À quoi sert-elle la physique statistique?

Leticia F. Cugliandolo

Sorbonne Université
Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia/seminars

- Career

Studies
Research
Mentoring
Responsibilities

Physics

World

International career

Argentina

Universidad Nacional de Mar del Plata

1st \& 2nd year
Electronic Engineering
3er año
Physics

Argentina

Universidad Nacional de La Plata, Physics Department

Argentina

Theoretical physics

4th \& 5ft year
Licenciatura (Master) in Physics
Zero-modes on the lattice : the vortex fermion system

Doctorado (PhD) in Physics
UNLP 1988-1991
Topological quantum field theories

Supervisors Fidel A. Schaposnik (UNLP) \& Eduardo Fradkin (University of Urbana-Champaign, USA) Subjects related to the 2016 Nobel Prize (Thouless, Kosterlitz \& Haldane) \& Fields Medal 1990 (Witten)

Italia

Università di Roma I 'La Sapienza’

SAPIENZA
 UNIVERSITÀ DI ROMA

Roma

Post-doc: from Field Theory to Statistical Physics

Neural networks (91-92)
Spin glasses (92-94)

$$
H=-\sum_{i \neq j} J_{i j} s_{i} s_{j}
$$

ferromagnetic
antiferromagnetic
\neg
S_{i} up-down spins $\uparrow \downarrow$ or neuron firing/quiescent
$J_{i j}$ magnetic coupling or Hebb memory rule

More later

Subjects related to the 2021 Nobel Prize (Giorgio Parisi)

Paris

2nd post-doc and positions

1994-1996 CEA Saclay
Glass theory
1997-2003 ENS Paris
Quantum disordered systems
2003-present Sorbonne Université
Active matter

Frustrated magnetism

Quantum out of equilibrium systems
Formalism etc. etc. etc.

Long term visits to University of California at Santa Barbara, Harvard, ICTP Trieste, The University of Cambridge, Universidad de Buenos Aires

Students/post-docs

Still working with

G. Semerjian	Assist. Prof. ENS
C. DaSilva ©	Private sector PT
D. Loi	Informatics IT
A. Sicilia	Blogger-periodista
C. Aron	CNRS at ENS
A. Jelić @	Associate ICTP
E. Katzav 坐	Prof. Jerusalem
D. Levis	Prof. Barcelona
L. Foini	CNRS Saclay
J. Bonart	Finance UK
H. Ricateau	Informatics FR
A. Tartaglia (D	Informatics IT
M. Casiulis	post-doc Israel
D. Barbier	post-doc Suisse

$\xrightarrow{4}$
M. Kennett ${ }^{-1 *)}$
P. Charbonneau (*)
A. Velenich ()
()
A. Suma
P. Digregorio
I. Petrelli
O. Mazzarisi
C. Caporusso

Many in academia \& some in private sector: mainly journalism, finance \& info

Students/post-docs

Parcours

A. Sicilia Adventurous journalist

Principia Marsupia
@pmarsupia
(Nombre: Alberto Sicilia). Doctor en física teárica. Reportero freelance en Grecia // Ucrania // Egipto // Siria // Gaza // rak // instagram.com/pmarsupia /
\mathcal{S} blogs.publico.es/alberto-sicili.... © Born 2 October . Joined May 2009
3,439 Following 221.1 K Followers
D. Levis Prof. at Barcelona

C. Aron CR CNRS at ENS

M. Kasiulis Lutetian Project NYU

J. Bonart Citadel

L. Foini CR CNRS at IPhT CEA Saclay

Les Houches

ÉCOLE DE PHYSIQUE
des HOUCHES

surry

UNIVERSITÉ Grenoble Alpes

Les Houches

Ecole de Physique des Houches

ÉCOLE DE PHYSIQUE

 des HOUCHES
systèmes fondamentaux
en optique quantique

Les Houches 1990

fundamental systems in quantum optics
J. Dalibard
J.-M. Raimond
and J. Zinn-Justin
Editors

Statistical Physics

and disordered systems

Classical mechanics

Newton - Hamilton - Lagrange

Newton (Physics 101) $\quad m \vec{a}=\vec{F}$

- Solve simple problems especially for gradient forces $\vec{F}(\vec{x})=-\vec{\nabla} V(\vec{x})$ e.g.

- What happens if instead of one single particle there are many in interaction?

$$
\dot{\vec{p}}_{i} \equiv m \vec{a}_{i}=\vec{F}_{i}\left(\left\{\vec{x}_{j}\right\}\right) \quad i, j=1, \ldots, N \gg 1
$$

Very hard to solve.
Approximations \& numerics
Collective phenomena
Interest in macroscopic

Statistical physics

Advantage

No need to solve the Newton dynamic equations!

