$T D 2$: The Blume - Capel model

$$
\begin{aligned}
& \text { On each site of a complete graph ('rfuely connected' model) } \\
& \text { one sets a spin-1 variable } S_{i}= \pm 1,0 \text {. } \\
& \text { eouzling strength } J_{0}>0 \text { (for } \forall S_{i} \text {). }
\end{aligned}
$$

$$
H=-\frac{J_{0}}{2} \sum_{i \neq j}^{i} s_{i} s_{j}+\Delta \sum_{i} s_{i}^{2} \quad \Delta>0, J_{0}>0
$$

Energetic analysis:

- $\Delta=0$

1) The interaction energy of all pass of spins is the same.
\Rightarrow WRIE-WEISS MAGNET.
Their interaction depends on N : to get H extensive, $O(N)$,
2) we need to have Jo $\rightarrow \frac{J}{N}$.

Infinite barge interactions basically leads to the
absence of any physical dimension.
Homietorion Hi is space - independent.
3) Nature of the please transition.
\# of solutions depend on the temperature T.
Without field there is only 1 solution ($m_{0}=0$) at $\beta<\frac{1}{J}$.
$F=U$-TS dominated by the entropy (DIsordered phase
ND EPOMTANEDUS MAGNET.)
As $T \neq 2$ solutions appear $m \pm 1$.
At low T, \mp is dominated by the internal energy \Rightarrow ordered prase $\beta c=\frac{1}{\sigma}$.

- $\Delta \neq 0$

1) Role played by Δ.
Δ is a measure of the EnERGY DIFFEREnCE between the state $s i=+1 \forall$ and the state $s i=0 \forall \forall$, let's say Between the FM And THE PI I configurations.
2) Two state to be expected as ground states?

$$
\begin{aligned}
& s_{i}= \pm 1 \quad \forall i \quad \text { or } \quad \text { si }=0 \quad \forall i \\
& E_{F i}=-\frac{J}{2 N} \sum_{i \neq j} 1+\Delta N=-\frac{J}{2 N}\left(N^{2}-N\right)+\Delta N= \\
&=\left(-\frac{J}{2}+\Delta\right) N+\frac{J}{2} \xrightarrow[\lim _{N>1}]{ }\left(-\frac{J}{2}+\Delta\right) N
\end{aligned}
$$

$$
E_{P M}=H(\{s i=0\})=0 \Rightarrow \Delta E=E_{F n}-E_{2 n} \cong\left(\Delta-\frac{J}{2}\right) N \lim _{N \rightarrow 1} \quad \Delta>\frac{J}{2}: \Delta E>0
$$

Ferromagn = GS
We can then make a guess for the phase diagram, from on energetic analysis at $T=0$.

- cAnoNIcal ENSEmble
(1) $z=\sum^{-\beta H[\{s i\}]}$ function of (J, Δ, β)

First remark: it Does nor depend on ell parameters.
The phase diagram depend on $(\beta J, \Delta 1 J)$

Sometimes you an find $k=\beta J \quad \delta=\Delta / J$
(2) Introduce the awxitiery venable

$$
\begin{aligned}
& -\beta H\left[\left\{s^{\prime}\right\}\right]=+\frac{\beta J}{2 N} \sum_{i \neq j} s_{i} s_{j}-\beta \Delta \sum_{i} s_{i}^{2} \\
& \underbrace{\frac{1}{N} \sum_{i} s_{i} \frac{1}{N} \sum_{j} s_{j}}_{N\left(\frac{1}{N} \sum_{i} s_{i}\right)^{2}}-\underbrace{\frac{1}{N} \sum_{i} s_{i}^{2}}_{1 \text { (if using sans) }} \\
& \text { HEs .. } \rightarrow \text { negligible w.r.t } \Delta \\
& -\beta H[\{s i\}]=\frac{\beta J}{2} N\left(\frac{1}{N} \sum_{i} S_{i}\right)^{2}-\left(\frac{\mu J}{2 N i}+\beta \Delta\right) \sum_{i} S_{i}^{2}
\end{aligned}
$$

- If the spins were Inning veniasles $x=-N,-N+\frac{2}{N},-N+\frac{G}{N} \ldots$ ane could tepee $\sum_{i s i t}^{1} \rightarrow \delta d x$ and the anterpll would be easy.

