
LECTURE 1

1. The Gaussian Orthogonal Ensemble

As the eigenvalues of a large matrix depend on the entries of the matrix in
a rather complicated manner (they are the zeros of a polynomial of high de-
gree whose and the coefficients of the polynomial are products of the matrix
elements), it would seem that it’s very difficult to express the distribution of
the eigenvalues in terms of the distribution of the entries in general. Indeed,
if you give me a large matrix with random entries whose joint distribution
is arbitrary, it’s likely to be impossible to say something explicit about the
distribution of the eigenvalues.

Due to this, it’s important to analyze certain prototype models - ones
where the distribution of the entries is especially simple and allows some
kind of exact solutions (it’s perhaps a small miracle that such models even
exist). Then one might be able to deduce qualitative properties of more
general cases if it can be argued that the general ones can be approximated
by the simpler ones.

Historically, this is perhaps how at least some parts of random matrix
theory has developed: results are first proven for some prototype models,
and later it has been noticed that some of these results are universal - can
be extended to far more general ones. We will focus very heavily on the
prototype models in these lectures.

1.1. Definition of the GOE. Perhaps the best known random matrix
model is the one known as the Gaussian Orthogonal Ensemble (GOE) which
is a model for random symmetric matrices (i.e. matrices A satisfying AT =
A) whose entries are independent (up to the symmetricity constraint) normal
random variables. The main reason for studying this particular model is that
the distribution of its eigenvalues is very explicit and can be analyzed quite
efficiently.

Let (Hii)
∞
i=1 be i.i.d. (that is independent and identically distributed)

Gaussian random variables with zero expectation and variance 2 (i.e. Hii ∼
N(0, 2)) and let (Hij)1≤i<j<∞ be i.i.d. standard Gaussian random variables,
i.e. Hij ∼ N(0, 1), and assume that they are independent of (Hii).

Let N be a positive integer. Then the probability distribution of the
random (symmetric) matrix

(1) HN =


H11 H12 · · · H1N

H12 H22 · · · H2N
...

...
. . .

...
H1N H2N · · · HNN


is called the Gaussian Orthogonal Ensemble (GOE or GOE(N) for short).
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2 LECTURE 1

The reason for having a different variance on the diagonal is that we can
express the probability distribution of HN (that is the joint distribution of
its entries) in a particularly useful way (the usefulness will become apparent
when we begin the study of the eigenvalues).

Lemma 1. The joint distribution of the elements (Hi,j)1≤i≤j≤N can be writ-
ten as

(2) CNe
− 1

4
TrH2

dH,

where CN is a normalizing constant whose precise value is not important to
us, Tr denotes the trace of a matrix - i.e. the sum of its diagonal entries,
or equivalently the sum of its eigenvalues. Here dH means

(3) dH =
∏
i≤j

dHij .

To be more specific, what this means is for example if f is any say bounded
continuous function defined on the space of N×N symmetric matrices, then
if we write Ef(HN ) for the expectation of f(HN ), then

(4) Ef(HN ) = CN

∫
f(H)e−

1
4
TrH2

dH.

In some situations this is more convenient than simply expressing the
joint distribution of the entries as a product of Gaussian distributions.

Proof of Lemma 1. Recall that our entries are independent so their joint
distribution is simply the product of their distributions. So their joint dis-
tribution is

N∏
i=1

1√
4π
e−

1
4
H2

ii

∏
1≤i<j≤N

1√
2π
e−

1
2
H2

ij(5)

=
1√
2

(2π)−
N
2 (2π)−

N(N−1)
4 e−

1
4 [
∑N

i=1H
2
ii+2

∑
1≤i<j≤N H2

ij]

=
1√
2

(2π)−
N(N+1)

4 e−
1
4 [
∑N

i=1H
2
ii+

∑
i 6=j H

2
ij]

=
1√
2

(2π)−
N(N+1)

4 e−
1
4 [
∑N

i,j=1H
2
ij]

=
1√
2

(2π)−
N(N+1)

4 e−
1
4

∑N
i=1[

∑N
j=1HijHji]

=
1√
2

(2π)−
N(N+1)

4 e−
1
4

∑N
i=1(H

2)ii

=
1√
2

(2π)−
N(N+1)

4 e−
1
4
Tr(H2).

