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Plan
Apologies for talking about rather old work

— The simplest aging example :

domain growth coarsening & the growing length

— Spontaneous and perturbed global relaxation :

self-correlation and linear response

— Fluctuation-dissipation relations :

effective temperatures

— Mean-field modeling :

separation of time scales

— Reparametrization invariance :

sigma model

— Fluctuations :

local two-time observables
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2d Ising model
Snapshots after an instantaneous quench from T0→ ∞ to T ≤ Tc

t = 0 t1 t2

T = Tc

T < Tc

At T = Tc critical dynamics At T < Tc coarsening

A certain number of interfaces or domain walls in the last snapshots.

4



Phenomenon

In both cases one sees the growth of ‘red and white’ patches and

interfaces surrounding such geometric domains.

Spatial regions of local equilibrium (with vanishing, at Tc, or non-

vanishing, at T < Tc, order parameter) grow in time and

a single growing length R (t,T/J) can be identified

and will be at the heart of dynamic scaling.
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Aging

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

R grows but Ṙ decreases in time

e.g. curvature driven dynamics∗
dR 2

dt
= cts and then

Ṙ ∝ R −1 =⇒ R ∝ t1/2

∗From scalar t-dependent Ginzburg-Landau λφ4 – Allen-Cahn late 70s
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Two-time dependencies
Self-correlation and linear response

Self correlation and integrated linear response

C(t, tw) ≡ 1
N ∑

i
[〈si(t)si(tw)〉]

χ(t, tw) ≡ 1
N ∑

i

∫ t

tw
dt ′ R(t, t ′) =

1
N ∑

i

∫ t

tw
dt ′ [

δ〈si(t)〉h
δhi(t ′)

∣∣∣∣
h=0

]

Extend the notion of order parameter

They are not related by FDT out of equilibrium Magnetic notation but general

The averages are thermal (and over initial conditions) 〈. . .〉
and over quenched randomness [. . . ] (if present)

tw waiting-time and t measuring time
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Two-time self-correlation
Comparison of critical and subcritical

T = Tc T < Tc

C

t − tw
10510310110−1

100

10−1

10−2

tα

qea

Cag
aging

stationary Ceq

t − tw
10510310110−1

1

tw1 < tw2 < tw3 < tw4⇒ older relax more slowly

Separation of time-scales

Multiplicative Additive

Ceq(t− tw)Cag(t, tw) Ceq(t− tw)+Cag(t, tw)
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Two-time self-correlation
Focus on subcritical

T < Tc

Two scales Ceq(t− tw)+Cag(t, tw)

Ceq(t− tw)∼ feq

(
e−t/teq

e−tw/teq

)
Cag(t, tw)∼ fag

(
R (t)
R (tw)

)
The dependence of R (t) on the control parameters, T/J or others, is not important
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Two-time self-correlation
Focus on subcritical

T < Tc Lennard-Jones mixtures Kob & Barrat 97
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Ceq(t− tw)∼ feq

(
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)
Cag(t, tw)∼ fag

(
R (t)
R (tw)

)
Also found in glassy systems for which there is no clear visualization of R
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Aging

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the self-correlation

C(t, tw) 6=C(t− tw)

In each regime, equilibrium and aging, scaling∗

C(t, tw) =C
(

R (t)
R (tw)

)
∗the scaling form can be proven from general properties of temporal correlation functions

No obvious interpretation of R (t) in aging glassy systems
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Linear response
An important difference

Coarsening Glassy

1e+00

1e-01
1e+051e+031e+011e-01

χ
t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Lippiello, Corberi & Zannetti 05 Sketch Chamon & LFC 07

Weak long-term memory in the glassy but not in the coarsening problem.

Just the stationary part will remain asymptotically, contrary to the sketch on the

right valid for glasses & spin-glasses.
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Fluctuation-dissipation
Induced vs. spontaneous fluctuations in glasses

A quench from T0→ ∞ to T < Tc

T ∗T
tw3
tw2
tw1

1
kBT ∗

1
kBT

χ(
t,

t w
)

C(t, tw)
0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

Parametric construction

tw fixed

tw1 < tw2 < tw3

t− tw : 0→ ∞
used as a parameter

Note that T ∗ > T

Breakdown of the equilibrium FDT kBT χ =C

Convergence to kBT χ(C), two linear relations for C ≶ qea

Mean-field models LFC & Kurchan 93 & effective temperature interpretation LFC, Kurchan & Peliti 97
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Fluctuation-dissipation
Correlation scales

