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Computational optimisation
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Setting
Take two individuals

Mary John

They may like or dislike each other
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Setting
Identify their feelings towards each other

or

Assume they are reciprocal
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Setting
Define a pairwise interaction

JMary−John = −1

JMary−John = +1
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An easy problem
Going out for dinner in a group of three

You Mary

You John

Mary John

Happy dinner
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An easy problem
Going out for dinner: give a score

You Mary −1

You John −1

Mary John −1

Happy dinner −3

The rule is to add J = −1 for each happy pair
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Easy vs. constrained
Going out for dinner in a group of three

You Mary −1

You John −1

Mary John −1

Happy dinner −3

You Mary −1

You John −1

Mary John +1

Conflicting dinner −1

The rule is to add J = −1 for each happy pair or J = +1 for each unhappy one
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Easy vs. constrained
Define a cost function

You Mary −1

You John −1

Mary John −1

Happy dinner −3

You Mary −1

You John −1

Mary John +1

Conflicting dinner −1

The rule is to add J = −1 for each happy pair and J = +1 for each unhappy one

The cost function takes a higher value when there is frustration

9



An optimisation problem
Change the proposal: split the group in two

Three cases

(You & Mary go out) (John is not invited) 4 −1

(You & John go out) (Mary is not invited) 4 −1

(Mary & John go out) (You are not invited) 8 +1

The value of the cost function is the J of the couple

There are two optimal solutions which minimise the cost function
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An optimisation problem
More people, many more connections

(N = 6 children and each has N − 1 = 5 connections: 6×5
2

= 15 ' N2/2 connections)
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An optimisation problem
More people give more possibilities & complexity increases

Say that, approximately, half and half love or hate each other

12



An optimisation problem
How do we split the group equally (& make two parties)?
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An optimisation problem
One try to split, but is it good?
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An optimisation problem
Evaluate the cost function

Group A

Add−1 for & +1 for

CostA = −1 + 1 + 1 = +1

Group B

Add−1 for & +1 for

CostB = −1 + 1 + 1 = +1

The total cost is C = CA + CB = 2 Is it a good solution?
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An optimisation problem
Which is the optimal partition ? A hard problem

One can try all possible cuts if there are a few persons but not if there are many !
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Mathematical representation
Setting the problem in a form amenable to calculations
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Cost function
Its construction

In the graph partitioning - group splitting example

i, j = 1, . . . , N label the persons. For ex. i = 1 is Mary, i = 2 is John, etc.
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Cost function
Its construction

In the graph partitioning - group splitting example

i, j = 1, . . . , N label the persons

Each pair has a predetermined interaction

Jij = −1 if love or Jij = +1 if hate between i and j
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Cost function
Its construction

In the graph partitioning - group splitting example

i, j = 1, . . . , N label the persons

Each pair has a predetermined interaction

Jij = −1 for love or Jij = +1 for hate

Assignment, distribution of persons

si = +1 if i is in group A or si = −1 if i is in group B
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Cost function
Its construction

In the graph partitioning - group splitting example

• i, j = 1, . . . , N label the persons

• Predetermined interactions Jij = −1 for love or Jij = +1 for hate

• si = +1 if i is in group A or si = −1 if i is in group B

Condition (take N even)

To ensure equal-size groups s1 + s2 + · · ·+ sN︸ ︷︷ ︸ = 0 (as many +1 as−1)

N∑
i=1

si = 0

represents a sum over all i (persons) of their states given by the values of the si
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Cost function
Its construction

In the graph partitioning - group splitting example

• i, j = 1, . . . , N label the persons.

• Predetermined Jij = −1 for love or Jij = 1 for hate feelings

• si = 1 if i is in group A or si = −1 if i is in group B

find the assignment of all the si so that they add up to zero (
N∑
i=1

si = 0) & the

Cost function

C = sum over all pairs of the love/hate values in the same group

is minimised
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Cost function
Its construction

In the graph partitioning - group splitting example

• i, j = 1, . . . , N label the persons.

