Statistical Physics – M2 – ICFP condensed matter

Leticia Cugliandolo – Ada Altieri – Marco Tarzia

TD 6 : Quenched randomness

The objective of this session is to better understand the different mechanisms that can trigger disorder in a given system, such as introduction of topological defects, dilution, random magnetic field, frustration and also detachment/emergence of domain walls and surface fluctuations. For more details, see also References below¹.

Exercise 1 : diluted ferromagnet

Let us consider a spin lattice and assign to each site a certain probability p_i to be occupied or empty. If $p_i = 1 \forall i$, we recover the Ising model back, otherwise if $p_i < 1$ we end up with a diluted model. We define a diluted system on a cubic lattice by the Hamiltonian :

$$H = -\sum J_{ij}\sigma_i\sigma_j + h\sum \sigma_i \tag{1}$$

where $\sigma_i = \pm 1$ and $J_{ij} = 1$ with probability p and 0 with probability (1 - p) respectively. For $h \neq 0$ there is no phase transition, whereas for h = 0 we can define the evolution in temperature $T_c(p)$ as a function of p.

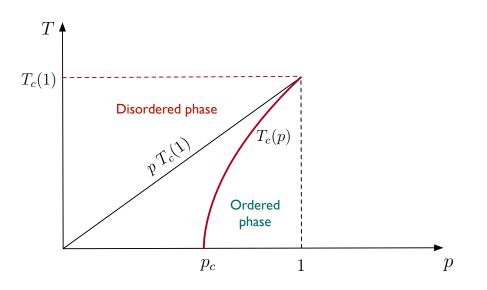


FIGURE 1 – Phase diagram of a diluted ferromagnet.

Clearly we recover : $T_c(1) = T_c^{\text{Ising}} = T_c^{\text{pure}}$. Furthermore,

^{1.} R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969);

A. J. Bray, Phys. Rev. Lett. **60**, 720 (1988);

M. Randeria, James P. Sethna et al., Phys. Rev. Lett. 54, 1321 (1985).

- If $p < p_c$ (probability of link percolation), $T_c(p) = 0$;
- $T_c(p) < pT_c(1);$
- In the disordered phase with $T > T_c(p)$ and $T < T_c(1)$, Griffiths singularities can occur leading to a divergent high-temperature expansion (even without undergoing a true phase transition). These features for the different phases are summarized in Fig. 1 below.

1) What should not arrest for the probability of site accuracy n^2 What are the sharmable

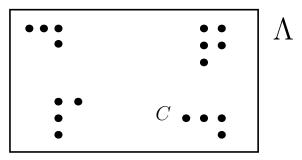
1) What should you expect for the probability of site occupancy p? What are the observables that might depend on p?

2) Considering the Hamiltonian in Eq. (1), how can you define site dilution and link dilution respectively?

3) We aim to show that upon increasing the system size increases with $T < T_c(1)$ – but not too small – the imaginary axis in the complex plane of h contains a singularity at h = 0. However, the spontaneous magnetization does not display any jump (indeed the magnetization could be C^{∞} in hat h = 0).

Let us consider site dilution, *i.e.* j is occupied only if $\tau_j = 1$, otherwise the site is empty. Then we call :

- $C \equiv$ arbitrary configuration of occupied sites in the lattice region Λ ;
- $|C| \equiv$ number of sites belonging to C;
- $P_{C,\Lambda} \equiv$ probability of occurrence of C, namely probability of obtaining C by site percolation;
- $-M_{\Lambda} \equiv$ average magnetization per site in Λ ;
- $-M_C \equiv$ average magnetization per site in C.



Given the definitions above, what is the average magnetization per site in Λ (see Fig. below)?

4) If we introduce the weight $z = e^{-2\beta h}$, how would you express the average magnetization restricted to C in terms of the free energy f_C ? (Suggestion : use the thermodynamic relation between the order parameter and the free energy.)

5) Optional

What can you claim about the average magnetization in the domain? Is it bounded? Using the expressions for M_{Λ} and $\eta_a(\Lambda) \equiv \frac{1}{|\Lambda|} \sum_{C:\zeta_{\alpha}(C)=\zeta_a} P_{C,\Lambda} m_a(C)$ used before, analyze M_{Λ} as a function of z.

Exercise 2 : Ising model in a random magnetic field

In the following we shall consider a simple Ising model to show the equivalence – close to the critical point – between a spin system in d-dimensions in a random magnetic field and a spin system in (d-2)-dimensions without field.

1) How would you define the free energy of the model with Lagrangian $\mathcal{L}(x) = -\frac{1}{2}\phi(x)\Delta\phi(x) + V(\phi(x))$ and averaged over the random field? For the computation, assume the field to be Gaussian distributed.

2) If we take advantage of a tree-like diagram approximation, what would the expression for F[h] look like?

3) If you consider again the tree-like approximation, how should you write the corresponding expression for the correlation $\langle \phi(x)\phi(0)\rangle_h$ and for $\langle \phi(x)\phi(0)\rangle$?

4) Comment the result about the last integral form. How would you solve the integral for the correlation function?

Suggestion : use the variable change $h(x) = h'(x) + \tilde{h}(x)$.

5) Optional point. Now we introduce the superspace defined by d dimensions x_i , which commute, and 2 dimensions θ , $\bar{\theta}$, which are Grassmann variables. We introduce then a **super-field** $\Phi(x, \theta, \bar{\theta}) = \phi(x) + \bar{\theta}c(x) + \bar{c}(x)\theta + \bar{\theta}\theta\lambda(x)$.

• Verify that the Lagragian operator satisfies the following relation

$$\int \tilde{L}(\phi, c, \bar{c}, \lambda) d^d x = \int \mathcal{S}_{\text{SUSY}}(\Phi) d^d x d\theta d\bar{\theta} , \qquad (2)$$

with the action $\mathcal{S}_{SUSY}(\Phi) = -\frac{1}{2}\Phi\Delta_{SS}\Phi + V(\Phi)$ and the corresponding Laplacian $\Delta_{SS} = \Delta + \frac{\partial^2}{\partial\theta\partial\bar{\theta}}$.

• Check that the super-symmetric transformations are simply rotations in the aforementioned superspace leaving the metrics $x^2 + \theta \bar{\theta}$ invariant.

6) Optional – Imry and Ma argument.

Let us consider an Ising ferromagnet in a random magnetic field in d dimensions. It is defined by the following Hamiltonian

$$H = -\sum_{i,j} J_{ij}\sigma_i\sigma_j + \sum_i h_i\sigma_i \tag{3}$$

with $P(h_i) \sim e^{-\frac{h_i^2}{2\epsilon}}$ and $h_i \bar{h}_j = h^2 \delta_{ij}$.

We assume that the system without external field develops a spontaneous magnetization. • Explain on what basis the long-range order should be stable with respect to the formation of domain walls.