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Motivation

Isolated quantum systems: experiments and theory ~ 15y ago

A quantum Newton’s cradle
experiments

cold atoms in isolation
Kinoshita, Wenger & Weiss 06

(Conformal) field theory methods for
quantum quenches
Calabrese & Cardy 06

Numerical study of

lattice hard core bosons

Rigol, Dunjko, Yurovsky & Olshanii 07
and many others
Mostly 1d systems



Questions

Does an isolated quantum system reach some kind of equilibrium ?

Boosted by recent interest in
— the dynamics after quantum quenches of cold atomic systems
rOle of interactions (integrable vs. non-integrable)
— many-body localisation

novel effects of quenched disorder

And, an isolated classical system ?

The (old) ergodicity question revisited

Our contribution Barbier, LFC, Lozano, Nessi, Picco, Tartaglia 17-21



Quantum quenches

Definition & questions

Take an isolated quantum system with Hamiltonian f[o

Initialize it in, say,

o) the ground state of [, or any j(to)

Unitary time-evolution I/ = ¢~ #''* with a Hamiltonian 7 + H,.

Does the system reach (locally) a steady state ? (for N — 00)

Is it described by a thermal equilibrium density matrix e 7 2
Do at least some local observables behave as thermal ones?

Does the evolution occur as in equilibrium ?

If not, other kinds of density matrices ?




Classical quenches

Definition & questions

Take an isolated classical system with Hamiltonian //, evolve with /7
Initialize it in, say, 1)y a configuration, e.g. {{;, p; } o for a particle system

1)y could be drawn from a probability distribution, e.g. Z~* e~ PoHo(vo)

Does the system reach a steady state ? (in the N — o0 limit)

Is it described by a thermal equilibrium probability ¢ 7/ 2
Do at least some local observables behave as thermal ones ?

Does the evolution occur as in equilibrium ?

If not, other kinds of probability distributions ?




Classical quenches

Definition & questions

In the steady state of a classical macroscopic (N — o0) model

1 lst+T7
Time averages O(7) = lim —/ dt" O(t")
T—00 T tet

& statistical averages (O) = /H dg; H dp; O(si, i) p(si, i)

should be equal O(t) = (O) for a generalised micro-canonical measure p

in which, in integrable cases, all constants of motion are fixed Yuzbashyan 18

Are local observables characterised by a “canonical” measure ?

If yes, which one ?




Classical quenches

Interest in integrable models: strategy & goals

— Choose a sufficiently simple classical integrable interacting model with
(not just harmonic oscillators)
an interesting phase diagram to investigate difterent initial conditions

and quenches across the phase transition(s)

— Solve the dynamics after the quenches

— Build a Generalised Gibbs Ensemble (GGE)

— Prove that the asymptotic limit of /ocal observables is captured by
the GGE



Classical quenches

Strategy

Choose a sufficiently simple classical integrable interacting model

(not just harmonic oscillators)
with an interesting phase diagram to investigate different initial

conditions and quenches across the phase transition(s)

Solve the dynamics after a quench

Build a Generalised Gibbs Ensemble

Prove that the asymptotic limit of local observables is captured by the
GGE




Model choice.
Inspiration from
— disordered systems,
— phase ordering kinetics

knowledge




A spin model with randomness

The spherical SK (p = 2) model Kosterlitz, Thouless & Jones 76

V<z ({s;}) = —= Z JiisiS; + ( °) Z s? — N
z;é] ?

Fully connected interactions & s; € R

Global spherical constraint |§'|2 = =N
imposed on average by a Lagrange multlpher z(é') N eigenvalues )\( ) and
Gaussian distributed interaction strengths eigenvectors Uu
— 7. ] = 21 _ 72
Jij = Jji, [Jij] = 0& [J55] = Jg/(2N) P(A,(LO)) ~ \/(QJO)Q _ (A&O))2

Diagonalised effective potential in the basis of eigenvectors| s, = v, - 5

Vi, ({su}) = ZA<0>S2+— 2%




A spin model with randomness

The spherical SK (p = 2) model

We plan to choose initial conditions drawn from the canonical Gibbs-

Boltzmann equilibrium measure.