• Predetermined Jij = −1 for love or Jij = 1 for hate feelings

• si = 1 if i is in group A or si = −1 if i is in group B

find the assignment of all the si so that they add up to zero (
N∑
i=1

si = 0) & the

Cost function is minimised

C =
∑
i 6=j︸ ︷︷ ︸

sum over all pairs

Jij︸ ︷︷ ︸
love/hate
quenched

(
1 + sisj

2

)
︸ ︷︷ ︸

vanishes if i, j in different groups
selects pairs in same group
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Cost function
Rugged landscape in a large dimensional space
a sketch for a given realisation of the love/hate couplings Jij

The N variables {si}

C
os

tf
un

ct
io

n

How to reach the absolute minimum ?

Smart algorithms?
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Let us move on to physics
Experiments, observations and models
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States of Matter
The common ones

rigid

fixed shape

hard to compress

does not flow

ordered

not rigid

no fixed shape

hard to compress

flows

disordered

not rigid

no fixed shape

easy to compress

flows

disordered
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Matter
Models for the particle interactions

Typically, repulsive or attractive depending on distance

How does an ensemble of many such interacting particles

spatially arrange? New “glass phase” under certain conditions
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Glasses
Ancient - modern
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Glasses
Peculiar physical features

Structure

— Rigid but microscopically disordered

(very different from a crystal)

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(no Gibbs-Boltzmann measure reached)

Crystal Glass

Experiments
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Glasses
Peculiar physical features

Relaxation time vs. 1/temperature

— Rigid but microscopically disordered

(very different from a crystal)

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(no Gibbs-Boltzmann measure reached)

super-cooled liquid glass

Experiments
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Glasses
Peculiar physical features

Self intermediate scattering fct vs. time-delay

— Rigid but microscopically disordered

(very different from a crystal)

— Extremely slow macroscopic dynamics

relaxation time grows by orders of magnitude

under weak changes of the external conditions

— Out of equilibrium evolution

(no Gibbs-Boltzmann measure reached)

Aging in Lennard-Jones mixtures

Simulations
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Cost function
The “spherical cow” p-spin model

The standard model of glassy behavior Huge conceptual jump!

C =
∑

i 6=j 6=k 6=l︸ ︷︷ ︸
sum over all groups of p = 4

Jijkl︸ ︷︷ ︸
interactions

sisjsksl︸ ︷︷ ︸
variables

There are i, j, k, l = 1, . . . , N variables

and N(N − 1)(N − 2)(N − 3)/4 predetermined couplings Jijkl from a p.d.f.

(like Jijkl = +1 or Jijkl = −1)

Phenomenology: thermodynamics, long relaxation times, rugged landscapes

32



p-spin models
Capture many physical systems

• Forgot particles and used binary si = ±1 or spherical
N∑
i=1

s2i = N variables

• Instead of finite d real space placed the spins on a complete (hyper-)graph

Interactions

Spins

System

Model

Two-body

Spherical

FMs

Curie-Weiss

Two-body

Ising

Spin glass

SK model

p ≥ 3-body

Ising or spherical

(Fragile) Glasses

p-spin
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Some methods
for systems with quenched randomness

Edwards-Anderson (75) dynamic order parameter, replica trick

Thouless-Anderson-Palmer (77) extension of the familiar free-energy

f(m) =
Jz

2
m2 − ln[2 cosh(βJzm+ βm)]

m = tanh(βJzm+ βh)

to an N order parameter {mi} dependent fJ({mi}): rugged landscape

Parisi : Replica Symmetry Breaking (79-83)

the equilibrium properties, further information about the “state” organization, etc.

On the plateau Franz, Ros, Rosso (LPTMS), Foini, Urbani (IPhT)
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Rugged landscapes
In large dimensional spaces

The N degrees of freedom

C
os

tf
un

ct
io

n

crystal = optimum

trapping glass

How to reach the absolute minimum, in the particles’ case the crystal?

