Computational optimisation, glasses \& black holes :

A rare mix with many common features

Leticia F. Cugliandolo

Sorbonne Université
Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France
leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia/seminars

Computational optimisation

Setting

Take two individuals

They may like or dislike each other

Setting

Identify their feelings towards each other

Assume they are reciprocal

Setting

Define a pairwise interaction

$J_{\text {Mary-John }}=-1$

$$
J_{\text {Mary-John }}=+1
$$

An easy problem

Going out for dinner in a group of three

| You | Mary |
| :--- | :--- | :--- |
| You | John |
| Mary | John |

Happy dinner

An easy problem

Going out for dinner: give a score

| You | Mary | -1 |
| :--- | :---: | :---: | :---: |
| You | John | -1 |
| Mary | John | -1 |
| Happy dinner | | -3 |

[^0]
Easy vs. constrained

Going out for dinner in a group of three

You	Mary	-1	You	\bigcirc	Mary	-1	
You	O	John	-1	You		John	-1
Mary	John	-1	Mary	John	+1		
Happy dinner		-3	Conflicting dinner	-1			

The rule is to add $J=-1$ for each happy pair or $J=+1$ for each unhappy one

Easy vs. constrained

Define a cost function

You	\bigcirc	Mary	-1	You	\bigcirc	Mary	-1
You	\bigcirc	John	-1	You	\bigcirc	John	-1
Mary	\bigcirc	John	-1	Mary	\%	John	+1
Happy dinner			-3	Conflicting dinner			-1

The rule is to add $J=-1$ for each happy pair and $J=+1$ for each unhappy one

The cost function takes a higher value when there is frustration

An optimisation problem

Change the proposal: split the group in two

Three cases

(You \& Mary go out) (John is not invited)
(Mary is not invited)
\checkmark
-1
(Mary \& John go out) (You are not invited) $\quad \mathbf{X}+1$

The value of the cost function is the J of the couple

There are two optimal solutions which minimise the cost function

An optimisation problem

More people, many more connections

($N=6$ children and each has $N-1=5$ connections: $\frac{6 \times 5}{2}=15 \simeq N^{2} / 2$ connections)

An optimisation problem

More people give more possibilities \& complexity increases

Say that, approximately, half and half love \square or hate
each other

An optimisation problem

How do we split the group equally (\& make two parties)?

An optimisation problem

One try to split, but is it good?

An optimisation problem

Evaluate the cost function

Group B

$$
\begin{aligned}
& \text { Add }-1 \text { for } Q+1 \text { for } \\
& \operatorname{Cost}_{B}=-1+1+1=+1
\end{aligned}
$$

The total cost is

$$
C=C_{A}+C_{B}=2
$$

Is it a good solution?

An optimisation problem

Which is the optimal partition? A hard problem

One can try all possible cuts if there are a few persons but not if there are many!

Mathematical representation

Setting the problem in a form amenable to calculations

Cost function

Its construction

In the graph partitioning - group splitting example
$i, j=1, \ldots, N$ label the persons. For ex. $i=1$ is Mary, $i=2$ is John, etc.

Cost function

Its construction

In the graph partitioning - group splitting example

$$
i, j=1, \ldots, N \text { label the persons }
$$

Each pair has a predetermined interaction

$$
J_{i j}=-1 \text { if love or } J_{i j}=+1 \text { if hate between } i \text { and } j
$$

Cost function

Its construction

In the graph partitioning - group splitting example

$$
i, j=1, \ldots, N \text { label the persons }
$$

Each pair has a predetermined interaction

$$
J_{i j}=-1 \text { for } \odot \text { love or } J_{i j}=+1 \text { for hate }
$$

Assignment, distribution of persons

$$
s_{i}=+1 \text { if } i \text { is in group } A \text { or } s_{i}=-1 \text { if } i \text { is in group } B
$$

Cost function

Its construction

In the graph partitioning - group splitting example

- $i, j=1, \ldots, N$ label the persons
- Predetermined interactions $J_{i j}=-1$ for love or $J_{i j}=+1$ for hate
- $s_{i}=+1$ if i is in group A or $s_{i}=-1$ if i is in group B

Condition (take N even)

