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4 RANDOM MATRICES

4 Random matrices

4.1 Introduction

A random matrix is a matrix some or all of whose elements are random variables, drawn
from a probability distribution. Random matrix theory is a branch of mathematics but
it is also applied to describe numerous physical systems, some of which we will discuss.

Random matrices were first used in the early 1900’s in the study of the statistics of
population characteristics by Wishart [1] (for example, the analysis of correlations between
pairs of features of the population, say height and income..., were set in matricial form).
More details on these applications can be found in [2]. (This paper was published in
a journal called Biometrika, devoted to the statistical studies of the physical traits of
living organisms. If you are interested in history, have a look at the role played by some
of the articles published in this journal in what is called scientific racism. Still, on the
correlations between height and income see [3].)

Figure 4.1: This figure and caption were copied from Mehta’s book [5].

The upsurge of physicists’ interest in Random Matrix Theory came with its very suc-
cessful application in the theory of heavy nuclei. Take Uranium. It is an atom with 92
protons, 92 electrons, and common isotopes have more than 140 neutrons. Its nucleus is
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definitely very heavy, with over 200 protons and neutrons, each subject to and contribut-
ing to complex forces. If we completely understood the theory of the nucleus, we could
predict all the energy levels of the spectrum; this, of course is not feasible.

Some insights into the nuclear structure of heavy nuclei were obtained with scattering
experiments that consist in shooting neutrons (or protons) into the nucleus. The large
numbers of energy levels of the nuclei appear in experimental data as peaks of the diffusion
rate of the neutrons as a function of the energy, see Fig. 4.1. In the 50s data of this kind
called the attention of theoreticians who tried to understand not really the low lying levels
but the structure of the high energy spectra.

Since it appears to be impossible to derive the spectra of heavy nuclei one by one in
full detail, the paradigm changed completely and the “revolutionary” idea put forward
by Wigner and Dyson, mainly, was to construct a statistical theory of energy levels. In
Dyson’s words: “such theory will not predict the detailed sequence of levels in any one
nucleus, but it will describe the general appearance and the degree of irregularity of the
level structure that is expected to occur in any nucleus which is too complicated to be
understood in detail.” More still, the idea is

to develop a “new kind of statistical mechanics in which we renounce exact knowledge
not of the state of a system but of the nature of the system itself. We picture a complex
nucleus as a "black box" in which a large number of particles are interacting according
to unknown laws. The problem is then to define in a mathematically precise way an
ensemble of systems in which all possible laws of interaction are equally probable”.

This is the program initiated by Wigner [4] in the 50s. Since the overall energy scale is set
by details of the nucleus at hand, the most generic or universal question to ask is what is
the statistics of the separations between adjacent energy levels on a scale small compared
to the energy. This is the level spacing statistics. The main and quite surprising content
of this approach is that the statistical properties of the level statistics is related to the
one between eigenvalues of conveniently chosen random matrices.

While independent random energy levels would yield a Poisson distribution of the
distances between neighbouring energy levels, the experimental data were better described
by what is called Wigner’s surmise [4]. The two probability densities of the level spacings
s nornalised to average 〈s〉 = 1 are

pPoisson(s) = e−s pWigner(s) = cβs
βe−aβs

2

(4.1)

where β = 1, 2, 4, see Fig. 4.2, depending on the symmetry properties of the nucleus under
time-reversal and spin rotation and the parameters aβ and cβ are fixed by

∫∞
0
ds p(s) =∫∞

0
ds s p(s) = 1, the last identity ensuring the normalisation to unity of the average
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Figure 4.2: Left: the Poisson and Wigner distribution functions for the level spacings (the
parameter β distinguishes different random matrix ensembles). Figure taken from [6]. Right:
experimental data for the 108 level spacings in 166Er (Erbium) favourably compared to the one
of the Gaussian Orthogonal Ensemble and unfavourably compared to a Poisson distribution.

of s. (Note that, a priori, β has nothing to do with the inverse temperature in this
Chapter!) The main difference between the two forms is in the two extremes s ' 0 and
s � 1, see Fig. 4.2. While Poisson’s pdf is finite for s → 0, Wigner’s pdf has a dip
close to s = 0, a feature that is associated with what is called level repulsion. In the
large s limit, both distribution functions decay fast, with Wigner’s decaying faster than
Poisson’s [5, 6, 7, 8, 9, 10]. We will discuss how one goes from the quantum mechanical
problem to the diagonalisation of random matrices under certain conditions, and show a
proof of these results below and in a particularly simple case in TD 2.

