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1 TOOLS

1 Tools
These notes summarize some mathematical tools that you have to master before start-

ing the Statistical Mechanics Master 2 course. They are complemented by a series of
Exercises listed in the second Section. In their preparation we have benefitted from the
Preliminary Material prepared by Martin Lenz, Emmanuel Trizac and Fréderic van Wi-
jland for the 2016-2020 Statistical Mechanics Lectures. The topics covered are standard
and can also be found in many Lecture Notes and Books, see for example [1].

1.1 Definitions & limits

1.1.1 Polar coordinate system

The polar coordinate system is such that

êr = cosϕ êx + sinϕ êy , êϕ = − sinϕ êx + cosϕ êy . (1.1)

The Cartesian vectors êx and êy are orthogonal êx · êy = 0 and have unit modulus |êx|2 =
|êy|2 = 1. Consequently, êr · êϕ = 0 and |êr|2 = |êϕ|2 = 1.

Figure 1.1: Polar coordinates notation convention.

1.1.2 Volume of a sphere in n dimensions

Take an n-dimensional sphere with radius R. Its volume is

Vn(R) =
πn/2

Γ(n/2 + 1)
Rn ≡ ΩnR

n . (1.2)

Γ(x) is the Gamma-function Γ(x) =
∫∞
0
dytx−1e−y which for integer argument N equals

Γ(N) = (N − 1)!. Ωn is the angular contribution, also the volume of a unit radius
n-dimensional sphere.
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1.2 Probability theory 1 TOOLS

1.1.3 Stirling’s factorial approximation

Stirling formula gives an asymptotic expression for the factorial of a large number

N ! ∼
√

2πN

(
N

e

)N
, (1.3)

where the symbol ∼ indicates that the ratio of the two expressions tends to 1 for N →∞.
Taking the natural logarithm

lnN ! ∼ N lnN −N +
1

2
lnN +

1

2
ln(2π) = N lnN −N +O(lnN) . (1.4)

In Statistical Physics one usually works in the N � 1 limit in which one drops the
correction proportional to lnN and smaller terms.

1.2 Probability theory

Let P (x) be the probability density of a random variable X, so that P (x)dx is the
probability that X takes values between x and x + dx. P (x) ≥ 0 for all x and the
normalisation implies

∫
dxP (x) = 1. Typically, one indicates with angular brackets,

〈. . . 〉, the averages over P (x), for example 〈A〉 =
∫
dxP (x)A(x), for a generic function

A(X). The normalisation reads 〈1〉 = 1.

1.2.1 Scales

One usually characterises a probability distribution function (pdf) P by some scale
that could be its average, 〈X 〉 =

∫
dxP (x)x, or the typical value that the variable

X takes in a measurement, which is given by the maximum of P , xtyp = x such that
P (xtyp) = max

x
P (x). For some distributions 〈X 〉 and xtyp coincide while for other ones

they do not.

1.2.2 Moments & cumulants

The kth moment of P is the average of the kth power, 〈Xk〉 =
∫
dxP (x)xk.

Adding a source h that couples linearly to the random variable X one easily computes
all moments. Indeed, by taking derivatives with respect to h:

〈Xk 〉 =
∂k

∂hk

∫
dxP (x) ehx

∣∣∣∣
h=0

=
∂k

∂hk
〈ehX〉

∣∣∣∣
h=0

≡ ∂k

∂hk
Z(h)

∣∣∣∣
h=0

, (1.5)

where in the last equality we defined the generating function Z(h) ≡ 〈 ehX 〉. The latter
can also be written as

Z(h) =
∑
n≥0

hn

n!
〈Xn 〉 , (1.6)
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1.2 Probability theory 1 TOOLS

from the Taylor expansion of the exponential.
The function W (h) ≡ lnZ(h) is the generating function of the cumulants or connected

moments of P

〈Xk 〉c =
∂k

∂hk
W (h)

∣∣∣∣
h=0

. (1.7)

Accordingly,

W (h) ≡ lnZ(h) =
∑
n≥1

hn

n!
〈Xn 〉c . (1.8)

The moments are often called mk and the cumulants κk. Note that one is usually sloppy
with the notation and does not distinguish between X and x, typically using x all over.