In the first step we simply took the constants out of the product and
changed a product of exponentials into an exponential of sums. In the
second step we used the fact that Hij = Hji so that

∑
i<j H

2
ij =

∑
i>j H

2
ij =
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1
2

∑
i 6=j H

2
ij . We then combined the two sums and interpreted

∑
i,j H

2
ij as

TrH2. We also note that the constant is

(6) CN =
1√
2

(2π)−
N(N+1)

4 .

In calculating it, we used the fact that the number of pairs (i, j) with
1 ≤ i < j ≤ N is N(N − 1)/2. �

One reason the GOE is so special is that it has a high degree of symmetry.
Namely it is invariant under conjugation by orthogonal matrices. More
precisely, if HN is a GOE matrix and ON is a N × N orthogonal matrix,
then the distribution of OTNHNON is the same as the distribution of HN .
This follows from the Gaussian nature of the entries, as well as the way we
chose the variances. Also it is why the name of the GOE has the O (for
invariance under orthogonal transformations) in it. We’ll prove this now.

Lemma 2. Let HN be a GOE(N) matrix, and let ON be a non-random
N ×N orthogonal matrix. Then the distribution of HN is the same as the
distribution of ONHNOTN .

Proof. The claim essentially says that for any nice enough function f defined
on the space of N × N symmetric matrices (say continuous and bounded)
Ef(ONHNOTN ) = Ef(HN ). Let us thus write the first expectation in integral
form and try to transform it into the integral form of the latter one.

Using the facts that Tr(AB) = Tr(BA) and OTNON = I, where I is
the N × N identity matrix (this essentially the definition of an orthogonal
matrix), we see that Tr[ONHO

T
N ]2 = TrONH

2OTN = TrH2. Thus we only
need to check that d[ONHO

T
N ] = dH, or more precisely, the absolute value

of the Jacobian determinant from the transformation H 7→ ONHO
T
N is one.

Let us write down explicitly the entries of ONHO
T
N :

(7) (ONHO
T
N )ij =

N∑
k,l=1

ON,ikHkl(O
T
N )lj =

N∑
k,l=1

ON,ikON,jlHkl.

The Jacobian matrix of this transformation will be a matrix whose columns
(labelled by pairs (i, j) with i ≤ j) are derivatives of (ONHO

T
N )ij with re-

spect to the variables Hkl (the pairs (k, l) with k ≤ l labelling the rows of
the matrix). These derivatives are simple to calculate from (7):

(8)
∂

∂Hkl
(ONHO

T
N )ij = ON,ikON,jl.

If we write J(ON ) for the Jacobian matrix, we see that its entries are the
following

(9) J(ON )(i,j),(k,l) = ON,ikON,jl.

Note that detJ(ON ) really just depends on ON , and not on H in any
way. Our goal is to see that |det J(ON )| = 1 for all orthogonal matrices
ON .
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The first ingredient we’ll need for proving this is that if we perform two
changes of variables, then by the product rule of differentiation, the Jacobian
of the combination of the two change of variables will be the product of
the two individual ones. In our case, this means that if UN is another
orthogonal matrix, then J(ONUN ) = J(ON )J(UN ) so det(J(ONUN )) =
det J(ON ) det J(UN ).

The next thing to note is that

[J(ON )T ](i,j),(k,l) = J(ON )(k,l),(i,j)(10)

= ON,kiON,lj

= (OTN )ik(O
T
N )jl

= J(OTN )(i,j),(k,l),

so that J(ON )T = J(OTN ). As transposing a matrix does not affect its
determinant, we see that det J(OTN ) = detJ(ON ).

Finally we note that of course if we perform no change of variables, then
the Jacobian matrix is simply the identity matrix: J(I) = I and det J(I) =
1. Putting these remarks together, we see the following:

[det J(ON )]2 = det J(ON ) det J(OTN )(11)

= det J(ONO
T
N )

= det J(I)

= 1.

