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Problem

Predict the density of defects left over after

traversing a 2nd order phase transition with a given speed.

Out of equilibrium physics :

the system does not have enough time to equilibrate to the continuously

changing conditions.



Theoretical motivation
Cosmology

(Very coarse description, no intention to enter into the details, definitions given

later in a simpler case)

Scenario : Due to expansion the universe cools down in the course of

time, R(t) ⇒ Tmicro(t), and undergoes a number of ‘second order’

phase transitions .

Modelization : Field-theory with spontaneous symmetry-breaking be-

low a critical point.

Consequence : The transition is crossed out of equilibrium and topo-

logical defects – depending on the broken symmetry – are left over.

Question : How many ? (network of cosmological strings )
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Experiments

Condensed matter

(Short summary, no intention to enter into the details either)

Set-up : Choose a material that undergoes the desired symmetry-brea-

king (e.g. the one postulated in the standard cosmological models) and

perform the quenching procedure.

Method : Measure, as directly as possible, the density of topological

defects . (could be vortices )

Difficulties : Defects are hard to see ; only their possible consequences

are. Sometimes it is not even clear which is the symmetry that is actually

broken. Many orders of magnitude in time should be explored.

W. Zurek 85 ; Les Houches winter school 99 ; T. Kibble, Phys. To day 07



Phenomenon
Statistical mechanics

This question can be posed on a well-known problem

Ordering dynamics following a quench through a phase transi tion

• between two equilibrium phases that are known on both sides of the

transition ;

• with a well-understood dynamic mechanism at and below the critical

point ;

• with easy to identify and count topological defects .



Plan of the talk
Intended as a colloquium ; hopefully clear but not boring

• Paradigmatic equilibrium second-order phase transition :

paramagnetic - ferromagnetic transition with scalar order -parameter ,

realized by e.g. the Ising model.

• Stochastic dynamics : temperature is the quenching parameter.

• Identification of a growing length and topological defects (domain walls ).

+ Dynamic scaling analysis :

corrections to the so-called Kibble-Zurek mechanism & new predic-

tions.

+ Numeric and analytic tests.



2nd order phase-transition

bi-valued equilibrium states related by symmetry, e.g. Ising magnets
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Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

g → ∞ g = gc g < gc

In a canonical setting the control parameter is temperature, g = T/J .



Quantifying order

The spatial correlation of fluctuations

(In spin language)

C(r) ≡ 1
N

∑N
i,j=1〈δsiδsj〉|~ri−~rj |=r

with δsi ≡ si − 〈si〉, N the number of spins, and the average 〈. . .〉

taken over different initial conditions and/or different runs.

In equilibrium

Ceq(r) ≃ r2−d−η e−r/ξeq(g)

with ξeq(g) the equilibrium correlation length .



The equil. correlation length

ξeq

gc

ξeq(g) ≃ |g − gc|
−ν



Dynamics

Contact with a thermal bath : Thermal agitation

• Microscopic : identify the ‘smallest’ relevant variables in the problem

(e.g. spins or particles ) ;

propose stochastic updates for them (e.g. Monte Carlo, Glauber ).

• Coarse-grained : average the microscopic variables over a coarse-

graining length to construct a field φ(x, t) ;

propose a differential equation for its dynamics (e.g. Langevin or

time-dependent λφ4 Ginzburg-Landau with noise & friction ).



A quench

gc − t/τQ

t0

gc

g

〈φ〉

〈φ〉(t, g) 6= ct : Non-conserved order parameter

e.g. development of magnetization in a ferromagnet after a q uench.

Focus on E(t) 6= ct : due to dissipation the energy is not conserved either



The problem

e.g. up & down spins in a 2d Ising model (IM)

g → ∞ g = gc g < gc

Question : starting from equilibrium at gi and changing g to gf with some

protocol, how is equilibrium at gf approached ?



∞-rapid quench

• At gf = gc the system needs to grow ordered structures of all sizes.

Critical coarsening.

• At gf < gc : the system tries to order locally in one of the two com-

peting equilibrium states at the new conditions.

Sub-critical coarsening.

In both cases one extracts from C(r, t) a linear size of equilibrated

patches R(t, g) that increases in time .



The growing length

The space-time correlation

(In spin language)

C(r, t) ≡ 1
N

∑N
i,j=1〈δsi(t)δsj(t)〉|~ri−~rj |=r

with δsi(t) ≡ si(t)− 〈si(t)〉.