1.2.3 Symmetries

One can often exploit symmetry properties to derive the result of an integral or a sum
without the need to make the explicit calculation, and therefore with no effort. In the
context of probability theory, the symmetry properties of the probability density P under,
for example, x 7→ −x, are typically used to prove that even or odd moments vanish.

1.2.4 The central limit theorem

In probability theory, the central limit theorem (CLT) establishes that, in many situa-
tions of interest, when independent random variables are added, their properly normalised
sum tends toward a normal (Gaussian) distributed variable (with a “bell curve”) even if
the elements in the sum are not normally distributed.

More precisely, for Xi independent identically distributed i.i.d. random variables with
finite average µ and variance σ2, the variable χ,

χ =
1

N

N∑
i=1

Xi , (1.9)

is Gaussian distributed with average 〈χ 〉 = µ and variance 〈 (χ− 〈χ 〉)2 〉 = σ2/N .
Other “attractor distributions” of sums of random variables appear, for example, when

the second moment of the elements Xi is not finite or they are not i.i.d.

1.2.5 Gaussian integrals

We focus here on real variables. Extensions to complex variables are relatively easy to
work out or can be found in textbooks.

One variable

The Gaussian integral is

I1 ≡
∫ ∞
−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 = 1 . (1.10)
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1.2 Probability theory 1 TOOLS

It is the normalisation condition of the Gaussian probability density written in the normal
form. It is then straightforward to show∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x = µ ,

∫ ∞
−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x2 = σ2 . (1.11)

The Hubbard-Stratonovich identify orGaussian decoupling is used to transform a quadratic
dependence (on η) into a linear one, at the price of introducing a Gaussian integral over
an auxiliary variable x:

e
η2

2σ2 =

∫ ∞
−∞

dx√
2πσ2

e−
x2

2σ2
+ ηx

σ2 . (1.12)

Another useful Gaussian identity is recovered from the previous one by setting η = ±iσ2:

〈 e±iX 〉 =

∫ ∞
−∞

dx√
2πσ2

e−
x2

2σ2 e±ix = e−
σ2

2 = e−
〈X2 〉

2 . (1.13)

N variables

The N -dimensional integral

IN ≡

(
N∏
i=1

∫ ∞
−∞

dxi

)
e−

1
2
~x tA~x+~x t~µ (1.14)

with

~x =


x1
x2
. . .
xN

 , ~µ =


µ1

µ2

. . .
µN

 , A =


A11 . . . A1N

A21 . . . A2N

. . .
AN1 . . . ANN

 ,

and
−1

2
~x tA~x+ ~x t~µ (1.15)

features the most generic quadratic form in the exponential. Note that A plays here
the role σ−2 in the single variable case and that we have not introduced a normalisation
(in the integration measure) such as the

√
2πσ2 in I1. For this reason we called IN

the N -dimensional integral in eq. (1.14) and we will construct the IN with the proper
normalisation below. One can keep the symmetric part (A+ At)/2 of the matrix A only
since the antisymmetric part (A − At)/2 yields a vanishing contribution once multiplied
by the vector ~x and its transposed. Focusing now on a symmetric matrix, At = A, that
we still call A we can ensure that it is diagonalisable and all its eigenvalues are positive
definite, λi > 0. One can then define A1/2 as the matrix such that A1/2A1/2 = A and its
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1.2 Probability theory 1 TOOLS

eigenvalues are the square root of the ones of A. Writing ~x tA~x = (~x tA1/2)(A1/2~x) = ~y t ~y,
the integral IN in (1.14) becomes

IN =

(
N∏
i=1

∫ ∞
−∞

dyi

)
J e−

1
2
~y t~y+~y t(A−1/2~µ) (1.16)

where J = det(A1/2)−1 = (detA)−1/2 is the Jacobian of the change of variables. Calling
~µ′ = A−1/2~µ one has the product of N integrals of the type I1; thus

IN = (2π)N/2 (detA)−1/2 e
1
2
~µ tA−1~µ (1.17)

It should be now clear how to write the normalised multi-variate Gaussian integral IN .

Several more compact notations for the multiple integrals
N∏
i=1

∫
dxi . . . are used in the

literature. For example,
∫
dx1 . . . dxN . . . or

∫
N∏
i=1

dxi . . . .