Thus | det J(ON )| = 1.
�

A fact we’ll not show here is that the only symmetric random matrix
whose entries are independent (up to the symmetricity constraint) and whose
distribution is invariant under orthogonal transformations is the GOE - so
the orthogonal invariance is a very special property of the Gaussian nature
of the matrices.

2. Eigenvalue distribution of the GOE

The main goal of this section is to prove the following theorem which
gives an explicit formula for the distribution of the eigenvalues of a GOE
matrix.

Theorem 3. Let HN be a GOE(N) matrix. Let (λ
(N)
1 , ..., λ

(N)
N ) be the eigen-

values of HN . The probability distribution of (λ
(N)
1 , ..., λ

(N)
N ) (on RN ) is

(12)
1

ZN

∏
1≤i<j≤N

|λi − λj |
N∏
j=1

e−
1
4
λ2jdλj ,

where ZN is a normalization constant we won’t calculate (though it can be
calculated explicitly by making use of so-called Selberg integrals).
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The proof is rather involved and in fact there are a couple things we’ll
skip and refer to the book [1] on. The proof itself is not that important to
what will come later in the course but the result is fundamental. Working
out the case N = 2 explicitly might be an instructive exercise.

Proof. To set the stage, note that we want to prove the for a bounded
continuous function f : RN → R,

(13) Ef
(
λ
(N)
1 , ..., λ

(N)
N

)
=

1

ZN

∫
RN

f(λ1, ..., λN )
∏
i<j

|λi − λj |
N∏
j=1

e−
1
4
λ2jdλj .

To do this, we point out that e−
1
4
TrH2

N = e−
1
4

∑
j(λ

(N)
j )2 so what we’ll need

to show is that dH can actually be written in a form where such a product
over the eigenvalues appears. To do this, we’ll want to write a generic
symmetric matrix H in terms of its eigenvalues and some other parameters.
We then make a corresponding change of variables in the integral, and the
product will come out from calculating the Jacobian determinant. There
are some difficulties because this change of variables will not be valid on the
whole space of symmetric matrices, but we’ll have to restrict to a subset of
it, but it turns out that this subset is almost the whole space in the sense
that the probability of it is one. We begin by studying this representation
of H in terms of its eigenvalues and other parameters. We then calculate
the Jacobian, and refer to [1] about the issues with the change of variables
not being valid on the entire space.

The change of variables we’ll want to make use of is essentially the one
coming from diagonalizing HN . The problem with this is that if we want to
change the integration variables from H to (O,Λ), where O is orthogonal,
Λ is diagonal, and H = OTΛO, then this mapping is not a bijection (one
to one and onto). When changing integration variables, this is important to
avoid overcounting and to make sure that it also is valid everywhere in the
region of integration. Also this mapping may not be smooth on the whole
space of symmetric matrices, so the Jacobian might not be well defined.

The idea is to then to restrict to a subset of the space of symmetric
matrices where this type of change of variables is unique and smooth. On
this set, it’ll turn out that the Jacobian factorizes nicely into a Λ-dependent
part and an O-dependent part which will gives us our claim once we show

that the event that H(1)
N is not in this good subset has probability zero.

Consider now what kind of non-uniqueness and smoothness problems one
might have in the mapping H 7→ (Λ, O) where H = OTΛO. First of all,
recall that questions about eigenvectors and eigenvalues are simpler if all of
the eigenvalues are distinct. It’s perhaps natural to expect that an event
where two eigenvalues are equal would have probability zero as this set
is of lower dimension than the full set. For a simpler analogue of such a
question, consider a random vector (X,Y ) where X and Y are independent
normal random variables. Then the event X = Y will have probability zero.
While in our case there are more complicated correlations, it might still seem
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reasonable to expect such a situation. We’ll be more precise about this later
on. Let us assume for now that all of the eigenvalues are distinct. We recall
from linear algebra that we can write our matrix H as

(14) H =
N∑
j=1

λjvjv
T
j = OTΛO

where Hvj = λjvj , vj are normalized to be of unit length, O is the matrix
whose rows are vTj and Λ is the diagonal matrix whose entries are λj (in

the same order as the rows of O). Now any matrix which is obtained by
permuting simultaneously the λjs and vjs results in the same matrix H.
Thus we have N ! such representations. Let us thus fix one representation
by demanding that if Λij = λiδij , then λ1 > λ2 > ... > λN .