Under the ergodic hypothesis, after some equilibration time $t_{\text {eq }}$, macroscopic observables can be, on average, obtained with a static calculation, as an average over all configurations in phase space weighted with a probability distribution function $P\left(\left\{\vec{p}_{i}, \vec{x}_{i}\right\}\right)$

$$
\langle A\rangle=\int \prod_{i} d \vec{p}_{i} d \vec{x}_{i} \boldsymbol{P}\left(\left\{\overrightarrow{\boldsymbol{p}}_{i}, \overrightarrow{\boldsymbol{x}}_{i}\right\}\right) A\left(\left\{\vec{p}_{i}, \vec{x}_{i}\right\}\right)
$$

$\langle A\rangle$ should coincide with $\bar{A} \equiv \lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{t_{\mathrm{eq}}}^{t_{\mathrm{eq}}+\tau} d t^{\prime} A\left(\left\{\vec{p}_{i}\left(t^{\prime}\right), \vec{x}_{i}\left(t^{\prime}\right)\right\}\right)$ the time average typically measured experimentally

Statistical physics

Ensembles: recipes for $P\left(\left\{\vec{p}_{i}, \vec{x}_{i}\right\}\right)$ according to circumstances

Isolated system

$$
\mathcal{E}=\mathcal{H}\left(\left\{\vec{p}_{i}, \vec{x}_{i}\right\}\right)=c t
$$

Microcanonical distribution

$$
\boldsymbol{P}\left(\left\{\vec{p}_{i}, \overrightarrow{\boldsymbol{x}}_{i}\right\}\right) \propto \delta\left(\mathcal{H}\left(\left\{\vec{p}_{i}, \vec{x}_{i}\right\}\right)-\mathcal{E}\right)
$$

Flat probability density

$$
\begin{array}{cc}
S_{\mathcal{E}}=k_{B} \ln g(\mathcal{E}) & \beta \equiv \frac{1}{k_{B} T}=\left.\frac{\partial S_{\mathcal{E}}}{\partial \mathcal{E}}\right|_{\mathcal{E}} \\
\text { Entropy } & \text { Temperature }
\end{array}
$$

$$
\boldsymbol{P}\left(\left\{\overrightarrow{\boldsymbol{p}}_{i}, \overrightarrow{\boldsymbol{x}}_{i}\right\}\right) \propto e^{-\beta \mathcal{H}\left(\left\{\vec{p}_{i}, \vec{x}_{i}\right\}\right)}
$$

$\mathcal{E}=\mathcal{E}_{\text {syst }}+\mathcal{E}_{\text {env }}+\mathcal{E}_{\text {int }}$
Neglect $\mathcal{E}_{\text {int }}$ (short-range interact.)
$\mathcal{E}_{\text {syst }} \ll \mathcal{E}_{\text {env }} \quad \beta=\frac{\partial S_{\mathcal{E}_{e n v}}}{\partial \mathcal{E}_{\text {env }}}$

Environment

Interaction
System

Canonical ensemble

Statistical physics

Accomplishments

- Microscopic definition \& derivation of thermodynamic concepts
(temperature, pressure, etc.) and laws (equations of state, etc.)

$$
P V=n R T
$$

- Theoretical understanding of collective effects \Rightarrow phase diagrams

Phase transitions: sharp changes in the macroscopic behavior when an external (e.g. the temperature of the environment) or an internal (e.g. the interaction potential) parameter is changed

- Calculations can be difficult but the theoretical frame is set beyond doubt

Statistical physics

Four very important players \& concepts

Theoretical description of phase transitions Importance of randomness - More is different

Landau Theory

A phase-transition : change of state

A point representing the global state (a macroscopic observable) of the system
In the "upper" phase, the effective potential in which it moves has only one minimum, $\phi=0$.

In the "lower" phase, the effective potential has two minima $\phi= \pm \phi_{0} \neq 0$.

ϕ

control parameter

Landau free-energy
Order parameter

Disorder

Geometric randomness

Random graphs

Fixed random - quenched/frozen - objects
Different realisations, heterogeneities
Simplest example, random graphs
Take N vertices and draw a link joining each pair with probability p

Two realisations

Geometric randomness

Random graphs

Fixed random - quenched/frozen - objects
Different realisations, heterogeneities
Simplest example, random graphs
Take N vertices and draw a link joining each pair with probability p

Heterogeneity fluctuations

Geometric randomness

Mathematics \& applications

Erdös-Rényi (1959)

