss Ising model

Normalize J by the size of the system N to haveO(1) local fields

H = − J
2N

∑
i 6=j sisj − h

∑
i si

The partition function reads Z =
∫ 1

−1
du e−βNf(u) with Nu =

∑
i si

f(u) = −J
2
u2 − hu+ T

[
1+u

2
ln 1+u

2
+ 1−u

2
ln 1−u

2

]
Energy terms and entropic contribution stemming fromN ({si}) yielding

the same u value.

Use the saddle-point, limN→∞ fN(βJ, βh) = f(usp), with

usp = tanh (βJusp + βh) = 〈u〉 = m
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Ginzburg-Landau for PM-FM
Continuous scalar statistical field theory with local aspects

Coarse-grain the spin

φ(~r) = V −1
~r

∑
i∈V~r si

Set h = 0

The partition function is Z =
∫
Dφ e−βV f(φ) with V the volume and

f(φ) =
∫
ddr

{
1
2
[∇φ(~r)]2 + T−J

2
φ2(~r) + λ

4
φ4(~r)

}
Elastic + potential energy with the latter inspired by the results for the fully-

connected model (entropy around φ ∼ 0 and symmetry arguments.

Uniform saddle point in the V →∞ limit : φsp(~r) = 〈φ(~r)〉 = m

The free-energy density is limV→∞ fV (β, J) = f(φsp)
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2nd order phase-transition
Continuous scalar statistical field theory

bi-valued equilibrium states related by symmetry

Ginzburg-Landau free-energy Scalar order parameter

g = βJ
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Features

• Spontaneous symmetry breaking below Tc

• Two equilibrium states related by symmetry φ→ −φ

• The state is chosen by a pinning field

• If the partition sum is performed over the whole phase space 〈φ〉 = 0

(a consequence of the symmetry of the action)

• Restricted statistical averages, running over half phase space, yield

〈φ〉 6= 0

• Under a magnetic field the free-energy landscape is tilted and one of

the minima becomes a metastable state

• The barrier in the free-energy landscape between the two states

diverges with the size of the system implying ergodicity breaking
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Features

• The function(al)s f(u) (f(φ(~r))) are large deviation function(al)s determi-

ning the probability of finding an equilibrium system with u or φ(~r)

• The system spends t± ' eNτ close to each minima and it makes rapid

transitions between the two

These results were not fully accepted as realistic at the time

Recall. the discussion on phase transitions & ergodicity breaking

•With p > 2-uplet interactions one finds first order phase transitions (rele-

vant for glasses & K-sat like problems)
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MFT for disordered spin models
Fully connected SG : Sherrington-Kirkpatrick model

H = −1
2

∑
i 6=j Jijsisj −

∑
i hisi

with Jij i.i.d. Gaussian variables, [Jij ] = 0 and [J2
ij ] = J2/N = O(1/N).

One finds the naive free-energy landscape

N f({mi}) = −1
2

∑
i 6=j

Jijmimj + T
N∑
i=1

1+mi
2 ln 1+mi

2 + 1−mi
2 ln 1−mi

2

and the (naive) TAP equations

misp = tanh(β
∑

j(6=i) Jijmjsp + βhi)

that determine the restricted averages mi = 〈si〉 = misp.
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MFT for disordered spin models
Fully connected SG : A simple proof

The more traditional one assumes independence of the spins,

P ({si}) =
∏
i pi(si)

with pi(si) = 1+mi
2 δsi,1 + 1−mi

2 δsi,−1

and uses this form to express 〈H〉 − T 〈S〉 with S = lnN ({si})

The energetic contribution is straightforward to evaluate

The entropic contribution is the one we already computed for the Curie-Weiss

model, taking care of keeping the indices i

A more powerful proof expresses f as the Legendre transform of −βF (hi)

with mi = N−1∂[−βF (hi)]/∂hi and takes care of a “problem” to be solved

in the next slides Georges & Yedidia 91
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MFT for disordered spin models
Missing : the Onsager reaction term

These equations are not completely correct.

The Onsager reaction term is missing.

This term represents the reaction of the spin i to itself

The magnetisation in i produces a field h′j(i) =Jjimi=Jijmi on spin j

This field induces a magnetisationm′j(i) =χjjh
′
j(i) =χjjJijmi on the spin j.

This magnetisation produces a field h′i(j) =Jijm
′
j(i) =JijχjjJijmi on site i.