However, we have Sain-1 veriadles \Rightarrow Use AnOttice meTHOD.
(3) We introduce then a HUBBARD-STRATONOVICH TRANSORMATION useful to LINGARIZE A QUADRATIC EXPRESSION

$$
e^{b m^{2}}=\sqrt{\frac{b}{\pi}} \int_{-\infty}^{+\infty} d x e^{-b x^{2}+2 b m x}
$$

This identity cen be appered to "open" $\left(\sum_{i} S_{i}\right)^{2}$

$$
Z=\sum_{\{s s= \pm 1,0\}} e^{-\beta \Delta \sum_{i}^{N} s i^{2}} e^{e^{+\beta \frac{\beta}{N}\left(\sum_{i} s i\right)^{2}}}
$$

Let's fours first on this piece

$$
\Rightarrow \sqrt{\frac{\beta J N}{2 \pi}} \int_{-\infty}^{+\infty} d x \text { e } \frac{\beta-\frac{\beta J N}{2} x^{2}+\frac{x, \beta N}{2}\left(\frac{1}{N} \sum_{i} s i\right) x}{}
$$

where we can use: $m=\frac{1}{N} S_{i} \operatorname{si} \quad b=\frac{\beta J N}{2}$

- Mote that the "DIAGONAN TERM", generated by having tangfirmed $\sum_{i \neq j}$ an $\sum_{i j}$ is \ll than the $\sum_{i j}$ one $O(1)$ versus $O(N) \Rightarrow$ We neglect it.

Thanks to Hubbard-Stratonovich, we decoupled the spins at the exponential.

$$
\begin{aligned}
-\beta \Delta \sum_{i} \sin ^{2}+\beta J X \frac{1}{y} \sum_{i} \operatorname{si} x & =\sum_{i}\left[-\beta \Delta s^{2}+\beta \delta s_{i} x\right] \\
& =-\beta \sum_{i}\left(\Delta s^{2}-\delta x \text { si }\right)
\end{aligned}
$$

Now we can compute the sm er over $\sum_{i} x i$ (before integrating over x) because:

$$
\begin{aligned}
& e^{-\sum_{i} g_{i}}=\prod_{i} e^{-g_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { V } \\
& \begin{array}{l}
-\beta(\Delta-J x) \\
e \ldots e^{-} \ldots(\Delta+J x) \\
+1
\end{array} \\
& S_{i}=+1 \\
& S:=-1 \\
& \bar{B}=0
\end{aligned}
$$

$$
\begin{aligned}
Z & =\sum_{2 \beta= \pm 1,0\}}^{1} e^{-\beta \Delta \sum_{i}^{N}} x \sqrt{\frac{\beta J N}{2 \pi}} \int_{-\infty}^{2} d x e^{-\infty} \frac{\beta J N}{2} x^{2}+\frac{\beta J N}{2}\left(\underset{N}{N} \sum_{i}\right) x \\
& =\sqrt{\frac{\beta J N}{2 \pi}} \int_{-\infty}^{+\infty} d x e^{-\frac{\beta J N}{2} x^{2}}\left[1+e^{-\beta(\Delta-J x)}+e^{-\beta(\Delta+J x)}\right] \\
& =\sqrt{\frac{\beta J N}{2 \pi}} \int_{-\infty}^{+\infty} d x e^{-\infty}
\end{aligned}
$$

Where

$$
\tilde{f}(x)=\frac{\overline{J x^{2}}}{2}-\frac{1}{\beta} \ln \left[1+e^{-\beta \Delta} 2 \cosh (\beta J x)\right]
$$