A scalar field in one dimension

Finally, the functional Gaussian integral is the continuum limit of the N -dimensional
one

~x ≡ (x1, . . . , xN)→ φ(x) , (1.18)

which one can interpret as the 1, . . . , N indices becoming the argument x ∈ R and the
x1, . . . , xN variables the field φ(x). Then

I =

∫
Dφ e−

1
2

∫
dx

∫
dy φ(x)A(x,y)φ(y)+

∫
dxφ(x)µ(x) . (1.19)

The functional integral runs over all functions φ(x) with the spatial point x living on the
real axis. The integral measure represents Dφ =

∏
x dφ(x) (think of real space approx-

imated by a one-dimensional lattice, or a chain, with sites x labeled by the lattice site
i = 1, . . . , N). The sum over ij in the first term in the exponential of the N -dimensional
integral IN became the double integral

∫
dx
∫
dy, while the single sum in the second term

is now just one integral
∫
dx. The first and the second terms in the exponential are

quadratic and linear in the field, respectively. In analogy with the IN case one has

I = (detA)−1/2 e
1
2

∫
dx

∫
dy µ(x)A−1(x,y)µ(y) (1.20)

where we ignore the proportionality constant which depends on the definition of the path-
integral measure Dφ (factors 2π). The actual value of this constant is not important since
it does not depend on the relevant parameters. The functional inverse A−1 appearing in
(1.20) is defined by ∫

dy A−1(x, y)A(y, z) = δ(x− z) (1.21)

and detA is a functional determinant.
The extension of these identities to vector N dimensional integrals, scalar fields defined

in d-dimensional space, etc. are straightforward.
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1.2 Probability theory 1 TOOLS

1.2.6 Novikov’s thm (integration by parts)

Take a random variable X with a Gaussian distribution with mean µ and variance σ2.
The next identity follows from a simple integration by parts〈

(X − µ)

σ2
f(X)

〉
=

∫
dx√
2πσ2

e−
(x−µ)2

2σ2
(x− µ)

σ2
f(x)=−

∫
dx√
2πσ2

d

dx

(
e−

(x−µ)2

2σ2

)
f(x)

=⇒ 〈 (X − µ) f(X) 〉 = σ2

∫
dx√
2πσ2

e−
(x−µ)2

2σ2
df(x)

dx
= σ2

〈
df(X)

dX

〉
, (1.22)

for any generic function f(X) decaying to zero at ±∞ sufficiently fast so as to neglect
the border contributions.

The generalisation of the latter to N -dimensional vectors reads

〈(Xi − µi)f( ~X)〉 =
N∑
j=1

〈(Xi − µi)(Xj − µj)〉

〈
∂f( ~X)

∂Xj

〉
(1.23)

since 〈(Xi − µi)(Xj − µj)〉 = (A−1)ij.

1.2.7 Wick’s theorem

Take a Gaussian variable X with mean 〈x 〉 = µ and variance σ2 = 〈X2 〉 − 〈X 〉2. Its
probability density is

P (x) = (2πσ2)−1/2 e−(x−µ)
2/(2σ2) . (1.24)

All moments 〈Xk 〉 can be computed with (1.5). One finds

〈 ehX 〉 = e
h2σ2

2
+hµ (1.25)

and then

〈Xk 〉 =
∂k

∂hk
e
h2σ2

2
+µh

∣∣∣∣
h=0

(1.26)

from where

〈X 〉 = µ , 〈X2 〉 = σ2 + µ2 ,
〈X3 〉 = 3σ2µ+ µ3 , 〈X4 〉 = 3σ4 + 6σ2µ2 + µ4

etc. One recognises the structure of Wick’s theorem: given k factors X one organises
them in pairs leaving the averages µ aside.

