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Motivation
Isolated quantum systems: experiments and theory∼ 15y ago

(Conformal) field theory methods for

quantum quenches

Calabrese & Cardy 06

Numerical study of

lattice hard core bosons

Rigol, Dunjko, Yurovsky & Olshanii 07

and many others

Mostly 1d systems

A quantum Newton’s cradle

experiments
cold atoms in isolation

Kinoshita, Wenger & Weiss 06
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Questions
Does an isolated quantum system reach some kind of equilibrium?

Boosted by recent interest in

− the dynamics after quantum quenches of cold atomic systems

rôle of interactions (integrable vs. non-integrable)

− many-body localisation

novel effects of quenched disorder

And, an isolated classical system?

The (old) ergodicity question revisited

Our contribution Barbier, LFC, Lozano, Nessi, Picco, Tartaglia 17-21
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Quantum quenches
Definition & questions

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0〉 the ground-state of Ĥ0 or any ρ̂(t0)

• Unitary time-evolution Û = e−
i
~ Ĥt with a Hamiltonian Ĥ 6= Ĥ0.

Does the system reach (locally) a steady state? (for N →∞)

Is it described by a thermal equilibrium density matrix e−βĤ ?

Do at least some local observables behave as thermal ones?

Does the evolution occur as in equilibrium?

If not, other kinds of density matrices?
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Classical quenches
Definition & questions

• Take an isolated classical system with HamiltonianH0, evolve withH

• Initialize it in, say, ψ0 a configuration, e.g. {~qi, ~pi}0 for a particle system

ψ0 could be drawn from a probability distribution, e.g. Z−1 e−β0H0(ψ0)

Does the system reach a steady state? (in the N →∞ limit)

Is it described by a thermal equilibrium probability e−βH ?

Do at least some local observables behave as thermal ones?

Does the evolution occur as in equilibrium ?

If not, other kinds of probability distributions?
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Classical quenches
Definition & questions

In the steady state of a classical macroscopic (N →∞) model

Time averages O(t) ≡ lim
τ→∞

1

τ

∫ tst+τ

tst

dt′ O(t′)

& statistical averages 〈O〉 ≡
∫ ∏

i

dqi
∏

dpi O(si, pi) ρ(si, pi)

should be equal O(t) = 〈O〉 for a generalised micro-canonical measure ρ

in which, in integrable cases, all constants of motion are fixed Yuzbashyan 18

Are local observables characterised by a “canonical” measure?

If yes, which one?
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Classical quenches
Interest in integrable models: strategy & goals

– Choose a sufficiently simple classical integrable interacting model with

(not just harmonic oscillators)

an interesting phase diagram to investigate different initial conditions

and quenches across the phase transition(s)

– Solve the dynamics after the quenches

– Build a Generalised Gibbs Ensemble (GGE)

– Prove that the asymptotic limit of local observables is captured by
the GGE
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Classical quenches
Strategy

Choose a sufficiently simple classical integrable interacting model

(not just harmonic oscillators)

with an interesting phase diagram to investigate different initial

conditions and quenches across the phase transition(s)

Solve the dynamics after a quench

Build a Generalised Gibbs Ensemble

Prove that the asymptotic limit of local observables is captured by the

GGE
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Model choice.

Inspiration from

– disordered systems,

– phase ordering kinetics

knowledge
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A spin model with randomness
The spherical SK (p = 2) model Kosterlitz, Thouless & Jones 76

V
(z)
J0

({si}) = −1

2

∑
i 6=j

Jijsisj +
z(~s)

2

(∑
i

s2
i −N

)

Fully connected interactions & si ∈ R
Global spherical constraint |~s |2 =

∑
i s

2
i = N

imposed on average by a Lagrange multiplier z(~s)

Gaussian distributed interaction strengths

Jij = Jji, [Jij ] = 0 & [J2
ij ] = J2

0/(2N)

N eigenvalues λ
(0)
µ and

eigenvectors ~vµ

ρ(λ
(0)
µ ) ∝

√
(2J0)2 − (λ

(0)
µ )2

Diagonalised effective potential in the basis of eigenvectors sµ = ~vµ · ~s

V
(z)
J0

({sµ}) = −1

2

∑
µ

λ(0)
µ s2

µ +
z(~s)

2

(∑
µ

s2
µ −N

)
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A spin model with randomness
The spherical SK (p = 2) model

We plan to choose initial conditions drawn from the canonical Gibbs-

Boltzmann equilibrium measure.

