Random matrices (motivated by MBL)

Leticia F. Cugliandolo

Sorbonne Université
Institut Universitaire de France

$$
\begin{gathered}
\text { leticia@lpthe.jussieu.fr } \\
\text { www.lpthe.jussieu.fr/~leticia }
\end{gathered}
$$

Work in collaboration with
G. Schehr (LPTHE, Sorbonne Université)
M. Tarzia (LPTMC, Sorbonne Université)
D. Venturelli (SISSA, Trieste, Italia - Erasmus at LPTHE \Rightarrow post-doc at LPTMC)

Two kinds of random matrices

Rosenzweig-Porter (RP)
Sum of random matrices

$$
\mathbb{H}=\mathbb{A}+\frac{\nu}{N^{\gamma / 2}} \mathbb{B}
$$

Weighted Erdös-Rényi graph

Fluctuating connectivity \& random hops

Motivation

Random matrices with (multi)fractal eigenvectors

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost Phys. 14, 110 (2023)
LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdös-Rényi graphs, arXiv: 2404.06931

Two kinds of random matrices

Rosenzweig-Porter (RP)
Sum of random matrices

$$
\mathbb{H}=\mathbb{A}+\frac{\nu}{N^{\gamma / 2}} \mathbb{B}
$$

- Weighted Erdös-Rényi graph

Fluctuating connectivity \& random hops

Motivation

Random matrices with (multi)fractal eigenvectors

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost Phys. 14, 110 (2023)
LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdös-Rényi graphs, arXiv: 2404.06931

The RP Model

Sum of random matrices

Take a diagonal $N \times N$ matrix \mathbb{A} with i.i.d. real elements $a_{i}=\mathcal{O}(1)$ taken from a $p_{a}\left(a_{i}\right)$

$$
\hat{A}=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
& \cdots & \cdots & \cdots & \\
0 & \cdots & 0 & a_{N-1}-1-1 & 0 \\
0 & \cdots & 0 & 0 & a_{N N}
\end{array}\right)
$$

and a real symmetric $N \times N$ matrix \mathbb{B} from the Gaussian Orthogonal Ensemble

$$
\mathbb{B}=\left(\begin{array}{ccccc}
b_{11} & b_{12} & & \cdots & b_{1 N} \\
b_{12} & b_{22} & b_{23} & \cdots & b_{2 N} \\
& \cdots & \cdots & \cdots & \\
b_{1 N-1} & \cdots & \cdots & b_{N-1 N-1} & b_{N-1 N} \\
b_{1 N} & & \cdots & b_{N-1 N} & b_{N N}
\end{array}\right)
$$

with $b_{i j}=\mathcal{O}(1)$ taken from $p_{b}\left(b_{i \neq j}\right) \propto e^{-b_{i j}^{2} / 2}$ and $p_{b}\left(b_{i i}\right) \propto e^{-b_{i i}^{2} / 4}$

The RP Model

Sum of random matrices

Add them in the form

$$
\mathbb{H}=\mathbb{A}+\underbrace{\frac{\nu}{N^{\gamma / 2}} \mathbb{B}}_{\gamma>1 \text { "perturbation" }}
$$

with ν and γ two parameters $\mathcal{O}(1) \& N$ the size of the square matrices

Initial motivation: adapt random matrix theory to atomic physics studies
Rosenzweig \& Porter, Repulsion of Energy Levels in Complex Atomic Spectra, Phys. Rev. 120, 1698 (1960)
More recently: many-body localization and the hypothetical bad metal phase
Kravtsov, Khaymovich, Cuevas \& Amini, A random matrix model with localization and ergodic transitions,
New. J. Phys. 17, 122002 (2015)
Sum of random matrices \& applications - free probability
A. Zee, Law of addition in random matrix theory, Nucl. Phys. B 474, 726 (1996)