Random matrices appear in manifold fields of physics and mathematics and some
of them, vibrations of a membrane [11], quantum chaos [12, 13], Riemann’s zeta func-
tion [14, 15, 16], QCD [17], will be discussed in the next section. Let us mention here
that they also do in disordered condensed-matter systems, to describe transport in disor-
dered systems [18]. In particular, random scattering matrices can provide a microscopic
explanation for the mesoscopic conductance at low temperatures, a regime in which the
quantum decoherence length becomes larger than the conductor’s size. Last but not least,
random matrices also appear in string theory, 2d gravity [19], conformal field theory, in-
tegrable systems, RNA folding [20], glass theory [21] and stochastic processes [22]. They
are at the basis of many practical uses in finance [23] as well.

There are numerous excellent books and review articles that treat random matrix
theory from different perspectives. Mehta’s book is the great classic in this field [5]. A
more recent book is [8]. A concise presentation of the basics of random matrix theory
appeared recently in [9]. Lectures by Eynard at IPhT [6] and Fyodorov [10] complement
the physicists approach, I would say. More mathematical treatments can be found in the
books [24, 25] and the lecture notes [26, 2]. Details on the numerical implementation of
random matrix studies are in [27]. The connection with stochastic processes is discussed
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in [22] and a nice description of the historical development of the field is given in the first
Chapter written by Bohigas and Weidenmüller.

4.2 Some emblematic applications

We here briefly present several problems that lead to discrete energy spectra that can
be analysed with random matrix theory. The examples belong to classical and quantum
mechanics as well as mathematics.

4.2.1 Vibrations of a membrane

A membrane is a perfectly flexible and infinitely thin lamina of solid matter. Let
us assume that it is made of uniform material and thickness, and that it is stretched
in all directions by a tension so great as to remain unaltered during its vibrations. The
principal subject in this field is the investigation of the transverse vibrations of membranes
of different shapes, the boundaries of which are held fixed. One considers then a membrane
with area Ω and boundary Γ. Imagine that the rest position of the membrane defines the
zero displacement plane (x, y) and that, during its motion the time-dependent membrane’s
displacement relative to this plane is ψ(x, y, t). This function obeys the wave equation

∂2ψ(x, y, t)

∂t2
= c2∇2ψ(x, y, t) (4.2)

with c a velocity that depends on the physical properties of the membrane as well as on
the tension imposed on it. The wave equation admits harmonic solutions

ψ(x, y, t) = ψ(x, y) eiωt (4.3)

or normal modes. The resulting equation for ψ (with an abuse of notation we keep the
same symbol for the time-independent field) is an eigenvalue equation

∇2ψ(x, y) = −ω
2

c2
ψ(x, y) = −k2ψ(x, y) = −Eψ(x, y) (4.4)

with the boundary condition ψ(x, y) = 0 for (x, y) ∈ Γ. This equation possesses an infinite
number of real positive eigenvalues with no accumulation point. One has

0 ≤ E1 ≤ E2 ≤ E3 . . . lim
n→∞

En =∞ (4.5)

The question is what are the properties of the energy spectrum. This problem can be
generalised to higher dimensions and it can be made quantum with ~k =

√
2mE. It has

attracted the attention of celebrated scientists such as Rayleigh, Sommerfeld, Lorentz,
and Kac who asked the question “Can one hear the shape of a drum?” [11] More details
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Figure 4.3: Some examples of level spectra taken from [13].

on how to concretely analyse an energy spectrum are given with the help of the next
example.

4.2.2 Energy splitting in a quantum system

Consider a quantum system with Hamiltonian Ĥ. Its eigenstates are

Ĥ|ψn〉 = En|ψn〉 (4.6)

with the (joint set of) quantum number(s) n labelling the levels, that we consider to be
discrete. In the matrix representation of quantum mechanics1 this equation corresponds
to the eigenvalue problem

Hψn = Enψn . (4.7)

In general, the Hamiltonian is then represented by a complex Hermitian matrix. When
there are some exact quantum numbers corresponding to exact integrals of motion, like

1Let Ĥ be the Hamiltonian operator, and |ψ〉 a generic state on which it will act. Calling {|ui〉}
a complete orthonormal set of states, then Ĥ|ψ〉 is represented as Hijψj with ψj = 〈uj |ψ〉 and the
summation convention over the repeated index j adopted.
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angular momentum and parity, if the basis states are labelled by these exact quantum
numbers, the Hamiltonian matrix splits into blocks, and the matrix elements connecting
different blocks vanish. Once such a basis is chosen one can restrict attention to one of the
diagonal blocks, an N ×N Hermitian matrix in which N is a large integer, for a system
with many levels. The theoretical results are often derived in the limit N � 1.

The focus is then set on the energy spectrum. As the excitation energy increases, the
energy levels occur on the average at smaller and smaller intervals. In other words, level
density increases with the excitation energy. More precisely, let us focus on an interval of
energy ∆E centred at E. This interval is much smaller compared to E whereas it is large
enough to contain many levels since it is taken to be much larger than the mean distance
between neighbouring levels D:

D � ∆E � E . (4.8)

In practice these scales can be very different from one nucleus to another. It then makes
sense to normalise the level distances by their average (in the interval ∆E of interest).
After normalisation, the average distance between the neighbouring levels is unity in all
cases.