Physically:

– the system is in thermal equilibrium with a bath at temperature T0

until t = 0−

– the coupling to the bath is switched off at this instant t = 0

– it further evolves in isolation at t > 0
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A spin model with randomness
The canonical equilibrium of the spherical SK (p = 2) model

Z(β0J0) ∝
∫
dz

∫ ∏
µ

dsµ e
−β0V

(z)
J0

({sµ})

Gaussian integrals yield Kosterlitz, Thouless & Jones 76

〈s2
µ〉eq =

T0

z − λ(0)
µ

with
∑
µ
〈s2
µ〉eq −−−−→

N→∞

∫
dλ ρ(λ)

T0

z − λ(0)
µ

= N fix z

At T0 > Tc = J0 all modes sµ = ~s · ~vµ are massive z − λ(0)
N > 0 & 〈s2µ〉eq = O(1)

At T0 ≤ Tc = J0 the N th mode sN = ~s · ~vN is massless lim
N→∞

(λ
(0)
N − z) = 0

and condenses 〈s2N 〉eq = q(T0/J0)N

NB spherical constraint is imposed on average
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A spin model with randomness
The canonical equilibrium of the spherical SK (p = 2) model

Z(β0J0) ∝
∫
dz

∫ ∏
µ

dsµ e
−βV (z)

J0
({sµ})

The spherical constraint fixes 〈s2N 〉eq = qN via

∫
dλ(0) ρ(λ(0))

T0

2J0 − λ(0)
µ

+
〈s2N 〉eq

N
= 1

P (sN )

Two possibilities

sN

At T0 ≤ Tc = J0 the mode

sN = ~s · ~vN is massless

lim
N→∞

(λ
(0)
N − z) = 0

and condenses

〈s2
N 〉eq = q(T0/J0)N

Kac & Thompson 71, Zannetti 15, Crisanti, Sarracino & Zannetti 19
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A spin model with randomness
The canonical equilibrium of the spherical SK (p = 2) model

-
〈s2N 〉eq = qN 〈s2N 〉eq = O(1)

T0/J0

T0/J0 < 1 T0/J0 > 1

Condensed symmetry broken or symmetric Extended

~m≡ 〈~s〉eq
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From statistical physics to classical mechanics

t > 0 evolution
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Classical dynamics
From spins to a particle moving on the SN−1 sphere

Coordinate-momenta pairs {~s, ~p} and Hamiltonian (const w/Lagrange mult.)

H
(z)
J = Ekin(~p) + VJ(~s) +

z(~s, ~p)

2

N∑
µ=1

(s2
µ −N)

with the kinetic energy Ekin(~p) =
1

2m

N∑
µ=1

p2
µ

Newton-Hamilton equations

ṡµ = pµ/m ṗµ = −δVJ(~s)/δsµ − z(~s, ~p)sµ

An anisotropic harmonic potential energy

VJ(~s) = − 1
2

∑
i 6=j

Jijsisj = −1

2

∑
µ

λµs
2
µ

but V
(z)
J (~s) is quartic due to z(~s, ~p)
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Classical dynamics
From spins to a particle moving on the SN−1 sphere

Initial conditions averaged constraints

〈φ〉i.c. :
∑
µ
〈s2µ〉i.c. −N = 0

〈φ′〉i.c. :
∑
µ
〈sµpµ〉i.c. = 0
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The initial conditions
The red arrows are different initial conditions

-
〈s2N 〉eq = qN 〈s2N 〉eq = O(1)

T0/J0

T0/J0 < 1 T0/J0 > 1

Condensed symmetry broken or symmetric Extended

~m≡ 〈~s〉eq Focus on symmetry broken ones for T0/J0 < 1
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Instantaneous quench
Global rescaling of all coupling constants

At time t = 0 J
(0)
ij 7→ Jij =

J

J0

J
(0)
ij

to keep some memory of the initial conditions.