Other regions of the landscape correspond to the glass
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Rugged landscapes
In large dimensional spaces

Hard to think in large dimensional spaces: not much intuition

In the hard optimization problems or glassy ones

an exponentially large number of

minima/maxima/saddle-points

# = eNΣ

at 6= heights in the landscape

Σ is called configurational entropy or complexity

Much work on the analysis of these landscapes, first by theore-

tical physicists, more recently by mathematicians
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Familiar strategies to

surf down the landscape
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Annealing
From medieval swords to everyday life

ARMS ARMOR
steel (iron with an alloy of carbon)

annealing lets the carbon move

Granular matter
shaking coffee jar to compact

the grains and let them occupy less space

Changing ambient conditions with a convenient protocol
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Annealing
Real and simulated

C

x

Figure from O. Ghasemalizadeh et al. 16

A physical protocol applied in the computer optimization context
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Modern strategies
Use knowledge about the landscape

to devise smarter algorithms

Extensions of simulated annealing

Replica simulating annealing Baldassi et al. (16), Angelini & Ricci-Tersenghi (22)

Message passing algorithms

Belief propagation Pearl (82), Kabashima & Saad (90s), Yedidia (01)

Survey propagation Mézard, Parisi, Zecchina (02)

Much more to be said, if interested, contact the experts
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Relaxation in the glass

Global observables
Two-time correlations and linear responses

41



Two-time dependencies
Self-correlation and linear response

The two-time self correlation and integrated linear response

C(t, tw) ≡ 1

N

∑
i

[〈si(t)si(tw)〉]

χ(t, tw) ≡ 1

N

∑
i

∫ t

tw

dt′ R(t, t′) =
1

N

∑
i

∫ t

tw

dt′ [
δ〈si(t)〉h
δhi(t′)

∣∣∣∣
h=0

]

Extend the notion of order parameter

They are not related by FDT out of equilibrium Magnetic notation but general

The averages are thermal (and over initial conditions) 〈. . .〉
and over quenched randomness [. . . ] (if present)

tw waiting-time and t measuring time
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Two-time self-correlation
In glassy systems

T < Tg Lennard-Jones mixtures

C(t, tw)

10
−1

10
0

10
1

10
2

10
3

10
4

10
50.0

0.2

0.4

0.6

0.8

1.0

t
w
=63100

t
w
=10

t−tw

F
s
(q

;t
,t

w
)

t
w
=0

q=7.23

T
f
=0.4

tw waiting time

Scaling below the envelope

Cag(t, tw) ∼ fag
(
R(t)

R(tw)

)
t− tw

Aging: older systems relax more slowly than younger ones
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Dynamic equations
On the correlation and linear response for Langevin dynamics

In the N →∞ limit exact causal Schwinger-Dyson (DMFT) equations

(γ∂t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+ 2γkBTR(tw, t)

(γ∂t − zt)R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw)

where Σ and D are the self-energy and vertex. For the p spin models

D(t, t′) = p
2 C

p−1(t, t′) Σ(t, t′) = p(p−1)
2 Cp−2(t, t′)R(t, t′)

The Lagrange multiplier zt is fixed by C(t, t) = 1. Random initial conditions.

(Average over randomness already taken ; later, interest in noise-induced fluctuations)
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Predictions
Aging and reparametrization invariance

Aging is derived analyticallyCag(t, tw) ∼ fag
(
R(t)
R(tw)

)
with

R(t)

R(tw)
= O(1)

Slow relaxation ∂tCag(t, tw) ∝ Ṙ(t)

R(t)
−−−→
t→∞

0 =⇒

∂tCag(t, tw)� Cag(t, tw)

Dropping the time-derivatives, approximate eqs. for the slow relaxation, i.e.

