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TD 7 : Quenched randomness

The objective of this session is to better understand the different mechanisms that can trigger disor-
der in a given system, such as introduction of topological defects, dilution, random magnetic field,
frustration and also detachment/emergence of domain walls and surface fluctuations.
For more details, see also References below 1.

Exercise 1 : diluted ferromagnet

Let us consider a spin lattice and assign to each site a certain probability pi to be occupied or empty.
If pi = 1 ∀i, we recover the Ising model back, otherwise if pi < 1 we end up with a diluted model.
We define a diluted system on a cubic lattice by the Hamiltonian :

H = −
∑

Jijσiσj + h
∑

σi (1)

where σi = ±1 and Jij = 1 with probability p and 0 with probability (1 − p) respectively. For h 6= 0
there is no phase transition, whereas for h = 0 we can define the evolution in temperature Tc(p) as a
function of p.
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Figure 1 – Phase diagram of a diluted ferromagnet.

Clearly we recover : Tc(1) = T Ising
c = T pure

c . Furthermore,

1. R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969) ;
A. J. Bray, Phys. Rev. Lett. 60, 720 (1988) ;
M. Randeria, James P. Sethna et al., Phys. Rev. Lett. 54, 1321 (1985).
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— If p < pc (probability of link percolation), Tc(p) = 0 ;
— Tc(p) < pTc(1) ;
— In the disordered phase with T > Tc(p) and T < Tc(1), Griffiths singularities can occur leading

to a divergent high-temperature expansion (even without undergoing a true phase transition).
These features for the different phases are summarized in Fig. 1 below.

1) What should you expect for the probability of site occupancy p ? What are the observables that
might depend on p ?

In a randomly diluted ferromagnet (with dilution p) only a fraction of the sites are occupied with
Ising spins. Interactions exist only between neighboring pairs of occupied sites. The probability p
of occupation of a given site is independent of h and T as well as of the occupation of other sites.
Conversely, it is fairly well established that Tc(p) for a dilute ferromagnet varies with p.

2) Considering the Hamiltonian in Eq. (1), how can you define site dilution and link dilution respec-
tively ?

H = −
∑
i,j

σiJijσj + h
∑
i

σiτi (2)

Site dilution defined by :

Jij =

{
Jτiτj |i− j| = 1

0 otherwise
(3)

And

τi =

{
1 with probability p

0 with probability 1− p
(4)

Link dilution defined by :

H = −
∑
i,j

σiJijσj + h
∑
i

σi (5)

where

Jij =


0 if |i− j| > 1

1 with prob. p, |i− j| = 1

0 with prob. 1− p, |i− j| = 1

(6)

3) We aim to show that upon increasing the system size increases with T < Tc(1) – but not too
small – the imaginary axis in the complex plane of h contains a singularity at h = 0. However, the
spontaneous magnetization does not display any jump (indeed the magnetization could be C∞ in h
at h = 0).
Let us consider site dilution, i.e. j is occupied only if τj = 1, otherwise the site is empty. Then we
call :

— C ≡ arbitrary configuration of occupied sites in the lattice region Λ ;
— |C| ≡ number of sites belonging to C ;
— PC,Λ ≡ probability of occurrence of C, namely probability of obtaining C by site percolation ;
— MΛ ≡ average magnetization per site in Λ ;
— MC ≡ average magnetization per site in C.
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Λ

C

Given the definitions above, what is the average magnetization per site in Λ (see Fig. below) ?

MΛ =
1

|Λ|
∑
C∈Λ

MC |C |PC,Λ (7)

————
We would like now to make the computation more explicit. Let us call [C] all possible configurations
and {Cp} the subset of all possible configurations obtained by filling sites with probability p :∑

C∈Λ

=
∑
[C]Λ

=
∑

Up∈[0,1]{Cp}Λ

(8)

where

PC,Λ =
1

N{Cp}

∑
{Cp}

δ[C − Cp] (9)

Using Eqs. (8)-(9), we can write

MΛ =
1

|Λ|
∑
[C]Λ

MC |C|
1

N{Cp}
δ[C − Cp] =

1

N{Cp}
1

|Λ|
∑
{Cp}

MCp |Cp| . (10)

