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Temperature
Statistical mechanics definition
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ε=ct

• Isolated system ⇒ conserved energy E
• Ergodic hypothesis

S = kB lnN β ≡ 1

kBT
=

∂S

∂E

∣∣∣∣
E

Microcanonical definition

E = Esyst + Eenv + Eint
Neglect Eint (short-range int.)

Esyst ≪ Eenv
peq(Esyst) = g(Esyst)e−βEsyst/Z

Canonical ensemble

Environment

System
Interaction
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Properties & measurement
Connection with thermodynamics

– Relation to entropy.

– Control of heat-flows : ∆Q follows ∆T .

– Partial equilibration – transitivity :

TA = TB , TB = TC ⇒ TA = TC .

thermometers for systems in

good thermal contact (∆Q)

Whatever we identify with a temperature should have these properties
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In and out of equilibrium
Take a mechanical point of view and call {r⃗i}(t) the variables

e.g. the particles’ coordinates {x⃗i(t)} and momenta {p⃗i(t)}

Choose an initial condition {r⃗i}(0) and let the system evolve.

timet=0 t t=dt+t w w
preparation
   time

waiting 
   time

measuring
   time

0 τ

• For tw > teq : {r⃗i}(t) reach the equilibrium pdf and thermodynamics and

statistical mechanics apply. Temperature is a well-defined concept.

• For tw < teq : the system remains out of equilibrium and thermodynamics

and (Boltzmann) statistical mechanics do not apply.

Is there a quantity to be associated with a temperature ?
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Dynamics in equilibrium
Conditions

Take an open system coupled to an

environment

Environment

System
Interaction

Necessary :

– The bath should be in equilibrium

same origin of noise and friction.

– Deterministic force :
conservative forces only, F⃗ = −∇⃗V .

– Either the initial condition is taken from the equilibrium pdf, or the

latter should be reached after an equilibration time teq :

Peq(v, x) ∝ e−β(mv2

2
+V )
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Out of equilibrium
How can a classical system stay out of equilibrium ?

• The equilibration time goes beyond the experimentally accessible times.

teq ≫ t

Microscopic system with no confining potential, teqx = ∞
e.g., Diffusion processes.

Macroscopic systems in which the equilibration time grows with

the system size, limN≫1 teq(N) ≫ t

e.g., Critical dynamics, coarsening, glassy physics.

• Driven systems F⃗ ̸= −∇⃗V (r⃗)

e.g., Sheared liquids, vibrated powders, active matter.
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Brownian motion

First example of dynamics of

an open system

The system : the Brownian

particle

The bath: the liquid

Interaction : collisional or po-

tential

Canonical setting

A few Brownian particles or tracers • imbedded in, say, a molecular liquid.

Late XIX, early XX (Brown, Einstein, Langevin)

10



Langevin approach
Stochastic Markov dynamics

From Newton’s equation F⃗ = ma⃗ = m ˙⃗v and v⃗ = ˙⃗x

mv̇a = −γ0va + ξa

with a = 1, . . . , d (the dimension of space), m the particle mass,

γ0 the friction coefficient,

and ξ⃗ the time-dependent thermal noise with Gaussian statistics,

zero average ⟨ξa(t)⟩ = 0 at all times t,

and delta-correlations ⟨ξa(t)ξb(t′)⟩ = 2 γ0kBT δab δ(t− t′).

Dissipation for γ0 > 0 the averaged energy is not conserved,

2⟨E(t)⟩ = m⟨v2(t)⟩ ̸= 0.
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Brownian motion
Markov normal diffusion

For simplicity, take a one dimensional system, d = 1.

The relation between friction coefficient γ0 and amplitude of the noise

correlation 2γ0kBT ensures equipartition for the velocity variable

m⟨v2(t)⟩ → kBT for t≫ tvr ≡ m
γ0

Langevin 1908

But the position variable x diffuses and e−βV is not normalizable.