Physically:

— the system is in thermal equilibrium with a bath at temperature 7
until ¢ = 0~

— the coupling to the bath is switched off at this instant = 0

— it further evolves in isolation at t > (



A spin model with randomness

The canonical equilibrium of the spherical SK (p = 2) model

Z(BoJo) / dz / Hdsu ~oV3g (o)

Gaussian integrals yield Kosterlitz, Thouless & Jones 76

Ty Ty .
(52)q = with 3 (52)ey —— | dAp(0) — N fix 2
ni Z_>\/(LO) i N Z_)‘/SO)

At'ly > 1. = Jyallmodes s, = 5- ¥, are massive = — AP~ 08 (s2)eq = O(1)

—

N is massless| lim (A( ) _ z)=0
N — o0

AtTy <T,.= Jythe Nthmode sy = 5 -

and condenses | (s3,)eq = ¢(T0/Jo)N

NB spherical constraint is imposed on average



A spin model with randomness

The canonical equilibrium of the spherical SK (p = 2) model

v (%)
(BOJO /dZ/HdSM —BV. Jo ({sn})

To (s )eq B
© T =1
2Jo — A\ N

The spherical constraint fixes (55 )eq = ¢V via f d\(0) p(A(0))

Two possibilities

At| Ty <T. = Jy the mode

P(sn)

Constraint on average

no pinning field | SN — g 77]\7 |S maSS|eSS

8 | 0 | 1 lim ()\g\?) —2)=0

N — o0

and condenses

(s%)eq = q(To/Jo)N

Strict constraint
or pinning field

0 |
-1 0 1
-@n]”? ' an]? SN

Kac & Thompson 71, Zannetti 15, Crisanti, Sarracino & Zannetti 19



A spin model with randomness

The canonical equilibrium of the spherical SK (p = 2) model

Condensed symmetry broken or symmetric Extended

M= (S)eq



From statistical physics to classical mechanics

t > (0 evolution




Classical dynamics

From spins to a particle moving on the S, _; sphere

Coordinate-momenta pairs {§, ﬁ} and Hamiltonian (const w/Lagrange mult.)
N

o, 25 D)
HYy) = Baa(B) + Vi(3) + =52 (55— V)
p=1 .
with the kinetic energy Ey;, (p) = — Z
Newton-Hamilton equations 2m
Su = Pu/m Pu = —0V;(8)/0su — 2(5,p)sy,

An anisotropic harmonic potential energy

1
) = —%ZJ@']‘SZ‘SJ' = _52)\“83
U

i3

but V}Z) () is quartic due to (S, p)



Classical dynamics

From spins to a particle moving on the S, _; sphere

Initial conditions averaged constraints

<¢>’LC : Z<Si>zc —N=0

7

(@ Vic. : 2 (suPp)ic. =0

7!



The Initial conditions

The red arrows are different initial conditions

<5%\r>eq =qN <5%\r>eq = O(1)

To/Jo

Condensed symmetry broken or symmetric Extended

Tﬁ — <§>eq Focus on symmetry broken ones for T /Jo < 1



Instantaneous quench

Global rescaling of all coupling constants

o (0) _J 0
to keep some memory of the initial conditions.
o (0) _J o
It is equivalent to A A, = 7)\“
0

No change in configuration {s,(07) = s,(07), p,(07) = p,(0")} but
macroscopic energy change

;

> () J <1 Injection
AFE = ¢ for —

<0 Jo > 1 Extraction

\



Control parameters

Initial conditions

Total energy change & initial conditions

To/Jo
A |
|
e,
9 | ! 1
e |
Q
x I
O 4= - - - - - - - -
ks |
% IV | 1l
2 |
3 | . T/ o
e 1 .
Injection extraction

