À quoi sert-elle la physique statistique?

Leticia F. Cugliandolo

Sorbonne Université Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia/seminars

Sorbonne, 2023

Career

Studies

Research

Mentoring

Responsibilities

Physics

World

International career

Universidad Nacional de Mar del Plata

1st & 2nd year

Electronic Engineering

3er año

Physics

Universidad Nacional de La Plata, Physics Department

Theoretical physics

4th & 5ft year
Licenciatura (Master) in Physics
Zero-modes on the lattice : the vortex
fermion system

Doctorado (PhD) in Physics UNLP 1988-1991

Topological quantum field theories

Supervisors Fidel A. Schaposnik (UNLP) & Eduardo Fradkin (University of Urbana-Champaign, USA) Subjects related to the 2016 Nobel Prize (Thouless, Kosterlitz & Haldane) & Fields Medal 1990 (Witten)

Italia

Università di Roma I 'La Sapienza'

Roma

Post-doc: from Field Theory to Statistical Physics

Neural networks (91-92) Spin glasses (92-94)

$$H = -\sum_{i \neq j} J_{ij} s_i s_j$$

 J_{ij} magnetic coupling or Hebb memory rule

More later

Subjects related to the 2021 Nobel Prize (Giorgio Parisi)

Paris

2nd post-doc and positions

1994-1996 CEA Saclay

Glass theory

1997-2003 ENS Paris

Quantum disordered systems

2003-present Sorbonne Université

Active matter

Frustrated magnetism

Quantum out of equilibrium systems

Formalism etc. etc. etc.

Long term visits to University of California at Santa Barbara, Harvard, ICTP Trieste, The University of Cambridge, Universidad de Buenos Aires

 $\angle \mapsto \heartsuit \mapsto \nearrow$

Students/post-docs

Still working with

Students/post-docs

Parcours

A. Sicilia Adventurous journalist

← Principia Marsupia

 Principia Marsupia

 @pmarsupia

 (Nombre: Alberto Sicilia). Doctor en física teórica. Reportero freelance en Grecia // Ucrania // Egipto // Siria // Gaza // Irak // instagram.com/pmarsupia/

 & blogs.publico.es/alberto-sicili...
 © Born 2 October III Joined May 2009

3,439 Following 221.1K Followers

C. Aron CR CNRS at ENS

M. Kasiulis Lutetian Project NYU

D. Levis Prof. at Barcelona

J. Bonart Citadel

L. Foini CR CNRS at IPhT CEA Saclay

Les Houches

Les Houches

Ecole de Physique des Houches

ÉCOLE DE PHYSIQUE des HOUCHES

UNIVERSITÉ Grenoble Alpes

fundamental systems in quantum optics

J. Dalibard J.-M. Raimond and J. Zinn-Justin

Editors

North-Holland

Statistical Physics and disordered systems

Classical mechanics

Newton - Hamilton - Lagrange

Newton (Physics 101) $m\vec{a}=\vec{F}$

• Solve simple problems especially for gradient forces $\vec{F}(\vec{x}) = -\vec{\nabla}V(\vec{x}) e.g.$

• What happens if instead of one single particle there are many in interaction?

 $\dot{\vec{p}}_i \equiv m\vec{a}_i = \vec{F}_i(\{\vec{x}_i\})$ $i, j = 1, \dots, N \gg 1$

Very hard to solve. **Approximations & numerics Collective phenomena** Interest in macroscopic

Advantage

No need to solve the Newton dynamic equations!

Under the *ergodic hypothesis*, after some *equilibration time* $t_{\rm eq}$, *macroscopic observables* can be, on average, obtained with a *static* calculation, as an average over all configurations in phase space weighted with a probability distribution function $P(\{\vec{p}_i, \vec{x}_i\})$

$$\langle A \rangle = \int \prod_{i} d\vec{p}_{i} d\vec{x}_{i} \ \boldsymbol{P}(\{\vec{p}_{i}, \vec{x}_{i}\}) \ A(\{\vec{p}_{i}, \vec{x}_{i}\})$$

$$\langle A \rangle \text{ should coincide with } \overline{A} \equiv \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t_{\text{eq}}}^{t_{\text{eq}} + \tau} dt' \ A(\{\vec{p}_{i}(t'), \vec{x}_{i}(t')\})$$

the time average typically measured experimentally

Boltzmann, late XIX

Ensembles : recipes for $P(\{ec{p_i},ec{x_i}\})$ according to circumstances

Microcanonical distribution

$$\boldsymbol{P(\{\vec{p_i}, \vec{x_i}\}) \propto \delta(\mathcal{H}(\{\vec{p_i}, \vec{x_i}\}) - \mathcal{E})}$$

Flat probability density

Isolated system

$$\mathcal{E} = \mathcal{H}(\{\vec{p_i}, \vec{x_i}\}) = ct$$

$$S_{\mathcal{E}} = k_B \ln g(\mathcal{E}) \qquad \beta \equiv \frac{1}{k_B T} = \frac{\partial S_{\mathcal{E}}}{\partial \mathcal{E}}$$