This is the Ginzburg-Lendom free energy density as a function of x ("magnetization')
\downarrow ORDER PARAMETER OF THE FT-PM phases.
(5) Show that - in the $N \rightarrow \infty$ limit, the saddle point of $x=m$.
We define $I(\beta)=\lim _{N \rightarrow \infty} \int d x e^{-N \tilde{f}(x, \beta)}=e^{-N \operatorname{Inf} \tilde{f}(x, \beta)}$
We need to find the Assowte minimum x^{7} and ervelvate $\tilde{f}(x, p)$ on it.

$$
\begin{aligned}
& -\beta f(\beta J, \beta \Delta)=\frac{\ln Z}{N}=\frac{1}{N} \ln e^{-N \operatorname{Inf}} \underset{x}{ } \tilde{f}(x ; \beta J, \beta \Delta) \\
& f(\beta J, \beta \Delta)=\frac{\operatorname{Inf}}{x} \tilde{f}(x ; \beta J, \beta \Delta)
\end{aligned}
$$

Note also that $\tilde{f}(x ; \beta J, \beta \Delta)=\tilde{f}(-x ; \beta J, \beta \Delta)$, symmetric fraction w.r. t $x=0$.

- What is the $\operatorname{Inf} \tilde{f}$?

Its equal to $<\frac{1}{N} \sum_{i} s_{i}>=x^{*} \Rightarrow$ mepnextation density

Proof

$$
\begin{aligned}
\left.<\frac{1}{N} \sum_{i}^{\prime} s_{i}\right\rangle & =\frac{1}{Z} \sum_{\left\{s_{i}^{\prime}\right\}} e^{-\beta H}\left(\frac{1}{N} \sum_{i} s_{i}\right)= \\
& =\left.\frac{1}{\beta} \frac{\partial}{\partial h} \ln Z(h)\right|_{h=0} \text { generating fact. method }
\end{aligned}
$$

where $Z(h)=\sum_{\{\delta\}} e^{-\beta H+\beta h} \frac{1}{N} S: s i$

This corresponds to $H \rightarrow H-h \frac{1}{N} \sum_{i} S i$
uniform field coupled to mepnethat. density
As before:

$$
\begin{aligned}
& \beta \tilde{f}_{n}(x ; \beta J, \beta \Delta)=\beta \widetilde{f}(x ; \beta J, \beta \Delta)+\beta x h \\
& \Longrightarrow \frac{1}{N} \ln Z(h) \underset{N \rightarrow \infty}{\longrightarrow}+\frac{\not D}{\not x} \operatorname{Inf}_{x}[p \tilde{p}(x ; \beta J, p \Delta)+\beta x h] \\
& {\underset{\beta N D}{ }}_{\frac{\partial \ln Z(h)}{\partial h} \underset{N \rightarrow \infty}{ }+\frac{+\nu}{\forall \gamma} \frac{\beta x^{*}}{\beta}=x^{*} .} \\
& \frac{1}{N} \sum_{i}\left\langle\operatorname{sic}=x^{*}\right.
\end{aligned}
$$

(6) Jolentify the extreme of $\tilde{f}(x ; \beta=, \beta 0)$.

$$
\begin{aligned}
& \tilde{f}(x ; \beta J, \beta \Delta)=\frac{\partial x^{2}}{2}-\frac{1}{\beta} \ln \left[1+e^{-\beta \Delta} 2 \cosh (\beta J x)\right] \\
& \frac{\partial \tilde{f}}{\partial x}=0=J x-\frac{1}{\beta} \cdot \frac{e^{-\beta \Delta} 2 \sinh (\beta J x) \cdot{ }^{\beta} \beta^{\prime} \prime}{\left[1+e^{-\beta \Delta} 2 \cosh (\beta J x)\right]}
\end{aligned}
$$