Different ways to get R(t, g) :

• C(R(t, g), t) = 1/e

• R(t, g) = [
∫

ddr rα C(r, t)/
∫

ddr C(r, t)]1/α

• Dynamic scaling. (Explained later.)



Critical growth
∞-rapid quench to Tc : T (t < 0) = Ti ≫ Tc and T (t > 0) = Tc
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• Black curve : equilibrium power-law decay Ceq(r) ≃ r2−d−η.

• Coloured curves are C(r, t) for different times after the quench and

they slowly approach Ceq(r).

• The growing length is Rc(t) ≃ t1/zeq with zeq ≃ 2.17



Subcritical domain growth
∞-rapid quench to Tc : T (t < 0) = Ti ≫ Tc and T (t > 0) < Tc

Domains of up & down spins in a 2dIM quenched to Tf < Tc

0 < t1 < t2 < t3



Space-time correlation

In the regime a ≪ r ≪ L, r/R(t, T ) ≈ finite,

one finds dynamic scaling C(r, t) ≃ m2
eq(T ) fc

(

r
R(t,T )

)

with R(t, T ) ≃ λ(T ) t1/zd and zd = 2
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∞-rapid quenches
Control of cross-over

ξeq

Rc(t)

R(t)

g>gcg<



∞-rapid quench to g = gc + ǫ
Control of cross-over

The ‘typical length’ scales as

R(t, g) ≃ ξeq(g) f>

(

t
τeq(g)

)

with τeq(g) ≃ ξ
zeq
eq (g) ≃ |g − gc|

−νzeq the equilibrium relaxation time.

f>(x) ≃







x1/zeq x ≪ 1

ct x ≫ 1
R(t, g) ≃







t1/zeq t ≪ τeq

ξeq(g) t ≫ τeq

Crossover at t ≃ τeq(g) when R(τeq(g), g) ≃ ξeq(g).

zeq is the exponent linking times and lengths in critical coarsening and

equilibrium dynamics ; e.g. zeq ≃ 2.17 for 2dIM with NCOP .



∞-rapid quench to g = gc − ǫ
Control of cross-over

The ‘typical length’ scales as

R(t, g) ≃ ξeq(g) f<

(

t
τeq(g)

)

with ξeq and τeq the equilibrium correlation length and relaxation time.

f<(x) ≃







x1/zeq x ≪ 1

x1/zd x ≫ 1
R(t, g) ≃







t1/zeq

ξ
1−zeq/zd
eq (g) t1/zd

Crossover at t ≃ τeq(g) when R(τeq(g), g) ≃ ξeq(g)

Arenzon, Bray, LFC, Sicilia 08

Note that zd (6= zeq) ; e.g. zd = 2 for 2dIM with NCOP .



Topological defects : walls
An instantaneous configuration at t = 32 MCs, T = 1.5

Domains Walls



Dynamic scaling
Sub-critical coarsening

At late times there is a single length-scale, the typical radius of the do-

mains R(t, g), such that the domain structure is (in statistical sense)

independent of time when lengths are scaled by R(t, g), e.g.

C(r, t) ≡ 〈δsi(t)δsj(t) 〉||~ri−~rj |=r ∼ 〈φ〉2eq(g) fc

(

r

R(t, g)

)

,

etc. when r ≫ ξeq(g), t ≫ ξ
1/zeq
eq and C < 〈φ〉2eq(g).

Suggested by experiments and numerical simulations. Proved for

• Ising chain with Glauber dynamics .

• Langevin dynamics of the O(N) model with N → ∞, and the

spherical ferromagnet. Review A. J. Bray 94.



Dynamic scaling

Consequence

If there is only one length governing the dynamics, the density of topo-

logical defects should also be determined by R(t, g).

Then one has

n(t, g) ≃ [R(t, g)]−d

where n is the searched density, or number of topological defects per

unit system size.



Annealing or finite τQ quenches

∆g(t)

τQ2τQ10−t̂1−t̂2−t̂3

∆g ≡ g(t)− gc

Standard time parametrization g(t) = gc − t/τQ

Linear cooling could be thought of as an approximation of any cooling

procedure close to gc.



Annealing
What is the effect of a finite cooling rate on R(t, g) ?

RτQ4

RτQ3

RτQ2

RτQ1

ξeq

ĝ4ĝ1gc



Annealing
In equilibrium

The system follows the pace imposed by the changing conditions, g(t),

until a time −t̂ < 0 (or value of the control parameter ĝ > gc) at which

its dynamics is too slow to accomodate to the new rules. The system

falls out of equilibrium .