A quench from T0→ ∞ to T < Tc

T ∗T
tw3
tw2
tw1

1
kBT ∗

1
kBT

χ(
t,

t w
)

C(t, tw)
0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

Parametric construction

tw fixed

tw1 < tw2 < tw3

t− tw : 0→ ∞
used as a parameter

Note that T ∗ > T

Physical picture : each scale evolves with its own "clock" R (t) (e−t/t0 ,

t/t0 or other) and its temperature (T the bath temperature, or T ∗)
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Experiments in SGs
Correlations, responses and fluctuation dissipation relations
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Experiments Hérisson & Ocio 02-04 Results on SK LFC & Kurchan 94
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Microscopic models
Classical p-spin spherical

Potential energy

VJ[{si}] =− ∑
i1 6=···6=ip

Ji1... ip si1 . . .sip

quenched random couplings Ji1... ip drawn from a Gaussian P[{Ji1... ip}]

(over-damped) Langevin dynamics (coupling to a bath)

dsi

dt
=−δVJ

δsi
+ ztsi +ξi

zt is a Lagrange multiplier that fixes the spherical constraint
N
∑

i=1
s2

i = N

p = 2 mean-field domain growth
p≥ 3 RFOT modelling of fragile glasses
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Dynamic equations
Integro-differential eqs. on the correlation and linear response

In the N→ ∞ limit exact causal Schwinger-Dyson equations

(∂t − zt)C(t, tw) =
∫

dt ′
[
Σ(t, t ′)C(t ′, tw)+D(t, t ′)R(tw, t ′)

]
+2kBT R(tw, t)

(∂t − zt)R(t, tw) =
∫

dt ′ Σ(t, t ′)R(t ′, tw)+δ(t− tw)

where the self-energy and vertex depend on C and R. For the p spin models

D(t, t ′) = p
2 Cp−1(t, t ′) Σ(t, t ′) = p(p−1)

2 Cp−2(t, t ′)R(t, t ′)

The Lagrange multiplier zt is fixed by C(t, t) = 1. Random initial conditions.

(Average over randomness already taken ; later, interest in noise-induced fluctuations)

See Sompolinsky & Zippelius 82, LFC & Kurchan 93
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Separation of time-scales
In the long tw limit

Fast t− tw� tw

tα

1
qea

Cag

aging

stationary Ceq

t − tw
10510310110−1

1

The aging part is slow

Slow R (t)/R (tw) = O(1)

Cag(t, tw)∼ fag

(
R (t)

R (tw)

)
∂tCag(t, tw)∝ Ṙ (t)

R (t) −−−→t→∞
0

∂tCag(t, tw)�Cag(t, tw)

Eqs. for the slow relaxation Cag < qea :

Approx. asymptotic time-reparametization invariance t→ h(t)
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Time-reparametrization
Example : the equation (∂t− zt)R(t, tw) =

∫
dt ′ Σ(t, t ′)R(t ′, tw)

• Focus on times such that zt → z∞, C ∼Cag and R∼ Rag

• Separation of time-scales (drop ∂tR and approximate the integral) :

−z∞Rag(t, tw)∼
∫

dt ′ D′[Cag(t, t ′)]Rag(t, t ′)Rag(t ′, tw) (1)

• The transformation

t→ ht ≡ h(t)

 Cag(t, tw)→Cag(ht ,htw)

Rag(t, tw)→ dhtw
dtw

Rag(ht ,htw)

with ht positive and monotonic leaves eq. (1) invariant :

−z∞ Rag(ht ,htw)∼
∫

dht ′ D′[Cag(ht ,ht ′)]Rag(ht ,ht ′) Rag(ht ′,htw)
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Time reparametrization
A nuisance

Similar to the matching problem in non-linear diff. eqs.

0

1

2

3

0 1 2 3

y

λ

dy
dλ

= g[y(λ)]

Many asymptotic solutions if one sets
dy
dλ

= 0 for large λ

One is selected by the small λ behavior

A problem which is still open for the p-spin Schwinger-Dyson equations
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Time reparametrization
One can compute analytically fag and χag(Cag)

for times t and tw such that Cag(t, tw)∼ fag

(
R (t)
R (tw)

)
, e.g.