We also have for the probability :

1

|Λ|
∑
[C]Λ

|C|PC,Λ =
1

|Λ|
∑
[C]

|C| 1

N{Cp}

∑
{Cp}

δ[C − Cp] =
1

|Λ|N{Cp}

∑
{Cp}

|Cp| =
|Cp|
|Λ|

= p . (11)

————

4) If we introduce the weight z = e−2βh, how would you express the average magnetization restricted
to C in terms of the free energy fC ? (Suggestion : use the thermodynamic relation between the order
parameter and the free energy.)

fC = − 1

β|C|
logZC (12)

Therefore, we can write the average magnetization in C as

MC =
∂fC
∂h

=
∂fC
∂z

∂z

∂h
= −2βz

∂fC
∂z

(13)
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By using the following identity e−βhσi = eβhe−βh(σi+1) and summing over all values of σi in C, we can
immediately recognize that e−βh|C|ZC is a polynomial function in z of degree |C|.

In this way, ZC ∝ z−
|C|
2

|C|∏
α=1

(z − ζα(C)) where ζα stands for the α−th zero of the partition function

ZC .
Thanks to the Lee-Yang theorem we also have |ζα(C)| = 1, ∀α.
From Eq. (13) then :

MC =− 2βz
∂fC
∂z

= −2βz
∂

∂z

(
− 1

β|C|

)
log

const.z−
|C|
2

|C|∏
α=1

(z − ζα(C))

 =

=
2z

|C|

−|C|
2z

+

|C|∑
α=1

1

z − ζα(C)

 = −1 +
2z

|C|

|C|∑
α=1

1

z − ζα(C)

(14)

Plugging this expression in Eq. 10, we eventually get

MΛ =− p+
1

|Λ|
∑
C⊂Λ

2z PC,Λ

|C|∑
α=1

1

z − ζα(C)
=

=− p+ 2z
1

|Λ|

NΛ∑
a=1

∑
C:ζα(C)=ζa

PC,Λ ma(C)
1

z − ζa

(15)

We are basically summing first over all configurations with a given zero a times its multiplicity, and
then over all the other different zeros.

MΛ = −p+ 2z

NΛ∑
a=1

ηa
1

z − ζa
(16)

where we have used

ηa =
1

|Λ|
∑

C:ζα(C)=ζa

PC,Λ ma(C) > 0 (17)

ma(C) being for the multiplicity of ζa.

5) Optional exercise.
What can you claim about the average magnetization in the domain ? Is it bounded ? Using the
expressions for MΛ and ηa(Λ) ≡ 1

|Λ|
∑

C:ζα(C)=ζa
PC,Λ ma(C) used before, analyze MΛ as a function of

z.

NΛ∑
a=1

ηa(Λ) =
1

|Λ|
∑
C⊂Λ

|C|∑
α=1

PC,Λ =
1

|Λ|
∑
C⊂Λ

PC,Λ|C| = p (18)

To prove that MΛ(z) is uniformly bounded in Λ, we consider first |z| 6= 1 and a circular domain of
radius r < 1.

|MΛ| =

∣∣∣∣∣−p+ 2z

NΛ∑
a=1

ηa
1

z − ζa

∣∣∣∣∣ ≤ p+ 2|z|
NΛ∑
a=1

ηa
1

|z − ζa|
≤ p+

2pr

1− r
(19)
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On the other hand, if |z| > 1 we should consider a circle of radius 1/r > 1. Therefore :

|MΛ| =p+ 2|z|
NΛ∑
a=1

ηa
1

|z − ζa|
≤ p+ 2|z|

NΛ∑
a=1

ηa
1

||z| − |ζa||
=

=p+
2|z|p
|z| − 1

= p+
2p

1− 1
|z|
≤ p+

2p

1− r
.