It is equivalent to λ
(0)
µ 7→ λµ =

J

J0

λ
(0)
µ

No change in configuration {sµ(0−) = sµ(0+), pµ(0−) = pµ(0+)} but

macroscopic energy change

∆E =

 > 0

< 0
for

J

J0

 < 1 Injection

> 1 Extraction
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Control parameters
Total energy change & initial conditions

In
iti

al
co

nd
iti

on
s

co
nd

en
se

d
ex

te
nd

ed

T0/J0

6

-
J/J0

injection extraction

Quench: total energy change

1

1

I

III

II

IV
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Instantaneous quench
Mode energy change under J0 7→ J

−10

−5

0

5

10

−2 −1 0 1 2

〈∆
e µ
〉 i.
c.

λµ/J

Inj Sec I
Ext Sec II

Ext Sec III
Inj Sec IV

Wigner density of eigenvalues ρ(λ/J)

Mode energy spectrum

eµ = 1
2m

p2
µ − 1

2
λµs2µ

Mode energy change

〈∆eµ〉i.c. = 〈eµ(0+)− eµ(0−)〉i.c.

The energies of the modes at the right edge of the λµ spectrum are the more affected ones

These are the softer modes
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Neumann’s model
1859

Journal of Pure & Applied Math.
Crelle Journal

A particle on a sphere

under harmonic potentials

Just the same model with

λµ 6= λν

in spherical SK model ensured by GOE

Thanks to O. Babelon

Strict constraint

22



Neumann’s model
Integrability

N constants of motion in involution {Iµ, Iν} = 0 fixed by the initial conditions

Iµ = s2
µ + 1

mN

∑
ν( 6=µ)

(sµpν − sνpµ)2

λν − λµ
K. Uhlenbeck 82

Modified angular momentum. The notation is such that sµ = ~s · ~vµ and pµ = ~p · ~vµ

HJ = Ekin + VJ = − 1
2

∑
µ
λµIµ and N =

∑
µ
Iµ (using

∑
µ
s2µ = N &

∑
µ
sµpµ = 0)

Studies by Avan, Babelon and Talon 90s for finite N

Thermodynamic N →∞ limit ?

No canonical GB equilibrium expected but Generalised Gibbs Ensemble

ρGGE(~s, ~p) = Z−1({γµ}) e−
∑N
µ=1 γµIµ(~s,~p) ?
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How to study the large N dynamics?
Firstly, identify the constants of motion

Barbier, LFC, Lozano, Nessi, Picco & Tartaglia 18-20
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The constants of motion
〈Iµ(0+)〉i.c. averaged over the initial measure

Extended

T0
2

J0J

J(J0 + J)/T0 − λµ
J(J0 + T0

2/J0)/T0 − λµ

Condensed & µ 6= N

T 2
0

J0J

J(J0 + J)/T0 − λµ
2J − λµ

Condensed & µ = N(
1−

T0

J0

)(
1−

T0

J

)
N +O(1) 0

1

2

3

0 1 2 3

I

T
0
/J

0

J/J0

IIa

IIb

III

〈Iµ〉i.c. = ct. = 1

IV

〈IN〉i.c. < 0

〈IN〉i.c. > 0

NB On the thick orange line the constants are all equal !
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The constants of motion
〈Iµ(0+)〉i.c. averaged over the initial measure

Extended

T0
2

J0J

J(J0 + J)/T0 − λµ
J(J0 + T0

2/J0)/T0 − λµ

Condensed & µ 6= N

T 2
0

J0J

J(J0 + J)/T0 − λµ
2J − λµ

Condensed & µ = N(
1−

T0

J0

)(
1−

T0

J

)
N +O(1)

Bulk constants

T0/J0 > 1 T0/J0 < 1

Extended Condensed

−10

−5

0

5

10

−2 −1 0 1 2

T0 = 1.5 J0

〈I
(λ
)〉 i

.c
.