We also point out that if we replace vj by −vj , the matrix H =
∑

j λjvjv
T
j

does not change. Moreover, the event that say one of the diagonal elements
of O is zero would seem again to have probability zero as the set is lower
dimensional than the full set. Thus let us also require that all of the diagonal
entries of O are positive.

This set will not quite be sufficient for us, but let us add further con-
straints as we run into problems. So we define the set AN to be the set of
symmetric matrices H which can be written in the form H = OTΛO, where
O is orthogonal with strictly positive diagonal entries, and Λ is a diagonal
matrix satisfying Λ11 > Λ22 > · · · > ΛNN .

Let us now try to parametrize the matrix O appearing here - it has N×N
entries, but these satisfy lots of constraints as the rows of O are orthonormal
vectors, so let us try to find a way to parametrize these constraints (express
the entries of O in terms of parameters without any constraints). Let us
look at the first row of O. We write it as

(15) vT1 = (O11 O12 · · · O1N ) = O11(1 p12 · · · p1N ).

As this is a unit vector, we have O2
11

[
1 +

∑N
j=2 p

2
1j

]
= 1 so we can solve

for O11 in terms of the p1j . As we demanded that O11 > 0, we have

(16) O11 =
1√

1 +
∑N

j=2 p
2
1j

.

We’ll want to view the variables p1j as the ”unconstrained” real param-
eters - note that each choice of them produces a unique unit vector vT1 and
vT1 depends smoothly on the parameters. Also as p1j run through R, the
first column of O runs through the space of unit vectors whose first entry is
positive. Let us then look at the second row of O. We write

(17) vT2 = (O21 O22 · · · O2N ) = O22(q21 1 p23 · · · p2N ).
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Here we have different notation for the entry before the 1 in the vector as
we’ll not interpret it as an independent parameter but something depending
on the pij . From the condition that vT2 is a unit vector and O22 > 0, we find

(18) O22 =
1√

1 + q221 +
∑N

j=3 p
2
2j

.

From the condition that vT1 and vT2 are orthogonal, we can solve

(19) q21 = −

p12 +
N∑
j=3

p1jp2j

 .
Thus each {pij : i ∈ {1, 2}, j > i} produces a unique pair of orthonormal

vectors vT1 and vT2 , and these vectors depend smoothly on the parameters
pij .

We keep doing this: write

(20) vTk = (Ok1 · · · OkN ) = Okk(qk1 · · · qk,k−1 1 pk,k+1 · · · pk,N ).

The idea is then to solve for qk1, ..., qk,k−1 in terms of the parameters

{pij : i ≤ k − 1, j > i} from the conditions that vTk is orthogonal to vTj for
j ≤ k − 1. Okk is expressed in terms of everything else from the condition
that vTk is a unit vector. We encounter a problem here as nothing ensures
that the linear system of equations that qk1, ..., qk,k−1 satisfies has a solution.
But it will turn out that the event where the system of equations does not
have a solution is again ”lower dimensional” and has zero probability. Let
us look more carefully at this linear system of equations. The condition
that vTk is orthogonal to vTj for j < k can be written as (we choose to write

the entries of vTj in terms of O as this will allow us to formulate our final

condition in terms of O which is more convenient)

(21)

k−1∑
l=1

Ojlqkl +Oj,k +

N∑
l=k+1

Ojlpkl = 0.

In matrix form, we write this as


O11 O12 · · · O1,k−1
O21 O22 · · · O2,k−1

...
... · · ·

...
Ok−1,1 Ok−1,2 · · · Ok−1,k−1




qk1
qk2
...

qk,k−1

(22)

= −


O1k +

∑N
l=k+1O1lpkl

O2k +
∑N

l=k+1O2lpkl
...