To ensure equal-size groups $\underbrace{s_{1}+s_{2}+\cdots+s_{N}}_{\sum_{i=1}^{N} s_{i}=0}=0$ (as many +1 as -1)
represents a sum over all i (persons) of their states given by the values of the s_{i}

Cost function

Its construction

In the graph partitioning - group splitting example

- $i, j=1, \ldots, N$ label the persons.
- Predetermined $J_{i j}=-1$ for love or $J_{i j}=1$ for hate feelings
- $s_{i}=1$ if i is in group A or $s_{i}=-1$ if i is in group B
find the assignment of all the s_{i} so that they add up to zero $\left(\sum_{i=1}^{N} s_{i}=0\right) \&$ the

Cost function

$C=$ sum over all pairs of the love/hate values in the same group

Cost function

Its construction

In the graph partitioning - group splitting example
$\bullet i, j=1, \ldots, N$ label the persons.

- Predetermined $J_{i j}=-1$ for love or $J_{i j}=1$ for hate feelings
- $s_{i}=1$ if i is in group A or $s_{i}=-1$ if i is in group B
find the assignment of all the s_{i} so that they add up to zero $\left(\sum_{i=1}^{N} s_{i}=0\right) \&$ the
Cost function is minimised

$$
C=\underbrace{\sum_{i \neq j}}_{\text {sum over all pairs }} \underbrace{J_{i j}}_{\begin{array}{c}
\text { quenched } \\
\text { love/hate }
\end{array}}
$$

Cost function

Rugged landscape in a large dimensional space
a sketch for a given realisation of the love/hate couplings $J_{i j}$

How to reach the absolute minimum?
Smart algorithms?

Let us move on to physics

Experiments, observations and models

States of Matter

The common ones

rigid
fixed shape
hard to compress
does not flow ordered
not rigid
no fixed shape
hard to compress
flows
disordered
not rigid
no fixed shape
easy to compress
flows
disordered

Matter

Models for the particle interactions

Typically, repulsive or attractive depending on distance

How does an ensemble of many such interacting particles spatially arrange? New "glass phase" under certain conditions

Glasses

Ancient - modern

Glasses

Peculiar physical features

Structure

- Rigid but microscopically disordered (very different from a crystal)
- Extremely slow macroscopic dynamics
relaxation time grows by orders of magnitude
under weak changes of the external conditions
- Out of equilibrium evolution

Crystal

Glass

Experiments

Glasses

Peculiar physical features

Relaxation time vs. 1/temperature

- Rigid but microscopically disordered (very different from a crystal)
- Extremely slow macroscopic dynamics
relaxation time grows by orders of magnitude
under weak changes of the external conditions
- Out of equilibrium evolution
(no Gibbs-Boltzmann measure reached)

Experiments

Glasses

Peculiar physical features

Self intermediate scattering fct vs. time-delay

- Rigid but microscopically disordered
(very different from a crystal)
- Extremely slow macroscopic dynamics relaxation time grows by orders of magnitude under weak changes of the external conditions
- Out of equilibrium evolution

Aging in Lennard-Jones mixtures
(no Gibbs-Boltzmann measure reached)

Simulations

Cost function

The "spherical cow" p-spin model

The standard model of glassy behavior Huge conceptual jump!

There are $i, j, k, l=1, \ldots, N$ variables
and $N(N-1)(N-2)(N-3) / 4$ predetermined couplings $J_{i j k l}$ from a p.d.f.

$$
\text { (like } J_{i j k l}=+1 \text { or } J_{i j k l}=-1 \text {) }
$$

Phenomenology: thermodynamics, long relaxation times, rugged landscapes

p-spin models

Capture many physical systems

- Forgot particles and used binary $s_{i}= \pm 1$ or spherical $\sum_{i=1}^{N} s_{i}^{2}=N$ variables
- Instead of finite d real space placed the spins on a complete (hyper-)graph

Interactions	Two-body	Two-body	$p \geq 3$-body
Spins	Spherical	Ising	Ising or spherical
System	FMs	Spin glass	(Fragile) Glasses
Model	Curie-Weiss	SK model	p-spin