Cag (below the envelope) and the corresponding Rag

Invariant under time-reparametizations

t→ ht ≡ h(t)

 Cag(t, tw)→ Cag(ht, htw)

Rag(t, tw)→ dhtw
dtw

Rag(ht, htw)

with ht positive and monotonic
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Turn it useful
Reparametrization invariance⇒ fluctuations

Noted by

classical Sompolinsky & Zippelius (83), Ginzburg (86), Ioffe (88), LFC & Kuchan (93),

Franz & Mézard (94)

quantum Castillo, Chamon, LFC & Kennett (02)

Used to characterize fluctuations in real space beyond mean-field

Castillo, Chamon, Charbonneau, LFC, Iguain, Kennett, Sellitto, Reichman (02-07)

Quote from Chamon & LFC 07 review

relation to gravity?
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Black holes
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Black holes
What are they?

— A (tiny) region of spacetime where gravity is so strong that nothing, not

even light, can escape it

— The theory of general relativity predicts that a sufficiently compact mass

can deform spacetime to form a black hole

Einstein, Schwarzschild

— They can form through the collapse (on itself) of a big star

C. Murphy-Oppenheimer

— Can be detected indirectly, by noticing how nearby stars act differently

than far away ones
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Black holes
There are many nearby

Sagittarius A* is a supermassive black hole at the Galactic Center of the

Milky Way

27000 light-years away from Earth

mass one million times the one of the Sun

packed within 4000 times the Earth’s diameter

R. Genzel (Munich) and Andrea Ghez (Los Angeles)

Event Horizon Telescope, a world-wide network of radio observatories
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Gravity & quantum field theory
Holography - Duality

Quantum gravity

(compactified string theories)

in a d+ 1 dimensional space

with Anti-deSitter geometry

AdS

Quantum Field Theory

with conformal symmetry

on the d dim. boundary

with local Minkowski metric

CFT

Proposed by Maldacena (97)

Applications in condensed matter Sachdev
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Cost function
The SY Kitaev (15) - another “spherical cow” - model

Based on holography, a simple d = 0 quantum model of a black hole

C =
∑

i 6=j 6=k 6=l︸ ︷︷ ︸
sum over all groups of four

Jijkl︸ ︷︷ ︸
interactions

ψiψjψkψl︸ ︷︷ ︸
variables

There are i, j, k, l = 1, . . . , N Majorana fermions, ψ†i = ψi and {ψi, ψj} = 0

Random interactions Jijkl with [Jijkl] = 0 and [J2
ijkl] = 4!J2/N3

The entropy S(T )
T→0−−−→ a+ bT & time evolution similar to black hole ones
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Dynamics
The SY Kitaev - another “spherical cow” - model

∂qd(τ, τ
′)

∂τ
= δ(τ − τ ′) +

∫ β~

0
dτ ′′ Σ(τ, τ ′′)qd(τ

′′, τ ′)

with τ the imaginary time, qd(τ, τ
′) ≡ 1

N

N∑
i=1

T [〈ψi(τ)ψi(τ
′)〉] the correla-

tion and Σ(τ, τ ′) ≡ J2qd(τ, τ
′)3 the self-energy

Slow dynamics for long τ − τ ′ =⇒ drop the time-derivative and then

time reparametrization invariance under

τ 7→ h(τ) qd(τ, τ
′) 7→ [h(τ)h(τ ′)]1/4 qd(h(τ), h(τ ′))

and, by holography, invariance under diffeomorphisms of general relativity
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Conclusions
Connections via cost functions & dynamics

Hard computational problems

Glasses Black holes

In theoretical physics, we often use simplified models which cap-

ture the essence of a natural phenomenon. We love them for their

relative mathematical manageability but also because of their predic-

tive power, which may let us uncover unknown features of Nature.
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Glassy mean-field models
Classical p-spin spherical

Potential energy

V = −
∑

i1 6= ... 6=ip

Ji1... ip si1 . . . sip p integer

quenched random couplings Ji1... ip drawn from a Gaussian P [{Ji1... ip}]

(over-damped) Langevin dynamics for continuous spins si ∈ R
coupled to a white bath 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′)

γ
dsi
dt

= −δV
δsi

+ ztsi + ξi

zt is a Lagrange multiplier that fixes the spherical constraint
N∑
i=1

s2i = N

p = 2 mean-field domain growth
p ≥ 3 RFOT modelling of fragile glasses
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