Entropy

Temperature

$$\begin{split} \mathcal{E} &= \mathcal{E}_{syst} + \mathcal{E}_{env} + \mathcal{E}_{int} \\ \text{Neglect } \mathcal{E}_{int} \text{ (short-range interact.)} \\ \mathcal{E}_{syst} \ll \mathcal{E}_{env} \quad \beta = \frac{\partial S_{\mathcal{E}_{env}}}{\partial \mathcal{E}_{env}} \\ \hline \mathbf{P}(\{\vec{p}_i, \vec{x}_i\}) \propto e^{-\beta \mathcal{H}(\{\vec{p}_i, \vec{x}_i\})} \end{split}$$

Canonical ensemble

Accomplishments

• Microscopic definition & derivation of thermodynamic concepts

(temperature, pressure, *etc.*)

and laws (equations of state, etc.)

PV = nRT

 Theoretical understanding of collective effects phase diagrams

Phase transitions : sharp changes in the macroscopic behavior when an external (*e.g.* the temperature of the environment) or an internal (*e.g.* the interaction potential) parameter is changed

Calculations can be difficult but the theoretical frame is set beyond doubt

Four very important players & concepts

Phase transitions Symmetry breaking

1962

Renormalization Universality

1982

Higgs Mechanism Disorder, Localization

1977

Topology **Disorder**, Localization

2016 Nobel Prizes

Theoretical description of phase transitions Importance of randomness – More is different

Landau Theory

A phase-transition : change of state

A point representing the global state (a macroscopic observable) of the system

In the "upper" phase, the *effective potential* in which it moves has only one minimum, $\phi = 0$.

In the "lower" phase, the effective potential has two minima $\phi = \pm \phi_0 \neq 0$.

Random graphs

Fixed random – quenched/frozen – objects

Different realisations, heterogeneities

Simplest example, random graphs

Take N vertices and draw a link joining each pair with probability p

Two realisations

Random graphs

Fixed random – quenched/frozen – objects

Different realisations, heterogeneities

Simplest example, random graphs

Take N vertices and draw a link joining each pair with probability p

Heterogeneity fluctuations

Mathematics & applications

Erdös-Rényi (1959)

p = 0.25

p = 0.5

Questions :

complete subgraphs? is the graph connected? *etc.*

Networks

Percolation

Probability Π of there being a path taking from one end to the other as a function of pfor different system sizes L

Phase transition

Physics : spin-glasses

Magnetic impurities (spins) randomly placed in an inert host

 $\vec{r_i}$ are random and time-independent since

the impurities do not move during experimental time-scales \Rightarrow

quenched randomness

Magnetic impurities in a metal host

RKKY interaction potential

$$V(r_{ij}) \propto rac{\cos 2k_F r_{ij}}{r_{ij}^3} s_i s_j$$

very rapid oscillations about 0 positive & negative slow power law decay.

spins can flip but not move

Physics : spin-glasses

Models on a lattice with random couplings

Ising spins $s_i = \pm 1$ sitting on a lattice

 J_{ij} are random and time-independent since

the impurities do not move during experimental time-scales \Rightarrow

quenched randomness

spins can flip but not move

Edwards-Anderson model

$$H_J[\{s_i\}] = -\sum_{\langle ij\rangle} J_{ij}s_is_j$$

 J_{ij} drawn from a pdf with zero mean & finite variance

Rugged landscapes

Beyond the Landau potential

Figure adapted from a picture by **C. Cammarota**

Topography of the landscape on the $N\mbox{-dimensional substrate made}$ by the $N\mbox{ order parameters ?}$

Numerous studies by theoretical physicists (TAP 1977) and probabilists

Rugged landscapes

Beyond the Landau potential

How to reach the absolute minimum?

Thermal activation, surfing over tilted regions, quantum tunneling?

Optimisation problem Smart algorithms? Computer sc - applied math

Replica Theory

Giorgio Parisi

Replica method

A sketch

$$-\beta[f_J] = \lim_{N \to \infty} \frac{\left[\ln Z_N(\beta, J)\right]}{N} = \lim_{N \to \infty} \lim_{n \to 0} \frac{\left[Z_N^n(\beta, J)\right] - 1}{Nn}$$

 Z_N^n partition function of *n* independent copies of the system : replicas.

Gaussian average over disorder : coupling between replicas

$$\sum_{a} \sum_{i \neq j} J_{ij} s_i^a s_j^a \Rightarrow \sum_{i \neq j} \left(\sum_{a} s_i^a s_j^a \right)^2$$

Quadratic decoupling with the Hubbard-Stratonovich trick

$$Q_{ab}\sum_{i}s_{i}^{a}s_{i}^{b} + \frac{1}{2}Q_{ab}^{2}$$

 Q_{ab} is a 0×0 matrix but it admits an interpretation in terms of **overlaps** The elements of Q_{ab} can evaluated by saddle-point if one exchanges the limits $N \to \infty \ n \to 0$ with $n \to 0 \ N \to \infty$.