The equilibrium fluctuation-dissipation relation between susceptibilities and connec-

ted correlations implies χjj = β 〈 (sj−〈 sj 〉)2 〉 = β(1−m2
j ) and one then

has h′i(j) = β(1−m2
j )J

2
ijmi
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MFT for disordered spin models
The Onsager reaction term

The idea of Onsager – or cavity method – is that one has to study the ordering

of the spin i in the absence of its own effect on the rest of the system.

The total field produced by the sum of h′i(j) = β(1 − m2
j )J

2
ijmi over all

the spins j with which it can connect, has to be subtracted from the mean-field

created by the other spins in the sample, i.e. the total local field should be

hloc
i =

∑
j(6=i)

Jijmj − βmi

∑
j(6=i)

J2
ij(1−m2

j )

recall that Jij = O(1/
√
N). Finally, the TAP equations read

mi = tanh
{ ∑
j(6=i)

[
βJijmj − β2miJ

2
ij(1−m2

j )
]}
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MFT for disordered spin models
Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

mi = tanh
{ ∑
j(6=i)

[βJijmj − β2miJ
2
ij(1−m2

j )]
}

The first term in the rhs
∑

j(6=i) Jijmj '
1√
N

√
N = O(1) because of the

central limit theorem.

The second term
∑

j(6=i) J
2
ij(1 −m2

j ) '
1

N
N = O(1) because all terms

in the sum are positive definite (mj ≤ 1 ∀j)

Recall that mi = 〈si〉

60



MFT for disordered spin models
Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

mi = tanh
{ ∑
j(6=i)

[
βJijmj − β2miJ

2
ij(1−m2

j )
]}

The first term in the rhs
∑

j(6=i) Jijmj '
1√
N

√
N = O(1) because of the

central limit theorem.

The second term
∑

j(6=i) J
2
ij(1 −m2

j ) '
1

N
N = O(1) because all terms

in the sum are positive definite (mj ≤ 1 ∀j)

Exercise

Check that higher order loops are negligible,

since sub-leading in powers of N
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MFT for disordered spin models
Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

mi = tanh
{ ∑
j(6=i)

[
βJijmj − β2miJ

2
ij(1−m2

j )
]}

The first term in the rhs
∑

j(6=i) Jijmj '
1√
N

√
N = O(1) because of the

central limit theorem.

The second term
∑

j(6=i) J
2
ij(1 −m2

j ) '
1

N
N = O(1) because all terms

in the sum are positive definite (mj ≤ 1 ∀j)

Exercise

Check that in the Curie Weiss model Jij = J/N

there is no need of Onsager terms
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Landscape
Free-energy density at fixed randomness

The TAP equations are the extremization conditions on the TAP free-energy

F tap
J ({mi}) = −

1

2

∑
i6=j

Jijmimj −
β

4

∑
i6=j

J2
ij(1−m2

i )(1−m2
j )

+ T

N∑
i=1

[
1 +mi

2
ln

1 +mi

2
+

1−mi
2

ln
1−mi

2

]

At low temperatures {mi}
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Summary
Local & global order parameters

mi ≡ 〈si〉

= 0 at T ≥ Tc

6= 0 at T < Tc

Magnetization

m = 1
N

∑
i

mi = 0 at all temperatures

Edwards-Anderson order parameter

qαEA ≡ 1
N

∑
i

(mα
i )

2 = 1
N

∑
i

〈si〉2α

= 0 at T ≥ Tc

6= 0 at T < Tc
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Today’s Plan

— How do we know that the TAP equations are correct ?

Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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Today’s Plan

— How do we know that the TAP equations are correct ?

Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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MFT for disordered spin models
Phase transition

For large N one expects J2
ij ' [J2

ij ] = J2/N with J = O(1)

Simplification mi = tanh
{
β
∑

j(6=i) Jijmj − β2mi
J2

N

∑
j(6=i)

(1−m2
j )
}

A 2nd order phase transition⇒mi ' 0 at T
<∼ Tc then using tanh y ∼ y

The TAP equations become mi ∼ β
∑

j(6=i) Jijmj − β2J2mi

Diagonalize this eq. going to the basis of eigenvectors of the Jij matrix

The eqs read mλ ∼ β
(
Jλ − βJ2

)
mλ

The notation we use is such that

Jλ is an eigenvalue of the Jij matrix associated to the eigenvector ~vλ
mλ represents the projection of ~m on the eigenvector ~vλ, mλ = ~vλ · ~m
with ~m the N -vector with components mi, ~m = (m1, . . . ,mN )