We note that keeping the average of the Gaussian variable different from zero is an-
noying. It is therefore convenient to translate it, X − µ 7→ X, or, equivalently, change
variables to Y = X − µ. By working with the new variable one sets, effectively, the
average to zero.
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1.2 Probability theory 1 TOOLS

The simplest way of seeing Wick’s theorem in action is by drawing examples with the
contractions. For example, for 〈X4〉:

〈X4 〉 = 〈 X X X X 〉

〈X4 〉 = 3 〈 X2 〉2 (1.27)

If, instead of computing moments one focuses on cumulants, one has to focus onW (h) =
lnZ(h) = µ+ h2σ2

2
and its derivatives with respect to h:

〈X 〉c = 0 , 〈X2 〉c = σ2 , 〈Xk 〉c = 0 ∀ k ≥ 3 , (1.28)

and the cumulant expansion stops at order 2 (included) for a Gaussian variable.
The generalisation to N Gaussian variables is immediate. Equation (1.25) becomes

〈 e~h~x 〉 = e
1
2
~hA−1~h+~h~µ (1.29)

and the generalization of (1.26) leads to

〈xi 〉 = µi , 〈xixj 〉 = A−1ij + µiµj , (1.30)

etc. In other words, wherever there is σ2 in the single variable case we replace it by A−1ij
with the corresponding indices, and µ by µi.

The generalisation to a field theory necessitates the introduction of functional deriva-
tives that we describe below. For completeness we present the result for a scalar field in
d dimensions:

〈φ(~x) 〉 = µ(~x) , 〈φ(~x)φ(~y) 〉 = A−1(~x, ~y) + µ(~x)µ(~y) , (1.31)

etc.

1.2.8 Jensen’s inequality

Jensen’s inequality relates the value of a convex function of an integral to the integral
of the convex function. In its simplest form the inequality states that the convex transfor-
mation of a mean is less than or equal to the mean applied after convex transformation;
it is a simple corollary that the opposite is true of concave transformations.

In probability theory, the Jensen’s inequality implies that, for X a random variable
and f a convex function, then

f(〈X 〉) ≤ 〈 f(X) 〉 . (1.1)

9



1.3 Functional analysis 1 TOOLS

We recall that a function is convex function iff ∀x1, x2 and t ∈ [0, 1]:

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) . (1.2)

1.3 Functional analysis

A functional F [h] is a function of a scalar function h : ~x → h(~x). The variation of
a functional F when one changes the function h by an infinitesimal amount allows one
to define the functional derivative. More precisely, one defines δF ≡ F [h + δh] − F [h].
Next, and one tries to write this infinitesimal increment as δF =

∫
ddx α(~x)δh(~x) +

1
2

∫
ddxddy β(~x, ~y) δh(~x)δh(~y)+. . . . The successive functional derivatives of F with respect

to h evaluated at the spatial point ~x, ~x and ~y, etc. are then defined as

δF

δh(~x)
= α(~x) ,

δ2F

δh(~x)δh(~y)
= β(~x, ~y) (1.3)

etc. In particular
δφ(~x)

δφ(~y)
= δd(~x− ~y) . (1.4)

These definitions are such that all usual properties of partial derivatives apply: the vari-
ation of a sum of functionals is the sum of the variations (linearity), the variation of a
product of two functionals is the variation of the first times the second one plus the first
one times the variation of the second one (product rule) and the chain rule

δF [φ(~y)]

δφ(~x)
= F ′[φ(~y)]

δφ(~y)

δφ(~x)
= F ′[φ(~y)] δ(~x− ~y) . (1.5)

Most Hamiltonians or Ginzburg-Landau free-energies can be written as the space in-
tegral of a density which is a functional of φ(~x) and ~∇φ(~x):

F [φ] =

∫
ddx f [φ(~x), ~∇φ(~x)] . (1.6)

10



1.4 Fourier transforms and series 1 TOOLS

Its variation with respect to φ reads

δF [φ]

δφ(~x)
=

δ

δφ(~x)

∫
ddy f [φ(~y), ~∇φ(~y)] =

∫
ddy

δ

δφ(~x)
f [φ(~y), ~∇φ(~y)]

=

∫
ddy

{
∂f

∂φ

δφ(~y)

δφ(~x)
+

∂f

∂~∇φ
· δ
~∇φ(~y)

δφ(~x)

}

=

∫
ddy

{
∂f

∂φ
δd(~x− ~y) +

∂f

∂~∇φ
· ~∇~y

δφ(~y)

δφ(~x)

}
=

∫
ddy

{
∂f

∂φ
δd(~x− ~y) +

∂f

∂~∇φ
· ~∇~y δ

d(~x− ~y)

}
=

∫
ddy

{
∂f

∂φ
δd(~x− ~y)−

(
~∇~y ·

∂f

∂~∇φ

)
δd(~x− ~y)

}
=

∂f

∂φ
(~x)− ~∇~x ·

∂f

∂~∇φ
(~x) . (1.7)

One either assumes that φ(~x) vanishes at the boundaries of its domain of definition or it
satisfies periodic boundary conditions.