⟨x2(t)⟩ → 2D t (t ≫ tvr = m/γo)

D = kBT/γ0 diffusion constant.

The particle is out of equilibrium !
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Brownian motion
Markov normal diffusion

For simplicity, take a one dimensional system, d = 1.

The relation between friction coefficient γ0 and amplitude of the noise

correlation 2γ0kBT ensures equipartition for the velocity variable

m⟨v2(t)⟩ → kBT for t≫ tvr ≡ m
γ0

Langevin 1908

But the position variable x diffuses and e−βV is not normalizable.

⟨x2(t)⟩ → 2D t (t ≫ tvr = m/γo)

D = kBT/γ0 diffusion constant.

Coexistence of equilibrium (v) and out of equilibrium (x) variables
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Demixing transitions
Many-body interacting system

Two species • and •, repulsive interactions between them.

Sketch
Experimental phase diagram

Binary alloy, Hansen & Anderko, 54
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Phase separation
Phase ordering kinetics
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Phase ordering kinetics

Are these quench dynamics fast processes ? Can we simply forget what

happens during the transient, teq, and focus on the subsequent equili-

brium behaviour ?
No !

It turns out that this is a very slow regime. Its duration grows with the size

of the system and it diverges in the thermodynamic limit V → ∞.

We understand the mechanisms for relaxation: interface local curvature

driven dynamics and matter diffusion.

The domains get rounder

The regions get darker and lighter

16



Dynamic scaling
in phase ordering kinetics

Growing length ℓ(t) and equilibrium reached for ℓ(teq) ≃ L

Typically ℓ(t) ≃ t1/z and teq ≃ Lz

Excess energy w.r.t. the equilibrium one stored in the domain walls ; ∆E(t) ≃ ℓ−a(t)
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Stochastic field theory
Formalism to treat open macroscopic systems

• Noise, fluctuations : stochastic calculus

• Dissipation, breakdown of time-reversal invariance : irreversibility.

• Non-linear Langevin equations for the order parameter, say ϕ⃗

m
¨⃗
ϕ(x⃗, t)︸ ︷︷ ︸ + γ0

˙⃗
ϕ(x⃗, t)︸ ︷︷ ︸ = F⃗ (ϕ⃗)︸ ︷︷ ︸ + ξ⃗(x⃗, t)︸ ︷︷ ︸

Inertia Dissipation Deterministic Noise

• e.g. time-dependent Ginzburg-Landau symmetry-broken λϕ4 in its

non-perturbative regime.

Out of equilibrium non-linear field theory ; no good t-RG

Review : A. J. Bray 94
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Glasses
e.g., colloidal ensembles

Micrometric spheres immersed in a fluid

Crystal Glass

In the glass : no obvious growth of order, slow dynamics with, however,

scaling properties.

What drives the slowing down ?
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Two-time observables
Correlations

timet=0 t t=dt+t w w
preparation
   time

waiting 
   time

measuring
   time

0 τ
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r(0)

r(tw)

tr( )

tw not necessarily longer than teq.

The two-time correlation between A[x⃗(t)] and B[x⃗(tw)] is

CAB(t, tw) ≡ ⟨A[x⃗(t)]B[x⃗(tw)] ⟩

average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise in Langevin dynamics, etc.)
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Two-time self-correlation
Same observable, quasi-stationary & ageing regimes
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One correlation can exhibit stationary and non stationary relaxation

in different two-time regimes
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Different two-time regimes
Interpretation

• In particle systems, rattling within cages vs. structural relaxation.

• In phase ordering kinetics, thermal fluctuations within domains vs.

domain wall motion.

500 nm
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 0  50  100  150  200

 

’data’

Cages in colloidal suspensions Phase separation in the 2d Ising model.
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Challenges
in classical non-equilibrium macroscopic systems

• Coarsening

The systems are taken across usual phase transitions.

The dynamic mechanisms are well-understood :

competition between equilibrium phases & topological defect annihilation.

The difficulty lies in the calculation of observables in a time-dependent non-

linear field theory.