67



MFT for disordered spin models
Phase transition

If we add a weak external field the eqs readmλ ∼ β(Jλ−βJ2)mλ +βhext
λ

The variation with respect to the field at linear order is

∂mλ

∂hextλ

∣∣∣∣
~hext=~0

= β(Jλ − βJ2)
∂mλ

∂hextλ

∣∣∣∣
~hext=~0

+ β

and the staggered susceptibility (of the projection on ~vλ)

χλ ≡
∂mλ

∂hextλ

∣∣∣∣
~hext=~0

= β
(
1− βJλ + (βJ)2

)−1

Random matrix theory tells us that the eigenvalues of the random matrix Jij =

O(1/
√
N) are distributed with the Wigner semi-circle law and the largest ei-

genvalue is Jmax
λ = 2J

The staggered susceptibility of staggered magnetization in the direction of

the largest eigenvalue diverges at βcJ = 1 the correct value
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MFT for disordered spin models
Phase transition

If we add a weak external field the eqs readmλ ∼ β(Jλ−βJ2)mλ +βhext
λ

The variation with respect to the field at linear order is

∂mλ

∂hextλ

∣∣∣∣
~hext=~0

= β(Jλ − βJ2)
∂mλ

∂hextλ

∣∣∣∣
~hext=~0

+ β

and the staggered susceptibility (of the projection on ~vλ)

χλ ≡
∂mλ

∂hextλ

∣∣∣∣
~hext=~0

= β
(
1− βJλ + (βJ)2

)−1

Random matrix theory tells us that the eigenvalues of the random matrix Jij are

distributed with the Wigner semi-circle law

For Jij = O(1/
√
N) the largest eigenvalue is Jmax

λ = 2J

The staggered susceptibility for the largest eigenvalue diverges at βcJ = 1

Without the reaction term the divergence is at the inexact value T ∗ = 2Tc
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Today’s Plan

— How do we know that the TAP equations are correct ?

Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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Landscape
Free-energy density at fixed randomness

The TAP equations are the extremization conditions on the TAP free-energy

δF tap
J ({mi})
δmj

= 0

The stability of the solutions is determined by the Hessian
δ2F tap

J ({mi})
δmjδmk

At low temperatures {mi}
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Features
At fixed randomness

• There are N local order parameters, mi, i = 1, . . . , N

• The saddle-points are heterogeneous: mi differ from site to site

• At high temperatures only one trivial solution {mi = 0}

• At low temperatures the TAP equations have many solutions {mi
α}, which

are extrema of the TAP free-energy landscape, i.e. saddles of all types,

α = 1, . . . ,NJ

• For each solution {mi
α}, there is also {−mi

α} but apart from this trivial

doubling, the remaining solutions are not related by symmetry

• The TAP free-energy can take different values at different {mi
α} ⇒ fαtap
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Features
All this is reshuffled for another realization of disorder

• Still N local order parameters, mi, i = 1, . . . , N

• The TAP equations have other solutions {mi
α}, extrema of the TAP free-

energy landscape, F tap
J , labelled by α = 1, . . . ,NJ

• A global order parameter? The simplest guess
1

N

N∑
i=1

mα
i cannot be since

it is = 0 One expects as many positive as negative mis and similarity in

all respects. Another try

qαEA =
1

N

N∑
i=1

(mα
i )2

• “Typicality expected” (though see below for equilibrium states)
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Features
Numbers of metastable states

•N local order parameters, mi, i = 1, . . . , N

• The TAP equations have many solutions {mi
α}, extrema of the TAP free-

energy landscape, α = 1, . . . ,NJ

• One can count how many saddles of each kind exist and their complexity

NJ =
N∏
i=1

∫
1

−1
dmi δ(mi −mα

i ) Σ = lnN

• how many of these at each level of free-energy density, by inserting a delta-

function δ(f tap
J ({mα

i })− f)⇒NJ(f)

• How many with a given stabilityNJ(f,K) with K the number of positive

eigenvalues of the Hessian, with adequate delta-functions
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Today’s Plan

— How do we know that the TAP equations are correct ?

Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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Statistical averages
At fixed interactions

The average of a generic observable is 〈O〉 =
∑

αwα〈O〉α

In the FM case, each state (〈φ〉 = ±φ0) has weigth w± = 1/2 and the sum

is 〈O〉 = 1
2〈O〉+ + 1

2〈O〉− with 〈O〉± the average in each of the states. For

instance, the averaged magnetization vanishes if one sums over the± states or

it is different from zero if one restricts the sum to only one of them.

FM case

The dashed blue line with

two minima±|φ0|
If we have many more?
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Statistical averages
At fixed interactions

The average of a generic observable is 〈O〉 =
∑

αwα〈O〉α

In the FM case, each state (〈φ〉 = ±φ0) has weigth w± = 1/2 and the sum

is 〈O〉 = 1
2〈O〉+ + 1

2〈O〉− with 〈O〉± the average in each of the states. For

instance, the averaged magnetization vanishes if one sums over the± states or

it is different from zero if one restricts the sum to only one of them.

FM case f+ = f−

w± =
e−βNf±

e−βNf+ + e−βNf− + e−βNf0
' 1

2

w0 =
e−βNf0

e−βNf+ + e−βNf− + e−βNf0
� w±
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Statistical averages
At fixed randomness

The average of a generic observable is 〈O〉 =
∑

αwα〈O〉α

For systems with quenched randomness wJα = e−βNfJα∑
γ e
−βNfJγ

where we added a super-script to the weight w

J indicates that the weights depend on the the disorder realization

and α is a label that identifies the TAP solution

{mi}

One can sum over all saddles irrespec-

tively of their stability. Higher lying ones

will be exponentially suppressed or

will dominate depending on ΣJ(f,K)
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Statistical averages
At fixed randomness

The average of a generic observable is 〈O〉 =
∑

αwα〈O〉α

For systems with quenched randomness wJα = e−βNfJα∑
γ e
−βNfJγ

The sum over α, in the case in which there are an exponential in N number of

TAP solutions, can be replaced by an integral over f

〈O〉 = Z−1(β, J)
∫
df e−β[Nf−T lnNJ (f ,β)] O(f , β)

NJ is the number of solutions to the TAP eqs. with free-energy density f .

For N →∞ the integral is dominated by the saddle point

1

T
=

1

N

∂ lnNJ(f , β)

∂f

∣∣∣∣
fsp

=
1

N

∂ΣJ(f , β)

∂f

∣∣∣∣
fsp

complexity
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Statistical averages
Consequences

The equilibrium free-energy f is given by the saddle-point evaluation of the

partition sum:

f = fsp −
T

N
lnNJ(fsp, β)

The rhs is the Landau free-energy of the problem, with fsp playing the role of

the energy and N−1 lnNJ(fsp, β) of the entropy

The contribution of the complexity or configurational entropy contribution is ne-

gative and in some cases higher lying extrema (metastable states) can dominate

the partition sum with respect to lower lying ones if lnNJ(fsp, β) ∝ N

This feature is proposed to describe super-cooled liquids.
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A global observable
Effect of multi-states

What is the expression of the global order parameter once one takes into ac-

count the multi-states?

q ≡ 1
N

∑
i
〈si〉2 = 1

N

∑
i

(
∑
α
wJαm

α
i )2 = 1

N

∑
i

∑
α
wJαm

α
i

∑
β

wJβm
β
i

note that this is different from qEA = 1
N

∑
i

(mα
i )2

Defining now qαβ ≡ 1
N

∑
i
mα
i m

β
i an overlap between different states

and PJ(q′) ≡
∑
αβ

wJαw
J
β δ(q

′ − qαβ)

we obtain q ≡ 1
N

∑
i
〈si〉2 =

∫
dq′ PJ(q′) q′
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Today’s Plan

— How do we know that the TAP equations are correct ?

Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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Real replicas
Overlaps between replicas

Take one sample and run it, with e.g. Monte Carlo, until it reaches equilibrium,

measure the spin configuration {si}.

Re-initialize the same sample (same Jij ), run it again until it reaches equili-

brium, & measure the spin configuration {σi}.

Construct the overlap qsσ ≡ N−1
∑N

i=1 siσi.

In a PM system the overlap will typically vanish as, say, N−1/2

Many repetitions

for a system with N � 1

P (qsσ) = δ(qsσ)
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Real replicas
Overlaps between replicas

Take one sample and run it, with e.g. Monte Carlo, until it reaches equilibrium,

measure the spin configuration {si}.