Some methods

for systems with quenched randomness

Edwards-Anderson (75) dynamic order parameter, replica trick
Thouless-Anderson-Palmer (77) extension of the familiar free-energy

$$
\begin{gathered}
f(m)=\frac{J z}{2} m^{2}-\ln [2 \cosh (\beta J z m+\beta m)] \\
m=\tanh (\beta J z m+\beta h)
\end{gathered}
$$

to an N order parameter $\left\{m_{i}\right\}$ dependent $f_{J}\left(\left\{m_{i}\right\}\right)$: rugged landscape

Parisi : Replica Symmetry Breaking (79-83)

the equilibrium properties, further information about the "state" organization, etc.
On the plateau Franz, Ros, Rosso (LPTMS), Foini, Urbani (IPhT)

Rugged landscapes

In large dimensional spaces

How to reach the absolute minimum, in the particles' case the crystal?
Other regions of the landscape correspond to the glass

Rugged landscapes

In large dimensional spaces

Hard to think in large dimensional spaces: not much intuition

In the hard optimization problems or glassy ones
an exponentially large number of minima/maxima/saddle-points

$$
\#=e^{N \Sigma}
$$

at \neq heights in the landscape

Σ is called configurational entropy or complexity

Much work on the analysis of these landscapes, first by theoretical physicists, more recently by mathematicians

Familiar strategies to surf down the landscape

Annealing

From medieval swords to everyday life

$\mathfrak{A r m s} \oplus \operatorname{ARMOR}$
steel (iron with an alloy of carbon)
annealing lets the carbon move

Granular matter
shaking coffee jar to compact
the grains and let them occupy less space

Changing ambient conditions with a convenient protocol

Annealing

Real and simulated

Figure from O. Ghasemalizadeh et al. 16

A physical protocol applied in the computer optimization context

Modern strategies

Use knowledge about the landscape

to devise smarter algorithms

Extensions of simulated annealing
Replica simulating annealing Baldassi et al. (16), Angelini \& Ricci-Tersenghi (22)

Message passing algorithms
Belief propagation Pearl (82), Kabashima \& Saad (90s), Yedidia (01)
Survey propagation Mézard, Parisi, Zecchina (02)

Relaxation in the glass
 Global observables

Two-time correlations and linear responses

Two-time dependencies

Self-correlation and linear response

The two-time self correlation and integrated linear response

$$
\begin{aligned}
C\left(t, t_{w}\right) & \equiv \frac{1}{N} \sum_{i}\left[\left\langle s_{i}(t) s_{i}\left(t_{w}\right)\right\rangle\right] \\
\chi\left(t, t_{w}\right) & \equiv \frac{1}{N} \sum_{i} \int_{t_{w}}^{t} d t^{\prime} R\left(t, t^{\prime}\right)=\frac{1}{N} \sum_{i} \int_{t_{w}}^{t} d t^{\prime}\left[\left.\frac{\delta\left\langle s_{i}(t)\right\rangle_{h}}{\delta h_{i}\left(t^{\prime}\right)}\right|_{h=0}\right]
\end{aligned}
$$

Extend the notion of order parameter

They are not related by FDT out of equilibrium
The averages are thermal (and over initial conditions) $\langle\ldots\rangle$
and over quenched randomness [...] (if present)
t_{w} waiting-time and t measuring time

Two-time self-correlation

In glassy systems

$$
\begin{array}{ll}
T<T_{g} & \text { Lennard-Jones mixtures } \\
\underbrace{\substack{\mathrm{q}=7.23 \\
t=60^{2} 00}}_{\substack{t=10}} & t_{w} \text { waiting time } \\
\text { Scaling below the envelope } \\
& C_{\mathrm{ag}}\left(t, t_{w}\right) \sim f_{\mathrm{ag}}\left(\frac{\mathcal{R}(t)}{\mathcal{R}\left(t_{w}\right)}\right)
\end{array}
$$