λ/J

J/J0 = 0.5 (I)
1 (equil)

(T0/J0)
2 (II)
6 (II) −10

−5

0

5

10

−2 −1 0 1 2

T0 = 0.75 J0

λ/J

J/J0 = 0.35 (IV)
(T0/J0)

2 (IV)
1 (equil)
6 (III)

O(1)
6

O(N)
6

NB for T0/J0 > 1 and (T0/J0)2 = J/J0 the constants are all equal
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How to study the large N dynamics?
Secondly, analysis of global – macroscopic – observables
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Conservative dynamics
on average over randomness & the initial measure

In the N →∞ limit exact Schwinger-Dyson (DMFT) equations for the global
self-correlation and linear response averaged over the {λµ}, denoted [. . . ]J ,
and the initial conditions, noted 〈. . .〉i.c.,

NC(t, t′) =
∑
µ

[〈sµ(t)sµ(t′)〉i.c.]J Self-correlation

NC(t, 0) =
∑
µ

[〈sµ(t)sµ(0)〉i.c.]J “Fidelity”

NR(t, t′) =
∑
µ

[〈
δsµ(t)

δhµ(t′)

∣∣∣∣
~h=0

〉i.c.]J Linear response

Coupled causal integro-differential equations

(m∂2
t − zt)R(t, t′) =

∫
dt′′ Σ(t, t′′)R(t′′, t′) + δ(t− t′)

+ two other ones, with terms fixing the initial conditions

Solvable numerically & analytically at long times
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The dynamic phase diagram
from Schwinger-Dyson equations

χst = lim
t�t0

∫ t
0 dt
′R(t, t′)

zf = lim
t�t0

z(t)

0

2

0 1 2J/J0

T
0
/J

0
I

II

III

χst = 1/J

q0 = 0

q0 6= 0

χst = 1/T0

q0 = 0

χst = 1/J

Injection Extraction

In
iti

al
co

nd
iti

on
s

I χst = 1/T0 zf > λN = 2J and limt�t0 C(t, 0) = q0 = 0

II χst = 1/J zf = λN = 2J and limt�t0 C(t, 0) = q0 = 0

III χst = 1/J zf = λN = 2J and limt�t0 C(t, 0) = q0 > 0
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Asymptotic analysis
Algebraic approach to q0 = limt�t0 C(t, 0) - fidelity

condensed critical extended

C
(t
,0

)
−
q 0

10−6

10−4

10−2

1 10 102

|C
(t

,0
)
−

q 0
|

t

T ′ = 0.50J0 , J = 1.00J0

∼ x−1.500

10−1

1

1 10 102

C
(t

,0
)

t

T ′ = 0.25J0 , J = 0.25J0

∼ x−0.209

10−6

10−4

10−2

1

1 10 102

|C
(t

,0
)
−

q 0
|

t

T ′ = 1.25J0 , J = 1.50J0

∼ x−1.497

T0/J0 < 1 J > J0 T0/J0 > 1

C(t, 0) = q0 + c t−1.5g(t) C(t, 0) = c t−0.2g(t)

the exponent is independent dependent of parameters

Similar time-dependencies & asymptotics for z(t)
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Stationary limit
of macroscopic – global – one-time quantities

The Lagrange multiplier approaches a constant,

z(t) = 2[ekin(t)− epot(t)]→ zf

so do the kinetic & potential energies,

ekin(t)→ efkin and epot(t)→ efpot

The correlation with the initial condition as well

C(t, 0)→ q0

in all phases (q0 vanishes in some)