χag(t, tw)≡
∫ t

tw
dt ′R(t, t ′)∼ 1−qea

T
+

1
T ∗

[qea−Cag(t, tw)]

but not the ‘clock’ R (t)

T ∗T
tw3
tw2
tw1

1
kBT ∗

1
kBT

χ(
t,

t w
)

C(t, tw)
0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

Kim & Latz 00 very precise numerical solution

23



Remarks

Symmetry breaking terms ∂tC(t, tw), etc.

vanish in the long tw→ ∞ and t− tw→ ∞ limits

Ultra soft mode

One can modify the actual h(t) very easily by, e.g.,

– weak shearing⇒ stationary

– weak periodic shaking⇒ periodic but stroboscopic aging

– coupling to various non-Markovian baths⇒
apply a thermal bath with a characteristic time-scale on one end and a different

thermal bath with a different characteristic time-scale on the opposite end and see

how a time-reparametrization flow establishes in the model
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Turn it useful
Characterize the spatial fluctuations

C~r(t, tw)≡
1
V~r

∑
i∈V~r

si(t)si(tw) χ~r(t, tw)≡
1
V~r

∑
i∈V~r

∫ t

tw
dt ′

δs(h)i (t)
δhi(t ′)

∣∣∣∣∣
h=0

Review Chamon & LFC 07
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Consequences
Characterize the spatial fluctuations

• There is an approximate dynamic symmetry :

global time reparametrization invariance

• There is a soft/massless dynamic mode associated to it,

with a two-time diverging correlation length ξ(t, tw)

Extract it from, e.g

C4(r, t, tw) = 1
N ∑

i, j/|~ri−~r j|=r
〈si(t)si(tw)s j(t)s j(tw)〉c

• Characterize dynamic fluctuations - heterogeneities

C~r(t, tw;`,ξ), ρ(C~r,χ~r; t, tw;`,ξ), multi-time functions, etc.

• Disentangle simple dynamic scaling implications from time reparametri-
zation invariance ones.
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Consequences
Characterize the spatial fluctuations

In the scaling limit

lattice spacing� coarse-graining length� correlation length� system size

a� `� ξ(t, tw)� L

• The ‘clock’ h~r(t) is local (analogy : angle - soft mode - in a Mexican hat potential)

• The scaling functions ( fag, χag(Cag)) do not fluctuate (modulus)

⇒ Teff does not fluctuate

In practice (simulations, experiments)

a <∼ `
<∼ ξ(t, tw)� L

• `/ξ(t, tw) is an additional scaling variable.

28



Leading fluctuations
Global to local correlations

Cag(t, tw)≈ fag

(
R (t)
R (tw)

)
global correlation

Global time-reparametrization invariance ⇒ Cag
~r (t, tw)∼ fag

(
h~r(t)

h~r(tw)

)
Ex. h~r1 =

t
t0

, h~r2 = ln
(

t
t0

)
, h~r3 = elna>1

(
t

t0

)
in different spatial regions

1e+00

1e-01

1e-02

1e+061e+041e+021e+00

C

t-tw

h2

h1

h3

Same tw, slower and faster decays

Castillo, Chamon, LFC, Iguain, Kennett 02, 03

Chamon, Charbonneau, LFC, Reichman, Sellitto 04

Jaubert, Chamon, LFC, Picco 07
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Leading fluctuations
Global to local correlations & responses

Cag(t, tw)≈ fag

(
R (t)
R (tw)

)
global correlation

Global time-reparametrization invariance ⇒ Cag
~r (t, tw)∼ fag

(
h~r(t)

h~r(tw)

)
Ex. h~r1 =

t
t0

, h~r2 = ln
(

t
t0

)
, h~r3 = elna>1

(
t

t0

)
in different spatial regions

1e+00

1e-01

1e-02

1e+061e+041e+021e+00

C

t-tw

h2

h1

h3
 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

χ

C

h3

h2

h1
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Local correlations & responses
3d Edwards-Anderson spin-glass

C~r(t, tw)≡
1
V~r

∑
i∈V~r

si(t)si(tw) , χ~r(t, tw)≡
1
V~r

∑
i∈V~r

∫ t

tw
dt ′

δsi(t)
δhi(t ′)

∣∣∣∣
h=0

0

0.5
Cr 0

0.5

1

χr

5

15

25

ρ

(a)

0

0.5
Cr 0

0.5

1

χr

5

15

25

ρ
++++

+++
++ Bulk

FDT
(b)

0 0.5 1
Cr

0

0.5

1

χr

+ Bulk : Parametric plot χ(t, tw) vs C(t, tw) for tw fixed and 7 t (> tw)

