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coarsening & glassy dynamics
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reparametrization invariance, sigma model & fluctuations

yesterday’s application : the integrable case



Many-body Systems in Interaction

Some examples




Many-body systems

Some examples

Ferromagnetic Ising Model Particles in Interaction Active Matter
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In physical systems the action-reaction principle is respected, in other examples it is not

Also many examples beyond physics, like ecosystems, markets, etc. ,‘HFH j =~ ffj_>i



Collective dynamics
the simplest example, coarsening




2d Ising model

Snapshots after an instantaneous quench from 7() — o to 7" < 7T,

~
] V
~

At 7" < T, coarsening

At T = T, critical dynamics

A certain number of interfaces or domain walls in the last snapshots.



Phenomenon

In both cases one sees the growth of ‘red and white’ patches and
interfaces surrounding such geometric domains.

Spatial regions of local equilibrium (with vanishing, at 7, or non-

vanishing, at 7" < 71, order parameter) grow in time and

a single growing length R (¢, 7 /J) can be identified
and it is at the heart of dynamic scaling.




Global observables

Two-time correlation and linear responses




Two-time dependencies

Self-correlation and linear response

The two-time self correlation and integrated linear response

1
Clt,ty) = NZ [(si(2)si(tw))]
$i(2))n
x(t,t,) = —Z dtht /dt —, ]
(') 1nzo
Extend the notion of order parameter
They are not related by FDT out of equilibrium Magnetic notation but general

The averages are thermal (and over initial conditions) (. . .)
and over quenched randomness |. .. | (if present)

1, waiting-time and 1 measuring time



Two-time self-correlation

Also in glassy systems with no clear order growth

T < TC Lennard-Jones mixtures Kob & Barrat 97
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Two scales  Ceq (7 —1,,) + Cag(1, 1)
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Also found in glassy systems for which there is no clear visualization of X



Aging

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the self-correlation

C(t,ty) #C(t —ty)

In each regime, equilibrium and aging, scaling®

Clt.t) =C (£45)

*the scaling form can be proven from general properties of temporal correlation functions

No obvious interpretation of & () in aging glassy systems




Two-time linear response

An important difference

Coarsening Glassy
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007 o aging & slow (xag)
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Lippiello, Corberi & Zannetti 05 Sketch Chamon & LFC 07

Weak long-term memory in the glassy but not in the coarsening problem.

Just the stationary part survives asymptotically, contrary to the sketch on the

right valid for glasses & spin-glasses.



Memory

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the integrated linear response
X(tatw) 7& X(t _tw)

In the aging regime, difference between coarsening & glassy

=) o w2 ()

Coarsening Glassy

(but no obvious interpretation of Q{(r) In aging glassy systems)




Mean-Field Modelling
Usual Curie-Weiss for PM-FM

More unusual for glasses




The Curie-Weiss model

Very well-known : for the equilibrium PM-FM phases

Fully connected interactons e .

Ferromagnetic coupling/ >0 | ‘- —

-
-
.........

Ising spins s; = =1 withi=1,... N

The PM & FM phases are well captured but not

the details of the critical behavior

Similar strategy in the context of :
spin-glass models, and interacting particle systems (large d)

In problems beyond physics, fully-connectedness can be the precise description




Glassy mean-field models

Classical p-spin spherical
Potential energy

V= — Z Jiyosiy Siy + - Si, p integer
i1 i

quenched random couplings J,-l___l-p drawn from a Gaussian P[{J,’l,”,’p}]

(over-damped) Langevin dynamics for continuous spins s; € R

coupled to a white bath (&(r)) =0and (E(1)E(1)) = 2vkpT8(r — 1)

dSi 87/ X _|_§
., T s Si i
dt 8Si <t

N

Z; is a Lagrange multiplier that fixes the spherical constraint ) Sl-2 =N
i=1

p = 2 mean-field domain growth
p = 3 RFOT modelling of fragile glasses



Dynamic equations

Integro-differential eqs. on the correlation and linear response

In the V — oo limit exact causal Schwinger-Dyson equations

(Y0; — z:)C(t, 1) = /dt’ X(t,t")C(1' 1) + D(t,t )R(tyy,1")]
+2vkgTR(t,,1)

(9, — 2 )R(t,1,,) = / dt' S(1,0VR( 1) +8(t —1,)
where X and D are the self-energy and vertex. For the p spin models
D(t,t")=Lcr~1 (1) 2(t,¢") = 22N P2 (1, /'Y R(1,1')
The Lagrange multiplier z; is fixed by C(7,7) = 1. Random initial conditions.
(Average over randomness already taken; later, interest in noise-induced fluctuations)