Density of eigenvalues

Properties of $\mathbb{H}=\mathbb{A}+\nu N^{-\gamma / 2} \mathbb{B}$

Averaged spectral density

$$
\rho_{N}(\lambda) \equiv\left[\frac{1}{N} \sum_{i=1}^{N} \delta\left(\lambda-\lambda_{i}\right)\right]_{\mathbb{H}}
$$

Limits

- For $\gamma \gg 1$ the effect of \mathbb{B} is negligible and

$$
\rho_{N}(\lambda) \text { is just } p_{a}(\lambda)
$$

- In the Gaussian Orthogonal Ensemble (GOE), $\gamma=1$ and $p_{a}\left(a_{i i}\right)=\delta\left(a_{i i}\right)$, only \mathbb{B} counts, and

$$
\rho(\lambda) \equiv \lim _{N \rightarrow \infty} \rho_{N}(\lambda) \text { is the semi-circle law } \rho_{\mathrm{Sc}}(\lambda)=\frac{1}{2 \pi} \sqrt{4-\lambda^{2}}
$$

In general

Level spacings

Properties of $\mathbb{H}=\mathbb{A}+\nu N^{-\gamma / 2} \mathbb{B}$

Level statistics
The level spacings $s_{i}=\lambda_{i+1}-\lambda_{i}$, normalized by
their mean $\left\langle s_{i}\right\rangle$, are distributed according to

Limits

- for independent levels, Poisson's p.d.f. $\quad p(s)=e^{-s}$
- in the GOE case, the Wigner surmise

$$
p(s)=\frac{\pi}{2} s e^{-\pi s^{2} / 4}
$$

Eigenvectors

Properties of $\mathbb{H}=\mathbb{A}+\nu N^{-\gamma / 2} \mathbb{B}$

- For $\gamma>2, \mathbb{H} \sim \mathbb{A}$ and the eigenvectors (wave functions) ψ are fully localized

$$
n=O(1) \text { non-zero component }
$$

- For $\gamma<1, \mathbb{H} \sim \nu N^{-\gamma / 2} \mathbb{B}$ and the eigenvectors ψ are fully extended $n=O(N)$ non-zero components
- For $1<\gamma<2$, the eigenvectors ψ are localized over a fractal number of sites $1 \ll n=O\left(N^{2-\gamma}\right) \ll N$ non-zero components

Kravtsov, Khaymovich, Cuevas \& Amini, A random matrix model with localization and ergodic transitions, New. J. Phys. 17, 122002 (2015)

Eigenvectors

Properties of $\mathbb{H}=\mathbb{A}+\nu N^{-\gamma / 2} \mathbb{B}$

$$
\left|\psi_{i}^{(\alpha)}\right|^{2}
$$

Horizontal axis: "site" i index ordered according to $a_{1} \leq \cdots \leq a_{N}$
Kutlin \& Khaymovich, Anatomy of the eigenstates distribution... SciPost Phys. 16, 008 (2024)
de Tomasi, Amini, Bera, Khaymovich \& Kravtsov, Survival probability in Generalized Rosenzweig-Porter random matrix ensemble, SciPost Phys. 6, 014 (2019) $R(t) \equiv\left[|\langle\psi(t) \mid \psi(0)\rangle|^{2}\right]_{\mathbb{H}} \xrightarrow[t \rightarrow \infty]{ } N^{-D_{f}}$

Picture

Mini-bands and the fractal dimension for $1<\gamma<2$

$$
\text { Perturbation theory } \Rightarrow \lambda_{i} \sim a_{i}+4 \zeta \frac{1}{N} \sum_{j(\neq i)} \frac{b_{i j}^{2}}{a_{i}-a_{j}}
$$

Average spreading of the eigenvalues \Rightarrow Thouless energy
Mini-band GOE

$$
E_{T} \equiv\left[\left|\lambda_{i}-a_{i}\right|\right]_{\mathbb{H}} \sim \zeta \equiv\left(\nu^{2} / 4\right) N^{1-\gamma} \gg 1 / N
$$

