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Introduction and Motivations

g state Potts model is a simple extension of the
ferromagnetic Ising model.

In two dimensions, g > 4 corresponds to a model with a
first order transition with metastability.

We study sub-critical quenches starting from a completely
disordered configuration.

Already many studies in the past, which observed
different phenomenas : freezing or blocking at low
temperature, multi nucleation, metastability, coarsening,
etc.

Most of these studies with small values of ¢ with strong
finite size corrections and finite ¢ corrections !!

Dynamics of the bidimensional Potts model in the large g limit March 14, 2023 Kyoto — slide 3



Phase diagram

Introduction and
Motivations

q=00 1 [
Low temperature
Metastapility then >
coarsaning %
Metastability close to »
Te g = 10° Metastability, «
Extensions =
e e Freezing Multinucleation
qg = 109 .
q=10° & Coarsening & Coarsening
q= 104 .
q=103 .
@ @ . J
0 T=T,./2 T'=T.

Phase diagram of the 2d Potts square-lattice model with the
crossover lines between different types of dynamic behaviour.
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Definitions

® On a square lattice, with periodic boundary conditions, we
consider the Hamiltonian defined by

Low temperature

Metastability then

coarsaning {Sz — —J E 53 s s
197

Metastability close to

T, <1)>

Extensions

with < 75 > the sum restricted to nearest-neighbours, d,;
the Kronecker delta and s; take integer values from 1 to q.

Transition for 8. = log (1 + \/q).

Dynamics : Metropolis — Heat bath, which is much faster,
by a factor gq.

Conclusion

® Heat bath dynamics allows for a partial analytic treatment.
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Growing length

® R(t,q,T/T.) = ;=224 ; eo = €q. energy.
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® One observes :i) T < T./2freezing and next coarsening ;
i) T' > T, /2 metastability then jump (multi nucleation)
then coarsening ; iii) T' close to 1., only metastability.
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Figure 1: Configurations of the Potts model in the infinite ¢ limit after

aquenchtoT < T,/2, L =10and L = 107
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® Same structure at T' = 0 for finite (and large) ¢ and for
infinite g and T' < T, /2.

® 1 blocking or freezing due to so called T-junctions for
g > 3 at zero temperature (J. Glazier, M. Anderson and G.
S. Grest, 1990, J. Olejarz, P. Krapivsky, and S. Redner,
2013)

® Needs to reverse one corner, which costs

eDF — o~ UT _yy — T
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R vs. t (left) and t/t, (right) for ¢ = 10%.

At late time, R(t) ~ t'/# with z = 2 : coarsening.
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Growing length R vs. t/tg for various T'/T, and ¢ : Universality !!!

(F. Chippari, L. F. Cugliandolo, & M. P., 2021)
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Figure 2: The growing length R vs. t for ¢ = 10% and L = 3200.
Dotted line is the t1/2 law.
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Snapshots at ¢t = 10°. One note the existence of "sand” on
the borders and in the bulk.
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Introduction and Enumeration : all the states can be described as :
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The evolution among these states is simple to describe.
For example

q—4 4eP
M=l = F r =4 10T 1eh g — 4 (1)
8. = log (1 + ,/g), thus in the large ¢ limit efe ~ ¢1/2
P > 12T 4 g , Prie 1T 1 (2)

For ¢ — oo, remains disordered forever for a quench to a
final temperature T,./2 < Ty < T..

P1s11=1, Pi1ss=0 (3)
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For large (but finite) q,
4ch/2T

parameter.

We consider the densities No(t), N1(¢), - -, N11(t). Ni1(¢)
corresponds to the number of spins in the (11) state, etc.