• Glasses

Are there phase transitions ?

The dynamic mechanisms are not understood.

The difficulty is conceptual (also computational).

• General question

Do these, as well as sheared liquids or active matter, enjoy some kind of

thermodynamic properties ?
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Two-time observables
Linear response

− δ δ+

h

t t
2 2
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r(0)

r(tw)

tr( )

r( )t
h

The perturbation couples linearly to the observable B[x⃗(tw)]

E → E − hB[x⃗(tw)]

The linear instantaneous response of another observable A[x⃗(t)] is

RAB(t, tw) ≡
δ⟨A[x⃗(t)]⟩h
δh(tw)

∣∣∣∣
h=0

The linear integrated response is χAB(t, tw) ≡
∫ t

tw

dt′RAB(t, t
′)
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Rue de Fossés St. Jacques et rue St. Jacques

Paris 5ème Arrondissement.

LFC
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Fluctuation-dissipation
In equilibrium

P (r⃗, tw) = Peq(r⃗)

• The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (CAB) and

induced (RAB) fluctuations

RAB(t− tw) = − 1

kBT

∂CAB(t− tw)

∂t
θ(t− tw)

holds and implies (kB = 1 henceforth)

χAB(t− tw) ≡
∫ t

tw

dt′RAB(t, t
′) =

1

T
[CAB(0)− CAB(t− tw)]
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Fluctuation-dissipation
A simple example: the dissipative harmonic oscillator

ẋ(t) = −kx(t) + h(t) + ξ(t)

Solution : x(t) = x0e
−kt +

∫ t

0
dt′ e−k(t−t′)[ξ(t′) + h(t′)]

⟨x(t)x(tw)⟩h=0 = [x20 − T
k ]e

−k(t+tw) + T
k e

−k(t−tw) correlation

linear response
δ⟨x(t)⟩h
δh(tw)

∣∣∣∣
h=0

= e−k(t−tw) θ(t− tw) teq = k−1

If k ̸= 0 TRxx(t, tw) = ∂twCxx(t, tw) θ(t− tw) FDT holds 4

If k → 0 TRxx(t, tw) ̸= ∂twCxx(t, tw) θ(t− tw) FDT does not hold
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Fluctuation-dissipation
Solvable glasses: p spin-models & mode-coupling theory

• Stochastic dynamics of a particle in an infinite dimensional space under the

effect of a quenched random potential.

• A fully-connected (Curie approximation) spin model with as many ferroma-

gnetic as antiferromagnetic couplings.

1e+00

1e-01

1e-02
1e+051e+031e+011e-01

C

t-tw

rapid & stationary (C st )

aging &
slow
(Cag)

q ea

tα

1e+00

1e-01
1e+051e+031e+011e-01

χ

t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Sketch of the separation of time-scales in the out of equilibrium relaxation
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Fluctuation-dissipation
Solvable glasses: p spin-models & mode-coupling theory

A quench from T0 → ∞ (gas) to T < Tg (glass)

T ∗

T
tw3

tw2

tw1

1

kBT ∗

1

kBT

χ
(t

,t
w
)

C(t, tw)

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Parametric construction

tw fixed

tw1 < tw2 < tw3

t : tw → ∞ or

τ ≡ t− tw : 0 → ∞
used as a parameter

Note that T ∗ > T

LFC & Kurchan 93
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Fluctuation-dissipation
Proposal

For non-equilibrium systems, relaxing slowly towards an asymptotic limit (cfr.

threshold in p spin models) such that one-time quantities [e.g. the energy-

density E(t)] approach a finite value

lim
tw→∞

C(t,tw)=C

χ(t, tw) = fχ (C)

For weakly forced non-equilibrium systems in the limit of small work

lim
ϵ→0

C(t,tw)=C

χ(t, tw) = fχ (C)

And the effective temperature is − 1

Teff
≡ ∂χ

∂C
LFC & Kurchan 94
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FDT & effective temperatures
Can one interpret the slope as a temperature ?
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Thermometer

(coordinate x)

Coupling constant k

Thermal bath (temperature T)

A A A A
.   .   .