Ok−1,k +
∑N

l=k+1Ok−1,lpkl


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Thus the condition that qk1, ..., qk,k−1 can be uniquely expressed in terms
of (Oij)i<k for all k is that the determinant of the matrix

(23)


O11 O12 · · · O1,k−1
O21 O22 · · · O2,k−1

...
... · · ·

...
Ok−1,1 Ok−1,2 · · · Ok−1,k−1



is non-zero for all k. This again seems like a constraint which is satisfied with
probability one as the determinant being zero is a set of lower dimension.
Let us now define BN to be the set of symmetric matrices H which can be
written as H = OTΛO, where Λ is diagonal and satisfies Λii > Λi+1,i+1 for

all i, and O is orthogonal and satisfies: Oii > 0 for all i, and det(Oij)
k
i,j=1 6= 0

for all k = 1, ..., N . On this set, we see (inductively) that O can be written

in terms of the parameters (pij)i<j , and let us write B̃N for the subset of

RN(N−1)/2 which is the projection of BN under the bijection relating O and
(pij)i<j .

Recall that our goal is to calculate the Jacobian determinant which con-
sists of partial derivatives so we’ll need to know that O depends smoothly on
the pij . This can again be argued recursively. Note O11 depends smoothly
on the p1j , so the first row of O depends smoothly on the pij . Now consider
the kth row and assume that all the rows above it depend smoothly on the
pij . Fro the linear system the qkj satisfy, we see that they depend only on
things on rows above the kth row, and on the pkj . Moreover, from Cramer’s
rule, we see that the only problems with differentiability would occur if the
determinant of the matrix (Oij)i,j≤k−1 vanished but we restricted to the set
BN where this does not happen. Thus the qkj are smooth and we see by
induction that this is true for all rows.

Let us write O(p) for this function from B̃N to the space of N × N
orthogonal matrices. Also let ∆N = {λ ∈ RN : λ1 > λ2 > ... > λN}. We

then define the function H : B̃N ×∆N to the space of symmetric matrices
by

(24) H(p, λ) = O(p)TΛ(λ)O(p),

where Λ(λ)ij = λiδij . Let us now begin calculating the Jacobian of the
change of variables H = H(p, λ). We thus want to calculate ∂pijH(p, λ) for
all i < j and ∂λiH(p, λ). Let us start with the latter one which is simpler.
We have
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[∂λiH(p, λ)]k,l =
[
O(p)T∂λiΛ(λ)O(p)

]
k,l

(25)

=

N∑
r,s=1

Ork(p)∂λiΛrs(λ)Osl(p)

=

N∑
r,s=1

Ork(p)δriδsiOsl(p)

= Oik(p)Oil(p).

We’ll find it a bit more convenient to express the derivatives conjugated
by O - using the orthogonality of O (i.e. OTO = OOT = I)

(26)
[
O(p)∂λiH(p, λ)O(p)T

]
kl

= δkiδli.

Consider then the p-derivatives. First of all, we have

(27) ∂pijH(p, λ) =
[
∂pijO(p)

]T
Λ(λ)O(p) +O(p)TΛ(λ)

[
∂pijO(p)

]
so if we multiply from the left by O(p) and right by O(p)T , we find

(28)

O(p)∂pijH(p, λ)O(p)T =
[
O(p)∂pijO(p)T

]
Λ(λ) + Λ(λ)

[
∂pijO(p)O(p)T

]
.

Using orthogonality of O (i.e. as O(p)O(p)T = I, its derivative vanishes)
we find by the product rule of differentiation that

(29) ∂pijO(p)O(p)T = −O(p)∂pijO(p)T

which implies that

(30)

O(p)∂pijH(p, λ)O(p)T =
[
O(p)∂pijO(p)T

]
Λ(λ)− Λ(λ)

[
O(p)∂pijO(p)T

]
.

In component form this is:

(
O(p)∂pijH(p, λ)O(p)T

)
kl

=

N∑
r=1

[
O(p)∂pijO(p)T

]
kr

Λrl(λ)(31)

−
N∑
r=1

Λkr(λ)
[
O(p)∂pijO(p)T

]
rl

= (λl − λk)
[
O(p)∂pijO(p)T

]
kl
.