Thouless
energy $\quad E_{T} \quad$ width of the mini-bands with GOE statistics

The number of eigenvectors "hybridized" by the perturbation

$$
\# \sim \frac{E_{T}}{(N \rho(\lambda))^{-1}} \sim N^{D_{f}} \quad \text { with } \quad D_{f}=2-\gamma<1
$$

support of the eigenvectors of the perturbed matrix \mathbb{H}

But no evidence for multifractality in this model

Methods \& our results

Replica trick

$$
\begin{aligned}
\rho_{N}(\lambda) & =\frac{1}{\pi} \lim _{\eta \rightarrow 0^{+}} \operatorname{Im}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda-\lambda_{i}-\mathrm{i} \eta}\right]_{\mathbb{H}} \quad \text { (Dirac } \delta \text { Representation) } \\
& =-\frac{1}{\pi} \lim _{\eta \rightarrow 0^{+}} \operatorname{Im} \frac{\partial}{\partial \lambda}[\ln \mathcal{Z}(\lambda-\mathrm{i} \eta)]_{\mathbb{H}}
\end{aligned}
$$

with the partition function $\mathcal{Z}(z)=\frac{1}{(2 \pi \mathrm{i})^{N / 2}} \int_{\mathbb{R}^{N}} \mathrm{~d}^{N} r e^{-\frac{1}{2} \mathbf{r}^{\mathrm{T}}(z \mathbb{I}-\mathbb{H}) \mathbf{r}}$
Using replicas $[\ln \mathcal{Z}]_{\mathbb{H}}=\lim _{n \rightarrow 0} \frac{1}{n} \ln \left[\mathcal{Z}^{n}\right]_{\mathbb{H}} \& \&$ saddle-point for $N \rightarrow \infty$

- usual replica symmetric Ansatz on $N Q_{a b}=\left\langle\mathbf{r}^{a} \cdot \mathbf{r}^{b}\right\rangle$ (difficult) or
- rotationally invariant Ansatz in replica space for the density (simpler !)

$$
\mu(\vec{r})=\mu\left(r^{1}, \ldots, r^{a}\right)=\frac{1}{N} \sum_{i=1}^{N} \prod_{a=1}^{n} \delta\left(r^{a}-r_{i}^{a}\right)=\bar{\mu}(r)
$$

Edwards \& Jones, The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A 9, 1595 (1976) Livan, Novaes \& Vivo, Introduction to Random Matrices - Theory and Practice, arXiv : 1712.07903, SpringerBriefs in Mathematical Physics 26 (2018)

The Zee formula

The averaged density of eigenvalues

After some lengthy but simple steps

$$
\begin{aligned}
\rho_{N}(\lambda) & =-\frac{1}{\pi \zeta} \lim _{\eta \rightarrow 0^{+}} \operatorname{Re} C(\lambda-\mathrm{i} \eta) \\
C(\lambda) & =\mathrm{i} \zeta G_{a}(\lambda+2 \mathrm{i} C(\lambda))
\end{aligned}
$$

$G_{a}(z)=\operatorname{Tr}(\mathbb{A}-z \mathbb{I})^{-1}$ the global resolvent of \mathbb{A}
and $\zeta=\frac{\nu^{2}}{4} N^{1-\gamma}$

Solution for Cauchy p_{a}

$$
\begin{array}{r}
N=2000, \gamma=1.1 \\
\nu=10, \zeta=11.7
\end{array}
$$

Evaluate numerically, leading finite size corrections captured \&
approximate analytic expression for $\rho_{N}(\lambda)$ in the limit $\zeta \ll 1$ and any p_{a}

Generalization of the Zee formula in Law of addition in random matrix theory, Nucl. Phys. B 474, 726 (1996)
Krajenbrink, Le Doussal \& O'Connell, Tilted elastic lines with columnar and point disorder, non-Hermitian quantum mechanics, and spiked random matrices: pinning and localization, Phys. Rev. E 103, 042120 (2021)