Quench: total energy change



Instantaneous quench

Mode energy change under J; — J

10 T T
Inj Sec | ——
Ext Sec II
Ext Sec III ——
5 | Inj Sec IV ——
E 0 ——
ad
5|
_10 | | |
-2 -1 0 1
wal

Wigner density of eigenvalues p(A/.J)

Maximum Minimum

AV 4

-2 0 2

Mode energy spectrum

1.2 1 2
en = 3 Pn — 3 S

Mode energy change

(Aey)ic. = (en(0T) —en(07))ie.

The energies of the modes at the right edge of the >‘u spectrum are the more affected ones

These are the softer modes



Neumann’s model

1859

Journal A particle on a sphere

under harmonic potentials

reine und angewandte Mathema**"

In zwanglosen Heften De problemate quodam mechanico, quod ad primam
integralium ultraellipticorum classem revocatur.

. (Auctore C. Neumann, Hallae.)

Als Fortsetzung des von
A. L. Crelle
gegriindeten Journals

herausgegeben
unter Mitwirkung der Herren
Steiner, Schellbach, Kummer, Kronecker, Weierstrass

von

C. W. Borchardt.

Mit thatiger Beforderung hoher Koniglich - Preufsischer Behdrden.

Sechs und funfzigster Band.

In vier Heften.

Berlin, 1859.
Druck und Verlag von Georg Bz'un..'{,

Journal of Pure & Applied Math.
Crelle Journal

S 1.

Problema proponitur.

Sinl puncti mobilis Coordinatae orthogonales x, y, 2; sit
Py te =1

Just the same model with
VDY

in spherical SK model ensured by GOE

Thanks to O. Babelon

Strict constraint



Neumann’s model

Integrability

N constants of motion in involution {1, /,,} = 0 fixed by the initial conditions

2
(Supv — Supp)
plv vEp
I,=s2+ x> N, K. Uhlenbeck 82
v(#H)
Modified angular momentum. The notation is such that s,, = andp, = p- U,

H; = FEy, + V5= _%Z)‘MIM and NV = ZIM (usinngi = N&> supu =0)
Y Y H H

Studies by Avan, Babelon and Talon 90s for | finite /V

Thermodynamic N — oo limit ?

No canonical GB equilibrium expected but Generalised Gibbs Ensemble

pcar(5,0) = Z7 ({w}) e Zh=1 ulu(Z0) o




How to study the large /N dynamics ?
Firstly, identify the

Barbier, LFC, Lozano, Nessi, Picco & Tartaglia 18-20




The constants of motion

(1,(07)),... averaged over the initial measure

Extended
To? J(Jo—I—J)/To—)\M
JoJ J(J0—|-T02/JO)/TO — Ay I I1a

Condensed & u# N

~
T02 J(Jo + '])/TO — Au E b
J()J 2J — )\'u 1 <],/1>[.(7. =ct. =1
Condensed & p =N I
(DB +
Jo J 0 ] 5 ;
J/Jy

NB On the thick orange line the constants are all equal!



The constants of motion

(1,(07)),... averaged over the initial measure

Bulk constants
Extended

To/Jo > 1 To/Jo < 1
To2  J(Jo+J)/To — A, 0/Jo > 0/Jo <
JoJ J(Jo+To2%/Jo)/To — A\, Extended Condensed
10 ‘ ‘ 10 ‘ ‘ \
To=1.5Jp Ty =0.75Jy
Condensed & u# N |
T J(Jo+ J)/To — A\ P ——
JoJ 2J — A, < "l
STl =05 (1) ——
Condensed & p =N (T[]/%](Sezqgg
6
To To [ R R
1-—)(1-=)N+0Q1
( J0> ( J) +ol) W T
O(1)

NB for T,/ Jy > 1 and (T, /Jy)? = J/Jy the constants are all equal



How to study the large /N dynamics ?