Let us now organize the array (pij)i<j into a sequence (πl)
N(N−1)/2
l=1 by

enumerating the pairs (i, j) in some arbitrary way that we’ll fix from now
on. We then define for k = 1, ..., N(N + 1)/2
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(32) zk =

{
λk, k ≤ N
πk−N , k > N

.

The Jacobian matrix of our transformation is then

(33)

J(λ, p) =


∂H11
∂z1

· · · ∂HNN
∂z1

∂H12
∂z1

· · · ∂HN−1,N

∂z1
...

. . .
...

...
. . .

...
∂H11

∂zN(N+1)/2
· · · ∂HNN

∂zN(N+1)/2

∂H12
∂zN(N+1)/2

· · · ∂HN−1,N

∂zN(N+1)/2


Note that if we write Q(r) = O(p)∂zrH(λ, p)O(p)T , then

(34)
∂Hij

∂zr
= (O(p)TQ(r)O(p))ij =

N∑
l,m=1

OliOmjQ
(r)
lm ,

and by (26) ad (31) we have

(35) Q
(r)
lm =

{
δlrδmr, r ≤ N
(λm − λl)[O(p)∂zrO(p)T ]lm, r ≥ N

.

We point out that for each r, Q
(r)
lm = Q

(r)
ml . Now note that each column of

J can be written as

(36)


∂z1Hij

∂z2Hij
...

∂zN(N+1)/2
Hij

 =

N∑
l,m=1

OliOmj


Q

(1)
lm

Q
(2)
lm
...

Q
(N(N+1)/2)
lm

 .

Now by the multilinearity of the determinant, we can express each column
this way and then pull out the sums and O-terms out of the determinant to
find

det J(λ, p)

(37)

=
∑

l(1,1),m(1,1)

Ol(1,1),1Om(1,1),1 · · ·
∑

l(N−1,N),m(N−1,N)

Ol(N−1,N),N−1Om(N−1,N),N

(38)

×

∣∣∣∣∣∣∣∣
Q

(1)
l(1,1),m(1,1)

· · · Q
(1)
l(N,N),m(N,N)

Q
(1)
l(1,2),m(1,2)

· · · Q
(1)
l(N−1,N),m(N−1,N)

...
. . .

...
...

. . .
...

Q
(N(N+1)/2)
l(1,1),m(1,1)

· · · Q
(N(N+1)/2)
l(N,N),m(N,N)

Q
(N(N+1)/2)
l(1,2),m(1,2)

· · · Q
(N(N+1)/2)
l(N−1,N),m(N−1,N)

∣∣∣∣∣∣∣∣
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If any of the (l,m) indices on two distinct columns are equal, then the

determinant here vanishes. Moreover, asQ
(r)
lm = Q

(r)
ml , then if for two different

columns (indexed by say (l,m) and (l′,m′), we have (l,m) = (m′, l′) then
also the determinant vanishes. If we consider unordered pairs {l,m}, then
for 1 ≤ l,m ≤ N , there are precisely N(N + 1)/2 of these. This is exactly
the same amount of columns as the determinant we are interested in. So up
to permuting the columns, there is only a single way we can assign values
to the indices (l,m) without the determinant vanishing, more precisely, we
have

∣∣∣∣∣∣∣∣
Q

(1)
l(1,1),m(1,1)

· · · Q
(1)
l(N,N),m(N,N)

Q
(1)
l(1,2),m(1,2)

· · · Q
(1)
l(N−1,N),m(N−1,N)

...
. . .

...
...

. . .
...

Q
(N(N+1)/2)
l(1,1),m(1,1)

· · · Q
(N(N+1)/2)
l(N,N),m(N,N)

Q
(N(N+1)/2)
l(1,2),m(1,2)

· · · Q
(N(N+1)/2)
l(N−1,N),m(N−1,N)

∣∣∣∣∣∣∣∣

(39)

= αl,m

∣∣∣∣∣∣∣∣
Q

(1)
1,1 · · · Q

(1)
N,N Q

(1)
1,2 · · · Q

(1)
N−1,N

...
. . .