In the case of the nucleus we do not know the Hamiltonian and, on top, even if we
did, the eigenvalue problem would be too difficult to solve. The random matrix approach
relies on the assumption that one can take H to be a random matrix with elements
restricted only by the symmetry properties of the problem. Imagine that the relevant
kind of matrices to use were real symmetric. The first question one can ask is, which is
the joint probability distribution, ρ(H11, H12, . . . , HNN) of the elements of such a matrix?
Due to the symmetry one needs to distinguish the diagonal elements, Hii, from the off-
diagonal ones on which the symmetry has to be imposed. If all original Hij are drawn
from a Gaussian pdf with zero mean and the same variance σ2, and the off-diagonal ones
are constructed as (Hij +Hji)/2, then

ρ({Hij}) =
∏
i

1√
2πσ2

e−H
2
ii/(2σ

2)
∏
i 6=j

1√
πσ2

e−H
2
ij/σ

2

. (4.9)

Exercise 4.1 Prove this result.

In order to make contact with the physical problem, one needs to study the eigenvalues
of such a matrix (the energies), more precisely, the pdf of the eigenvalues of matrices thus
constructed, and in a second stage, the pdf of the spacings between these eigenvalues.

A conjecture allows one to believe the results obtained in this way will be general:

Let H be an N × N real symmetric matrix, with off-diagonal elements Hij with
i < j being independent identically distributed (i.i.d.) random variables with mean
zero and variance σ2, i.e. 〈Hij〉 = 0 and 〈H2

ij〉 = σ2 with 0 < σ2 < ∞ (and similarly
for the diagonal ones). In the limit of large N the statistical properties of the n
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eigenvalues of H become independent of the probability density of the Hij i.e. when
N →∞ the joint probability density of arbitrarily chosen n eigenvalues ofH tends, for
every finite n, with probability one, to the joint pdf found using Gaussian individual
pdfs. This is what is called the Gaussian orthogonal ensemble.

This statement means that the local statistical properties of a few eigenvalues of a large
random matrix are independent of the distribution of the individual elements, although
it does depend on the symmetry properties of the matrix. (It has a flavour of the central
limit theorem.) The same applies to other ensembles of random matrices.

The underlying space-time symmetries obeyed by the system put important restrictions
on the admissible matrix ensembles. If the Hamiltonian is time-reversal invariant and
invariant under rotations the Hamiltonian matrices can be chosen real symmetric. If
the Hamiltonian is not time-reversal invariant then irrespective of its behaviour under
rotations, the Hamiltonian matrices are complex Hermitian. Finally, if the system is
time-reversal invariant but not invariant under rotations, and if it has half-odd-integer
total angular momentum the matrices are quaternion real.

In these lectures we will focus on the case of real symmetric matrices. The real sym-
metry property is preserved under orthogonal transformations. Moreover, since we have
already argued that for elements with finite variance the actual pdf used to draw their
elements is immaterial one typically chooses to work with Gaussian probabilities. For
these two reasons, this set is usually called the Gaussian orthogonal ensemble (GOE).
The parameter that is commonly used to distinguish the three classes is called β and it
is equal to β = 1 in the GOE class, see Fig. 4.2.

4.2.3 Quantum chaos

The great success of random matrix theory in the description of level spacings of heavy
nuclei suggested that the same approach could be applied to other problems with com-
plicated energy spectra. The quantum mechanics of a particle in a 2d chaotic billiard is
one such case. A classical particle performs free motion and it is simply reflected at the
boundaries, it performs chaotic motion for many choices of the boundaries (like for Sinai’s
or the stadium shaped spaces), and the problem is therefore ergodic, see Fig. 4.4. A re-
markable conjecture, that uses random matrices ideas to describe the quantum behaviour
of these problems, is due to Bohigas, Giannoni and Schmit (BGS) [12]:

• if a billiard is classically integrable (for example a rectangle or an ellipse), the
spacings between eigenvalues of the corresponding quantum Hamiltonian follow
a Poisson law, and there are many level crossings.
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• If it is chaotic, then the eigenvalues have the same statistical properties as those
of random matrices, and they do not cross, repelling each other instead.

The numerical and experimental evidence for the validity of the BGS conjecture is over-
whelming. However, the connection between quantum chaos and random matrix theory
is not very well understood yet, and there is no satisfying analytic proof of the BGS
conjecture.

Figure 4.4: Left: an integral (a) and a chaotic (b) billiard. Right: numerical check of the BGS
hypothesis in Sinai’s billiard. The two figures are taken from [12].