α=1 α=3 α=Μ

x

α=2

T ∗

T
tw3

tw2

tw1

1

kBT ∗

1

kBT

χ
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w
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C(t, tw)
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1.0

(1) Measurement with a thermometer with

• Short internal time scale τ0, fast dynamics is tested and T is recorded.

• Long internal time scale τ0, slow dynamics is tested and T ∗ is recorded.

(2) Partial equilibration (3) Direction of heat-flow

LFC, Kurchan & Peliti 97
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FDT & effective temperatures
Sheared binary Lennard-Jones mixture

TT b

mtr
m trhv2 zi

10810710610510410310210110010�1

10.80.60.40.20
FDT T �FDT TSelf BSelf A11:22; (A+B)7:47; (A+B)3:74; (A+B)1:87

Correlation
Sus
eptibilit
y

10.80.60.40.20

43210

Left: the kinetic energy of a tracer particle (the thermometer) as a function

of its mass (τ0 ∝
√
mtr) 1

2
mtr⟨v2z⟩ = 1

2
kBTeff

Right: χk(Ck) plot for different wave-vectors k, partial equilibrations.

J-L Barrat & Berthier 00
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FDT & effective temperatures
Role of initial conditions

T ∗ > T found for quenches from the disordered into the glassy phase

(Inverse) quench from an ordered initial state, T ∗ < T

2d XY model or O(2) field theory Binary Lennard-Jones mixture

Berthier, Holdsworth & Sellitto 01 Gnan, Maggi, Parisi & Sciortino 13
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Summary

• Teff definition from the analysis of fluctuation-dissipation relations .

• Discussion of thermodynamic meaning.

Shown for mean-field models – large N , large d or, in other words,

within the mode-coupling approach to glassy systems.

•Numerical evidence Lennard-Jones silica, soft particles ; vortex glasses

granular matter ; thin magnetic films, active matter, etc.

• Other evidence : extended Arrhenius law for activation (Ilg & J-L Barrat),

fluctuation theorems (Zamponi et al), ratchets (Gradenigo et al), etc.

• Experimental results are less clear

glycerol, laponite, spin-glasses, etc. (Jabbari-Bonn, Abou-Gallet, Cili-

berto et al., Bartlett et al, Hérisson & Ocio, etc.).
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Summary
classical context

• The energy density approaches the equilibrium one, typically as ∆E ≃ t−b.

• The correlation and linear response functions have highly non-trivial time-de-

pendencies (aging effects, non-exponential relaxations)

• There is an extended time-regime in which correlation and linear response

vary "macroscopically" but the effective temperature Teff = T ∗ is constant.

• T ∗ can be related to the variation of a configurational entropy with respect

to the energy-density (à la micro-canonic.)

• T ∗ has intuitive properties : hotter for more disordered, colder for more or-

dered.

Cases in which this does not hold were exhibited by, e.g., Sollich et al

in models with unbounded energy or artificial (emerging ?) dynamic rules.
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Dissipative quantum glasses
Quantum p-spin coupled to a bath of harmonic oscillators

C

R

τ

χ

C

Out of equilibrium decoherence

LFC & Lozano 98
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Isolated quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian H0

• Initialize it in, say, |ψ0⟩ the ground-state of H0.

• Unitary time-evolution with U = e−
i
ℏHt with a Hamiltonian H .

Does the system reach some steady state ?

Note that it is the ergodic theory question posed in the quantum context.

Motivated by cold-atom experiments & exact solutions of 1d quantum

models.

Are at least some observables described by thermal ones?