The generalization to vectorial or tensorial cases is straightforward.

1.4 Fourier transforms and series

1.4.1 Discrete Fourier transforms

The discrete Fourier transform is the linear and invertible transformation of a sequence
of N complex numbers {fn} = f1, f2, . . . , fN into another sequence of complex numbers,
{f̃k} = f̃1, f̃2 . . . , f̃N . It is defined by

Fk({fn}) = f̃k =
1

A

N∑
n=1

fn e
−i 2π

N
kn (1.8)

with inverse

fn = F−1n ({f̃k}) =
A

N

N∑
k=1

f̃k e
i 2π
N
kn . (1.9)

The normalisation factor A is arbitrary and, in this discrete formulation is usually set to
A = 1. The freedom to choose A is reflected in the variety of conventions found in the
literature.

These definitions can be applied to temporal, equally delayed, measurements, with
tN = Nτ the total duration of the measurement, and τ the delay between subsequent
ones. A generic discrete instant is then denoted tn = nτ . The Fourier transform indices

11



1.4 Fourier transforms and series 1 TOOLS

k order the angular frequencies, ωk = 2πk/(τN) = 2πk/tN and the expression in the
exponential can be rewritten as i2π

N
kn = iωktn.

fn could also be a complex function defined on an N -site lattice with spacing a and
total linear length L = Na. In this case, the dimension full variables are xn = na and
qk = 2πk/(aN) = 2πk/L. The expression in the exponential becomes i2π

N
kn = iqkxn.

Some interesting limits are the following. For concreteness, we focus on the spatial
notation, with xn = na.

– Let us take N → ∞ and a → 0 with L = Na fixed. This is the limit of a
continuous but finite interval. The space points xn tend to the real variable x.

We can now express f̃k as an integral involving f(x). The most convenient con-
vention to use is A = 1/a. Starting from the definition f̃k = a

∑N
n=1 e

i2πk/N n fn =

a
∑N

n=1 e
iqkxn fn with qk = 2πk/L, we then convert the summation a

∑N
n=1 into an

integral
∫ L
0
dx, and we arrive at f̃qk =

∫ L
0
dx f(x) eiqkx. Note that qk takes discrete

values indexed by k.

One can also proceed backwards, fn = 1
Na

∑N
k=1 f̃k e

−i 2π
N
kn converts into f(x) =

1
L

∑∞
k=1 f̃k e

−iqkx with qk = 2kπ
L

and k ∈ N.

– Let f(τ) be a periodic function of a continuous variable τ (we interpret it as a
time) with period β. Using the results pertaining to a continuous but finite interval
discussed in the previous item, f̃ωk = β−1

∫ β
0
dτ f(τ) eiωkτ . The integral can be

computed on any interval of length β.

– We now consider N →∞ with L/N = a fixed. This is the limit of an infinite lat-
tice. Show that in this limit fn = a

∫ +π/a

−π/a
dq
2π
f̃q e

−iqna (we are back to the convention
A = 1).

1.4.2 Continuous real d-dimensional space

In the vectorial d-dimensional infinite volume case one defines

f̃(~q) =
1

A

∫
Rd
ddx f(~x) ei~q·~x and f(~r) = A

∫
Rd

ddq

(2π)d
f̃(~q) e−i~q·~x .

One may choose A = 1. Integrations over ~q then go hand in hand with (2π)d factors. A
useful relation is ∫

Rd

ddq

(2π)d
e−i~q·~x = δ(d)(~x) (1.10)

The so-called Plancherel-Parseval relation for two complex functions f and g is∫
Rd
ddx f(~x) g(~x) =

∫
Rd

ddq

(2π)d
f̃(~q) g̃(−~q) . (1.11)

12



1.5 The saddle-point method 1 TOOLS

In quantum mechanics, one tends to like a symmetric f ↔ f̃ connection, which requires
choosing A = (2π)d/2. A similar goal may be achieved, say in 1 dimension, by working
with ordinary frequency rather than with angular frequency:

f̃(ν) =

∫
R
f(x) e2iπνx dx and f(x) =

∫
R
f̃(ν) e−2iπνx dν.