Re-initialize the same sample (same Jij ), run it again until it reaches equili-

brium, & measure the spin configuration {σi}.

Construct the overlap qsσ ≡ N−1
∑N

i=1 siσi.

In a FM system there are four possibilities

qsσ = m2 m2 −m2 −m2

Many repetitions P (qsσ) =
1
2
δ(qsσ −m2) + 1

2
δ(qsσ +m2)
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Real replicas
Pdf of overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with N = 4096 at T = 0.4Tc

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj qsσ = 1
N

∑
i
siσi PJ(qsσ)

Finite size corrections in the Sherrington-Kirkpatrick model

Aspelmeier, Billoire, Marinari & Moore (2007)
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Real replicas
Ooverlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with N = 4096 at T = 0.4Tc

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj qsσ = 1
N

∑
i
siσi PJ(qsσ)

J
(1)
ij J

(2)
ij J

(3)
ij

Data in each panel for a different realization of the random couplings

Each sample has peaks at qsσ = ±qEA ' ±0.75:

two configurations in the same (or the spin-reversed) state
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Real replicas
Overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with N = 4096 at T = 0.4Tc

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj qsσ = 1
N

∑
i
siσi PJ(qsσ)

J
(1)
ij J

(2)
ij J

(3)
ij

Data in each panel for a different realization of the random couplings

0.75 ' qEA < 1 and the width of the peaks at qsσ = ±qEA :

due to 0 < T < Tc and finite N , respectively
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Real replicas
Overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with N = 4096 at T = 0.4Tc

HJ [{si}] = −1
2

∑
i 6=j

Jijsisj qsσ = 1
N

∑
i
siσi PJ(qsσ)

J
(1)
ij J

(2)
ij J

(3)
ij

Data in each panel for a different realization of the random couplings

Most samples also have peaks at |qsσ| < qEA :

replicas {si} and {σi} falling in different states
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Real replicas
Overlaps between replicas at fixed randomness

SK model with N →∞ at T < Tc

What happens if one averages PJ(q) over disorder
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Real replicas
Disordered averaged pdf of overlaps P (q) = [PJ(q)]

Parisi 79-82 prescription for the replica symmetry breaking Ansatz yields

High temperature FM Structural glasses Spin-glasses

Thermodynamic quantities, in particular the equilibrium free-energy density are

expressed as functions of P (q).

The equilibrium free-energy density predicted by the replica theory was confir-

med by Guerra & Talagrand 00-04 indepedent mathematical-physics mthods.
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Today’s Plan

— How do we know that the TAP equations are correct ?

Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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Typical vs. averaged
TAP vs. Replicas

Precursors

Look at an integer parameter n

and its n→ 0 limit

In 1972 Fortuin and Kasteleyn studied the Potts model with n components :

n = 2 Ising

n = 1 percolation

n = 0 random resistors

Use the identify xn = exp(n lnx) and expand around n = 0 :

limn→0 x
n = 1 + n lnx+O(n2)
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Replica method
A sketch

−β[fJ ] = lim
N→∞

[lnZN(β, J)]

N
= lim

N→∞
lim
n→0

[Zn
N(β, J)]− 1

Nn

Zn
N partition function of n independent copies of the system : replicas.

Gaussian average over disorder : coupling between replicas∑
a

∑
i 6=j Jijs

a
i s
a
j ⇒

∑
i 6=j
(∑

a s
a
i s
a
j

)2

Quadratic decoupling with the Hubbard-Stratonovich trick

Qab

∑
i s
a
i s
b
i +

1
2
Q2
ab

Qab is a 0× 0 matrix but it admits an interpretation in terms of overlaps

The elements ofQab can evaluated by saddle-point if one exchanges the

limits N →∞ n→ 0 with n→ 0 N →∞.
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Replica method
In more detail

Zn
N partition function of n independent copies of the system : replicas.