Non-conserved global one-time observables reach constants

Stationary dynamics? Is this GB equilibrium?
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No Gibbs-Boltzmann equilibrium
e.g. large energy injection on a condensed state (Sector IV)

C(t, t′)→ Cst(t− t′) but

−0.4

0

0.4

0.8

0 50 100 150 200 250 300

C
(t

1
,t

2
)

t1 − t2

t2 = 0
15
45
75

0

1

2

3

4

−0.4 0 0.4 0.8

χ
C

t2 = 60

75

90

Tf = 0.320

χst(t− t′) ≡
∫

t

t′
dt′′Rst(t, t

′′) 6= −βf [Cst(t− t′)− Cst(0)]

Stationary dynamics but no FDT at a single temperature no GB equilibrium
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Not surprising since the model is integrable.

Thirdly, dynamic single mode analysis

to better understand the steady state
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Mode dynamics
Non-linear coupling, no average over disorder, any N

The sµ(= ~s · ~vµ) with µ = 1, . . . , N obey parametric oscillator equations

ms̈µ(t) = −[z(t)− λµ]sµ(t)

with z(t) = 2[ekin(t)− epot(t)] & λµ the eigenvalues of Jij .

The solution is

sµ(t) = sµ(0)

√
Ωµ(0)

Ωµ(t)
cos
∫ t
0 dt
′ Ωµ(t′) +

ṡµ(0)

Ωµ(0)Ωµ(t)
sin
∫ t
0 dt
′ Ωµ(t′)

+ equations for the time-dependent frequencies Ωµ(t) and z(t).

Similar to Sotiriadis & Cardy 10 for the quantum O(N) model
Solvable numerically for any finite N
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The dynamic phase diagram
Looking more carefully at the condensation phenomena

0

2

0 1 2J/J0

T
0
/J

0
I

extended II

quasi-condensed

III

s-condensed

IV

s, p-condensed

〈p2N〉 = O(1)

〈p2N〉 = O(1)

〈s2N〉 = O(N)

〈p2N〉 = O(N)

〈s2N〉 = O(1)

〈s2N〉 = O(Na/2)

〈p2N〉 = O(1)

〈s2N〉 = O(N)

Injection Extraction

In
iti

al
co

nd
iti

on
s

For all parameters limt�tst limN�1 〈s2
µ(t)〉i.c., 〈p2

µ(t)〉i.c. reach constants

The two averages noted simply 〈. . .〉 in the plot
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The dynamics on the sphere
in the four Sectors of the dynamic phase diagram

Sector I & Sector II Sector III Sector IV
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Is there a stationary asymptotic measure?
Fourthly, establish the GGE ensemble and compute averages
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Asymptotic measure
Is the Generalized Gibbs Ensemble the good one?

The GGE “canonical” measure is

ρGGE(~s, ~p) = Z−1({γµ}) e−
∑N
µ=1 γµIµ(~s,~p)

with K. Uhlenbeck 82

Iµ = s2
µ +

1

mN

∑
ν(6=µ)

(sµpν − sνpµ)2

λν − λµ
(quartic & non-local) and we fix the γµ on average by imposing

〈Iµ〉GGE = 〈Iµ〉i.c.

NB in interacting quantum integrable models the charges are not

known. But we do know them for this model !
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The GGE
Harmonic Ansatz

ρGGE({~s, ~p}) = Z−1({γµ}) e−
∑N
µ=1 γµIµ({~s,~p})

Extensive expression in the exponential
∑N
µ=1 γµIµ = O(N) if γµ = O(1)

