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Computational optimisation
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Setting
Take two individuals

Mary John

They may like or dislike each other
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Setting
Identify their feelings towards each other

or

Assume they are reciprocal

4



Setting
Define a pairwise interaction

JMary−John = −1

JMary−John = +1
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An easy problem
Going out for dinner in a group of three

You Mary

You John

Mary John

Happy dinner
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An easy problem
Going out for dinner : give a score

You Mary −1
You John −1
Mary John −1

Happy dinner −3

The rule is to add J = −1 for each happy pair
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Easy vs. constrained
Going out for dinner in a group of three

You Mary −1
You John −1
Mary John −1

Happy dinner −3

You Mary −1
You John −1
Mary John +1

Conflicting dinner −1

The rule is to add J = −1 for each happy pair or J = +1 for each unhappy one
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Easy vs. constrained
Define a cost function

You Mary −1
You John −1
Mary John −1

Happy dinner −3

You Mary −1
You John −1
Mary John +1

Conflicting dinner −1

The rule is to add J = −1 for each happy pair and J = +1 for each unhappy one

The cost function takes a higher value when there is frustration
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An optimisation problem
Change the proposal : split the group in two

Three cases

(You & Mary go out) (John is not invited) 4 −1

(You & John go out) (Mary is not invited) 4 −1

(Mary & John go out) (You are not invited) 8 +1

The value of the cost function is the J of the couple

There are two optimal solutions which minimize the cost function
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An optimisation problem
More people, many more connections, complexity increases

Say that, roughly, half and half love or hate each other
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An optimisation problem
How do we split the group equally (& make two parties)?
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An optimisation problem
Evaluate the cost function

Group A

Add−1 for & +1 for

CostA = −1 + 1 + 1 = +1

Group B

Add−1 for & +1 for

CostB = −1 + 1 + 1 = +1

The total cost is C = CA + CB = 2 Is it a good solution?
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An optimisation problem
Which is the optimal partition ? A hard problem

One can try all possible cuts for a few persons but not for many !
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Mathematical representation
Setting the problem in a form amenable to calculations
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Cost function
Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

It is inconvenient to call the people by their name, we prefer to use number labels

Mary = 1 John = 2 Peter = 3 . . .

i labels the persons and runs from 1 to N , their total number

i = 1, . . . , N label the persons. For ex. i = 1 is Mary, i = 2 is John, etc.
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Cost function
Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

i, j = 1, . . . , N label the persons. For ex. i = 1 is Mary, i = 2 is John, etc.

Each pair of individuals in the group like or dislike each other

Mary and John like each other JMary−John = J12 = −1 while

Mary and Peter dislike each other JMary−Peter = J13 = +1

and we call Jij the N(N − 1)/2 frozen interactions - quenched disorder
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Cost function
Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

i = 1, . . . , N or j = 1, . . . , N label the persons

Each pair has a predetermined interaction

Jij = −1 if love or Jij = +1 if hate between i and j

We set the value of a variable attributed to each person to

si = +1 if i is in group A or si = −1 if i is in group B

It characterises the state of the ith person

for ex. if Mary (labelled i = 1) is in group A, sMary = s1 = +1

if John (labelled i = 2) is in group B, sJohn = s2 = −1
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Cost function
Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

si = +1 if i is in group A or si = −1 if i is in group B

Condition, equal-size groups

To ensure equal-size groups s1 + s2 + · · ·+ sN︸ ︷︷ ︸ = 0 (as many +1 as−1)

Short-hand notation
N∑
i=1

si = 0

represents a sum of the states of all people given by the values of the si
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Cost function
Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

si = 1 if i is in group A or si = −1 if i is in group B

find the assignment of the {si} so that they add up to zero (
N∑
i=1

si = 0) & the

Cost function

C = sum over all pairs − of the love/hate values − in the same group

is minimised
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Cost function
Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

si = 1 if i is in group A or si = −1 if i is in group B

find the assignment of all the si so that they add up to zero (
N∑
i=1

si = 0) & the

Cost function is minimised

C =
∑
i 6=j︸ ︷︷ ︸

sum over all pairs

Jij︸ ︷︷ ︸
love/hate

(
1 + sisj

2

)
︸ ︷︷ ︸

vanishes if i, j in different groups
selects pairs in same group
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Cost function
What is a function? Think of a linear roller coaster

A real function C of a single real variable x
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Cost function
What is the goal?