4.2.4 Riemann’s zeta function

In the early 1970’s a remarkable connection was unexpectedly discovered between two
very different fields, nuclear physics and number theory, when it was noticed that random
matrix theory accurately modelled many problems in the latter as well [16]. The theory
of numbers deals with the arithmetic properties of integers 1, 2, 3, . . . , in particular of
prime numbers. The spacing between prime numbers can be related to the one of the
zeroes of a mathematical object, Riemann’s zeta function, and the statistical properties
of these can be set in contact with the ones of the eigenvalues of a certain class of random
matrices.

The Riemann zeta function is defined as

ζ(s) =
∞∑
n=1

1

ns
=
∏

p primes

(
1− 1

ps

)−1
(4.10)
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for complex s with real part greater than 1.
The prime number theorem states that the number of primes smaller than x is Li(x) +

o(Li(x)), where Li(x) =
∫ x
2
dt/ ln t and for x large, Li(x) ' x/ lnx. Riemann observed

that the error term in the prime number theorem [14] is expressed in terms of a sum over
the zeros of the Riemann zeta function.

The zeta function defined in eq. (4.10) has so-called trivial zeros at all negative even
integers s = −2, −4, −6, . . . , and “nontrivial zeros” at complex values s = σ + it for s
in the critical strip 0 < σ < 1. The Riemann hypothesis dates from 1859 and asserts that
the nontrivial zeros of ζ(s) all have real part σ = R[s] = 1/2, a line called the critical
line.

Riemann stated “...it is very probable that all roots are real. Of course one would wish
for a rigorous proof here; I have for the time being, after some fleeting vain attempts,
provisionally put aside the search for this, as it appears dispensable for the immediate
objective of my investigation.” (He was discussing a version of the zeta function, mod-
ified so that its roots (zeros) are real rather than on the critical line.) The hypothesis
still remains unproven and is one of the millennium prize problems stated by the Clay
Mathematics Institute, see http://www.claymath.org/millennium-problems.

Assuming the validity of Riemann’s hypothesis, the non-trivial zeroes lie on a straight
line along the imaginary direction in the complex plane. It therefore makes sense to study
the distribution of distances between adjacent zeros. It was noticed by Montgomery and
Dyson [15] that the agreement between the pair correlation of the zeroes of the ζ function
and the eigenvalues of complex Hermitian random matrices is amazingly good. Since
then the numerical checks of this hypothesis have been numerous and the accuracy of the
agreement between the two kinds of correlation functions became just amazing.

4.2.5 QCD

Quantum chromodynamics (QCD) is a gauge theory with a gauge field that describes
gluons. This gauge field lives in the Lie algebra of the group G = U(Nc) with Nc the
number of colors. Therefore, A is an anti-Hermitian matrix of size Nc.

The effective coupling constant in quantum chromodynamics becomes large at large
distances where the perturbation theory is not applicable and there is no small parameter
in this theory.

Although Nc = 3 in QCD, ’t Hooft proposed to study a generalization of QCD in the
limit Nc →∞ [17] to allow for the control of the Feyman diagram perturbative expansion,
and then recover Nc = 3 by perturbation theory in an 1/Nc expansion. The motivation
was an expansion in the inverse number of field components N in statistical mechanics
that allows to solve the O(N) model (recall the Phase Transition Lectures) in the large N
limit exactly. Indeed, the expansion of QCD in the inverse number of colours 1/Nc (known
as the 1/Nc expansion) is such that only planar diagrams of the type in Fig. 4.5 survive
in the perturbative expansion when the large-Nc limit is taken. Moreover, the diagrams
of the perturbation theory grouped by the power of 1/Nc are also grouped according to
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their topology (e.g. genus number). As in statistical physics models, there is a large
Nc → ∞ limit with a proper choice of the scaling of coupling constants, in which the
remaining theory is non-trivial. Following the line of reasoning of Wigner, the Nc × Nc

matrix is random and the Nc → ∞ generalization of QCD becomes a theory of large
random matrices. For the simplest case of the Hermitian one-matrix model, which is
related to the problem of enumeration of graphs, an explicit solution at large Nc was first
obtained by Brézin, Itzykson, Parisi & Zuber [28]. The problem consists in computing

Z =

∫
dM e−Nc TrV (M) (4.11)

with M an Nc × Nc Hermitian matrix and a proper choice of the potential V (M). The
problem to solve is similar to the computation of Wigner’s semicircle law for the GOE
although perturbed by the interactions in V (M).

Figure 4.5: A planar graph in large Nc matrix model theory with cubic interactions. The double
lines correspond to the two indices in the square matrix M . Its dual graph (depicted by bold
lines) is constructed from equilateral triangles.