(20)

We can conclude that

|MΛ| ≤ p+
2p

1− r
∀ |z| 6= 1 , r < 1 . (21)

Then, for any positive z and z 6= 1, the average magnetization MΛ converges to a finite value as Λ
increases : this is due to the fact that the thermodynamic limit of the quenched free energy exists and
is well-defined for positive z with MΛ(z) = −2βz ∂fΛ

∂z .
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Exercise 2 : Ising model in a random magnetic field

In the following we shall consider a simple Ising model to show the equivalence – close to the critical
point – between a spin system in d-dimensions in a random magnetic field and a spin system in
(d− 2)-dimensions without field.

1) How would you define the free energy of the model with Lagrangian L(x) = −1
2φ(x)∆φ(x)+V (φ(x))

and averaged over the random field ? For the computation, assume the field to be Gaussian distributed.

F [h] = log

∫
δφ exp

{
−
∫
ddx [L(x) + h(x)φ(x)]

}
(22)

Integrating over the field then

F =

∫
dh F [h] exp

{
−1

2

∫
ddx h2(x)

}
(23)

where L(x) is the Lagragian operator defined in the text.

2) If we take advantage of a tree-like diagram approximation, what would the expression for F [h] look
like ?

F [h] ∼ log
[
e−S(φ0,h)

]
(24)

where the action S is such that δS
δφ = 0, i.e. −∆φ0 + h+ V

′
(φ0) = 0.

In the following we will assume φ0 = 0 as h→ 0, so that the solution will be unique.

3) If you consider again the tree-like approximation, how should you write the corresponding expression
for the correlation 〈φ(x)φ(0)〉h and for 〈φ(x)φ(0)〉 ?

〈φ(x)φ(0)〉h =

∫
δφ φ(x)φ(0)e−S(φ,h)∫

δφ e−S(φ,h)
∼ φ0(x)φ0(0)e−S0(φ0,h)

e−S0(φ0,h)
= φ0(x)φ0(0) . (25)

To get rid of h, we eventually integrate over the Gaussian field

〈φ(x)φ(0)〉 =

∫
δh φ0(x)φ0(0) exp

[
−1

2

∫
ddx h2(x)

]
. (26)

We introduce now a δ-function via

1 =

∫
δ
[
−∆φ+ V

′
(φ) + h

] ∣∣∣det
(
−∆ + V

′′
(φ)
)∣∣∣ δφ (27)

which allows us to safely replace φ0 with φ. We assume that we can neglect the sign of the determinant
(always non-zero), so that the correlation function becomes

〈φ(x)φ(0)〉 ∼
∫
δφδh φ(x)φ(0) δ

[
−∆φ+ V

′
(φ) + h

]
det
(
−∆ + V

′′
(φ)
)

exp

[
−1

2

∫
ddx h2(x)

]
.

(28)
• To rewrite in a more convenient form the correlation, we use

det
[
−∆ + V

′′
(φ)
]

=

∫
δc δc exp

{
−
∫
ddx c

[
−∆ + V

′′
(φ)
]
c

}
(29)
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• together with the Fourier functional transform of the δ

δ
(
−∆φ+ V

′
(φ) + h

)
=

∫
δλ exp

[
i

∫
ddx λ(x)

(
−∆φ+ V

′
(φ) + h

)]
(30)

Gathering the two expressions together, we have

〈φ(x)φ(0)〉 ∼
∫
δφδhδλ φ(x)φ(0) exp

[
−1

2

∫
ddx h2(x) + i

∫
ddyλ(y)

(
−∆φ+ V ′(φ) + h

)]
det
[
−∆ + V

′′
(φ)
]

(31)

4) Comment the result about the last integral form. How would you solve the integral for the correlation
function ?
Suggestion : use the variable change h(x) = h

′
(x) + h̃(x).

The integral is simply Gaussian in h(x). It can be solved looking for the stationary points and using
a change of variable. Therefore :

h(x)− iλ(x) = 0 with h(x) = h
′
(x) + h̃(x) (32)

We thus obtain∫
δh exp

[
−1

2

∫
ddx

(
h2(x)− 2iλ(x)h(x)

)]
=

∫
δh
′

exp

[
−1

2

∫
ddx

(
(h
′
)2 + h̃+ 2h

′
h̃− 2iλh

′ − 2iλh̃
)]

=

= exp

(
1

2
iλh̃ ddx

)
= exp

(
−1

2
λ2(x) ddx

)
(33)

⇒
〈φ(x)φ(0)〉 ∼

∫
δφδλδc exp

(
−
∫
ddxL̃

)
φ(0)φ(x) , (34)

where L̃ = 1
2λ

2(x)− iλ(x)
(
−∆φ+ V

′
(φ)
)

+ c
[
−∆ + V

′′
(φ)
]
c, which turns out to be invariant under

super-symmetric transformations.