$p=0.1$

$p=0.25$

$p=0.5$

Questions :
complete subgraphs?
is the graph connected?
etc.
Networks

Geometric randomness

Percolation

Each bond is
assigned a
probability p

No percolation
occurs at $p=0.4$

Percolation occurs at $p=0.6$

Probability Π
of there being a path
taking from one end to the other
as a function of p
for different system sizes L
Phase transition

Physics: spin-glasses

Magnetic impurities (spins) randomly placed in an inert host
$\overrightarrow{r_{i}}$ are random and time-independent since
the impurities do not move during experimental time-scales \Rightarrow

quenched randomness

Magnetic impurities in a metal host

spins can flip but not move

RKKY interaction potential

$$
V\left(r_{i j}\right) \propto \frac{\cos 2 k_{F} r_{i j}}{r_{i j}^{3}} s_{i} s_{j}
$$

very rapid oscillations about 0 positive \& negative slow power law decay.

Physics: spin-glasses

Models on a lattice with random couplings

Ising spins $s_{i}= \pm 1$ sitting on a lattice
$J_{i j}$ are random and time-independent since
the impurities do not move during experimental time-scales \Rightarrow

quenched randomness

spins can flip but not move

Edwards-Anderson model

$$
H_{J}\left[\left\{s_{i}\right\}\right]=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}
$$

$J_{i j}$ drawn from a pdf with
zero mean \& finite variance

Rugged landscapes

Beyond the Landau potential

Figure adapted from a picture by C. Cammarota

Topography of the landscape on the N-dimensional substrate made by the N order parameters?

Numerous studies by theoretical physicists (TAP 1977) and probabilists

Rugged landscapes

Beyond the Landau potential

How to reach the absolute minimum?
Thermal activation, surfing over tilted regions, quantum tunneling?
Optimisation problem Smart algorithms? Computer sc - applied math

Replica Theory

Giorgio Parisi

Giorgio Parisi awarded the Nobel Prize in Physics 2021

Replica method

A sketch

$$
-\beta\left[f_{J}\right]=\lim _{N \rightarrow \infty} \frac{\left[\ln Z_{N}(\beta, J)\right]}{N}=\lim _{N \rightarrow \infty} \lim _{n \rightarrow 0} \frac{\left[Z_{N}^{n}(\beta, J)\right]-1}{N n}
$$

Z_{N}^{n} partition function of n independent copies of the system : replicas.
Gaussian average over disorder : coupling between replicas

$$
\sum_{a} \sum_{i \neq j} J_{i j} s_{i}^{a} s_{j}^{a} \Rightarrow \sum_{i \neq j}\left(\sum_{a} s_{i}^{a} s_{j}^{a}\right)^{2}
$$

Quadratic decoupling with the Hubbard-Stratonovich trick

$$
Q_{a b} \sum_{i} s_{i}^{a} s_{i}^{b}+\frac{1}{2} Q_{a b}^{2}
$$

$Q_{a b}$ is a 0×0 matrix but it admits an interpretation in terms of overlaps The elements of $Q_{a b}$ can evaluated by saddle-point if one exchanges the limits $N \rightarrow \infty n \rightarrow 0$ with $n \rightarrow 0 N \rightarrow \infty$.

Replica Theory

The $n \times n$ matrix $Q_{a b}$

Replica symmetry breaking

Replica Theory

The $n \times n$ matrix $Q_{a b}$

Loosely speaking
the entries $Q_{a b}$ tell us about about the similarity between the configurations in the different valleys \& the topology of the landscape

Parisi 1977-1979

Some applications

Neural Networks

Real neural network

Neurons connected by synapsis on a random graph
Figures from AI, Deep Learning, and Neural Networks explained, A. Castrounis

Neural networks

Models on graphs with random couplings

The neurons are Ising spins $s_{i}= \pm 1$ on a graph
$J_{i j}$ are random and time-independent since
the synapsis do not change during experimental time-scales \Rightarrow

quenched randomness

The neural net

spins can flip but not move

Hopfield model

$$
H_{J}\left[\left\{s_{i}\right\}\right]=-\sum_{\langle i j\rangle} J_{i j} s_{i} s_{j}
$$

memory stored in the synapsis $J_{i j}=1 / N_{p} \sum_{\mu=1}^{N_{p}} \xi_{i}^{\mu} \xi_{j}^{\mu}$
the patterns ξ_{i}^{μ}
are drawn from a pdf with
zero mean \& finite variance

Neural Networks

Sketch \& artificial network

The connections in w^{T} may have a random component
The state of the neuron up (firing), down (quiescent) is a result of the calculation In the artificial network on chooses the geometry (number of nodes in internal layer, number of hidden layers, connections between layers)

Figures from AI, Deep Learning, and Neural Networks explained, A. Castrounis

Optimisation problems

Constrained satisfaction problems

Problems involving variables which must satisfy some constraints
e.g. equalities, inequalities or both
studied in computer science to
compute their complexity or develop algorithms to most efficiently solve them
Typically, N variables, which have to satisfy M constraints.
e.g. the variables could be the weights of a neural network, and each constraint imposes that the network satisfies the correct input-output relation on one of M training examples (e.g. distinguishing images of cats from dogs).