Replica Theory

The $n \times n$ matrix Q_{ab}

Replica symmetry breaking

Parisi 1977-1979

Replica Theory

The $n \times n$ matrix Q_{ab}

Loosely speaking the entries Q_{ab} tell us about about the similarity between the configurations in the different valleys & the topology of the landscape

Parisi 1977-1979

Some applications

Neural Networks

Real neural network

Neurons connected by synapsis on a random graph

Figures from AI, Deep Learning, and Neural Networks explained, A. Castrounis

Neural networks

Models on graphs with random couplings

The neurons are Ising spins $s_i = \pm 1$ on a graph

 J_{ij} are random and time-independent since

the synapsis do not change during experimental time-scales \Rightarrow

quenched randomness

spins can flip but not move

Hopfield model

$$H_J[\{s_i\}] = -\sum_{\langle ij\rangle} J_{ij}s_is_j$$

memory stored in the synapsis

$$J_{ij} = 1/N_p \sum_{\mu=1}^{N_p} \xi_i^{\mu} \xi_j^{\mu}$$

the patterns ξ_i^{μ}

are drawn from a pdf with

zero mean & finite variance

Neural Networks

Sketch & artificial network

The connections in \mathbf{w}^T may have a random component

The state of the neuron up (firing), down (quiescent) is a result of the calculation In the artificial network on chooses the geometry (number of nodes in internal layer, number of hidden layers, connections between layers)

Figures from AI, Deep Learning, and Neural Networks explained, A. Castrounis

Optimisation problems

Constrained satisfaction problems

Problems involving variables which must satisfy some constraints

e.g. equalities, inequalities or both

studied in computer science to

compute their complexity or develop algorithms to most efficiently solve them

Typically, N variables, which have to satisfy M constraints.

e.g. the variables could be the weights of a neural network, and each constraint imposes that the network satisfies the correct input-output relation on one of M training examples (e.g. distinguishing images of cats from dogs).

Statistical physics approach

thermodynamic limit $N
ightarrow \infty$ and $M
ightarrow \infty$ with lpha = M/N finite

Rugged landscapes

Beyond the Landau potential

How to reach the absolute minimum?

Thermal activation, surfing over tilted regions, quantum tunneling?

Optimisation problem Smart algorithms? Computer sc - applied math

Some books

Out of equilibrium

Driven systems

$$\vec{F}_{\rm ext} \neq -\vec{\nabla}V(\vec{x})$$

Energy injection d

$$dE(t)/dt \neq 0$$

Active matter

Natural & artificial : birds, bacteria, cells, grains, Janus particles

Experiments & observations **Bartolo** *et al.* Lyon, **Bocquet** *et al.* Paris, **Cavagna** *et al.* Roma, **di Leonardo** *et al.* Roma, **Dauchot** *et al.* Paris, just to mention some Europeans

The standard model – ABPs

2d packing fraction $\phi = \pi \sigma_d^2 N/(4S)$ Péclet number Pe = $F_{\rm act} \sigma_{\rm d}/(k_B T)$

Bialké, Speck & Löwen, Fily & Marchetti 12

Typical motion of ABPs in interaction

The activity induces a persistent random motion

Long running periods $\ell_p \propto {\sf Pe} \ \sigma_d$ and

sudden changes in direction

Complex out of equilibrium phase diagram

From virial pressure $P(\phi)$, translational and orientational correlations G_T and G_6 , distributions of local density and hexatic order ϕ_i and ψ_{6i} , at fixed $k_B T = 0.05$

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga 18

Out of equilibrium phase diagram First question (out of many!)

Solid - Hexatic transition at ϕ_{sh} , driven by unbinding of dislocation pairs

as in Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young universality?

$$\rho_{disloc} \simeq a \, \exp\left[-b \left(\frac{\phi_{sh}}{\phi_{sh}-\phi}\right)^{\nu}\right] \qquad \nu \sim 0.37 \quad \forall \text{Pe} \,?$$

Out of equilibrium phase diagram So many questions!

Dynamics of formation of the dense phase? but bubbles, hexatic order, ...

Universality with the Lifshitz-Slyozov law $\mathcal{R}(t) \simeq t^{1/3}$? Geometry ?

Redner et al 13, Stenhammar et al 14, ..., Caporusso et al 20, Caprini et al 20, ...

Thermodynamic notions?

Conclusions

The talk showed some physics going from the general to the particular

statistical physics, disordered systems, out of equilibrium phenomena

Some basic statistical physics questions were discussed and concerned

phase diagrams, universality, effects of disorder, replicas...

Thermodynamic concepts out of equilibrium?

Effective temperatures (heat flows, entropy production, partial equilibrations, fluctuations,...) importance of time-scales & observables. Also stochastic thermodynamics, fluctuation theorems, *etc.*

There is much more to be done and understood

Econophysics

Social physics

Ecology

Biophysics

Computer science

X-physics