4.3 Distribution of level spacings

In this Section we explain the origin of the Poisson and Wigner distribution functions
for the energy spacings. The problem is set as follows. Consider an energy interval
∆E, measure (or compute it if possible!) the energy levels that fall in this interval
E1 ≤ E2 ≤ . . . and let Sn be the consecutive splittings Sn = En+1 − En. The average

12
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value D = 〈Sn〉 is the mean splitting over the energy interval ∆E and one considers the
relative quantity sn = Sn/〈Sn〉 = Sn/D. The probability density of s is called p(s).

4.3.1 Numerics

The first numerical investigation of the distribution of successive eigenvalues associated
with random matrices was carried out by Porter and Rozenzweig in the late 1950’s [63].
They diagonalised a large number of matrices where the elements are generated randomly
but constrained by a probability distribution. The analytical theory developed in parallel
with their work. At the time it was clear that the spacing distribution was not influenced
significantly by the chosen form of the probability distribution of the individual elements.
Remarkably, the distribution of the eigenvalue spacings of the N ×N matrices had forms
given almost exactly by the original Wigner distribution of the 2× 2 matrices (see TD2).

4.3.2 Independent levels: Poisson distribution

One can imagine the energies as being points placed on a real axis. If these positions
were independent and not correlated, the probability that any En will fall between E and
E + dE is independent of E and is simply ρdE, where ρ is the average number of levels
in a unit interval of energy ∆E. We will find ρ = D−1 = 〈S〉−1, see below.

Let us determine the probability of a spacing S; that is, given a level at E, what is the
probability of having no level in the interval I = (E,E + S) and one level in the interval
dI = (E + S,E + S + dS). A sketch of this interval is shown in Fig. 4.6 (where x0 = E,
x = E + S and x+ dx = E + S + dS). We call this infinitesimal probability p(S)dS.

Figure 4.6: The interval partition, from [13].

We first look at the first interval I = (E,E + S) and we investigate the condition of
having no level in it. We divide the interval I intom equal parts each of length dE = S/m:

I = (E,E + S) = (E,E + S/m] U (E + S/m,E + 2S/m] U . . .

U (E + (m− 2)S/m,E + (m− 1)S/m] U (E + (m− 1)S/m,E + S) (4.12)

Since the levels are independent, the probability of having no level in (E,E +S) is the
product of the probabilities of having no level, 1 − ρdE = 1 − ρS/m, in any of these m
parts

P (no level in I = (E,E + S)) =

(
1− ρS

m

)m
(4.13)

13
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and in the large m limit

lim
m→∞

P (no level in I = (E,E + S)) = e−ρS . (4.14)

Instead, the infinitesimal probability of having a level in the remaining infinitesimal
interval going from E + S to E + S + dS, the interval dI = dS, is ρdS. Therefore, the
searched probability is just the product (again, the independence hypothesis used) of the
two factors just derived:

p(S)dS = ρe−ρSdS . (4.15)

A simple calculation yields

〈S〉 =

∫ ∞
0

dS p(S)S = ρ−1 . (4.16)

Therefore, in terms of the normalised variable s = S/〈S〉 = ρS, or with the general
notation for the averaged level splitting D = 〈S〉 = ρ−1, one has

p(s)ds = e−sds . (4.17)

This is known as the Poisson distribution or the spacing rule for random independent
levels.

4.3.3 Correlated levels: Wigner’s argument

We now revisit the same question. The probability we are searching is the one of
occurrence of the two events, B = no-level in (E,E+S) and A = one level in (E+S,E+
S+dS). That is P (S) = P (A∩B). Therefore, we need to find this joint probability that,
for brevity, we called A ∩B.

We no longer use independence of events but the definition of the conditional proba-
bility of A given B, P (A/B), to write P (A ∩ B) = P (A/B)P (B), with P (B) the prior
probability of B. Going back to the notation of the problem at hand, calling as before I
the interval (E,E + S) in the right-hand-side of the following equation, P (S) = p(S)dS
and the level spacing probability density p(S) is such that

p(S)dS = P (one level in dI/no level in I) P (no level in I) (4.18)

Now,

P (no level in I) =

∫ Smax

S

dS ′ p(S ′) , (4.19)

meaning that we need to have all level spacing larger than S not to have a level in the
interval I = (E,E + S). We called Smax the maximal possible value of the level spacing.
We call

µ(S)dS ≡ P (one level in dI/no level in I) . (4.20)

14
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Therefore, Eq. (4.18) reads

p(S) = µ(S)

∫ Smax

S

dS ′ p(S ′) (4.21)

and can be solved2 for p(S) to yield

p(S) = C ′ µ(S) e
−
∫ Smax

S
dS′ µ(S′)

. (4.22)

From here one can obtain the two limiting results, Poisson and Wigner.
For a Poisson case, the two events A and B are independent, µ(S) = µ and

pPoisson(S) = C µ e−µS . (4.23)