Secondly, analysis of




Conservative dynamics

on average over randomness & the initial measure

Inthe | NV — oo | limit exact Schwinger-Dyson (DMFT) equations for the global
self-correlation and linear response averaged over the { ), }, denoted |.. . |,
and the initial conditions, noted (. ..); ..,

NC(t,t) = [spu(t)su(t))ie]s Self-correlation
v

NC(t,0) = > [(su(t)$u(0))i.c.]s “Fidelity”
7

NR( ) = 3 [(oull)
"

- Linear response
5h,u(t/) >z.c.]J P

h=0

Coupled causal integro-differential equations
(mOF — z)R(t, 1) = /dt” S(t, t"YRA", )+ 6(t —t)

+ two other ones, with terms fixing the initial conditions

Solvable numerically & analytically at long times



The dynamic phase diagram

from Schwinger-Dyson equations

Xst = lim [T dt' R(t, 1)

t>tg
2 z¢ = lim z(t
1 r= 45,20
A1
Xeo = 1/Th QAN %)
=0 AN
Yoo =1 _8
Q: =0 'CC)
= O
(@]
©
=
<
0
0 1 J/JO 2
Injection Extraction

| xst =1/To 2z > An =2J and limgse, C(t,0) =go =0
I xst = 1/J Zf = Ay — 2J  and lin’lt>>t0 C(t,O) =qgo =20
i xst =1/J zp = AN = 2J and limgse C(t,0) =qo >0



Asymptotic analysis

Algebraic approach to ¢y = lim;s.;, C'(¢, 0) - fidelity

condensed critical extended

—2
107 ¢ 1072 |

107} 107y

1076

C<t7 0) — q0

1076 1

T()/J0<1 J > Jy T()/J()>1
C(t,0) = qo + ct~+g(t) C(t,0) = ct™"?g(t)
the exponent is independent dependent of parameters

Similar time-dependencies & asymptotics for z(?)



Stationary limit

of macroscopic — global — one-time quantities

The Lagrange multiplier approaches a constant,
2(t) = 2lewin(t) — epot(t)] = 27

so do the kinetic & potential energies,

f

exin(t) — €. and epo(t) — e

pot

The correlation with the initial condition as well
C(tv O) — 40
in all phases (qp vanishes in some)

Non-conserved global one-time observables reach constants

Stationary dynamics ? Is this GB equilibrium ?




No Gibbs-Boltzmann equilibrium

e.g. large energy injection on a condensed state (Sector V)

/ /
C(t,t) — Cyu(t —t) but
4 :
~ g —
— N
3 NS Tf_0.388 —
3 .
5 <2 SEETSUN
S = N
\~
1 J.
\~
\~
0 | . | . | . |
—0.4 0 0.4 0.8

Yt =) = [ dt" Ra(t,8”) # —Bf [Cult — ') — Co(0)]

Stationary dynamics but no FDT at a single temperature | no GB equilibrium




Not surprising since the model is integrable.
Thirdly,

to better understand the steady state




Mode dynamics

Non-linear coupling, no average over disorder, any NV

The s, (= - U,) with o = 1, ..., [N obey parametric oscillator equations

m8,(t) = —[2(t) = Aulsu(t)

with 2(1) = 2|ekin () — epot(t)] & A, the eigenvalues of J; ;.

The solution is

., (0 5., (0 .
su(t) = s,(0) #Et)) COS fg dt’ ,,(t") + Qu(&(&?i(t) sin fg dt’ €, (t")

+ equations for the time-dependent frequencies €2, (%) and z(%).