Beyond $\rho(\lambda)$ and $p(s)$

The level compressibility

$I_{N}(\alpha, \beta)=N \int_{\alpha}^{\beta} d \lambda \rho_{N}(\lambda)$ counts how many eigenvalues fall in the interval Large deviation function $\mathcal{F}_{[-E, E]}(s)=\lim _{N \rightarrow \infty} \frac{1}{N} \ln \left[e^{-s I_{N}(-E, E)}\right]_{\mathbb{H}}$ can be calculated with the replica method and then get the moments $\left[I^{k}(-E, E)\right]_{\mathbb{H}}^{c}$
and the level compressibility $\chi(E)=\frac{\left[I^{2}(-E, E)\right]_{\mathbb{H}}^{c}}{[I(-E, E)]_{\mathbb{H}}}$

Metz \& Pérez Castillo, Large Deviation Function for the Number of Eigenvalues of Sparse Random Graphs Inside an Interval, Phys. Rev. Lett. 117, 104101 (2016)

Metz, Replica-symmetric approach to the typical eigenvalue fluctuations of Gaussian random matrices, J. Phys. A 50, 495002 (2017)

Picture recovered

Mini-bands in the intermediate $1<\gamma<2$ regime

Picture recovered

Mini-bands in the intermediate $1<\gamma<2$ regime

$$
\begin{gathered}
\text { Scaling limit } y=\frac{1}{2 \pi p_{a}(0)} \frac{E}{E_{T}} \\
\chi_{T}(E)=\frac{1}{\pi y}\left[2 y \arctan y-\ln \left(1+y^{2}\right)\right]
\end{gathered}
$$

Universal - independent of p_{a}

Two kinds of random matrices

- Rosenzweig-Porter (RP)

Sum of random matrices

$$
\mathbb{H}=\mathbb{A}+\frac{\nu}{N^{\gamma / 2}} \mathbb{B}
$$

Weighted Erdös-Rényi graph

Fluctuating connectivity \& random hops

Motivation

Random matrices with (multi)fractal eigenvectors

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost Phys. 14, 110 (2023)
LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdös-Rényi graphs, arXiv: 2404.06931

Weighted random graph

Erdös-Rényi

Random graph

$$
H_{i j}=\frac{1}{\sqrt{p}} \sigma_{i j} h_{i j} \quad \sigma_{i j}=\left\{\begin{array}{ll}
1 & \text { prob }=p / N \\
0 & \text { prob }=1-p / N
\end{array} \quad h_{i j} \mathrm{GOE}\right.
$$

A sketch with $p=4$
$p \geq 1$: a giant component with $\tilde{N} \propto N$ sites and $O(N)$ finite size clusters.

Focus on the giant component only $\tilde{p} \propto p$
Note that the red links can have $h_{i j} \sim 0$

Rodgers \& Bray, Density of states of a sparse random matrix, Phys. Rev. B 37, 3557 (1988). Semerjian \& LFC, Sparse random matrices : the eigenvalue spectrum revisited, J. Phys. A 35, 4837 (2002). Kuhn, Spectra of sparse random matrices, J. Phys. A 41, 295002 (2008).