GB measure recovered for J = J0 with γµ = −
β0λµ

2
since

N∑
µ=1

λµ

2
Iµ = −HJ

How to calculate 〈s2
µ〉GGE and 〈p2

µ〉GGE ? A plausible guess

〈s2
µ〉GGE =

Tµ
zGGE − λµ

〈p2
µ〉GGE = mTµ

with spherical constraint for zGGE & the mode-temperature spectrum fixed by

〈I(λ)〉i.c. = 〈I(λ)〉GGE =
2T (λ)

zGGE − λ

[
1−−

∫
dλ′

ρ(λ′)T (λ′)

λ− λ′
]

another eq. for the N -th mode for condensed i.c. & eqs. for {γµ} Solvable
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Dynamics vs GGE

〈s2
µ〉GGE = 〈s2

µ(t)〉i.c. and 〈p2
µ〉GGE = 〈p2

µ(t)〉i.c. ?
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Dynamics vs GGE
e.g., comparison for quenches in Sector I

mJ T (λ)

J − λ/2 J − λ/2

Similar coincidence in Sectors II, III & IV

Interesting features linked to “fluctuations catastrophe” in Sector IV

Harmonic Ansatz confirmed by a saddle-point evaluation of the GGE
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Dynamics vs GGE
A special case : GGE 7→ GB

For T0/J0 > 1 and (T0/J0)2 = J/J0

0

1

2

3

0 1 2 3

I

T
0
/J

0

J/J0

II

III

〈Iµ〉i.c. = ct.

IV

〈IN〉i.c. < 0

the constants of motion

are all equal

〈Iµ〉i.c. = 1

The GGE construction yields

Tµ = J and γµ = −λµ/(2J)

Therefore

−∑
µ
γµIµ = 1

2J

∑
µ
λµIµ = − 1

JH

and the GGE reduces to the GB measure

at Tf = J

C

0.4

0.6

0.8

1

0.01 0.1 1 10 100

(b)

t1 − t2

t2 = 30
60

eq. at Tf

Stationarity & FDT OK
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Fifthly, can one obtain the mode temperatures with a

global dynamic measurement?
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Correlation and linear response
Fluctuation-dissipation theorem in Boltzmann equilibrium

C(t, t′) =
1

N

N∑
µ=1

〈sµ(t)sµ(t′)〉i.c. self correlation

R(t, t′) =
1

N

N∑
µ=1

δ〈sµ(t)〉i.c.
δhµ(t′)

∣∣∣∣∣∣
h=0

linear response

Stationary limit C(t, t′) 7→ Cst(t− t′) and R(t, t′) 7→ Rst(t− t′)

Fourier transforms Fluctuation-dissipation thm

Ĉ(ω) = F.T. Cst(t− t′)
R̂(ω) = F.T. Rst(t− t′)

− ImR̂(ω)

ωĈ(ω)
= β
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Frequency domain FDR
The Tµs from the FDR at ωµ = [(zf − λµ)/m]1/2 Sector I

A way to measure the mode temperatures with a single measurement

βeff(ωµ) = −ImR̂(ωµ)/(ωµĈ(ωµ)) = βµ

No “partial equilibration” contradiction from the effective temperature perspective. The

modes are uncoupled, they do not exchange energy, and can then have different Tµs

Idea in LFC, de Nardis, Foini, Gambassi, Konik & Panfil 17 for quantum
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Summary
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Goals achieved
In the late times limit taken after the large N limit

We solved

– the global dynamics with Schwinger-Dyson/

DMFT eqs.

– the mode dynamics with parametric oscillator

techniques

of the Soft Neumann model

With the GGE measure

ρGGE(~s, ~p) = Z−1({γµ}) e−
∑
µ γµIµ(~s,~p)

– we calculated & proved

〈s2
µ〉GGE =

Tµ
zGGE − λµ

= 〈s2
µ(t)〉i.c.

〈p2
µ〉GGE = Tµ = 〈p2

µ(t)〉i.c.
obtaining also {Tµ, γµ}

– The {Tµ} are accessed by the FDR

βeff(ωµ) = −Im R̂(ωµ)

(ωµĈ(ωµ))
= βµ
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Goals achieved

– We exhibited a classical interacting integrable model, the Soft Neumann model

or Hamiltonian spherical SK model, the quench dynamics of which can be

elucidated with different means.