ρ corresponds to the maximum t yielding the smallest C (left-most +)

Castillo, Chamon, LFC, Iguain, Kennett 02

Kinetically constrained models + Charbonneau, Reichman & Sellitto 04
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Sigma Model
Conditions & expression

h(~r, t)= e−ϕ(~r,t) Cag(~r, t, tw)= fag(e−
∫ t

tw dt ′ ∂t′ϕ(~r,t
′))

Chamon & LFC 07
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Sigma Model
Some consequences - 3d Edwards Anderson model

h(~r, t) = e−ϕ(~r,t) Cag(~r, t, tw) = fag(e−
∫ t

tw dt ′ ∂t′ϕ(~r, t ′))

Distribution of local correlations depends on times t, tw only through C,ξ

ρ(C~r; t, tw, `,ξ(t, tw))→ ρ(C~r; Cag(t, tw), `/ξ(t, tw))

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

ρ
(C

r)

Cr

tw=1k
tw=10k

tw=100k

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

ρ
(C

r)

Cr

tw=1k
tw=10k

tw=100k

t, tw such that Cag(t, tw) =C ` such that `/ξ = cst Jaubert, Chamon, LFC, Picco 07

predictions on the form of ρ derived from S[ϕ] too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12
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How general is this?
Coarsening & domain growth

e.g. the d-dimensional O(N) model in the large N limit (continuous

space limit of the Heisenberg ferro with N→ ∞)

N component field~φ = (φ1, . . . ,φN) with Langevin dynamics

∂tφα(~r, t) = ∇2φα(~r, t)+λ|N−1φ2(~r, t)−1|φα(~r, t)+ξα(~r, t)

φα(~k,0) Gaussian distributed with variance ∆2

Time reparametrization invariance is reduced to time rescalings

t→ h(t) ⇒ t→ λt

Same in the p = 2 spherical model Chamon, LFC, Yoshino 06
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How general is this?
Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings

t→ h(t) ⇒ t→ λt

χ

C

Ising FM, O(N) field theory, or p = 2 spherical model

Related to T ∗→ ∞ and simplicity of free-energy landscape

35



Conclusions

(Annoying) global time-reparametrization invariance t→ h(t) in models

in which

– Cag(t, tw)� ∂tCag(t, tw) (slow dynamics)

– χag(t, tw)� ∂tχag(t, tw) (weak long-term memory)

and finite effective temperature Teff <+∞

Reason for the large dynamic fluctuations (heterogeneities) h(~r, t)

Effective action for ϕ(~r, t) in h(~r, t) = e−ϕ(~r,t)

Quantum : the rapid equilibrium regime is modified but the slow aging

one is classical in nature controlled by a Teff > 0, then the same applies
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Triangular relations
Scaling of the aging global correlation

Take three times t1 ≥ t2 ≥ t3 and compute the three global correlations

C(t1, t2), C(t2, t3), C(t1, t3)

If, in the aging regime Ci j
ag ≡Cag(ti, t j) = fag

(
h(ti)
h(t j)

)
with ti ≥ t j⇒

C12
ag = fag

(
h(t1)
h(t3)

h(t3)
h(t2)

)
= fag

(
f−1
ag (C13

ag )

f−1
ag (C23

ag )

)
qea

1

0.8

0.6

0.4

0.2

0

10.80.60.40.20

C
23

C
1
2

choose t3 and t1 so that C13 = 0.3
the arrow shows the t2 ‘flow’ from t3 to t1

qea

e.g. C12 = qeaC13/C23
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Triangular relations
Scaling of the slow part of the global correlation

Take three times t1 ≥ t2 ≥ t3 and compute the three local correlations

C~r(t1, t2), C~r(t2, t3), C~r(t1, t3)

If, in the aging regime Ci j
~r ≡C~r(ti, t j) = fag

(
h~r(ti)
h~r(t j)

)
with ti ≥ t j⇒

C12
~r = fag

(
f−1
ag (C13

~r )

f−1
ag (C23

~r )

)
qea

1

0.8

0.6

0.4

0.2

0

10.80.60.40.20

C
23

C
1
2

choose t3 and t1 so that C13 = 0.3
the arrow shows the t2 ‘flow’ from t3 to t1

qea

e.g. C12
~r = qeaC13

~r /C23
~r .
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Triangular relations
3d Edwards-Anderson model
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