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The Blume-Capel model is intended to reproduce the relevant features of superfluidity
in He3-He4 mixtures [1, 2, 3]. In this study, we will consider infinite range, mean-field like
interactions between the relevant variables. With this choice, the phase diagram can be
obtained analytically both within the canonical and the microcanonical ensembles [4, 5]
and the analysis enables one to get a better understanding of the effect of the non-additivity
on the thermodynamic behaviour of the model.

The Blume-Capel model is defined as follows [1, 2, 3]. On each site of a complete graph
one places a spin-1 variable, Si = ±1, 0. Each spin is coupled to all others with the same
strength J0 > 0. The Hamiltonian is given by

H = −
J0
2

∑

i 6=j

sisj +∆
∑

i

s2i (1)

with ∆ > 0. Let us start by analysing the parameter dependence in the Hamiltonian.

Energetic analysis

Consider the case ∆ = 0.

1. Which kind of order favours the exchange J0? What is the model obtained and what
does it describe?

2. How does one need to scale J0 to ensure a reasonable thermodynamic, N → ∞, limit
and the extensivity of the energy? Call the new relevant coupling parameter J .

3. What is the nature of the phase transition expected in this case? (We will derive it
below.)

Consider now ∆ 6= 0.

1. What is the role played by this parameter?

2. Which are the two states that you may expect to be ground states, in the canonical
ensemble, at zero temperature? Find the relation between the parameters ∆, J where
the preferred one changes. Discuss the result.
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The canonical ensemble.

1. Write the partition function.

2. Think about introducing the auxiliary variable x = N−1
∑

i si, as it is usually done
in the study of the fully-connect Ising model. In this case, in which the spins take
values ±1,0, which is the difficulty encountered?

3. Use an alternative method, the Hubbard-Stratonovich identity or Gaussian decou-
pling, to render the expression in the exponential of the partition sum, local in the
spin variable. Perform the sum over the spin variables explicitly.

4. Identify the “Ginzburg-Landau” free-energy density as a function of x and call it
f̃(x).

5. Show, in the N → ∞ limit, that the saddle-point value of x is equal to the sponta-
neous magnetisation per spin m.

6. Identify the extrema of the Ginzburg-Landau free-energy function and study their
stability.

7. Set up the Taylor expansion of the Ginzburg-Landau free-energy function around
x = 0 and find the critical line on which the coefficient of the quadratic term vanishes
and the one of the quartic term remains larger than zero. This is the second order

phase transition ending at a tricritrical point (∆/J, T/J)c where the two coefficients
vanish. Prove that the canonical tricritical point is located at J/(2∆) = 3/ ln 16 ≃

1.0820, βJ = 3.

8. The first order phase transition corresponds to the parameters (∆/J, T/J) on which
f̃(βJ, β∆, x 6= 0) = f̃(βJ, β∆, x = 0). Find the line with a numerical solution of
the corresponding equation.

9. Use a graphical facility to plot the Ginzburg-Landau free-energy function as a func-
tion of x for various values of the control parameters βJ and β∆. Confirm the results
found in the previous two items for the critical lines from the visual inspection of
the evolution of f̃(x).

10. Draw the canonical phase diagrams in the (∆/J, T/J) plane.

The microcanonical ensemble.

A microscopic configuration is determined by the number of spins taking value +1,
that we call N+, number of spins taking value −1, that we call N−, and the number of
spins taking value 0, that we call N0. We will now study the macroscopic observables as
functions of these number.

1. Write a constraint that relates N+, N−, N0 to the total number of spins N .

2. Write the total magnetisation, M =
∑

i si, the quadrupole moment Q =
∑

i s
2
i , the

total energy as functions of N+, N−, N0.

3. Calculate the number of microscopic configurations, Ω, that are compatible with the
macroscopic occupation numbers N+, N−, N0.

4. Using Stirling’s approximation, compute the entropy S = kB ln Ω and write it as
a function of m = M/N , q = Q/N and e = E/N . Note that one of this intensive
parameters is absent from s = S/N .
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5. We will fix the energy and look for the equilibrium magnetisation density values that
render the entropy maximal.

In the paramagnetic phase m = 0 and the Taylor expansion of s(m,e) around this
value has negative quadratic and quartic coefficients. The second order phase transi-
tion occurs when the coefficient of the quadratic term vanishes while the one of the
quartic term remains negative.

The tricritical point is located at the parameters such that the two coefficients vanish.

The microcanonical tricritical point is located at J/(2∆) ≃ 1.0813, βJ = 3.0272.
This has to be compared with the canonical tricritical point located at J/(2∆) ≃

1.0820, βJ = 3.

In conclusion the microcanonical critical line extends beyond the canonical one.

Références

[1] M. Blume, Phys. Rev. 141, 517 (1966).

[2] H. W. Capel, Physica (Utrecht) 32, 966 (1966); ibid 33, 295 (1967).

[3] M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4, 1071 (1971).
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