Eigenvectors

Inverse participation ratios \& fractal dimensions

Take the α th eigenvector $\psi_{i}^{(\alpha)}$ with $i=1, \ldots, N$ at a given energy E and calculate the disorder average \Rightarrow Fractal dimensions D_{q}

$$
\begin{equation*}
I_{q}=\left[\sum_{i=1}^{N}\left|\psi_{i}^{(\alpha)}\right|^{2 q}\right]_{\mathbb{H}} \propto N^{(1-q) D_{q}} \tag{IPR}
\end{equation*}
$$

$$
D_{q}=1 \forall q
$$

Extended
$\left|\psi_{i}^{(\alpha)}\right|^{2}$

Method \& our results

Cavity

The trace of the resolvent matrix $\mathbb{G}(z)=\left(\mathbb{H}-z \mathbb{I}_{N}\right)^{-1}$

$$
G(z) \equiv \operatorname{Tr} \mathbb{G}(z)=\sum_{i=1}^{N}\left(\lambda_{i}-z\right)^{-1} \quad \Rightarrow \quad \rho_{N}(E)
$$

The cavity Green's function is the diagonal element on node i of the resolvent of the Hamiltonian $\mathbb{H}^{(j)}$ with its neighbor j removed

$$
G_{i \rightarrow j}(z)=\left(\mathbb{H}^{(j)}-z \mathbb{I}_{N-1}\right)_{i i}^{-1} \quad z=E+\mathrm{i} \eta
$$

It satisfies the recursion relation

$$
G_{i \rightarrow j}(z)=\left(H_{i i}-z-\sum_{m \in \partial i \backslash j} H_{m i}^{2} G_{m \rightarrow i}(z)\right)^{-1}
$$

and the solution is used as an estimate of the diagonal elements $G_{i i}(z)$
which yield the IPR

$$
I_{q}(E) \propto \lim _{\eta \rightarrow 0^{+}} \eta^{q-1} \frac{1}{N} \sum_{i}\left|G_{i i}(z)\right|^{q}
$$

Local density of states

Definition \& properties

$$
\begin{gathered}
\rho_{i}(E) \equiv \sum_{\alpha}\left|\psi_{i}^{(\alpha)}\right|^{2} \delta\left(E-\lambda_{\alpha}\right)=\frac{1}{\pi} \lim _{\eta \rightarrow 0^{+}} \operatorname{Im} G_{i i}(z) \\
P(\rho, z)=\left[\frac{1}{N} \sum_{i=1}^{N} \delta\left(\rho-\pi^{-1} \operatorname{Im} G_{i i}(z)\right)\right]_{\mathbb{H}}
\end{gathered}
$$

Extended Delocalized but non-ergodic Localized

Symmetry $P(\rho)=\rho^{-3} P(1 / \rho)$ respected

Mirlin, Fyodorov, Mildenberger \& Evers, Exact Relations between Multifractal Exponents at the Anderson Transition, Phys. Rev. Lett. 97, 046803 (2006)

Fractal dimensions

In the delocalized non-ergodic regime

As p increases the graph becomes more and more connected, β increases, and the GOE fully extended behavior is approached with $D_{q} \rightarrow 1$ for larger and larger q

Fractal dimension

Cavity method vs. exact diagonalization

Cavity method vs. exact diagonalization

Horizontal dashed line - data points

$$
p=2.4, \quad E=0.4, \quad \beta \sim 1.5
$$

Weighted random graph

The phase diagram

LFC, Schehr, Tarzia \& Venturelli, Multifractal phase in the weighted adjacency matrices of random ErdösRényi graphs, arXiv: 2404.06931

Multifractal phase

Mechanism

Graph heterogeneity \Rightarrow
effective fragmentation due to very weak links

Multifractal phase

Robustness

Re-wiring \Rightarrow eliminate rooted trees
Re-weighting \Rightarrow re-draw $h_{i j}<\nu$ into $h_{i j}>\nu$

Two kinds of random matrices

- Rosenzweig-Porter (RP)

Sum of random matrices

$$
\begin{aligned}
\mathbb{H} & =\mathbb{A}+\frac{\nu}{N^{\gamma / 2}} \mathbb{B} \\
1 & <\gamma<2
\end{aligned}
$$

Properties

$$
\begin{aligned}
& \rho(\lambda)=p_{a}(\lambda) \\
& p(s) \propto s e^{-\pi s^{2} / 4} \\
& \left|\psi_{i}^{(\alpha)}\right|^{2} \propto N^{D_{2}} \\
& D_{2}=\gamma-2
\end{aligned}
$$