– Rich dynamic phase diagram.

– We managed to calculate (mostly analytically) the GGE measure or, better

said, all GGE averaged local observables

– We showed that asymptotic dynamic and GGE averages coincide for

N →∞
– For a special set of parameters the GGE measure reduces to the GB one.

– We can also study the fluctuations of the constraints to prove that in I, II, III

(with symmetry broken initial conditions) the Soft Neumann Model≡ the
Neumann model with the strict spherical constraint.
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Goals achieved

– We exhibited a classical interacting integrable model, the Soft Neumann model

or Hamiltonian spherical SK model, the quench dynamics of which can be

elucidated with different means.

– Rich dynamic phase diagram.

– We managed to calculate (mostly analytically) the GGE measure or, better

said, all GGE averaged local observables

– We showed that asymptotic dynamic and GGE averages coincide for

N →∞
– For a special set of parameters the GGE measure reduces to the GB one.

What next? What about the spherical ferromagnet ? Problems with degene-

racy of eigenvalues? Local spatial structure would be accessible.
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Fluctuations
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Fluctuations
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The dynamics on the sphere
and the GGE averages on the N th mode phase space

Sector III Sector IV

z > λN z = λN
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Fluctuations
of the primary and secondary constraints

φ :
N∑
µ=1

s2
µ −N = 0 φ′ :

N∑
µ=1

sµpµ = 0

0

2

0 1 2J/J0

I
T

0
/J

0

II

III

IV

〈p2N〉 = O(1)

∆C1 6= ∆C2 6= 0

∆C1 6= 0; ∆C2 = 0

〈p2N〉 = O(1)

〈s2N〉 = O(N)

〈p2N〉 = O(N)

〈s2N〉 = O(1)

〈s2N〉 = O(N1/2)

〈p2N〉 = O(1)

〈s2N〉 = O(N)

when the spherical constraint is imposed on average
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Integrals of motion
From microcanonical to canonical?

The microcanonical GGE measure is ensured Yuzbashyan 16

ρmicro
GGE ({Iν}) = c

∏N
µ=1 δ(Iµ({sν , pν})− Iµ)

Two conditions to prove canonical from microcanonical :

(i) additivity of the energy→ Iµ = I
(1)
µ + I

(2)
µ

(ii) extensivity of the energy→ Iµ = O(N)

e.g., Campa, Dauxois, Ruffo 09 on in/equivalence of ensembles

not satisfied in our model by the Iµ’s, but maybe combinations?

Still, let’s try ρGGE({sν , pν}) = Z−1({γµ}) e−
∑N
µ=1 γµIµ({sν ,pν})

scaling with N
∑N

µ=1 γµIµ = O(N) if γµ = O(1)
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Integrals of motion
From microcanonical to canonical?

The microcanonical GGE measure is ensured Yuzbashyan 16

ρmicro
GGE ({Iν}) = c

∏N
µ=1 δ(Iµ({sν , pν})− Iµ)

Two conditions to prove canonical from microcanonical :

(i) additivity of the energy→ Iµ = I
(1)
µ + I

(2)
µ

(ii) extensivity of the energy→ Iµ = O(N)

e.g., Campa, Dauxois, Ruffo 09 on in/equivalence of ensembles

not satisfied in our model Iµ by Iµ but maybe combinations?

Still, let’s try ρGGE({sν , pν}) = Z−1({γµ}) e−
∑N
µ=1 γµIµ({sν ,pν})

GB equilibrium for no quench γµ = −β0λµ
2 since

∑N
µ=1

λµ
2 Iµ = −H
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GGE calculation
The mean-fields

〈A(p)
µ 〉GGE 〈A(s)

µ 〉GGE

Sector I: T ′ = 1.5, J = 0.9, N=100

0

0 0.5 1

〈B
µ
〉

µ/N

-3

-2

-1

0

1

2

3

0 0.5 1

〈A
µ
〉

µ/N

Dynamics GGE Dynamics GGE

A
(p)
µ (t) A

(s)
µ (t)
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Classical dynamics
From spins to a particle moving on an N -dimensional sphere

Coordinate-momenta pairs {~s, ~p} and Hamiltonian (const w/Lagrange mult.)