The normalisation of the probability density
∫ Smax

0
dS pPoisson(S) = 1 and the fact that we

want to deal with the splittings measured with respect to their mean,
∫ Smax

0
dS S pPoisson(S)

= 〈S〉 = D, fix µ = 1 and C = 1/µ. Finally,

pPoisson(s) = e−s . (4.24)

If, instead, one assumes µ(S) = aβS, mimicking level repulsion, p(S) takes the Wigner
form

pWigner(S) = Caβ S e
−
∫ Smax

S
dS′ aβS

′
= C ′aβ S e

aβ
2
S2

. (4.25)

If we now use the normalisation condition and we require that the average of s be one to
work with the normalised splitting, we fix aβ = −π/2 and C ′aβ = π/2 and

pWigner(s) =
π

2
s e−

π
4
s2 . (4.26)

In TD2 we will study the pdf of the distances between eigenvalues of a 2×2 real
symmetric matrix with elements drawn from a Gaussian probability function and the
symmetry imposed as in Eq. (4.9). We will find that p(s) exactly takes the form (4.26).

The take-home message from these calculations is that the eigenvalues of a random
matrix are not independent.

2First, write the equation as y(S) ≡ p(S)/µ(S) =
∫ Smax

S
dS′ y(S′)µ(S′), next as ẏ(S) = −y(S)µ(S),

and from here ln y(S) = −
∫ S

dS′ µ(S′) + cst.
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In general, the joint probability distribution of the eigenvalues of a random matrix
does not factorise: ρ(λ1, . . . , λN) 6= ρ(λ1) . . . ρ(λN).

4.4 The Gaussian orthogonal ensemble

For a number of nuclear physics (and other applications) the relevant random matrix
ensemble to use is the Gaussian orthogonal one in which the matrices are real and sym-
metric. The matrices have then N(N + 1)/2 independent elements, Mij with i ≤ j, and
the probability distribution is

p(M) =
∏
i≤j

pij(Mij) (4.27)

Exercise 4.2 Prove that the number of independent elements of an N ×N symmetric matrix is
N(N + 1)/2.

Since we argued that the choice of the pij is not important, as long as the variance is
finite, one uses a Gaussian pdf to draw each element in the matrix. As explained in the
TD 2, the construction of the M matrix as M = (A + AT )/2, with AT the transpose of
A, and A a matrix with i.i.d. elements drawn from a Gaussian pdf with zero mean and
variance σ2 makes the elements of M be also Gaussian distributed with zero mean and

〈M2
ii〉 = σ2 〈M2

i 6=j〉 = σ2/2 . (4.28)

(In the nuclear physics context, the symmetry is a consequence of the invariance under
space rotations, see the proof in [5] for example.)

One then easily proves that∏
i≤j

pij(Mij) dMij = e−
1

2σ2
MTM

∏
i≤j

dMij ≡ p(M)dM (4.29)

with

p(M) = e−
1

2σ2
MTM and dM ≡

∏
i≤j

dMij . (4.30)

The ensemble is invariant under orthogonal transformations

M ′ = OTMO (4.31)

with O any real orthogonal matrix. Precisely, this means that the probability p(M)dM
that a matrix M will be in the volume element dM is invariant under orthogonal trans-
formations:

p(M)dM = p(M ′)dM ′ . (4.32)
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Exercise 4.3 A set of hints of how this result can be proven are given in TD 2. Find the
measure and the invariance for complex Hermitian (instead of real symmetric) matrices.

We have already shown that for symmetric matrices M = (A+ AT )/2, with Gaussian
elements, the measure can be rewritten as in Eq. (4.29) but this form is not restricted
to Gaussian elements, it is more general in the sense that is a consequence of the real
character and symmetry ofM . The invariance of the measure with respect to the rotations
imposes that it can only depend on N traces of the powers of M ,

TrM j =
N∑
n=1

λjn with j = 1, . . . , N (4.33)

where (λ1, . . . , λN) are the N eigenvalues ofM . Moreover, one can prove that for matrices
constructed with statistical independent elements, the traces of the first two powers are
enough, j = 1, 2, and these can only occur in the exponential. The zero mean of Mij

inhibits the presence of the j = 1 power. A compact expression is then

p(M) ∝ e−aTrM
TM , (4.34)

see also TD 2 for a proof of this statement, with the proportionality constant linked to
the need to normalise the pdf.

4.4.1 Joint probability function of eigenvalues

The issue is to deduce the joint probability distribution function of the eigenvalues
p(λ1, . . . , λN) implied by the Gaussian probability of the matrix elements (further con-
strained to build a symmetric matrix).

