## Computational optimization, glasses \& black holes: <br> A rare mix with many common features

## Leticia F. Cugliandolo

Sorbonne Université
Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr<br>www.lpthe.jussieu.fr/~leticia/seminars

## Computational optimisation

## Setting

## Take two individuals



They may like or dislike each other

## Setting

## Identify their feelings towards each other



Assume they are reciprocal

## Setting

## Define a pairwise interaction


$J_{\text {Mary-John }}=-1$


$$
J_{\text {Mary-John }}=+1
$$

## An easy problem

## Going out for dinner in a group of three

| You | Mary |
| :--- | :--- | :--- |
| You | John |
| Mary | John |

Happy dinner

## An easy problem

## Going out for dinner : give a score

| You | Mary | -1 |
| :--- | :---: | :---: | :---: |
| You | John | -1 |
| Mary | John | -1 |
| Happy dinner |  | -3 |

[^0]
## Easy vs. constrained

## Going out for dinner in a group of three

| You | Mary | -1 | You | $\bigcirc$ | Mary | -1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| You | O | John | -1 | You |  | John | -1 |
| Mary | John | -1 | Mary | John | +1 |  |  |
|  |  |  |  |  |  |  |  |
| Happy dinner |  | -3 | Conflicting dinner | -1 |  |  |  |

The rule is to add $J=-1$ for each happy pair or $J=+1$ for each unhappy one

## Easy vs. constrained

## Define a cost function

| You | $\bigcirc$ | Mary | -1 | You | $\bigcirc$ | Mary | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| You | $\bigcirc$ | John | -1 | You | $\bigcirc$ | John | -1 |
| Mary | $\bigcirc$ | John | -1 | Mary | \% | John | +1 |
| Happy dinner |  |  | -3 | Conflicting dinner |  |  | -1 |

The rule is to add $J=-1$ for each happy pair and $J=+1$ for each unhappy one

The cost function takes a higher value when there is frustration

## An optimisation problem

## Change the proposal : split the group in two

## Three cases

(You \& Mary go out) (John is not invited)
(Mary is not invited)

(You \& John - go out)
(Mary \& John go out) (You are not invited) X +1

$-1$

The value of the cost function is the $J$ of the couple

There are two optimal solutions which minimize the cost function

## An optimisation problem

More people, many more connections, complexity increases


Say that, roughly, half and half love or hate each other

## An optimisation problem

How do we split the group equally (\& make two parties)?


## An optimisation problem

Evaluate the cost function


Group $B$

$$
\begin{aligned}
& \text { Add }-1 \text { for } Q+1 \text { for } \\
& \operatorname{Cost}_{B}=-1+1+1=+1
\end{aligned}
$$

The total cost is

$$
C=C_{A}+C_{B}=2
$$

Is it a good solution?

## An optimisation problem

Which is the optimal partition? A hard problem


One can try all possible cuts for a few persons but not for many!

## Mathematical representation

Setting the problem in a form amenable to calculations

## Cost function

## Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

It is inconvenient to call the people by their name, we prefer to use number labels

$$
\text { Mary =1 } \quad \text { John }=2 \quad \text { Peter }=3
$$

$i$ labels the persons and runs from 1 to $N$, their total number
$i=1, \ldots, N$ label the persons. For ex. $i=1$ is Mary, $i=2$ is John, etc.

## Cost function

## Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example
$i, j=1, \ldots, N$ label the persons. For ex. $i=1$ is Mary, $i=2$ is John, etc.

Each pair of individuals in the group like or dislike each other

Mary and John like each other $J_{\text {Mary-John }}=J_{12}=-1$ while Mary and Peter dislike each other $J_{\text {Mary-Peter }}=J_{13}=+1$
and we call $\begin{aligned} & J_{i j} \\ & \text { the } \\ & \end{aligned}(N-1) / 2$ frozen interactions - quenched disorder

## Cost function

## Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

$$
i=1, \ldots, N \text { or } j=1, \ldots, N \text { label the persons }
$$

Each pair has a predetermined interaction

$$
J_{i j}=-1 \text { if love or } J_{i j}=+1 \text { if hate between } i \text { and } j
$$

We set the value of a variable attributed to each person to

$$
s_{i}=+1 \text { if } i \text { is in group } A \text { or } s_{i}=-1 \text { if } i \text { is in group } B
$$

It characterises the state of the $i$ th person for ex. if Mary (labelled $i=1$ ) is in group $A, s_{\text {Mary }}=s_{1}=+1$
if John (labelled $i=2$ ) is in group $B, s_{\mathrm{John}}=s_{2}=-1$

## Cost function

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example
$s_{i}=+1$ if $i$ is in group $A$ or $s_{i}=-1$ if $i$ is in group $B$

Condition, equal-size groups

To ensure equal-size groups $\underbrace{s_{1}+s_{2}+\cdots+s_{N}}=0 \quad$ (as many +1 as -1 )

$$
\text { Short-hand notation } \sum_{i=1}^{N} s_{i}=0
$$

represents a sum of the states of all people given by the values of the $s_{i}$

## Cost function

## Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example
$s_{i}=1$ if $i$ is in group $A$ or $s_{i}=-1$ if $i$ is in group $B$
find the assignment of the $\left\{s_{i}\right\}$ so that they add up to zero $\left(\sum_{i=1}^{N} s_{i}=0\right) \&$ the