Weighted Erdös-Rényi graph
Fluctuating connectivity \& random hops

$$
\left[\left|\psi_{i}^{(\alpha)}\right|^{2 q}\right]_{\mathbb{H}} \propto N^{(1-q) D_{q}}
$$

$$
D_{q}= \begin{cases}\frac{\beta-1}{q-1} & q \geq \beta(p, E) \\ 1 & q<\beta(p, E)\end{cases}
$$

Multifractal phase

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost Phys. 14, 110 (2023)
LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdös-Rényi graphs, arXiv: 2404.06931

Multifractal phase

Return probability \& wave function overlap

FIG. 10. Overlap correlation function $K_{2}(\omega ; E)$, see Eq. (36), for $E=0.4$ and $p=2.4$ (a), $p=2.8$ (b), and $p=5$ (c). In panels (a) and (b) the energy separation ω is rescaled by the Thouless energy δ^{ϵ} - with a p-dependent exponent $\epsilon \in[0,1]$ - and the y-axis is rescaled by $N^{1-D_{2}}$ - where $D_{2}=\beta-1$, with β given in Fig. 6(a). Continuous lines correspond to the results obtained by solving the self-consistent cavity equations, while symbols show the exact diagonalization results. The dashed lines in panels (a) and (b) represent the power-law decay of correlations for $\omega \gg \delta^{\epsilon}$ as $K_{2}(\omega) \propto\left(\omega / \delta^{\epsilon}\right)^{-\mu}$, with a p-dependent exponent μ. The horizontal gray line in panel (c) corresponds to the Wigner-Dyson behavior for GOE matrices, $K_{2}(\omega)=1$. In panel (d) we plot our numerical estimates for the exponents ϵ (squares) and μ (circles) varying the average degree p, showing that a standard fully-delocalized behavior (with $\epsilon, \mu \rightarrow 0$) is progressively reached upon increasing p.

FIG. 12. Return probability, see Eq. (41), as a function of time, for $p=2.4$ (a), $p=3.6$ (b), and $p=5$ (c). The dashed lines show the power-law decay of the return probability as $R(t) \propto t^{-\zeta}$. In panel (d) we plot the exponent ζ upon varying the average degree p, showing that its value is very close to $\zeta \simeq 1-\mu$ within our numerical accuracy, μ being the exponent that describes the power-law decay of the overlap correlation function $K_{2}(\omega)$ - see Figs. 10(a-b).

Results

The averaged density of eigenvalues

After some lengthy but simple steps we obtain

$$
\begin{aligned}
& \rho(\lambda)=-\frac{1}{\pi \zeta} \lim _{\eta \rightarrow 0^{+}} \operatorname{Re} C(\lambda-\mathrm{i} \eta) \\
& C(\lambda)=\mathrm{i} \zeta G_{a}(\lambda+2 \mathrm{i} C(\lambda))
\end{aligned}
$$

$$
\text { with } G_{a} \text { the global resolvent of } \mathbb{A} \text { and } \zeta=\frac{\nu^{2}}{4 N^{\gamma-1}}
$$

The latter eq. can be solved exactly for some p_{a}, e.g. Cauchy.
Leading finite size corrections captured
Approximate $\rho_{N}(\lambda)$ for $\zeta \ll 1$ and any p_{a}

Generalization of the Zee formula in Law of addition in random matrix theory, Nucl. Phys. B 474, 726 (1996)
A. Krajenbrink, P. Le Doussal and N. O'Connell, Tilted elastic lines with columnar and point disorder, nonHermitian quantum mechanics, and spiked random matrices: pinning and localization, Phys. Rev. E 103, 042120 (2021)

Results

The averaged density of eigenvalues

(a)