The real symmetric matrix has N × (N + 1)/2 independent elements. Therefore, such
a matrix can be parametrised with its N eigenvalues plus N(N + 1)/2−N = N(N −1)/2
other parameters that we call p` with ` = 1, . . . , N(N−1)/2. From the change of variables
form Mij to λn, p`

∏
i≤j

p({Mij})dMij =
N∏
n=1

(N−1)/2∏
`=1

p({λn, p`})dλndp` (4.35)

(with an abuse of notation we use the same symbol p for the two probability densities)
that implies that the joint probability density of the eigenvalues is the integral over all
parameters p` of the right-hand-side:

p({λn}) =

∫ ∏
`

dp` p({λn, p`}) =

∫ ∏
`

dp` p({Mij})
∣∣∣∣ ∂(M11,M12, . . . ,MNN)

∂(λ1, . . . , λN , p1, . . . , p(N−1)/2)

∣∣∣∣
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In the last identity we changed variables from λn, p` to Mij and we included the Jacobian
of the transformation of variables.

We now need to find the parameters p`. The matrix M can be diagonalised with an
orthogonal transformation

M = OTDO with OTO = 1 (4.36)

and D the diagonal matrix with elements equal to the eigenvalues λn ofM (we will assume
that the eigenvalues are non-degenerate, see [5] for the treatment of more general cases).
O is a matrix with real elements whose columns are the normalised eigenvectors of M ,
that can be chosen to be orthogonal. By taking variations of the two sides of eq. (4.36)
with respect to p` and manipulating in various ways the Jacobian (where the derivatives
of Mij with respect to p` appear) one ends with

p({λn}) =
∏

1≤j<k≤N

|λj − λk| ea+b
∑
n λn+c

∑
n λ

2
n (4.37)

(a detailed derivation with this method can be found in Mehta’s book [5], we will not
reproduce it here). With a simple linear change of variables from λn to xn the linear term
is eliminated and

p({xn}) = C
∏

1≤j<k≤N

|xj − xk| e−
1
2

∑
n x

2
n . (4.38)

One reckons that the two factors in this form have different effects:
– the Gaussian one kills any configuration of eigenvalues that are far from zero;
– the numerator kills the configurations in which two eigenvalues get too close to
each other, makes the eigenvalue ‘interact’ and it is at the heart of the level
repulsion.

Exercise 4.4 Use the joint pdf (4.38) to compute the level spacing distribution in the case of a
2×2 random symmetric matrix (the example in TD2) and verify that the same result is found.

The generalization that includes all three random matrix ensembles is such that the
product is replaced by the one of |xi − xj|β with β = 1, 2, 4.

4.4.2 The Coulomb gas

The joint probability density of the eigenvalues can be written as the Boltzmann factor
for a gas of charged particles interacting via a two dimensional Coulomb force. The equi-
librium density of this Coulomb gas is such as to make the potential energy a minimum,

18



4.4 The Gaussian orthogonal ensemble 4 RANDOM MATRICES

and this density is identified with the level density of the corresponding Gaussian ensem-
bles. Consider a gas of N point charges with positions xi free to move on the infinite
straight line −∞ < xi <∞. Suppose that the potential energy of the gas is given by

V ({xi}) =
1

2

N∑
i=1

x2i −
∑
i<j

ln |xi − xj| (4.39)

The first term in V represents a harmonic potential which attracts each charge indepen-
dently towards the origin x = 0; the second term represents an electrostatic repulsion
between each pair of charges. (The logarithmic function comes in if we assume the uni-
verse to be two-dimensional. The logarithmic form results from the requirement that
it obeys the two-dimensional Poisson equation. Therefore we have a 2d gas of charged
particles confined to move on a line.)

Let this charged gas be in thermodynamical equilibrium at a temperature T , so that
the probability density of the positions of the N charges is given by the Boltzmann weight

P ({xi}) = Z−1(β)e−βV ({xi}) . (4.40)

(Thinking in terms of moving point charges one could add to the potential energy the
kinetic energy. This, in any case, gives a trivial factor that depends on β and the mass of
the particles. We can simply ignore it.) We note that this expression is the probability
distribution of the eigenvalues provided that β = 1 in the GOE is interpreted as the
inverse temperature here!

Exact evaluation

The miracle now is that the integral over the positions of the point-like particles can
be computed exactly for any N

Z(β) =
(2π)N/2

βN/2 + βN(N − 1)/4

1

(Γ(1 + β/2))N

N∏
j=1

Γ(1 + βj/2) . (4.41)

The density of eigenvalues (the marginal probability) can then be simply computed by
performing the integral over N − 1 eigenvalues

ρ(xN) =

∫ ∞
−∞

dx1· · ·
∫ ∞
−∞

dxN−2

∫ ∞
−∞

dxN−1 P (x1, . . . , xN) . (4.42)

In this way, the eigenvalue density of the random matrices in the GOE can be derived
for any finite N . In the limit N → ∞ this distribution approaches the semi-circle law
depicted in Fig. 4.7.