...
...

. . .
...

Q
(N(N+1)/2)
1,1 · · · Q

(N(N+1)/2)
N,N Q

(N(N+1)/2)
1,2 · · · Q

(N(N+1)/2)
N−1,N

∣∣∣∣∣∣∣∣ ,
where αl,m is zero if a pair of indices was the same, or otherwise ±1 (with
the sign depending on how we had to permute the rows). The determinant
is now independent of the summation indices so we can take it out of the
sum. Also it is the only thing that carries the λ-dependence so our task is

to calculate this determinant. To do this, note that the structure of Q
(r)
lm

implies that this determinant can be written in the form

(40)

∣∣∣∣IN×N 0
∗ DN(N−1)/2

∣∣∣∣ ,
where IN×N is the N × N identity matrix, 0 is a matrix of N rows and
N(N−1)/2 columns filled with zeroes, ∗ is a matrix of N(N−1)/2 columns
and N rows that we won’t care about DN(N−1)/2 is a matrix whose entries

are of the form Q
(r)
ij , where i < j and r > N .Due to this structure, the

determinant of the whole matrix actually equals det(DN(N−1)/2). Note that
the (i, j) row of DN(N−1)/2 is proportional to λi − λj , so we can pull it out
of the determinant for all i < j and as this leaves no λ-dependence in the
determinant, we find

(41) det(DN(N−1)/2) =
∏
i<j

(λi − λj)F (p).

We conclude that we can actually write

(42) det J(λ, p) =
∏
i<j

(λi − λj)F̃ (p),

for some function F̃ .
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To complete our proof, we need to know that the event BN (and equiv-

alently B̃N ) has probability one. For this, we refer to similar results in [1]:
Lemma 2.5.5, Lemma 2.5.6, and Lemma 2.5.7. Using these results we see
that

Ef
(
λ
(N)
1 , ..., λ

(N)
N

)
=

∫
BN

f(λ1, ..., λN )CNe
− 1

4
TrH2

dH(43)

+

∫
BC

N

f(λ1, ..., λN )CNe
− 1

4
TrH2

dH,

and the latter integral is zero because it is bounded by a constant times the
probability of the event BN (the function f is bounded).

Recall now that originally, when we wanted to calculate Ef(λ
(N)
1 , ..., λ

(N)
N ),

we assumed nothing about the ordering of the eigenvalues, but our calcula-
tion assumes that they are ordered. That being said, our argument would
have worked perfectly well for any ordering of the eigenvalues. The abso-
lute value of the Jacobian determinant would have been again of the form∏
i<j |λi − λj |G(p) for some non-negative function G which can depend on

the ordering. Also the suitable set B̃N would depend on the ordering. We
conclude that

(44)

Ef
(
λ
(N)
1 , ..., λ

(N)
N

)
=

1

ZN

∫
RN

f(λ1, ..., λN )
∏
i<j

|λi − λj |e−
1
4

∑N
j=1 λ

2
j

N∏
j=1

dλj ,

where the constant 1/ZN comes from summing the the p-integrals for differ-
ent orderings and the constant CN in the distribution of HN . Also we could
forget the condition about the eigenvalues being distinct because the integral
over the set where at least two are equal vanishes because the corresponding
set is not N -dimensional. �

Remark 4. As we saw that when the eigenvalues were ordered, the dis-
tribution of the whole matrix factored into the product of the distribution
of the eigenvalues and the distribution of the eigenvectors, we see that the
eigenvalues and eigenvectors are independent. Using the invariance under
orthogonal matrices, it wouldn’t be hard to check that the law of the eigen-
vectors is essentially given by the so called Haar measure on the orthogonal
group, but we don’t assume this to be a familiar concept to all of the students
following the course, so we don’t go into further detail. For further details,
see [1, Corollary 2.5.4].

Remark 5. Note that our proof would work just as well if the original
distribution was of the form e−TrV (H)dH, where V is some nice enough
function (here TrV (H) means

∑
j f(λj)).
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