−t̂ is estimated as the moment when the relaxation time, τeq, is of the or-

der of the typical time-scale over which the control parameter, g, changes.

For a linear cooling rate :

τeq(g) ≃
∆g

dt∆g

∣

∣

∣

∣

−t̂

≃ t̂ ⇒ t̂ ≃ τ
νzeq/(1+νzeq)
Q

and ∆ĝ ≃ τ
−1/(1+νzeq)
Q Zurek 85



Annealing
What is the effect of a finite cooling rate on R(t, g) ?

RτQ4

RτQ3

RτQ2

RτQ1

ξeq

ĝ4ĝ1gc



Annealing
Critical coarsening out of equilibrium

In the critical region the system coarsens through critical dynamics and

these dynamics operate until a time t∗ > 0 at which the growing length

is again of the order of the equilibrium correlation length, R∗ ≃ ξeq(g
∗).

For a linear cooling rate a simple calculation yields

R(g∗) ≃ ζ R(ĝ) ≃ ζ ξeq(ĝ)

if the scaling for an infinitely rapid critical quench, R(∆t) ≃ ∆t1/zeq ,

with ∆T the time spent since the quench, still holds.

No change in leading scaling with τQ although there is a gain in length

through the prefactor ζ .

(This argument is different from the one in Zurek 85 .)



Annealing
What is the effect of a finite cooling rate on R(t, g) ?
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Annealing out of equilibrium
Far from the critical region

In the ‘ordered’ phase usual coarsening takes over. The correlation length

R continues to evolve and its growth cannot be neglected.

Working assumption

R(∆t, g) → R(∆t, g(∆t))

with ∆t the time spent since entering the sub-critical region at R(g∗).

∞-rapid quench with → finite-rate quench with

g = gf held constant g slowly varying.



Annealing
Crossover

One needs to match the three regimes : equilibrium, critical and sub-

critical growth.

New scaling assumption for g(t) = gc − t/τQ or |∆g(t)| = t/τQ :

R(t) ≡ R(t, g(t)) ≃ ξeq(g(t)) F
(

t
τeq(g(t))

)

with the limits

F(x) ≃







ct

x1/zd
R(t) ≃







|∆g(t)|−ν t ≪ −t̂

|∆g(t)|−ν(1−zeq/zd) t1/zd t ≫ t∗

Scaling on both sides of the critical (finally uninteresting) region.



Annealing
What is the effect of a finite cooling rate on R(t, g) ?

RτQ4

RτQ3

RτQ2

RτQ1

ξeq

ĝ4ĝ1gc

cfr. constant thin lines, Zurek 85



Simulations
Test of universal scaling in the 2dIM with NCOP dynamics
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Also checked (analytically) in the O(N) model in the large N limit.



Density of topological defects
Dynamic scaling implies

n(t, τQ) ≃ [R(t, τQ)]
−d with d the dimension of space

Therefore

n(t, τQ) ≃ τ
dν(zeq−zd)/zd
Q t−d[1+ν(zeq−zd)]/zd

depends on both times t and τQ.

NB t can be much longer than t∗ ; in particular t can be of order τQ while

t∗ scales as ταQ with α < 1.

Since zeq is larger than zd this quantity grows with τQ at fixed t.



Density of topological defects

At t ≃ τQ in the 2dIM with NCOP dynamics

N(t ≃ τQ, τQ) ≃ τ−1
Q

τQ
−1

Simulations

τQ

N(t = τQ)

1000100

1e+03

1e+02

1e+01

while the KZ mechanism yields NKZ ≃ τ
−ν/(1+νzeq)
Q ≃ τ

−1/3.17
Q .

Biroli, LFC, Sicilia, arXiv : 1001.0693 Phys. Rev. E (2010)



Conclusions

• Since defects continue to annihilate during the ordering dynamics, their

density at times of the order of the cooling rate, t ≃ τQ, is significantly

lower that the one predicted in Zurek 85 .

• Experiments should be revisited in view of this claim (with the proviso

that defects should be measured as directly as possible).

• Some future projects : annealing in systems with other type of phase

transitions and topological defects, e.g. 2d xy models (vortices) A.

Jelic & LFC in prep.

• Microcanonical quenches.



Conclusions

Related work on the classical Glauber Ising chain :

S. Cornell, K. Kaski & R. Stinchcombe, PRB 44, 12263 (1991) ,

P. Krapivsky, arXiv : 1001.0741 J. Stat. Mech. P02014 (2010) ,

S. N. Majumdar (in prep.)