When, how, which?
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Quantum quench
Setting

Take a closed system, H0, in a given state, |ψ0⟩, and suddenly change

a parameter, H . The unitary evolution is ruled by H .

e.g. H =

∫
ddx

{1

2
π2 +

1

2
(∇⃗ϕ)2 + rϕ2 + λϕ4

}

λ0 → λ
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Quantum quench
Setting

Take a closed system, H0, in a given state, |ψ0⟩, and suddenly change

a parameter, H . The unitary evolution is ruled by H .

e.g. H =

∫
ddx

{1

2
π2 +

1

2
(∇⃗ϕ)2 + rϕ2 + λϕ4

}

r > 0 → r < 0
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Quantum quenches
Questions

Does the system reach a thermal equilibrium density matrix ?

Under which conditions ?

non-integrable vs integrable systems ; role of initial states ; non critical vs. critical

quenches

• Definition of Te from ⟨ψ0|H|ψ0⟩ = ⟨H⟩Te = Tr He−βeH

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ ⟨ψ0|ϕ(x⃗, t)ϕ(y⃗, t)|ψ0⟩ vs. C(r) ≡ ⟨ϕ(x⃗)ϕ(y⃗)⟩Te .

Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

Proposal : put qFDT to the test to check whether Teff = Te exists
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Fluctuation-dissipation theorem

Classical dynamics in equilibrium

The classical FDT for a stationary system with τ ≡ t− tw reads

χ(τ) =

∫ τ

0

dt′ R(t′) = −β[C(τ)− C(0)] = β[1− C(τ)]

choosing C(0) = 1.
Linear relation between χ and C

Quantum dynamics in equilibrium

The quantum FDT reads

χ(τ) =

∫ τ

0

dτ ′ R(τ ′) =

∫ τ

0

dτ ′
∫ ∞

−∞

idω

πℏ
e−iωτ ′ tanh

(
βℏω
2

)
C(ω)

Complicated relation between χ and C
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Fluctuation-dissipation theorem
Quantum SU(2) Ising chain

The initial Hamiltonian HΓ0 = −
∑
i

σx
i σ

x
i+1 + Γ0

∑
i

σz
i

The initial state |ψ0⟩ ground state of H0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with HΓ.
Iglói & Rieger 00

Reviews : Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Observables : correlation and linear response of local longitudinal and

transverse spin, etc.

Specially interesting case Γc = 1 the critical point. Rossini et al. 09
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Quantum quench
Teff from FDT ? Longitudinal spin
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e−τ/τC

τ−2 sin(4τ + ϕ)

Cx(τ) ≃ ACe
−τ/τC [1− aCτ

−2 sin(4τ + ϕC)]

Rx(τ) ≃ ARe
−τ/τR [1− aRτ

−2 sin(4τ + ϕR)]

Foini, LFC & Gambassi

11
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Quantum quench
Teff from FDT ?

For sufficiently long-times such that one drops the power-law correction

−βx
eff ≃ Rx(τ)

dτCx
+(τ)

≃ −τCAR

AC

A constant consistent with a classical limit but

T x
eff(Γ0) ̸= Te(Γ0)

Morever, a complete study in the full time and frequency domains confirms

that T x
eff(Γ0, ω) ̸= T z

eff(Γ0, ω) ̸= Te(Γ0) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic Γ0
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Summary
Teff from FDT

• Teff from the analysis of fluctuation-dissipation relations in classical

and quantum systems, closed or open.

Teff calculated for dissipative classical and quantum mean-field mo-

dels – largeN , large d or with self-consistent closure approximations.

A finite dimensional solvable model with the phenomenology discus-

sed is missing. (This is probably the same as finding a solvable glassy

model !)

• Discussion of the thermodynamic meaning of Teff .

A better understanding of the microscopic origin of Teff is lacking.

• Use of fluctuation-dissipation relations to check for Boltzmann

equilibrium (application to quantum quenches).
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Fluctuation-dissipation
A proof

The generic Langevin equation for a particle in 1d is

mẍ(t) +M ′[x(t)]

∫ t

−T
dt′ Γ(t− t′)M ′[x(t′)]ẋ(t′) = F (t) + ξ(t)M ′[x(t)]

with the coloured noise ⟨ξ(t)ξ(t′)⟩ = T Γ(t− t′)

The dynamic generating functional is a path-integral

Zdyn[η] =

∫
dx−T dẋ−T

∫
DxDix̂ e−S[x,ix̂;η]

with ix̂(t) the ‘response’ variable.

x−T and ẋ−T are the initial conditions at time −T .