Similar to Sotiriadis & Cardy 10 for the quantum O(N) model
Solvable numerically for any finite /V



The dynamic phase diagram

Looking more carefully at the condensation phenomena

I
extended 11
(s%) =0(1)
W) = 0() o) -
®)
S a?%\ :E
< uasi- sed ©
~ c
S @)
&)
®
<
0
0 1 J/ Jo 2
Injection Extraction

For all parameters limy ., limys1 (57(%))i.c., (p7(t))i.c. reach constants

The two averages noted simply (. . .) in the plot



The dynamics on the sphere

in the four Sectors of the dynamic phase diagram

Sector | & Sector Il Sector Il Sector IV

SN A




Is there a stationary asymptotic measure ?

Fourthly, establish and compute averages




Asymptotic measure

Is the Generalized Gibbs Ensemble the good one ?

The GGE “canonical” measure is

pGGE(g, ﬁ) = Z_l({q/,u}> e Z:;127:1 Vil (3,P)

with K. Uhlenbeck 82

1 (SuPv — Subp)”
T o= 2 plv vl
B ST A ,,(7%) DY

(quartic & non-local) and we fix the 7y, on average by imposing

<],LL>GGE — <],u>zc

NB in interacting quantum integrable models the charges are not
known. But we do know them for this model!



The GGE

Harmonic Ansaitz

pace({5.01) = Z7 1 ({yu)) e~ > =1 Yl ({5.5})

Extensive expression in the exponential ijzl Yuly = O(N) if v, = O(1)
BOA,u

N
GB measure recovered for J = Jg with v, = — since ) | 7”1'“ = —Hj
p=1

How to calculate <si>GGE and <pi>GGE ? A plausible guess

1}
ZGGE — Au

(sp)acE = (p2)ace = m T,

with spherical constraint for 2 & the mode-temperature spectrum fixed by

) 2T  pV)T(Y)
<I()‘)>i-0- — <I()‘)>GGE — 2GOE — A [1 _%d)‘ N\ — ]

another eq. for the /V-th mode for condensed i.c. & egs. for {7, } Solvable



Dynamics vs GGE

sace = (52(1))ie.  and  (plicae = (PA(1))iec




Dynamics vs GGE

e.g., comparison for quenches in Sector |

mJ T ()
-<—
6 GGE N = 100
Dynamics N = 100 —
GGE N — o0 =——
? 4 '\ Dynamics N = 1024 =—

J—\/2 J— /2

Similar coincidence in Sectors |1, IIl & IV
Interesting features linked to “fluctuations catastrophe” in Sector IV

Harmonic Ansatz confirmed by a saddle-point evaluation of the GGE



Dynamics vs GGE

A special case : GGE — GB

FOFTQ/JQ > | and (TQ/JO)2 = J/J()

the constants of motion

2 F (In)ie. <0

$ | are all equal
1 7 — <];L>i.c. =1

0

The GGE construction yields
T,=J and 7,=—\,/(2J)

Therefore

=2 Vulp = % 2 Ay = _§H
and tthLe GGE reduces Ltbo the GB measure
at Tf = J

fy =30 ——
60
(b) eq. at T}
0.8
D 0.6
A\ As
0 VA
0.01 0.1 1 10 100
ty —to
1.25 .
L =125 ——
15 ----
! 1.75 -eooeeee
[
Q\ 0.75
> 0.5
0.25
0
—0.25 0 0.25 0.5 0.75 1

C

Stationarity & FDT OK



Fifthly, can one obtain the mode temperatures with a

global dynamic measurement ?




Correlation and linear response

Fluctuation-dissipation theorem in Boltzmann equilibrium

1
C(t,t') = N 321(8“(75)8“(15/)%.& self correlation
N
1 ) t))i.c
R(t,t") = — E (82 (t))ic. linear response
N =i dh,(t)
— -

Stationary limit C'(¢,t") — Cy(t — t') and R(t,t") — Ry (t — 1)