(b)
$\zeta=11.7$
$\nu=10$

$$
\zeta=\frac{\nu^{2}}{4 N^{\gamma-1}}
$$

$$
N=2000, \gamma=1.1
$$

Results

The level compressibility

The \# of eigenvalues in the interval $[\alpha, \beta]$ is the random variable

$$
I(\alpha, \beta)=\int_{\alpha}^{\beta} d \lambda^{\prime} \rho\left(\lambda^{\prime}\right)
$$

The level compressibility is defined as

$$
\chi(\lambda)=\frac{\kappa_{2}(\lambda)}{\kappa_{1}(\lambda)}=\frac{\left[I^{2}(-\lambda, \lambda)\right]_{\mathbb{H}}-[I(-\lambda, \lambda)]_{\mathbb{H}}^{2}}{[I(-\lambda, \lambda)]_{\mathbb{H}}}
$$

Limits

- Pure Poisson, typical level spacing $\mathcal{O}(1) ; \chi(\lambda) \sim 1$ for small λ and $\chi(\lambda) \sim 0$ for large λ
- Pure GOE $(\mathbb{A}=0), \chi\left(\lambda \gg N^{-1 / 2-\gamma / 2}\right) \rightarrow 0$ and $\chi\left(\lambda \ll N^{-1 / 2-\gamma / 2}\right) \rightarrow 1$

Metz \& Pérez Castillo, Large Deviation Function for the Number of Eigenvalues of Sparse Random Graphs Inside an Interval, Phys. Rev. Lett. 117, 104101 (2016)
Metz, Replica-symmetric approach to the typical eigenvalue fluctuations of Gaussian random matrices, J. Phys. A 50, 495002 (2017)

Results

The level compressibility

We calculated the cumulant generating function $\mathcal{F}_{\lambda}(s)=\frac{1}{N} \ln \left[e^{-s I(-\lambda, \lambda)}\right]_{\mathbb{H}}$
In the interesting regime $1<\gamma<2$ we found
$-\chi(\lambda) \sim 0$ for $\lambda \ll E_{T} \quad$ within mini-bands (like not-too-small λ GOE)
$-\chi(\lambda) \sim 1$ for $\lambda \gg E_{T} \quad$ across mini-bands (like small λ Poisson)

- In the scaling limit $y=\frac{\lambda}{2 \pi p_{a}(0) \zeta}$ with $\zeta=\frac{\nu^{2}}{4 N^{\gamma-1}}$, a universal form

$$
\bar{\chi}(y)=\frac{1}{\pi y}\left[2 y \arctan (y)-\ln \left(1+y^{2}\right)\right]
$$

with $\bar{\chi}(y \rightarrow 0)=0$ and $\bar{\chi}(y \rightarrow \infty)=1$
Numerical tests of universality (independence of p_{a}) are under way

Details

On level compressibility

The \# of eigenvalues in the interval $[\alpha, \beta]$ is

$$
I(\alpha, \beta)=\sum_{i=1}^{N}\left[\theta\left(\beta-\lambda_{i}\right)-\theta\left(\alpha-\lambda_{i}\right)\right]
$$

The Heaviside function can be represented as

$$
\theta(-x)=\frac{1}{2 \pi \mathrm{i}} \lim _{\eta \rightarrow 0^{+}}[\ln (x+\mathrm{i} \eta)-\ln (x-\mathrm{i} \eta)]
$$

Then
$\sum_{i=1}^{N} \theta\left(\alpha-\lambda_{i}\right)=\frac{1}{2 \pi \mathrm{i}} \lim _{\eta \rightarrow 0^{+}}\{\ln \operatorname{det}[\mathbb{H}-(\alpha-\mathrm{i} \eta) \mathbb{I}]-\ln \operatorname{det}[\mathbb{H}-(\alpha+\mathrm{i} \eta) \mathbb{I}]\}$
and

$$
I(-\alpha, \beta)=-\frac{1}{\pi \mathrm{i}} \lim _{\eta \rightarrow 0^{+}} \ln \frac{\mathcal{Z}(\beta-\mathrm{i} \eta) \mathcal{Z}(\alpha+\mathrm{i} \eta)}{\mathcal{Z}(\beta+\mathrm{i} \eta) \mathcal{Z}(\alpha-\mathrm{i} \eta)}
$$