However, implicit EQUATION for x^{*} !
cAnnot be solved analytically! $x=\frac{e^{-\beta \Delta} 2 \sinh (\beta J x)}{\left[1+e^{-\beta \Delta} 2 \cosh (\beta J x)\right]}$
Note however that $x=0$ is always solution.
(7) Taybs expansion around $x=0$
look for the parameters such that the quadratic coefficient <0
signature of a 2nd order phase hens:

$$
\begin{aligned}
& \tilde{f}^{\prime}(0)=0 \\
& \tilde{\tilde{f}^{\prime}}(x=0)=0 \\
& \tilde{f}^{\prime \prime}(x=0)=J-\frac{2 e^{-\beta \Delta}\left[\beta J \cosh (\beta J x)\left(1+e^{-\beta \Delta} 2 \cosh (\cdot)\right)\right.}{\left[1+e^{-\beta \Delta} 2 \cosh (\beta J x)\right]^{2}} \\
& \\
& \left.-\frac{\sinh (\beta J x) e^{-\beta \Delta} 2 \sinh (\beta J x) \cdot \beta J}{\cdots}\right)
\end{aligned}
$$

Dot a very good strategy.
Go back to $\tilde{f}^{\prime}(x)$ and expend around $x=0$

$$
\begin{aligned}
\tilde{f}^{\prime}(x) & =J x-\frac{2 J e^{-\beta \Delta} \sinh (\beta J x)}{1+e^{-\beta \Delta} 2 \cosh (\beta J x)}=0 \\
& \simeq t x-\frac{2 J e^{-\beta \Delta}-8 \beta x}{1+e^{-\beta \Delta} \cdot 2}=0 \\
\Rightarrow 1 & -\frac{2 e^{-\beta \Delta} \cdot \beta J}{1+2 e^{-\beta \Delta}}=0
\end{aligned}
$$

$$
1+2 e^{-\beta \Delta}-2 \beta J e^{-\beta \Delta}=0
$$

$$
\frac{1}{2} e^{\beta \Delta}+1-\beta J=0
$$

SECOND ORDER CRITICAL LINE

By imposing $\Delta=0 \Rightarrow\left(\frac{T}{J}\right)_{c}=\frac{2}{3} \quad 2 n d$-order phase troustion at this T_{c}.

This is somehow similes to $x=\tanh (\beta x)$ for the usual ting case. Our Junctional dependence is more complex, but same idea.
 $x \cong \beta x \Rightarrow \beta c=1$

$$
\frac{2 e^{-\beta \Delta} \sinh (p x)}{1+e^{-\beta \Delta} 2 \cosh (\beta x)} \underset{\text { with } J=1}{\stackrel{\text { same role }}{\leftrightarrows}} \tanh (\beta x)
$$

We can increase Δ (with $p \Delta \ll 1$)

$$
D=\frac{1}{2} \beta \Delta+1-\beta J \Rightarrow \beta J=1+\frac{1}{2} \beta \Delta
$$

We went to look at the prose diagram for ($\Delta \mid J$):

$$
\beta J=1+\frac{1}{2} \beta J\left(\frac{\Delta}{\bar{J}}\right) \rightarrow \beta J=\frac{1}{1-\frac{1}{2} \Delta / J}
$$

Is this wrong? It expanded $e^{\beta \Delta}$ arming $\beta \Delta \ll 1$ OK as long as B is finite. $\quad \frac{T}{J}=1-\frac{1}{2} \Delta / J$
(7) Ind order phase trusition ending at a TRICRITICAL POME ($\Delta \mid J, T(J)$ c where the quadratic and quartic coefficients of the expansion both vanish.

We shoulal observe phase transitions of different orders in T, Δ according to their values.

$$
\tilde{f}(x ; \beta J, \beta \Delta)=\frac{J x^{2}}{2}-\frac{1}{\beta} \ln \left[1+e^{-\beta \Delta} 2 \cosh (\beta J x)\right]
$$

- This form is symmetric under reversal $x \rightarrow-x$.
- The two x sp ${ }^{*} \neq 0$ must correspond to minimA of \tilde{f}, separated by a mAximum at $x s e=0$.