Aging: older systems relax more slowly than younger ones

Dynamic equations

On the correlation and linear response for Langevin dynamics

In the $N \rightarrow \infty$ limit exact causal Schwinger-Dyson (DMFT) equations

$$
\begin{aligned}
&\left(\gamma \partial_{t}-z_{t}\right) C\left(t, t_{w}\right)=\int d t^{\prime}\left[\Sigma\left(t, t^{\prime}\right) C\left(t^{\prime}, t_{w}\right)+D\left(t, t^{\prime}\right) R\left(t_{w}, t^{\prime}\right)\right] \\
&+2 \gamma k_{B} T R\left(t_{w}, t\right) \\
&\left(\gamma \partial_{t}-z_{t}\right) R\left(t, t_{w}\right)=\int d t^{\prime} \Sigma\left(t, t^{\prime}\right) R\left(t^{\prime}, t_{w}\right)+\delta\left(t-t_{w}\right)
\end{aligned}
$$

where Σ and D are the self-energy and vertex. For the p spin models

$$
D\left(t, t^{\prime}\right)=\frac{p}{2} C^{p-1}\left(t, t^{\prime}\right) \quad \Sigma\left(t, t^{\prime}\right)=\frac{p(p-1)}{2} C^{p-2}\left(t, t^{\prime}\right) R\left(t, t^{\prime}\right)
$$

The Lagrange multiplier z_{t} is fixed by $C(t, t)=1$. Random initial conditions.

Predictions

Aging and reparametrization invariance

Aging is derived analytically $C_{\mathrm{ag}}\left(t, t_{w}\right) \sim f_{\mathrm{ag}}\left(\frac{\mathcal{R}(t)}{\mathcal{R}\left(t_{w}\right)}\right)$ with $\frac{\mathcal{R}(t)}{\mathcal{R}\left(t_{w}\right)}=\mathcal{O}(1)$
Slow relaxation $\partial_{t} C_{\mathrm{ag}}\left(t, t_{w}\right) \propto \frac{\dot{\mathcal{R}}(t)}{\mathcal{R}(t)} \underset{t \rightarrow \infty}{ } 0 \Longrightarrow$

$$
\partial_{t} C_{\mathrm{ag}}\left(t, t_{w}\right) \ll C_{\mathrm{ag}}\left(t, t_{w}\right)
$$

Dropping the time-derivatives, approximate eqs. for the slow relaxation, i.e.
C_{ag} (below the envelope) and the corresponding R_{ag}
Invariant under time-reparametizations

$$
t \rightarrow h_{t} \equiv h(t) \quad\left\{\begin{array}{l}
C_{\mathrm{ag}}\left(t, t_{w}\right) \rightarrow C_{\mathrm{ag}}\left(h_{t}, h_{t_{w}}\right) \\
R_{\mathrm{ag}}\left(t, t_{w}\right) \rightarrow \frac{d h_{t_{w}}}{d t_{w}} R_{\mathrm{ag}}\left(h_{t}, h_{t_{w}}\right)
\end{array}\right.
$$

with h_{t} positive and monotonic

Turn it useful

Reparametrization invariance \Rightarrow fluctuations

Noted by
classical Sompolinsky \& Zippelius (83), Ginzburg (86), loffe (88), LFC \& Kuchan (93), Franz \& Mézard (94)
quantum Castillo, Chamon, LFC \& Kennett (02)

Used to characterize fluctuations in real space beyond mean-field
Castillo, Chamon, Charbonneau, LFC, Iguain, Kennett, Sellitto, Reichman (02-07)

Quote from Chamon \& LFC 07 review
values of the two laboratory times. The fact that the effective dynamical action becomes invariant under global time reparametrizations, $t \rightarrow h(t)$, everywhere in the sample means that the action weights the fluctuations of the proper ages, $C\left(\vec{r} ; t_{1}, t_{2}\right)$, directly, and the times t_{1} and t_{2} in the action are just integrated over as dummy variables. To draw an analogy, in theories of quantum gravity the space-time variables $X_{\mu}(\tau, \sigma)$ are the proper variables and the action is invariant under conformal transformations of the world-sheet parameters τ and σ.
relation to gravity?

Black holes

Black holes

What are they?