Fourier transforms Fluctuation-dissipation thm
C(w) = FT.Cy(t — t) ImR(w)
R(w) = FT. Rt (t — t) wC(w)

o



Frequency domain FDR

The T,s from the FDR atw,, = [(z; — \,)/m]'/? Sector |

[T (w)] ™Y, N = 1024

/ —Im[R(w)]/(wC(W)), N = 00—
025 1 GGE N -

0.75 1 1.25 1.5
w

A way to measure the mode temperatures with a single measurement

A

Beft (wy) = —lmR(wu)/(WuC(Wu)) = By

No “partial equilibration” contradiction from the effective temperature perspective. The

modes are uncoupled, they do not exchange energy, and can then have different Tus

Idea in LFC, de Nardis, Foini, Gambassi, Konik & Panfil 17 for quantum



Summary




Goals achieved

In the late times limit taken after the large /V limit

ek

We solved
— the global dynamics with Schwinger-Dyson/

(TN T <) sy DMFT eqs.
— the mode dynamics with parametric oscillator
o techniques
of the Soft Neumann model
With the GGE measure —The {1}, } are accessed by the FDR
pace(37) = 27 ({y,}) e 2w ln(EP
— we calculated & proved Y4
1 = '
2 — H — /2 . 051 f Ml v-104 -
<SM>GGE — GGE — )\,u — <3M<t)>z.c. e _Im[é(wn/(wégz;x::_
2 0.%5 1 1.é5 1:5
(pprcce =T = (P (1))i.c. .

obtaining also {7,, v, } Bett (wy,) = —Im (wlljéifvi)) = B




Goals achieved

— We exhibited a classical interacting integrable model, the Soft Neumann model
or Hamiltonian spherical SK model, the quench dynamics of which can be
elucidated with different means.

— Rich dynamic phase diagram.

— We managed to calculate (mostly analytically) the GGE measure or, better
said, all GGE averaged local observables

— We showed that asymptotic dynamic and GGE averages coincide for
N — o0

— For a special set of parameters the GGE measure reduces to the GB one.

— We can also study the fluctuations of the constraints to prove that in I, II, Il
(with symmetry broken initial conditions) the Soft Neumann Model = the
Neumann model with the strict spherical constraint.



Goals achieved

— We exhibited a classical interacting integrable model, the Soft Neumann model
or Hamiltonian spherical SK model, the quench dynamics of which can be
elucidated with different means.

— Rich dynamic phase diagram.

— We managed to calculate (mostly analytically) the GGE measure or, better
said, all GGE averaged local observables

— We showed that asymptotic dynamic and GGE averages coincide for
N — o0

— For a special set of parameters the GGE measure reduces to the GB one.

What next ? What about the spherical ferromagnet ? Problems with degene-

racy of eigenvalues ? Local spatial structure would be accessible.



Fluctuations

{

(@) — (B A o(N)
(@) — (@2 £o(1) T M

0.5

2



Fluctuations




The dynamics on the sphere

and the GGE averages on the /Vth mode phase space

Sector Il Sector IV




Fluctuations

of the primary and secondary constraints

1

T T T 77777 KT T 7
S Sl S S s
S S S MWM /S

/

\\\\\\\\\\\ \\)\\
TS S S S v ayva
JSS S S S S /

S S S S / / /

\\\\\\\\\mNW\ /
YOIV N
SN L

\\\\%AM\\

> Subp =10
L4

¥
|

= T

7/ Jo

0r/0r,

when the spherical constraint is imposed on average



Integrals of motion

From microcanonical to canonical ?

The microcanonical GGE measure is ensured Yuzbashyan 16

pacE ({Z,}) = CH,]L1 0L, ({50, pv}) —ZLy)
Two conditions to prove canonical from microcanonical :
(i) additivity of the energy — I, = I} + I
(ii) extensivity of the energy — /,, = O(V)

e.g., Campa, Dauxois, Ruffo 09 on in/equivalence of ensembles
not satisfied in our model by the /,,’s, but maybe combinations ?

Still, let's try pcar({sv, pv}) = 2 ' ({v.}) e >t Yulu({sv.p0})

scaling with [V ij:l Yul,, = O(N)| ifv,=0O(1)




Integrals of motion

From microcanonical to canonical ?