Saddle-point evaluation
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There is another, simpler, way to compute the partition function in the large N limit.
The idea is to transform the partition sum into a functional integral that will be evaluated
by the saddle-point method. First of all, one rescales the eigenvalues

xi 7→ xi
√
βN (4.43)

so that the new xi in the right-hand-side are now O(1). The potential energy now reads

V 7→ V =
βN

2

N∑
i=1

x2i −
∑
i<j

ln |xi − xj|β + ct (4.44)

(where we recovered the power β in the logarithm, that would have been present for other
random matrix ensembles, for convenience) and the partition sum

Z(β) =
N∏
n=1

∫
dxi e

−βN2v({xi}) (4.45)

v({xi}) ≡
1

2N

N∑
i=1

x2i −
1

2N2

∑
i 6=j

ln |xi − xj| , (4.46)

Next, one introduces a (coarse-grained) one-particle counting function, ρ(x), through

ρ(x) =
1

N

N∑
n=1

δ(x− xn) (4.47)

that can be enforced into the discrete sum via the insertion of the identity

1 =

∫
Dρ[x] δ

(
ρ(x)− 1

N

N∑
n=1

δ(x− xn)

)
. (4.48)

The partition function then reads

Z(β) ∝
∫
Dρ[x]

∏
i

∫
dxi δ

(
ρ(x)− 1

N

N∏
i=1

∫
dxi δ(x− xi)

)
e−βN

2v({xi}) . (4.49)

We now use the identities

1

N

N∑
i=1

f(xi) =

∫
dx ρ(x)f(x) , (4.50)

1

N2

N∑
i=1

N∑
j=1

g(xi, xj) =

∫
dx ρ(x)ρ(y)g(x, y) , (4.51)
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to write the potential as

v(ρ(x)) =
1

2

∫ ∞
−∞

dx x2ρ(x)− 1

2

∫ ∞
−∞

dx

∫ ∞
−∞

dy ln |x− y|ρ(x)ρ(y) (4.52)

where we have traded the {xi} dependence into a ρ(x) one (a short distance cut-off is
needed to cure the diverge at x→ y, we ignore it here).

Since there is no more {xi} dependence in v the mutiple-integral over the eigenvalues
can now be computed. It yields an entropy (recall the calculations on the fully-connected
Ising model) since it basically counts how many micro-state configurations yield the same
ρ(x). Without entering into the details of this computation that can be found in [9], one
obtains

IN(ρ(x)) = e−N
∫
dx ρ(x) ln ρ(x) (4.53)

the Shannon entropy, as one could have expected. We note now that the potential energy
contribution to the action is orderN2 while the entropic one is only orderN . It is therefore
negligible in this case.

The level density is then obtained from the minimisation of just the potential energy
expression v(ρ) under the constraint∫ ∞

−∞
dx ρ(x) = 1 (4.54)

that can be imposed with a Lagrange multiplier that we call κ, in the form κ
(∫

dxρ(x)− 1
)

to be added to v(ρ) and build the full “action” S(ρ, κ).
The functional saddle point δS[ρ, κ]/δρ(x) = 0, and the variation of S[ρ, κ] with respect

to κ lead to

0 =
x2

2
−
∫
dx′ρsp(x′) ln |x− x′| − κsp , (4.55)

1 =

∫ ∞
−∞

dx′ ρsp(x′) , (4.56)

respectively. The task is now to solve the first of these two equations constrained by the
second. After a number of steps detailed in [5, 9] one finds the semi-circle law

ρ(x) =

{
1/π
√

2− x2 |x| < 2−1/2

0 |x| ≥ 2−1/2
(4.57)

The edges of the semicircle are called soft: for large but finite N , there is always a
nonzero probability of sampling eigenvalues exceeding the edge points. (Other ensembles
have spectral densities with hard edges which the eigenvalues can never cross.)

There are many independent derivations of the semi-circle law for the eigenvalue den-
sity. In TD 2 we will see a combinatorial one. Interestingly enough, the semi-circle law
can also be derived with the replica trick used to study disordered systems [29].
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Figure 4.7: The semi-circle law eigenvalue distribution of matrices in the Gaussian orthogonal
ensemble, with the horizontal and vertical axes normalised by

√
N to make the non-trivial interval

be of finite extent. The limit N →∞ has been taken in this figure in such a way that the edges
are sharp and ρ is identical to zero beyond −2 and 2.

The full and exact calculation of the level spacing distribution is long and a bit tedious.
It can be found in [5] for this and the other ensembles.

Dyson proposed to define various expressions that relate to the energy-level series in
complete analogy with the classical notions of entropy, specific heat, and the like. One can
measure these observables from the experimental data and check in this way the theory.
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