Martin-Siggia-Rose-Jenssen-deDominicis formalism
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Fluctuation-dissipation
A proof

The action has a deterministic part (Newton) that includes the initial

condition and a dissipative part that depends uponΓ : S = Sdet + Sdiss

The transformation

x(t) → x(−t) ix̂(t) → ix̂(−t) + βẋ(−t)

leaves Sdiss and the path-integral measure invariant.

Sdet is also invariant if P (x−T , ẋ−T ) = Peq(x−T , ẋ−T ), and F = V ′[x]

The FDT valid for Newton or Langevin dynamics

RAB(t, tw) +RAB(tw, t) = β∂twCAB(t, tw)

and higher-order extensions are Ward identities of this symmetry.

The fluctuation theorems can also be proven in this way.
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Fluctuation theorems

Take a system in equilibrium and drive it into a

non-equilibrium steady state

with a perturbing force. The fluctuations of ‘entropy production rate’

p ≡ (τσ+)
−1

∫ τ/2

−τ/2
dt W (St)/T

where St is the trajectory of the system in phase space,

T is the temperature of the equilibrated unperturbed system,

W (St) is the work done by the external forces, and

Tσ+ ≡
∫
dxPst(x)W (x) ∼ limτ→∞

1
τ

∫ τ/s
−τ/s dt W (t) is an

average over the steady state distribution, satisfy

ξ(p) − ξ(−p) = pσ+ with ξ(p) ≡ limτ→∞
1
τ
ln πτ (p)

and πτ the probability density of p.

Cohen, Morriss & Evans 90 ; Gallavoti & Cohen 93
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Fluctuation theorems

Take a glass out of equilibrium and take it into a

driven steady glassy state

with a perturbing force.

For which entropy production rate does a fluctuation theorem hold ?

Since there is no meaning to T but there is to Teff the proposal is to
replace ∫ τ/2

−τ/2
dt W (t)

T
→

∫ τ/2

−τ/2
dt W (t)

Teff(t)

with Teff(t) the effective temperature as measured from

the fluctuation-dissipation relation of the unperturbed relaxing system

with its two values T and T ∗

Zamponi, Bonetto, LFC & Kurchan 05
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IsTeff related to an entropy ?
Configurational entropy

An exponentially large number of metastable states is reached dynamically

||

meq−meq

f(m)

Free−energy

Metastable states

Equilibrium

Finite barriers

Threshold level

Diverging barriers with N

N dim.( ) Order parameters

Curie-Weiss (ferro) Sketch of free-energy landscape

Threshold level is reached asymptotically

e.g. limtw→∞ E(t) = E∞ > Eeq.

Well-understood in mean-field models with the

Thouless-Anderson-Palmer technique
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IsTeff related to an entropy ?
Configurational entropy

Σ(f) = kB lnN (f) ⇒ 1

kBT ∗ =
∂Σ(f)

∂f

∣∣∣∣
f∞

1

kBT ∗
=

∂Σ

∂f

∣

∣

∣

∣

∣

f∞

f∞ fmax f

Σ

NB fmax ̸= f∞ ⇒ failure of ‘maximum entropy principles’.

Edwards & Oakshott 89, Monasson 95, Nieuwenhuizen 98

Very sketchy view : many amorphous solid configurations (Σ ⇔ T ∗) and

vibrations around them (f ⇔ T ).
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Quantum quench
Teff from FDT ? Longitudinal spin

A quantum quench Γ0 → Γ of the isolated Ising chain

Here : to its critical point Γ = 1
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Linear response and symmetrized correlation of σx

Foini, LFC & Gambassi 11
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