## Cost function

$C=$ sum over all pairs - of the love/hate values - in the same group
is minimised

## Cost function

## Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example
$s_{i}=1$ if $i$ is in group $A$ or $s_{i}=-1$ if $i$ is in group $B$
find the assignment of all the $s_{i}$ so that they add up to zero $\left(\sum_{i=1}^{N} s_{i}=0\right) \&$ the
Cost function is minimised


## Cost function

What is a function? Think of a linear roller coaster



A real function $C$ of a single real variable $x$

## Cost function

## What is the goal?



Find the absolute minimum $x_{\text {min }}$

## Cost function

## What is the goal?



How does one move in this landscape to find $x_{\text {min }}$ ?
Think of a ball rolling down the slopes with some friction:

- if it starts from the right end, it'll end up in a local minimum $x_{\text {min }}$
- if it starts from the left end, it'll end up in the absolute minimum $x_{\text {min }}$


## Cost function

Rugged landscape in a large dimensional space - a sketch


The lanscape is fixed by the $\left\{J_{i j}\right\}$ - quenched randomness
or disorder - for a typical realization of the problem

## Cost function

Rugged landscape in a large dimensional space - a sketch


The characterization of these lanscapes is
a full field of research in math \& physics

## Cost function

Rugged landscape in a large dimensional space - a sketch


How to move on this landscape?
Use algorithms which change the $\left\{s_{i}\right\}$ with some rule

## Cost function

Rugged landscape in a large dimensional space - a sketch


To reach the absolute minimum is often a very hard problem
Smart algorithms?

## Let us move on to physics

Experiments, observations and models

## States of Matter

## The common ones



Liquid
water


Gas
vapour

## Glasses

Ancient - modern


## Glasses

## Peculiar physical features : neither crystals nor liquids

Relaxation time vs. inverse temperature

- Often, cooling down or pressing a liquid one makes a glass instead of a crystal
- Rigid but microscopically disordered
- Extremely slow macroscopic dynamics
relaxation time grows by orders of magnitude
under weak changes of the external conditions
- Out of equilibrium evolution
(a bit more technical)

super-cooled liquid
glass
Experiments


## Cost function

## Another equation - the "spherical cow" model

The standard model of glassy behaviour
Huge conceptual jump !


There are $N$ variables $s_{i}= \pm 1$
and $N(N-1)(N-2)(N-3) / 4$ predetermined couplings $J_{i j k l}$

$$
\text { (like } \left.J_{i j k l}=+1 \text { or } J_{i j k l}=-1\right)
$$

Similarities : long relaxation times (plot above), thermodynamic properties

## Predictive power!

## Rugged landscapes

In large dimensional spaces


How to reach the absolute minimum, in the physical case the crystal ?
A higher lying region of the landscape corresponds to the glass

## A strategy: annealing

From medieval swords to solar cells

arms $\oplus$ ARMOR
steel (iron with an alloy of carbon) annealing lets the carbon move


Solar cells
Controllable crystallisation plays a crucial role in the formation of high-quality perovskites

Changing ambient conditions with a convenient protocol
to obtain the desired material properties

## Annealing

Real (materials) and simulated (optimisation)


Figure from O. Ghasemalizadeh et al. 16
A physical protocol applied in the computer optimisation context

Further knowledge of the physical systems helps
in the computer science context

## Black holes

## Black holes

## What are they?

- A (tiny) region of spacetime where gravity is so strong that nothing, not even light, can escape it
- The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole
- They can form through the collapse (on itself) of a big star
- Can be detected indirectly, by noticing how nearby stars act differently than far away ones


## Black holes

## There are many nearby

Sagittarius A* $^{*}$ is a supermassive black hole at the Galactic Center of the Milky Way

27000 light-years away from Earth
mass one million times the one of the Sun
packed within 4000 times the Earth's diameter

R. Genzel (Munich) and Andrea Ghez (Los Angeles)

Event Horizon Telescope, a world-wide network of radio observatories

## Cost function

## Third equation - another "spherical cow" model

A simple quantum model of a black hole


There are $N\left(\right.$ Majorana $\left.\psi_{i} \psi_{j}=-\psi_{j} \psi_{i}\right)$ fermionic variables $\psi_{i}$
Interactions, like $J_{i j k l}=+1$ or $J_{i j k l}=-1$
The rugged landscape has the properties expected for a black hole, and the thermodynamics and time evolution as well

## Conclusions

## Connections via cost functions

Hard computational problems

## Glasses



## Black holes

In theoretical physics, we often use simplified models which capture the essence of a natural phenomenon. We love them for their relative mathematical manageability but also because of their predictive power, which may let us uncover unknown features of Nature.


[^0]:    The rule is to add $J=-1$ for each happy pair