+ replica trick

Level compressibility

Sketch of the various scales

$\bar{\chi}(y)$

Methods

The trace of the resolvent matrix $\mathbb{G}(z)=(z \mathbb{I}-\mathbb{H})^{-1}$ is the global resolvent

$$
G(z) \equiv \frac{1}{N} \operatorname{Tr} \mathbb{G}(z)=\frac{1}{N} \sum_{i=1}^{N}\left(z-\lambda_{i}\right)^{-1} \underset{N \rightarrow \infty}{ } \int d \lambda^{\prime} \frac{\rho\left(\lambda^{\prime}\right)}{z-\lambda^{\prime}}
$$

Inverting

$$
\begin{aligned}
\rho(\lambda) & =\frac{1}{\pi} \lim _{\eta \rightarrow 0^{+}} \operatorname{Im} \lim _{N \rightarrow \infty} G(\lambda-\mathrm{i} \eta) \\
& =\frac{1}{\pi} \lim _{\eta \rightarrow 0^{+}} \operatorname{Im} \lim _{N \rightarrow \infty} \frac{1}{N} \frac{\partial}{\partial \lambda} \sum_{i=1}^{N} \ln \left(\lambda-\mathrm{i} \eta-\lambda_{i}\right)
\end{aligned}
$$

With the Edwards-Jones Gaussian representation

$$
\begin{aligned}
& {[\rho(\lambda)]_{\mathbb{H}}=-\frac{1}{\pi} \lim _{\eta \rightarrow 0^{+}} \operatorname{Im} \frac{\partial}{\partial \lambda}[\ln \mathcal{Z}(\lambda-\mathrm{i} \eta)]_{\mathbb{H}}} \\
& \mathcal{Z}(z)=\frac{1}{(2 \pi \mathrm{i})^{N / 2}} \int_{\mathbb{R}^{N}} \mathrm{~d}^{N} r e^{-\frac{1}{2} \mathbf{r}^{\mathrm{T}}(z \mathbb{I}-\mathbb{H}) \mathbf{r}}
\end{aligned}
$$

Edwards \& Jones, The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A 9, 1595 (1976)

Methods

The replica trick

$$
[\ln \mathcal{Z}]_{\mathbb{H}}=\lim _{n \rightarrow 0} \frac{\left[\mathcal{Z}^{n}\right]_{\mathbb{H}}-1}{n}=\lim _{n \rightarrow 0} \frac{1}{n} \ln \left[\mathcal{Z}^{n}\right]_{\mathbb{H}}
$$

For $N \rightarrow \infty$ the calculation reduces to the saddle-point evaluation of $\left[\mathcal{Z}^{n}\right]_{\mathbb{H}}$

- it can be done with a replica symmetric Ansatz on $N Q_{a b}=\left\langle\mathbf{r}^{a} \cdot \mathbf{r}^{b}\right\rangle$ as usual
- with a rotationally invariant Ansatz in replica space for the density

$$
\mu(\vec{r})=\mu\left(r^{1}, \ldots, r^{a}\right)=\frac{1}{N} \sum_{i=1}^{N} \prod_{a=1}^{n} \delta\left(r^{a}-r_{i}^{a}\right)
$$

such that at the saddle point level it only depends on the modulus $\mu(\vec{r})=\bar{\mu}(r)$
The second path turns out to be more convenient

Livan, Novaes \& Vivo, Introduction to Random Matrices - Theory and Practice, arXiv : 1712.07903, SpringerBriefs in Mathematical Physics 26 (2018)