T./2T—1

~ p, with p a small

In a paramagnetic state (¢t = 0), N11(0) ~ 1, Ng(0) ~ 4/q,
Nl()(O) ~ 6/(], L

Next, Ng(t) = 2Ny (£)p 4 -+ : Nip(t) = —2N1, (E)p + - - -
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One obtains (O. Mazzarisi, F. Corberi, L. F. Cugliandolo, & M. P., 2020)

) 7
N11 = — 12N11p® — 2N11p + 2Ng — ZN6P — N3g + N3y + N1oa + Nios ,

X 1
Ne = 2N11p — 2Ng + §N6p + 3(N3q + N3p) + N3c + N1oa + N1iop — Nioc ,

. 1 5) 1 1
N3g = ZNGP — §N3a -- §N10a - §(N3c — Nioe) ,
Ny = =N ° Ny + =N +1(N N1ioe)
3b = 5 6D 5 3b 5 100 5 3c 10c) »
N3. = —2N3. + 2N10c¢ ,
- , 5 1
N1oqa = 4N11p° — §N10a + §N3a ,
- , 5 1
Niop = 8N11p” — §N10b + §N3b ,

Next, we impose stationarity, N, (t) = 0, and solve in powers of p.
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We end up with

605 , 95 |
Nllz]-_p_— ) 6 =Pt 5P,
56 28
7 11 11 , A
N3a — E ) 3b — ﬂ ’ 3c — ﬂ ( )
27 41 11 ,
NlOa:E : 106 = 7P 10c = 71
T/T, P Nii Ng 10° N3, |10° N3y [10° N3 . [10° N1ge [10° Ny g
0.88 0.01017 | numeric [["0.9895816 |0.0101646 [ 0.0130 | 0.0260 | 0.1772 | 0.0020 | 0.0039
' ' analytic || 0.9895916 | 0.0101674 | 0.0129 | 0.0259 | 0.1705 | 0.0020 | 0.0039
0.92 0.00725 | numeric || 0.9926679 |0.0072481 [ 0.0066 | 0.0132 | 0.0444 | 0.0020 | 0.0039
' ' analytic || 0.9926690 | 0.0072485 | 0.0066 | 0.0131 | 0.0438 | 0.0020 | 0.0040
0.98 0.00459 | numeric [[0.9953845 [0.0045892 | 0.0026 | 0.0053 | 0.0070 [ 0.0020 | 0.0040
' ' analytic || 0.9953847 | 0.0045892 | 0.0026 | 0.0053 | 0.0070 | 0.0020 | 0.0040
0.99 0.00428 | numeric |[0.9957020 |0.0042752 [ 0.0023 | 0.0046 | 0.0053 | 0.0020 | 0.0040
' ' analytic || 0.9957023 | 0.0042751 | 0.0023 | 0.0046 | 0.0053 | 0.0020 | 0.0040

N, for systems with linear size L = 103, g = 10°
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Phase diagram of the 2d Potts square-lattice model with the
crossover lines between different types of dynamic behaviour.

Dynamics of the bidimensional Potts model in the large g limit March 14, 2023 Kyoto — slide 21



Introduction and
Motivations

Low temperature

Metastability then
coarsaning

Metastability close to
Tc

Extensions

Conclusion

Extensions

Dynamics of the bidimensional Potts model in the large g limit March 14, 2023 Kyoto — slide 22



Extensions

iroduction and ® Similar results for the hexagonal lattice.

S —— Freezing at low temperature already for

Metastabilty then q = 2 (H. Takano, and S. Miyashita, 1993), _|

coarsaning with the same behaviour for T' < 2T,

%jtastability close to and for a” q Z 2 :
® No freezing for the Triangular lattice for T' < 1T, just
“onclusion coarsening (G. N. Hassold, and E. A, Holm, 1993).

® Freezing up tot ~ el/T for T < 1T, for the cubic Potts
model (F. Chippari and M. P, 2022)

® Disorder slows the dynamics but not other changes.
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Conclusion

introduction and ® Universal behaviour in 2d and 3d as a function of ¢ >> 1.
Low temperature ® Forthe square lattice in 2d, we show

Metastapility then

EeaEallng + For T < T./2, freezing, then for t > e'/T, coarsening.
Metastability close to

T, + ForT > T,./2 and not to close to 7., metastability,
Extensions multinucleation and coarsening.

+ ForT ~ T, and large ¢, metastable equilibrium that
we can completely characterise.

® For other lattices, the spinodal temperature is %TC with z
the coordination number.
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