Find the absolute minimum xmin
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Cost function
What is the goal?

How does one move in this landscape to find xmin ?

Think of a ball rolling down the slopes with some friction:

– if it starts from the right end, it’ll end up in a local minimum xmin

– if it starts from the left end, it’ll end up in the absolute minimum xmin
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Cost function
Rugged landscape in a large dimensional space - a sketch

The N variables {si}

C
os

tf
un

ct
io

n

The lanscape is fixed by the {Jij} - quenched randomness

or disorder - for a typical realization of the problem
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Cost function
Rugged landscape in a large dimensional space - a sketch

The N variables {si}

C
os

tf
un

ct
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n

The characterization of these lanscapes is

a full field of research in math & physics
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Cost function
Rugged landscape in a large dimensional space - a sketch

The N variables {si}

C
os
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un
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How to move on this landscape?

Use algorithms which change the {si} with some rule
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Cost function
Rugged landscape in a large dimensional space - a sketch

The N variables {si}

C
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un
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To reach the absolute minimum is often a very hard problem

Smart algorithms?
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Let us move on to physics
Experiments, observations and models
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States of Matter
The common ones

Solid Liquid Gas

ice water vapour

Drawing V. K. Singh
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Glasses
Ancient - modern
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Glasses
Peculiar physical features : neither crystals nor liquids

Relaxation time vs. inverse temperature

— Often, cooling down or pressing a liquid

one makes a glass instead of a crystal

— Rigid but microscopically disordered

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(a bit more technical)

super-cooled liquid glass

Experiments
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Cost function
Another equation - the “spherical cow” model

The standard model of glassy behaviour Huge conceptual jump!

C =
∑

i 6=j 6=k 6=l︸ ︷︷ ︸
sum over all groups of four

Jijkl︸ ︷︷ ︸
interactions

sisjsksl︸ ︷︷ ︸
variables

There are N variables si = ±1

and N(N − 1)(N − 2)(N − 3)/4 predetermined couplings Jijkl

(like Jijkl = +1 or Jijkl = −1)

Similarities : long relaxation times (plot above), thermodynamic properties

Predictive power !
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Rugged landscapes
In large dimensional spaces

The N degrees of freedom
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How to reach the absolute minimum, in the physical case the crystal?

A higher lying region of the landscape corresponds to the glass
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A strategy: annealing
From medieval swords to solar cells

ARMS ARMOR
steel (iron with an alloy of carbon)

annealing lets the carbon move

Solar cells

Controllable crystallisation plays a crucial role in the formation

of high-quality perovskites

Changing ambient conditions with a convenient protocol

to obtain the desired material properties
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Annealing
Real (materials) and simulated (optimisation)

C

x

Figure from O. Ghasemalizadeh et al. 16

A physical protocol applied in the computer optimisation context

Further knowledge of the physical systems helps

in the computer science context
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Black holes
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Black holes
What are they?

— A (tiny) region of spacetime where gravity is so strong that nothing, not

even light, can escape it

— The theory of general relativity predicts that a sufficiently compact mass

can deform spacetime to form a black hole

Einstein, Schwarzschild

— They can form through the collapse (on itself) of a big star

C. Murphy

— Can be detected indirectly, by noticing how nearby stars act differently

than far away ones
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Black holes
There are many nearby

Sagittarius A* is a supermassive black hole at the Galactic Center of the

Milky Way

27000 light-years away from Earth

mass one million times the one of the Sun

packed within 4000 times the Earth’s diameter

R. Genzel (Munich) and Andrea Ghez (Los Angeles)

Event Horizon Telescope, a world-wide network of radio observatories

39



Cost function
Third equation - another “spherical cow” model

A simple quantum model of a black hole

C =
∑

i 6=j 6=k 6=l︸ ︷︷ ︸
sum over all groups of four

Jijkl︸ ︷︷ ︸
interactions

ψiψjψkψl︸ ︷︷ ︸
variables

There are N (Majorana ψiψj = −ψjψi ) fermionic variables ψi

Interactions, like Jijkl = +1 or Jijkl = −1

The rugged landscape has the properties expected for a black hole, and the

thermodynamics and time evolution as well
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Conclusions
Connections via cost functions

Hard computational problems

Glasses Black holes

In theoretical physics, we often use simplified models which cap-

ture the essence of a natural phenomenon. We love them for their

relative mathematical manageability but also because of their predic-

tive power, which may let us uncover unknown features of Nature.
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