Let's expand $f(x)$ around $x \simeq 0$:

$$
f^{\prime}(x) \sim f^{\prime}(0)+f^{\prime \prime}(0) x+O\left(x^{2}\right)
$$

$$
\begin{aligned}
f^{\prime}(x) & \simeq 0+J\left[1-\frac{e^{-\beta \Delta} 2 \beta J}{1+2 e^{-\beta \Delta}}\right] x+0\left(x^{2}\right) \\
& \simeq 0+J\left[1-\frac{2 \beta J}{2+e^{\beta \Delta}}\right] x+\ldots
\end{aligned}
$$

This coefficient is zero by construction at THE CRITICAL POINT
$2+e^{\beta \Delta}-2 \beta J=0$ fixes the critical lune.
Going on with the expansion, we must keep only even powers:

$$
\begin{aligned}
& f^{\prime \prime \prime}(b)=0 \\
& f^{\prime \prime}(x)= 1\left\{-2 J^{4} \beta^{3}\left[-32+4 e^{2 \beta \Delta}+e^{\beta \Delta}\left(-13+e^{2 \beta \Delta}\right) \cosh (\beta J x)\right.\right. \\
& A(x) \\
&\left.\left.-4\left(-4+e^{2 \beta \Delta}\right) \cosh (2 \beta J x)+e^{\beta \Delta} \cosh (3 \beta J x)\right]\right\}
\end{aligned}
$$

where $A(x)=\left[e^{\beta \Delta}+2 \cosh (\beta J x)\right]^{4}$
from which we get: $f^{\prime \prime}(0)=-\frac{2 J^{4} \beta^{3}\left(-4+e^{\beta \Delta}\right)}{\left(2+e^{\beta \Delta}\right)^{2}}$
TRICRITICAL POINT OBTAINED BY $f^{\prime \prime}(6)=0$.

$$
4-e^{(\beta \Delta)_{c}}=0
$$

numerical solution :

$$
\left\{\begin{array}{l}
\left(\frac{\Delta}{J}\right)_{c}=\frac{\ln (4)}{3}=0.4621 \\
(\beta J)_{c}=3
\end{array}\right.
$$

(8) The list order phase transition corresponds to $\left(\frac{\Delta}{J}, \frac{I}{J}\right)$ on which $\tilde{f}(\beta J, p \Delta, x \neq 0)=\vec{f}(\beta J, \beta \Delta, x=0)$.
(9) One need then to compare numb EricAlly

$$
\tilde{f}\left(x^{*} \neq 0 ; \beta J, \Delta / J\right)=\tilde{f}(0 ; \beta J, \Delta \mid J)
$$

the minimum in x^{*} becomes a Maximum
 untie a spinsdal.

10

mickocanonical GSEEMBLE
N_{+}spins taking value +1
N - spins toleing value - 1
No with valve O
(1) Constant over these quantities.

$$
N_{+}+N_{-}+N_{0}=N
$$

(2) Write the total magnetization $M=\sum_{i}$ si

- $M_{1}=N_{+}(1)+N_{-}(-1)=N_{+}-N_{-}$
- Quadrupole moment $Q=\sum_{i} \sin ^{2}=N++N-$

From these 3 conditions, one cen extract N_{t}, N_{-}, N_{0} in terms of (N, M, Q).

- Total energy $H=-\frac{J}{2 N} \sum_{i \neq j} s i s j+\Delta \sum_{i} s i^{2}=$

$$
\begin{aligned}
& =-\frac{J}{2 N}\left(\sum_{i} S i\right)^{2}+\frac{J}{2 N} \cdot N+\Delta \sum_{i} S_{i}^{2}= \\
& =-\frac{J}{2 N} M^{2}+\frac{J}{2}+\Delta Q
\end{aligned}
$$

Or in a similar way as a function of $=$

$$
H=-\frac{J}{2 N}\left(N_{+}-N_{-}\right)^{2}+\frac{J_{1}}{2}+\Delta\left(N_{+}+N_{-}\right)-\frac{J}{2 N} M^{2}+\Delta Q .
$$