H
(z)
J = Ekin(~p) + VJ(~s) +

z(~s, ~p)

2

N∑
i=1

(s2
i −N)

with the kinetic energy Ekin(~p) =
1

2m

N∑
i=1

p2
i

Newton-Hamilton equations

ṡi = pi/m ṗi = −δVJ(~s)/δsi − z(~s, ~p)si

The effective potential energy landscape 2V
(z)
J (~s) = −

∑
i 6=j

Jijsisj + z(s2−N) has

µ = 1, . . . , N saddles (including min/max)

the N eigenvectors ~vµ of the Jij matrix with

z = λµ & pot. energy density e
(µ)
pot = −λµ/2

z(~s, ~p ) = 2 [ekin(~p)− vJ(~s)] −2J 2J = λN
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Conservative dynamics
on average over randomness & the initial measure

In the N →∞ limit exact causal Schwinger-Dyson (DMFT) equations

(m∂2
t − zt)R(t, tw) =

∫
dt′ Σ(t, t′)R(t′, tw) + δ(t− tw)

(m∂2
t − zt)C(t, tw) =

∫
dt′
[
Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t

′)
]

+
β0J0

J

n∑
a=1

Da(t, 0)Ca(tw, 0)

(m∂2
t − zt)Ca(t, 0)=

∫
dt′Σ(t, t′)Ca(t

′, 0) +
β0J0

J

n∑
a=1

Db(t, 0)Qab

a = 1, . . . , n→ 0, replica method to deal with e
−β0H

(z)
J0 and fix Qab

Initial cond Houghton, Jain, Young 86, Franz, Parisi 95, Barrat, Burioni, Mézard 96
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Conservative dynamics
on average over randomness and the initial measure

In the N →∞ limit exact causal Schwinger-Dyson (DMFT) equations

with the post-quench self-energy and vertex

D(t, tw) = J2 C(t, tw) NC(t, t′) =
∑

i[〈si(t)si(t′)〉i.c]J

Da(t, 0) = J2 Ca(t, 0) with NCa(t, 0) =
∑

i[〈si(t)si(0)〉i.c]J

Σ(t, tw) = J2 R(t, tw) NR(t, t′) =
∑

i[〈
δsi(t)
hi(t′)
|~h=0
〉i.c]J

The Lagrange multiplier is fixed byC(t, t) = 1⇒ z(t) = 2[ekin(t)−epot(t)]

Initial conditions: [ Disordered Qab = δab

Condensed Qab = (1− q)δab + q

Solvable numerically & analytically at long times
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Averaged integrals of motion
Properties, scaling and parameter dependence

‘Sum rules’
∑

µ Iµ = N and
∑

µ λµIµ = −2HJ

In the N →∞ limit

lim
N→∞

Iµ = I(λ) = s2(λ) +
1

m
−
∫
dλ′ ρ(λ′)

[s(λ)p(λ′)− s(λ′)p(λ)]2

λ− λ′

For GB equilibrium initial conditions

〈I(λ)〉i.c. = 〈s2(λ(0))〉i.c. +

1

m
−
∫
dλ′ρ(λ′)

〈s2(λ(0))〉i.c.〈p2(λ(0)′)〉i.c. + λ(0) ↔ λ(0)′

λ− λ′

with 〈s2(λ(0))〉i.c. = kBT0/(z0 − λ(0)) and 〈p2(λ(0))〉i.c. = mkBT0

and N -th mode : [ Extended 〈IN〉i.c. = O(1)

Condensed 〈IN〉i.c. = O(N)
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