Statistical physics approach
thermodynamic limit $N \rightarrow \infty$ and $M \rightarrow \infty$ with $\alpha=M / N$ finite

Rugged landscapes

Beyond the Landau potential

How to reach the absolute minimum?
Thermal activation, surfing over tilted regions, quantum tunneling?
Optimisation problem Smart algorithms? Computer sc - applied math

Some books

Out of equilibrium

Driven systems

$$
\vec{F}_{\mathrm{ext}} \neq-\vec{\nabla} V(\vec{x})
$$

Energy injection $\quad d E(t) / d t \neq 0$

Active matter

Natural \& artificial : birds, bacteria, cells, grains, Janus particles

Experiments \& observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna et al. Roma, di Leonardo et al. Roma, Dauchot et al. Paris, just to mention some Europeans

Active Brownian particles

The standard model - ABPs

Spherical particles with diameter σ_{d}
Environment \Longrightarrow Langevin dynamics

Scales $\quad \Longrightarrow$ over-damped motion
Self-propulsion \Longrightarrow active force $\vec{F}_{\text {act }}$ along $\vec{n}_{i}=\left(\cos \theta_{i}(t), \sin \theta_{i}(t)\right)$

$$
\underbrace{\gamma \dot{\vec{r}}_{i}}_{\text {friction }}=\underbrace{F_{\text {act }} \vec{n}_{i}}_{\text {propulsion }}-\underbrace{\vec{\nabla}_{i} \sum_{j(\neq i)} V\left(r_{i j}\right)}_{\text {inter-particle repulsion }}+\underbrace{\vec{\xi}_{i}}_{\begin{array}{c}
\text { translational } \\
\text { white noise }
\end{array}}
$$

$$
\underbrace{\dot{\theta}_{i}=\eta_{i}}_{\begin{array}{c}
\text { rotational } \\
\text { white noise }
\end{array}}
$$

$2 d$ packing fraction $\phi=\pi \sigma_{d}^{2} N /(4 S)$ Péclet number $\mathrm{Pe}=F_{\mathrm{act}} \sigma_{\mathrm{d}} /\left(k_{B} T\right)$

Active Brownian particles

Typical motion of ABPs in interaction

The activity induces a persistent random motion
Long running periods $\ell_{p} \propto \operatorname{Pe} \sigma_{d}$ and sudden changes in direction

Active Brownian particles

Complex out of equilibrium phase diagram

Motility induced
phase separation (MIPS)
gas \& dense
droplet

Cates \& Tailleur 12

From virial pressure $P(\phi)$, translational and orientational correlations G_{T} and G_{6}, distributions of local density and hexatic order ϕ_{i} and $\psi_{6 i}$, at fixed $k_{B} T=0.05$

Digregorio, Levis, Suma, LFC, Gonnella \& Pagonabarraga 18

Active Brownian particles

Out of equilibrium phase diagram First question (out of many!)

Solid - Hexatic transition at $\phi_{s h}$, driven by unbinding of dislocation pairs as in Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young universality?

$$
\rho_{\text {disloc }} \simeq a \exp \left[-b\left(\frac{\phi_{s h}}{\phi_{s h}-\phi}\right)^{\nu}\right] \quad \nu \sim 0.37 \quad \forall \mathrm{Pe} ?
$$

Active Brownian particles

Out of equilibrium phase diagram So many questions!

Dynamics of formation of the dense phase? but bubbles, hexatic order, ...

Universality with the Lifshitz-Slyozov law $\mathcal{R}(t) \simeq t^{1 / 3}$? Geometry?
Redner et al 13, Stenhammar et al 14, ... , Caporusso et al 20, Caprini et al 20, ...

Thermodynamic notions?

Conclusions

The talk showed some physics going from the general to the particular statistical physics, disordered systems, out of equilibrium phenomena

Some basic statistical physics questions were discussed and concerned phase diagrams, universality, effects of disorder, replicas...

Thermodynamic concepts out of equilibrium?
Effective temperatures (heat flows, entropy production, partial equilibrations, fluctuations,...) importance of time-scales \& observables. Also stochastic thermodynamics, fluctuation theorems, etc.

There is much more to be done and understood

Beyond

Econophysics

Social physics
Ecology
Biophysics
Computer science
X-physics