In so doing, 2π factors appear in the exponentials, but not elsewhere. Indeed,
∫
dν e−2iπνx =

δ(x) and the Plancherel-Parseval relation reads∫
dx f(x)g(x) =

∫
dν f̃(ν)g̃(−ν) (1.12)

Taking now g(x) = f ∗(x):∫
dx
∣∣f(x)

∣∣2 =

∫
dν
∣∣f̃(ν)

∣∣2 since
[
f̃(ν)

]∗
= f̃ ∗(−ν) . (1.13)

Finally, attention should be paid to the domain of definition of the function f(x) to be
Fourier-analyzed. For d = 1:

– If x ∈ R, then q ∈ R.

– If f is periodic of period L, then q = 2πk/L, where k ∈ Z.

– If f is defined on an N -site lattice with constant a, then qk = 2πk/(Na), where
k = 0, 1, . . . N − 1 (or, if N is even, k = −N/2 + 1, . . . , N/2 − 1, N/2). If N → ∞
(infinite lattice) at fixed a, 0 ≤ q ≤ 2π/a or equivalently −π/a ≤ q ≤ π/a. If
N →∞ and Na = L is fixed, the qk remain discrete and we are back to a periodic
function results with period L. Finally, beyond the one-dimensional case, more
complex lattices are met, leading to non-trivial so-called Brillouin zones in Fourier
space, where ~q vectors should be restricted.

1.5 The saddle-point method

Imagine one has to compute the following integral

I ≡
∫ b

a

dx e−Nf(x) , (1.1)

with f(x) a positive definite function in the interval [a, b], in the limit N →∞. It is clear
that due to the rapid exponential decay of the integrand, the integral will be dominated
by the minimum of the function f in the interval. Assuming there is only one absolute
minimum, x0 ∈ [a, b], one then Taylor expands f(x) upto second order

f(x) = f(x0) +
1

2
f ′′(x0)(x− x0)2 +O((x− x0)3) (1.2)
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1.5 The saddle-point method 1 TOOLS

and, dropping the O((x− x0)3) corrections obtains

I ∼ e−Nf(x0)
∫ b

a

dx e−N
1
2
f ′′(x0)(x−x0)2 = e−Nf(x0) [Nf ′′(x0)]

−1/2
∫ yb

ya

dy e−
1
2
(y−y0)2 , (1.3)

where we implicitly assumed f ′′(x0) ≥ 0. In the transformed variables y0 ≡
√
Nf ′′(x0)x0

and similarly for ya and yb. The Gaussian integral is just an error function and one can
finds its numerical value in Tables. This is the saddle point method also called the method
of steepest descent or Laplace’s method.

One readily proves

I ≡
∫ b

a

dx e−Nf(x) g(x) ∼ e−Nf(x0) [Nf ′′(x0)]
−1/2 g(x0) , (1.4)

f there are more than one minima in [a, b] one should, in principle, sum the contribution
from each. However, one will be the dominant one. Interesting phenomena occurs when
on varying a parameter minimum rises above the other. Then the asymptotic expression
for the integral changes in a non-analytic way. In statistical physics, this is the mechanism
for a first order phase transition.

In cases in which there is no absolute minimum within the integration interval, the
integral is dominated by its lower bound. The first derivative of f may not vanish there
and the Taylor expansion reads f(x) = f(a) + f ′(a)(x− a) +O((x− a)2). Applying this
expansion to first order to the example,

I ∼ e−Nf(a)
∫ b

a

dx e−Nf
′(a)(x−a) = e−Nf(a) [Nf ′(a)]−1 [e−Nf

′(a)(b−a) − 1]

∼ −e−Nf(a) [Nf ′(a)]−1 . (1.5)

where we further ssumed f ′(a) > 0 One has to check whether the contribution of higher
order terms is actually negligible.

This argument can be extended to multidimensional integrals.
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2 EXERCISES

2 Exercises

2.1 Definitions & limits

2.1.1 Stirling’s factorial approximation

(a) Plot lnN ! and its approximation in Eq. (1.3) for various N and compare.

2.2 Probability theory

2.2.1 Scales

(a) Show that 〈X 〉 = xtyp for a Gaussian pdf.