5) Optional point. Now we introduce the superspace defined by d dimensions xi, which commute,
and 2 dimensions θ, θ̄, which are Grassmann variables. We introduce then a super-field Φ(x, θ, θ̄) =
φ(x) + θ̄c(x) + c̄(x)θ + θ̄θλ(x).
• Verify that the Lagragian operator satisfies the following relation∫

L̃(φ, c, c̄, λ) ddx =

∫
SSUSY(Φ) ddxdθdθ̄ , (35)

with the action SSUSY(Φ) = −1
2Φ∆SSΦ + V (Φ) and the corresponding Laplacian ∆SS = ∆ + ∂2

∂θ∂θ̄
.

• Check that the super-symmetric transformations are simply rotations in the aforementioned super-
space leaving the metrics x2 + θθ̄ invariant.

The introduction of the two Grassmann coordinates is equivalent to subtracting (rather than adding)
2 dimensions to the d-dimensional space in rotationally invariant integrals. To prove that we can
consider an integral in the superspace (x, θ, θ̄) and a test function which is rapidly decreasing at ±∞.

− 1

π

∫
ddxdθdθ̄ f(x2 + θθ̄) = − 1

π

∫
ddx f

′
(x2) . (36)
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Using the polar coordinates x2 = r and Sd = 2πd/2

Γ(d/2) , we can write

− 1

π

∫
ddx f

′
(r2) = −Sd

π

∫
rd−1dr f

′
(r2) = −Sd

2π

∫
rd−2dr2 f

′
(r2) (37)

With a few manipulations, we end up with (indicating as k = d− 2)

k

2π

2π

k
Sk

∫
rk−1dr f(r2) =

∫
dkr f(r2) =

∫
dd−2x f(x2) (38)

and therefore the final expression

− 1

π

∫
ddxdθdθ̄ f(x2 + θθ̄) =

∫
dd−2xf(x2) . (39)

This expression allows us to conclude that the Green functions computed in the (d − 2)-dimensional
space are the same as those computed in the d-dimensional superspace. Therefore, the d-dimensional
super-symmetric model – that is the model with random field – is equivalent to a purely bosonic model
(i.e. a pure ferromagnetic model without random field) in (d− 2) dimensions.

6) Optional point – Imry and Ma argument.
Let us consider an Ising ferromagnet in a random magnetic field in d dimensions. It is defined by the
following Hamiltonian

H = −
∑
i,j

Jijσiσj +
∑
i

hiσi (40)

with P (hi) ∼ e−
h2
i

2ε and hih̄j = h2δij .
We assume that the system without external field develops a spontaneous magnetization. • Explain
on what basis the long-range order should be stable with respect to the formation of domain walls.

Because of the random field varying from point to point, there will be regions in which the magneti-
zation will prefer to reorient itself so as to lower the energy due to the interaction with the local field.
A domain will emerge then provided that the energy cost associated to the wall is not too high.
The field has Gaussian fluctuations meaning that its average value on a single domain is O(Ld/2. In
the re-orientation, the domain has an energy gain proportional to Ld/2.
On the other hand, due to the wall, its energy loss is proportional to Ld−1. The energy cost of a
domain is :

E = c1L
d−1 − c2L

d/2 = c1L
d−1

(
1− c2

c1
L−

d−2
2

)
(41)

The lower critical dimension is then dcL = 2. For d = 2 and sufficiently large size L, the negative
term gives still a dominant contribution to the energy : it accounts for a volumetric contribution to
be compared with a surface energy.
For d > 2 and L � 1, the energy contribution will be positive preventing the formation of a new
domain (long-range order is thus stable).
For d < 2 the opposite condition takes place, with E < 0 : the domain formation is very likely (no
long-range order).
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