- A (tiny) region of spacetime where gravity is so strong that nothing, not even light, can escape it
- The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole
- They can form through the collapse (on itself) of a big star
C. Murphy-Oppenheimer
- Can be detected indirectly, by noticing how nearby stars act differently than far away ones

Black holes

There are many nearby

Sagittarius A* * is a supermassive black hole at the Galactic Center of the Milky Way

27000 light-years away from Earth
mass one million times the one of the Sun
packed within 4000 times the Earth's diameter

R. Genzel (Munich) and Andrea Ghez (Los Angeles)

Event Horizon Telescope, a world-wide network of radio observatories

Gravity \& quantum field theory

Holography - Duality

Quantum gravity

(compactified string theories)
in a $d+1$ dimensional space with Anti-deSitter geometry

AdS

Proposed by Maldacena (97)
Applications in condensed matter Sachdev

Quantum Field Theory

with conformal symmetry
on the d dim. boundary with local Minkowski metric

CFT

Cost function

The SY Kitaev (15) - another "spherical cow" - model

Based on holography, a simple $d=0$ quantum model of a black hole

There are $i, j, k, l=1, \ldots, N$ Majorana fermions, $\psi_{i}^{\dagger}=\psi_{i}$ and $\left\{\psi_{i}, \psi_{j}\right\}=0$
Random interactions $J_{i j k l}$ with $\left[J_{i j k l}\right]=0$ and $\left[J_{i j k l}^{2}\right]=4!J^{2} / N^{3}$
The entropy $S(T) \xrightarrow{T \rightarrow 0} a+b T$ \& time evolution similar to black hole ones

Dynamics

The SY Kitaev - another "spherical cow" - model

$$
\frac{\partial q_{d}\left(\tau, \tau^{\prime}\right)}{\partial \tau}=\delta\left(\tau-\tau^{\prime}\right)+\int_{0}^{\beta \hbar} d \tau^{\prime \prime} \Sigma\left(\tau, \tau^{\prime \prime}\right) q_{d}\left(\tau^{\prime \prime}, \tau^{\prime}\right)
$$

with τ the imaginary time, $q_{d}\left(\tau, \tau^{\prime}\right) \equiv \frac{1}{N} \sum_{i=1}^{N} \mathcal{T}\left[\left\langle\psi_{i}(\tau) \psi_{i}\left(\tau^{\prime}\right)\right\rangle\right]$ the correlation and $\Sigma\left(\tau, \tau^{\prime}\right) \equiv J^{2} q_{d}\left(\tau, \tau^{\prime}\right)^{3}$ the self-energy

Slow dynamics for long $\tau-\tau^{\prime} \Longrightarrow$ drop the time-derivative and then time reparametrization invariance under

$$
\tau \mapsto h(\tau) \quad q_{d}\left(\tau, \tau^{\prime}\right) \mapsto\left[h(\tau) h\left(\tau^{\prime}\right)\right]^{1 / 4} q_{d}\left(h(\tau), h\left(\tau^{\prime}\right)\right)
$$

and, by holography, invariance under diffeomorphisms of general relativity

Conclusions

Connections via cost functions \& dynamics

Hard computational problems

Glasses

Black holes

In theoretical physics, we often use simplified models which capture the essence of a natural phenomenon. We love them for their relative mathematical manageability but also because of their predictive power, which may let us uncover unknown features of Nature.

Glassy mean-field models

Classical p-spin spherical

Potential energy

$$
\mathcal{V}=-\sum_{i_{1} \neq \ldots \neq i_{p}} J_{i_{1} \ldots i_{p}} s_{i_{1}} \ldots s_{i_{p}} \quad p \text { integer }
$$

quenched random couplings $J_{i_{1} \ldots i_{p}}$ drawn from a Gaussian $P\left[\left\{J_{i_{1} \ldots i_{p}}\right\}\right]$
(over-damped) Langevin dynamics for continuous spins $s_{i} \in \mathbb{R}$ coupled to a white bath $\langle\xi(t)\rangle=0$ and $\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=2 \gamma k_{B} T \delta\left(t-t^{\prime}\right)$

$$
\gamma \frac{d s_{i}}{d t}=-\frac{\delta \mathcal{V}}{\delta s_{i}}+z_{t} s_{i}+\xi_{i}
$$

z_{t} is a Lagrange multiplier that fixes the spherical constraint $\sum_{i=1}^{N} s_{i}^{2}=N$
$p=2$ mean-field domain growth
$p \geq 3$ RFOT modelling of fragile glasses

[^0]: The rule is to add $J=-1$ for each happy pair