(3) \# of microseopic configurations Ω, compathble with the conotreints.

$$
\begin{aligned}
& \ln \Omega \rightarrow \text { "entropy" } \\
& \Omega=\frac{N!}{N_{+}!N_{-}!N_{0}!}
\end{aligned}
$$

Acconding to stiveing: $\ln N!\simeq N \ln N-N$

$$
\left\{\begin{array}{l}
\ln \Omega=\ln N!-\ln N_{+}!-\ln N_{-}!-\ln N_{0}! \\
N_{0}=N-\left(N_{-}+N_{+}\right)=N-N_{-}-N_{+} \\
M+Q=N_{+}-N_{-}+N_{+}+N_{-}=2 N_{+} \\
H-Q=N+-N--N+-N-=-2 N_{-}
\end{array}\right.
$$

$N_{+}=\frac{H+Q}{2}=\frac{N(m+q)}{2}$ with intensive ofDGe pARAMEGER $N-=\frac{Q-\pi}{2}=\frac{N(q-m)}{2}$

II

$$
\begin{aligned}
& N_{0}=N-N\left[\frac{q-m}{2}+\frac{m+q}{2}\right]=N-\frac{N z q}{z}=N(1-q) \\
& \ln \Omega=\ln N!-\ln \left[\frac{N(m+s)}{2}\right]!-\ln \left[\frac{N(q-m)}{2}\right]!-\ln [N(1-q)]_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \simeq N \ln N-N-\frac{N(m+q)}{2} \ln \left[\frac{N(m+q)}{2}\right]+\frac{N(m+q)}{2}+ \\
& -\frac{N(q-m)}{2} \ln \left[\frac{N(q-m)}{2}\right]+\frac{N(q-n)}{2}-N(1-q) \ln [(1-q)] \\
& +N(1-q) .
\end{aligned}
$$

Simplifying, there are no liner turns.

$$
\begin{aligned}
\ln \Omega & =N \ln N-\frac{N(m+q)}{2} \ln \left[\frac{N(m+q)}{2}\right]-\frac{N(q-m)}{2} \ln \left[\frac{N(q-m)}{2}\right] \\
& -N(1-q) \ln N(1-q) .
\end{aligned}
$$

look at the terms α NUn N:

$$
\begin{aligned}
& N \ln N-\frac{N}{2}(m+q) \ln \frac{N}{2}-\frac{N}{2}(q-m) \ln \frac{N}{2}-N(1-q) \ln N= \\
= & N \ln N-\frac{N}{2}(m+q) \ln N-\frac{N}{2}(q-m) \ln N-N(1-q \ln N \\
& +\frac{N}{2}(\ln +q) \ln (2)+\frac{N}{2}(q-m) \ln (2)= \\
= & N \ln N-N \ln N+N \ln (2)=N q \ln (2) \\
\ln \Omega= & -\frac{N}{2}(m+q) \ln (m+q)-\frac{N}{2}(q-m) \ln (q-m) \\
& -N(1-q) \ln (1-q)+N q \ln (2) .
\end{aligned}
$$

(4)

$$
\begin{aligned}
S=K_{B} \ln \Omega-K_{B} N & \left\{\frac{(m+q)}{2} \ln (n+q)+\frac{(q-m)}{2} \ln (p-m)\right. \\
& +(1-q) \ln (1-q)-q \ln (2)\}
\end{aligned}
$$