The microcanonical GGE measure is ensured Yuzbashyan 16

pacE ({Z,}) = Cngl O(L,({50,pv}) —ZLy)
Two conditions to prove canonical from microcanonical :
(i) additivity of the energy — [, = Ifbl) -+ IL(LQ)
(ii) extensivity of the energy — /,, = O(NV)

e.g., Campa, Dauxois, Ruffo 09 on in/equivalence of ensembles
not satisfied in our model /,, by /,, but maybe combinations ?

still, let's try pace({s,, 0o }) = 27 ({7, }) e >t Yulu({sv,p0})

GB equilibrium for no quench |, = —BO% since ij:l %"[M = —H




GGE calculation

(AP aap

The mean-fields

Sector I: 7" =1.5, J = 0.9, N=100

3

2
1
0
1t
2
3

(A e

V

namics




Classical dynamics

From spins to a particle moving on an /NV-dimensional sphere

Coordinate-momenta pairs {§, ]5'} and Hamiltonian (const w/Lagrange mult.)
N

. L 2(sp
1Y = Bau(p) + Vo(®) + 250 >t )

with the kinetic energy E.;,(p) =

1
2m 4

>

Newton-Hamilton equations

— pi/m pz — —5‘/](5)/(58@ — 2(5’,]5’)3@

The effective potential energy landscape 2V ”(8) = — Y J;js:s; + 2(s*> — N) has
171

= 1,..., N saddles (including min/max)  maximum ° Minimum
the /N eigenvectors v, of the .J;; matrix with \ /‘\ /
(1)

z = A, & pot. energy density epot —A/2 = ’ ?

—

2(8,p) = 2 lexin(p) — v(5)] —2J 2J = Ay




Conservative dynamics

on average over randomness & the initial measure

Inthe | NV — oo |limit exact causal Schwinger-Dyson (DMFT) equations

(m0? — z)R(t, ty) = /dt’ Y(t, YRt tw) + 0(t — tw)

(mO? — 2)C(t, ty) = /dt’ 2(t, ") C(t, ty) + D(t, t)R(tw, t')]

50021) t,0)C4(tw, 0)

(md} — 2)Calt,0)= [t S(t.4)Cult,0) + 2 OZDb £0)Qu

_BOH(Z)

a=1,...,n — 0, replica method to deal with ¢ Joand fix (),

Initial cond Houghton, Jain, Young 86, Franz, Parisi 95, Barrat, Burioni, Mézard 96



Conservative dynamics

on average over randomness and the initial measure

In the N — oo limit exact causal Schwinger-Dyson (DMFT) equations

with the post-quench self-energy and vertex

D(t,ty) = J* C(t,ty) NC(t ) = 3, [(s:(8)s:(#))i el
D, (t,0) = J? Cy(t,0) with  NCo(t,0) = >2[(s:(t)s:(0)).cls
Y(t,tw) = J R(t, ty) NR(#) = S0 )i

The Lagrange multiplier is fixed by C'(¢,1) = 1 = z(t) = 2|exin(t) —epot(t)]

Disordered  QQup = Oub
Initial conditions:
Condensed Qup = (1 —q)oup + q

Solvable numerically & analytically at long times



Averaged integrals of motion

Properties, scaling and parameter dependence

Sumrules’ > [, =Nand), 6 A,J, =—2H,

In the NV — o0 limit

_ /
Mim 1, = I(A) = m]zdA X— N

For GB equilibrium initial conditions

(L(A))ic (A(O))% e. +

][ AN p A ie (PP A ie, + A 45 AO
m A= N

with <82()\<0))>Z~_0_ = kpTo/(z0 — )\<O)) and <p2(>\(0))>¢,c,
[ Extended (In)ie. = O(1)

and /V-th mode : Condensed (I/y);. = O(N)