(b) Find a well-know pdf for which 〈X 〉 6= xtyp.

(c) Which is the most common situation, 〈X 〉 = xtyp or 〈X 〉 6= xtyp?

2.2.2 Moments & cumulants

(a) Take an exponential probability density P (x) = 1
2
e−|x|. Calculate the momenta

〈Xk 〉 and cumulants 〈Xk 〉c.

(b) For an arbitrary P find a few generic relations between cumulants and momenta.

(c) Take a random variable X with a Lévy distribution P (x) =
√
c/(2π) e−c/2x/x3/2

with c a constant fixed by normalisation. Compare the tail (x � 1) of this proba-
bility density to the one of the conventional Poisson or Gaussian variables. What
do you observe? Compute the generic momentum 〈Xk 〉 of such a Lévy variable.
Are these finite? For which k?
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2.3 Functional derivatives 2 EXERCISES

2.2.3 Symmetries

(a) Show that the odd moments of a symmetric pdf P with support on the interval
[−a, a] vanish.

(b) Show that the even moments of a anti-symmetric pdf P with support on the interval
[−a, a] vanish.

(c) Use symmetry arguments to show the first identity in (1.11).

2.2.4 Gaussian integrals

1. Take two correlated Gaussian random variables X and Y . We know the five corre-
lations 〈X 〉 = 0, 〈Y 〉 = 0, 〈X2 〉 = 3, 〈XY 〉 = 1, 〈Y 2 〉 = 2.

(a) Calculate the averages 〈X4 〉, 〈X3Y 〉, 〈X2Y 2 〉, 〈XY 3 〉, 〈Y 4 〉.
(b) Which is the Gaussian distribution that yields these averages?

2.2.5 The central limit theorem

(a) Plot the probability distribution of χ = N−1
∑N

i=1Xi, with Xi i.i.d. Gaussian ran-
dom variables with mean µ and variance σ2, for N = 1, 2, 3, 4, 5, 10, 100. Conclude.

(b) Repeat for Xi i.i.d. Lévy random variables. Is the sum χ converging to a Gaussian
random variable? Discuss.

2.3 Functional derivatives

Let q(t) be a function of time t and S[q] be a functional of q. The functional derivative
of S with respect to q(t0) is defined such that when q → q+δq (meaning that the trajectory
q(t) is perturbed by δq(t)), the functional changes from S to S + δS, with

δS =

∫
dt′

δS

δq(t′)
δq(t′) , (2.6)

to first order in δq. This relation defines the functional derivative δS/δq(t′), which is a
functional of q and a function of t′.

1. What is δq(t1)
δq(t2)

?
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2.4 Saddle-point REFERENCES

2. If S can be written in the form S[q] =
∫∞
0
dt L(q(t), q̇(t)), where L is a function of

q(t) and q̇(t), prove that δS
δq(t0)

= ∂L
∂q
− d

dt
∂L
∂q̇

where everything is evaluated at t = t0.
In mechanics, L is a Lagrangian while S is an action.

3. If now S[φ] is a functional of a field φ living in d-dimensional space, such that
S[φ] =

∫
ddx L(φ, ∂µφ), (where µ = 1, . . . , d refers to space directions), explain why

δS
δφ(~x0)

= ∂L
∂φ
− ∂µ ∂L

∂∂µφ
(at ~x0).

4. Let S[φ] =
∫
dx
(

1
2

(
dφ
dx

)2
+ r

2
φ2
)
. Determine δS

δφ(x1)
and then δ2S

δφ(x2)δφ(x1)
.

Remember the connection between functional derivatives and Euler-Lagrange equa-
tions. Besides, our first order expansion Eq. (2.6) can be pushed one order higher:

δS = S[q + δq]− S[q] =

∫
δS

δq(t′)
δq(t′) dt′ +

1

2

∫
δ2S

δq(t′)δq(t′′)

∣∣∣∣
q

δq(t′) δq(t′′) dt′ dt′′.

Side comment: functional derivatives and functional integrals have nothing to do with
each other, in the sense that our introductory discussion does not involve any functional
integration, but simple integration instead.

2.4 Saddle-point

1. Use Laplace’s method to prove Stirling’s approximation of N !. Hint: start from
N ! = Γ(N + 1) =

∫∞
0
dx e−xxN .
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