- Now we want to wite S as a function of $\left\{m, e^{\}}\right.$. We have to come back to the Hamiltonian:

$$
\begin{aligned}
& H=-\frac{J}{2 N} M^{2}+\Delta Q \\
& \frac{H}{N}=\varepsilon=\left\{-\frac{J}{2 N}(N m)^{2}+\Delta N q\right\} \frac{1}{N} \\
& \varepsilon=-\frac{J}{2} m^{2}+\Delta q \Rightarrow q=\left(\varepsilon+\frac{J}{2} m^{2}\right) \frac{1}{\Delta}
\end{aligned}
$$

$$
\begin{aligned}
S(m, e)=-K_{B} N & \left\{\frac{1}{2 \Delta}\left(m \Delta+\varepsilon+\frac{J}{2} m^{2}\right) \ln \left[\frac{1}{\Delta}\left(m \Delta+\varepsilon+\frac{J m^{2}}{2}\right)\right]\right. \\
& +\frac{1}{2 \Delta}\left(\varepsilon+\frac{J m^{2}}{2}-m \Delta\right) \ln \left[\frac{1}{\Delta}\left(\varepsilon+\frac{J m^{2}}{2}-m \Delta\right)\right] \\
& +\left[1-\frac{1}{\Delta}\left(\varepsilon+\frac{J m^{2}}{2}\right)\right] \ln \left[1-\frac{1}{\Delta}\left(\varepsilon+\frac{J m^{2}}{2}\right)\right] \\
& \left.-\left(\varepsilon+\frac{J m^{2}}{2}\right) \frac{1}{\Delta} \ln (2)\right\} .
\end{aligned}
$$

(5) We fix the energy E.

We boo for equ'reibcum misgretization that maximize S.

$$
\begin{aligned}
& \frac{\partial S(m, e)}{\partial m}=0 \Rightarrow m^{*} \text { extremA } \\
& \frac{\partial^{2} S(m, e)}{\partial m^{2}}>0 \rightarrow \text { minimum } \\
& <0 \rightarrow \text { maximum }
\end{aligned}
$$

Repdeaing in $\delta: \quad \delta(e, m *)=\sup S(e, m)=\delta(e)$.
$N B:$ The ecergy is banded from above.
One expect $S(\varepsilon)$ to be formed by 2 pecks: ore with >0 slope and another with <0 slope

$$
\begin{aligned}
& \frac{\delta(e, m)}{N}=\delta_{0}+A_{m} m^{2}+B_{m} m^{4}+D\left(m^{6}\right) \quad \begin{array}{l}
\text { where } \\
m^{*}=0
\end{array} \\
& \varepsilon_{0}=s(e, m=0)=-\left(1-\frac{1}{\Delta} \varepsilon\right) \ln \left(1-\frac{1}{\Delta} \varepsilon\right)-\frac{\varepsilon}{\Delta} \ln \left(\frac{\varepsilon}{2 \Delta}\right)
\end{aligned}
$$

In Pr: $A m<0, B m<0 \Rightarrow m^{*}=0 \quad \max . S$
and order phase when:

$A_{m}=0, \quad B m<0$.
similarly to ginzevre-landatu
Che quadratic term disappear at the transition.

$$
\left.\frac{1}{T}=\frac{\partial S}{\partial \varepsilon} \Rightarrow \frac{1}{K_{B} T}=\frac{\Delta \ln \left[\frac{1-\varepsilon / \Delta}{\varepsilon /(2 \Delta)}\right]}{\Delta}\right]
$$

neglecting higher-order terms in \ln - (..)...

Now we use $A_{m}=0$ to obtain the CRITICAL MICROCADONICAL TEMRERATVE

$$
\left[\begin{array}{l}
\beta_{c} J=\frac{\exp (\beta / \Delta)}{2}+1 \\
\beta_{c} J=\frac{\Delta}{\varepsilon}
\end{array}\right.
$$

This determines the same nd order curve as in the CAnOnICAL ARPROACH-
\mathbb{Z} To obtain the TeICRITICAl Paint: $A_{m}=0, B m=0$.

One shoved find: $\frac{1}{2 \Delta}=1,0813, \quad \beta J=\underbrace{3.0272}$ \# canonical!
Small different but still a difference ETwEER canonical \leftrightarrow micbocanonical ensembles.

* The miesocansrical line extends beyond the canonical one (see also Ref.(5), by Compa, Dauxsis \& Ruff (2009)).

