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We adapted the SWAP molecular dynamics algorithm for use in lattice Ising spin models. We dressed the spins with a randomly distributed length and we alternated long-range spin exchanges with conventional single spin flip Monte Carlo
updates, both accepted with a stochastic rule which respects detailed balance. We show that this algorithm, when applied to the bidimensional Edwards-Anderson model, speeds up significantly the relaxation at low temperatures and
manages to find ground states with high efficiency and little computational cost. The exploration of spin models should help in understanding why SWAP accelerates the evolution of particle systems and shed light on relations between
dynamics and free-energy landscapes.

1 SWAP algorithms
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Figure 1: Pictorial representation of microscopic non-local SWAP moves for both types of systems.

2 ”Poly-disperse” model for spins, the ∆-Model
We studied the Hamiltonian

H = −
∑
〈ij〉

Jijτiσiτjσj , (1)

with
σi ∈ {−1,+1}, τi ∈ [1−∆/2, 1 + ∆/2] and 0 ≤ ∆ ≤ 2 ,

and Jij are unitary and bimodal distributed, i.e.

p(Jij) =
1

2
δ(Jij − 1) +

1

2
δ(Jij + 1) . (2)

This problem can be recast as

H = −
∑
〈ij〉

Jijσiσj , with Jij = Jijτiτj . (3)

Thus, we still deal with an Ising spin model, but with effective couplings Jij that exhibit spatial correlation through
the τi variables.

3 SWAP Monte Carlo dynamics
We simulate the ∆-Model in finite size systems, particularly in 2d square lattices with linear dimension L and
periodic boundary conditions.

The attempted dynamical moves are determined by a Bernoulli process with probability pswap
with pswap 7→ N (non-local) exchange attempts

(σi, τi) ↔ (σj, τj) ,

with 1− pswap 7→ N single spin flip attempts
σi → −σi .


Each microscopic move is accepted with Metropolis acceptance probability pacc = min{1, exp(−β∆E)}. De-
pending on the nature of the moves, our effective couplings Jij may be either annealed or quenched.

4 Temperature quench
From an infinite temperature configuration, we perform a SWAP evolution for a temperature quench at T = 0.
After a time tmax, the dynamics freeze. We call the converged effective couplings J ∗

ij (= Jij(tmax)). Using the
McSparse solver, we found the respective ground states, {σGS

i }.

q(t) =
1

N

N∑
i=1

σGS
i σi(t) (4)

Figure 2: Snapshots of the
overlap between the ground state
found and the dynamic configu-
ration si = σiτi. Parameters:
L = 32, ∆ = 1.5. The light
bullets and triangles are located
at frustrated plaquettes (fP =∏

〈ij〉∈P Jij such that fP < 0)
with local frustration fP being
greater or smaller than one-half in
magnitude, respectively.

5 Temperature annealing
With the same initial conditions, we perform a SWAP evolution again, this time annealing the temperature from
T0 = 1.0 towards T = 0 according to the protocol

T (t) = T0

(
1− t

tf

)2

. (5)

We also define the resulting couplings as J ∗
ij (= Jij(tf )).

6 Ground state identification
We run both procedures several times (Nr = 100), changing the sample of Jij, {τi}, and {σi(t = 0)} at each
iteration. We compare the resulting σ-configurations with the ground states by measuring

P0(t) =
1

Nr

Nr∑
α=1

δ|qα(t)|,1 , (6)

then setting P∞
0 = P0(tmax) for the quench, P∞

0 = P0(tf ) for the annealing.
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Figure 3: (a) Asymptotic probability of reaching a ground state. Parameters: L = 32, tmax ≈ 104, tf ≈ 107.
Inset (b) Probability distributions of the ground state energy density differences, over 103 σ-initial conditions.

7 Equilibrium relaxation time
For a quench at non-vanishing temperatures (T 6= 0), we investigate the characteristic relaxation time, defined as
τα, and compare it with:

(I) Purely single spin flip dynamics (pswap = 0) with the converged J∗ij = Jij(tf ).
(II) Evolution with spin exchanges just between nearest neighbors.

Figure 4: Characteristic relaxation time, τα for SWAP method, and the dynamics defined in (I) and (II) with
∆ = 1.5. In the inset, comparison of the two relaxation times, for (I) and (II) with respect to SWAP.

8 Conclusions
• We devised a disorder annealing that samples 2d Edwards-Anderson ground states with little computational cost

(≈ 102 faster than with parallel tempering), and that preserves the symmetry of the distribution.
• We explored the effect of SWAP moves in models that lack dynamical facilitation, shedding a light to the inner

workings of the algorithm.
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