Zn
N(β, J) =

∑
{s(1)
i =±1}

. . .
∑

{s(n)
i =±1}︸ ︷︷ ︸

notation Tr{sa
i
}

e−β
∑n
a=1

∑
i6=j Jijs

a
i s
a
j

One can exchange the order of the trace and the average over disorder

[Zn
N(β, J)] = Tr{sai }

∫ ∏
i 6=j

dJijP (Jij) e
−β
∑n
a=1

∑
i 6=j Jijs

a
i s
a
j

[Zn
N(β, J)] = Tr{sai } e

−βHeff [{sai }]

Heff [{sai }] does not have any randomness but couples the replicas∑
a

∑
i 6=j Jijs

a
i s
a
j ⇒

∑
i 6=j
(∑

a s
a
i s
a
j

)2
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Replica method
In more detail

[ZnN (β, J)] = Tr{sai } e
−βHeff [{sai }]

Heff [{sai }] does not have any randomness but couples the replicas∑
i 6=j

(∑
a s

a
i s
a
j

)2
=
∑

i 6=j
∑

a

∑
b s
a
i s
a
j s
b
is
b
j ∼

∑
ab

∑
i s
a
i s
b
i

∑
j s

a
j s
b
j

One sees Qab here, introduce their definition via a delta or apply Hubbard-

Stratonovich

Once this done, one can exchange the trace (the sum over spin configurations)

and the integral over Qab and end up with

[ZnN (β, J)] ∝
∫ ∏

ab dQabe
−F (Qab)
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Replica method
For the SK model

Qab = qab and p = 2
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Replica method
In more detail

[ZnN (β, J)] = Tr{sai } e
−βHeff [{sai }] ∝

∫ ∏
ab dQabe

−F (Qab)

Heff [{sai }] and Qab do not have any randomness but couple the replicas

The elements of Qab can be evaluated by saddle-point if one exchanges the

limits N →∞ n→ 0 with n→ 0 N →∞.

At the saddle-point level one identifies Qspab = N−1〈
∑

i s
a
i s
b
i〉

The spin glass transition is from the paramagnetic state with Qa6=b = 0 to a

spin glass state with Qa6=b 6= 0 as the temperature is decreased.
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Replica method
SK model: replica symmetric Ansatz

Permutation symmetry between replicas⇒

Insert Qa6=b = q and Qaa = 1 in the effective Hamiltonian

Saddle-point with respect to q and n→ 0

q =
∫∞
−∞

dz√
2π
e−z

2/2 tanh
(
βJ
√
qz
)

Note the similarity with the equation for m in the Curie-Weiss model

q = 0 for T ≥ Tc = J

q 6= 0 for T < Tc = J

Problem I Is this solution stable? No

Problem II Does it have a zero-temperature vanishing entropy ? No

Problem III Ground state energy density e = −0.77± 0.01 while the replica symme-
tric value e =−0.798, is three standard deviations smaller (in units of J )
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Replica method
SK model: one step replica symmetry breaking

Permutation symmetry broken

m n−m

n× n matrix divided in diagonal blocks of size m×m and the rest
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Replica method
SK model: one step replica symmetry breaking

Problem I Stability : improved but not solved

Problem II Zero-temperature entropy : improved but not solved

Problem III e closer to numerical value
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Replica method
SK model: two step replica symmetry breaking

Permutation symmetry broken

m2 m1 n−m1

n×n matrix divided in diagonal blocks of sizem2×m2, and the rest in blocks

of size m1 ×m1 and the rest
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Replica method
SK model: two step replica symmetry breaking

Problem I Stability : improved but not solved

Problem II Zero-temperature entropy : improved but not solved

Problem III e closer to numerical value

102



Replica method
SK model: full replica symmetry breaking

Blocks of size mi with parameter qi

e.g. for replica symmetric case one block a single q.

∞ number of breaking steps, that is, of blocks

mi 7→ x and the parameter qi 7→ q(x)

[〈si〉2] =
∫

1

0
dx q(x) =

∫ dx

dq
dq q(x) =

∫
dq P (q) q

with P (q) =
dx

dq Problem I Stability : solved

Problem II Zero-temperature entropy : solved S = 0

Problem III e in agreement with numerical value

within numerical accuracy e = −0.7633
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Organisation

— Lectures in English on the blackboard

Either simultaneous broadcasting via zoom (see how it goes) or inde-

pendent zoom presentation (other time-slot) for absent students.

— Three exercise sessions (Tds).

— Lecture notes will be available at

www.lpthe.jussieu.fr/̃ leticia/enseignement.html

(the 2019 ones are already here).

— Exam modality will be decided according to the sanitary situation &

number of students:

Either conventional written exam (see recent years examples) or the study,

written description (report) + oral presentation of a subject (paper) ? ??
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