Computational optimization, glasses & black holes: A rare mix with many common features

Leticia F. Cugliandolo

Sorbonne Université

Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr

www.lpthe.jussieu.fr/~leticia/seminars

Solvay Public Lecture, Bruxelles, 2023

Computational optimisation

Setting

Take two individuals

They may like or dislike each other

Identify their feelings towards each other

Assume they are reciprocal

Define a pairwise interaction

An easy problem

Going out for dinner in a group of three

Happy dinner

An easy problem

Going out for dinner : give a score

The rule is to add J = -1 for each happy pair

Easy vs. constrained

Going out for dinner in a group of three

The rule is to add J = -1 for each happy pair or J = +1 for each unhappy one

Easy vs. constrained

Define a cost function

The rule is to add J = -1 for each happy pair and J = +1 for each unhappy one

The cost function takes a higher value when there is frustration

Change the proposal : split the group in two

Three cases

The value of the cost function is the J of the couple

There are two **optimal** solutions which **minimize** the **cost function**

More people, many more connections, complexity increases

Say that, roughly, half and half love 💗 or hate 👎 each other

How do we split the group equally (& make two parties)?

Evaluate the cost function

Which is the optimal partition? A hard problem

One can try all possible cuts for a few persons but not for many!

Mathematical representation

Setting the problem in a form amenable to calculations

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

It is inconvenient to call the people by their name, we prefer to use number labels

Mary = 1 John = 2 Peter = 3 \dots

i labels the persons and runs from 1 to N, their total number

 $i=1,\ldots,N$ label the persons. For ex. i=1 is Mary, i=2 is John, etc.

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

 $i, j = 1, \dots, N$ label the persons. For ex. i = 1 is Mary, i = 2 is John, etc.

Each pair of individuals in the group like or dislike each other

Mary and John like \heartsuit each other $J_{Mary-John} = J_{12} = -1$ while Mary and Peter dislike \blacklozenge each other $J_{Mary-Peter} = J_{13} = +1$

and we call $\left| J_{ij}
ight|$ the N(N-1)/2 frozen interactions - quenched disorder

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

 $i=1,\ldots,N$ or $j=1,\ldots,N$ label the persons

Each pair has a predetermined interaction

 $J_{ij} = -1$ if love \heartsuit or $J_{ij} = +1$ if hate \clubsuit between i and j

We set the value of a variable attributed to each person to

 $\boxed{s_i=+1}$ if i is in group A or $\boxed{s_i=-1}$ if i is in group B

It characterises the state of the ith person

for ex. if Mary (labelled i = 1) is in group A, $s_{Mary} = s_1 = +1$

if John (labelled i = 2) is in group B, $s_{\text{John}} = s_2 = -1$

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

 $s_i = +1$ if i is in group A or $s_i = -1$ if i is in group B

Condition, equal-size groups

To ensure equal-size groups $\underbrace{s_1 + s_2 + \dots + s_N}_{N} = 0$ (as many +1 as -1) Short-hand notation $\sum_{i=1}^N s_i = 0$ represents a sum of the states of all people given by the values of the s_i

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

 $s_i = 1$ if i is in group A or $s_i = -1$ if i is in group B

find the assignment of the $\{s_i\}$ so that they add up to zero $(\sum_{i=1}^N s_i = 0)$ & the

Cost function

C = sum over all pairs – of the love/hate values – in the same group

is minimised

Just one equation (and quickly back to drawings)

In the graph partitioning - group splitting example

 $s_i = 1$ if i is in group A or $s_i = -1$ if i is in group B

find the assignment of all the s_i so that they add up to zero $(\sum_{i=1}^N s_i = 0)$ & the

Cost function is minimised

Cost function What is a function? Think of a linear roller coaster С ₀global maximum local maxima saddle point local minima global minimum x

A real function C of a single real variable x

What is the goal?

Find the absolute minimum x_{\min}

What is the goal?

How does one move in this **landscape** to find x_{\min} ?

Think of a ball rolling down the slopes with some friction:

- if it starts from the right end, it'll end up in a local minimum x_{\min}
- if it starts from the left end, it'll end up in the absolute minimum x_{\min}

Rugged landscape in a large dimensional space - a sketch

The lanscape is fixed by the $\{J_{ij}\}$ - quenched randomness or disorder - for a typical realization of the problem

Rugged landscape in a large dimensional space - a sketch

The characterization of these lanscapes is

a full field of research in math & physics

Rugged landscape in a large dimensional space - a sketch

How to move on this landscape?

Use algorithms which change the $\{s_i\}$ with some rule

Rugged landscape in a large dimensional space - a sketch

To reach the absolute minimum is often a very hard problem Smart algorithms?

Let us move on to physics

Experiments, observations and **models**

States of Matter

The common ones

SolidLiquidGasicewatervapour

Drawing V. K. Singh

Glasses

Ancient - modern

Glasses

Peculiar physical features : neither crystals nor liquids

Relaxation time vs. inverse temperature

- Often, cooling down or pressing a liquid one makes a glass instead of a crystal
- **Rigid** but microscopically **disordered**
- Extremely slow macroscopic dynamics
 relaxation time grows by orders of magnitude
 under weak changes of the external conditions
- Out of equilibrium evolution
 - (a bit more technical)

super-cooled liquid glass

Experiments

There are *N* variables $s_i = \pm 1$

and N(N-1)(N-2)(N-3)/4 predetermined couplings J_{ijkl}

(like $J_{ijkl} = +1$ or $J_{ijkl} = -1$)

Similarities : long relaxation times (plot above), thermodynamic properties

Predictive power!

Rugged landscapes

In large dimensional spaces

How to reach the absolute **minimum**, in the physical case the **crystal**? A **higher lying** region of the landscape corresponds to the **glass**

A strategy: annealing

From medieval swords to solar cells

\mathfrak{A} RMS \oplus ARMOR

steel (iron with an alloy of carbon) annealing lets the carbon move

Solar cells

Controllable crystallisation plays a crucial role in the formation of high-quality perovskites

Changing ambient conditions with a convenient protocol

to obtain the desired material properties

Annealing

Real (materials) and simulated (optimisation)

Figure from O. Ghasemalizadeh et al. 16

A physical protocol applied in the computer optimisation context

Further knowledge of the physical systems helps

in the computer science context

Black holes

Black holes

What are they?

- A (tiny) region of spacetime where gravity is so strong that nothing, not even light, can escape it
- The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole

Einstein, Schwarzschild

— They can form through the collapse (on itself) of a big star

C. Murphy

 Can be detected indirectly, by noticing how nearby stars act differently than far away ones

Black holes

There are many nearby

Sagittarius A* is a supermassive black hole at the Galactic Center of the Milky Way

27000 light-years away from Earth mass one million times the one of the Sun packed within 4000 times the Earth's diameter

R. Genzel (Munich) and Andrea Ghez (Los Angeles)

Event Horizon Telescope, a world-wide network of radio observatories

A simple quantum model of a black hole

There are N (Majorana $\psi_i\psi_j=-\psi_j\psi_i$) fermionic variables ψ_i

Interactions, like $J_{ijkl} = +1$ or $J_{ijkl} = -1$

The **rugged landscape** has the properties expected for a black hole, and the **thermodynamics** and **time evolution** as well

Connections via cost functions

Hard computational problems

Glasses

Black holes

In **theoretical physics**, we often use simplified models which capture the essence of a natural phenomenon. We love them for their relative mathematical manageability but also because of their predictive power, which may let us uncover unknown features of Nature.