See Sompolinsky & Zippelius 82, LFC & Kurchan 93



Dynamic equations

Generalizations - minimal changes

— Coloured baths, e.g.
t
v — / di' T(t —1')3,
0

— Non-reciprocal interactions ;. j =~ fjﬂ- : self-energy and vertex non trivially related
Y(C,R) #D'(C)R
— Special initial conditions can be selected — with some added terms to the egs.
— Closed classical problems 'y = 0 and Newton dynamics
Y0; — z; — mo? — z
— Quantum problems : change in differential operator, bath kernels, self-energy & vertex

(Average over randomness already taken; later, interest in noise-induced fluctuations)

Many examples in LFC 23



Some (surprising) Predictions
from coarsening & glassy mean-field models




Glassy Dynamics

Gea|

t - tw
1e+00 — :
aging & slow (x 54)
X ea //
rapid & stationary (x )
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Fluctuation-dissipation relation : parametric plot
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two linear relations for C < ge,

Analytic solution to the p-spin model LFC & J. Kurchan 93

& effective temperature interpretation LFC, Kurchan & Peliti 97



Time reparametrization invariance




Separation of time-scales

In the long 7,, limit

Fast 71—, <1,

1 The aging part is slow

«_stationary Ce
{ea Slow K( )/K(fw) — O(l)

,,,,,,,,,,,,,,,,,,,, Cag(t,tw) ~ fag ( )

0;Cag (t,1,,) g%gg — 0

10! 10! 10° 10°
t—1t, 0/Cag(1,1y,) <K Cag(t,1yy)

Eqgs. for the slow relaxation Cg < gea

Approx. asymptotic time-reparametization invariance [ — h(t)




Time reparametrization

Example: the equation (0; — z;)R(¢,t,,) = [dt’ X(t,t")R(¢,t,,)

Focus on times such that z; — Zeo, € ~ Cyg @and R ~ Ry,

Separation of time-scales (drop 9d;R and approximate the integral) :

—ZooRag (1, 1) /dl‘ Cag (2, )|Rag(,1") Rag (¢, 1)) (1)

The transformation
Cag(t,t) — Cag(hy, hy,,)

t — hy = h(t) A
Rag (1,1) — G Rag (e, I, )

with /1; positive and monotonic leaves eq. (1) invariant :

2 Rag(hus ) / dhy D'[Cag (e, )| Rag (s hur) Rag (v e )



Time reparametrization

One can compute analytically f,, and ) a4 (Cag)

[
for times ¢ and 7, suchthat Cyo(7,%,) ~ fao (jé((t ))) ,e.g.
w

I — 1
qua + F [%:a _ Cag(tatw)]

but not the ‘clock’ X (7)

Xag(tvtw) ™~

0B

06 F = e

04
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C(f, tw) Kim & Latz 00 very precise nhumerical solution



Implications on Fluctuations




Leading fluctuations

Global to local correlations & linear responses

global correlation

Caglt,10) % fug ( 0 )

R.(tw)

i T i ag
Global time-reparametrization invariance = C.°(7,1,,) ~ fag ( (i) )

In a>1 . . . .
Ex. /iy, — Z% hz, = In ( O) hy, = e (fo) in different spatial regions

16+00 ‘ ‘ ‘ 1 T
I ___\ . Castillo, Chamon, LFC, Iguain &
0.75 | 1 Kennett 02, 03
1e-01 | | = 0.5t
o 1e 5 Chamon, Charbonneau, LFC,
0.25 h2 1 i i
ﬂ? — hz : Reichman & Sellitto 04
h3 —— 0 ‘ ‘ ‘
1e-02 ‘ ‘ ‘ 0 025 05 0. 1 i
o 2 5 05 0.75 Jaubert, Chamon, LFC & Picco 07

C
t-tw



Conclusions on Fluctuations




Fluctuations

(Annoying) global time-reparametrization invariance ¢ — /(1) in models
In which
— Cyg(t.ty) > 0;Cye(t,1,,) (slow dynamics)

— Xag(f,1) > di)ag(t,1,) (weak long-term memory)
and finite effective temperature 7o < o0 Chamon, LFC & Yoshino 06

Reason for the large dynamic fluctuations (heterogeneities)  /(7.1)

Effective action for ©(7,7) in h(7,1) = e~ 90) Chamon & LFC & Yoshino 07

Quantum : the rapid equilibrium regime is modified but the slow aging

one is classical controlled by a 7.¢s > 0 = the same applies

LFC & Lozano 98, 99 ; Kennett & Chamon 00, 01



Each problem
with its own peculiarities

& much more to say!




Dynamic equations

Conservative dynamics - closed classical systems

In the | V — oo | limit exact causal Schwinger-Dyson equations

(md? —z)R(t,1,,) = /dt’ Y(t,t"R(t' 1) +6(t — 1)

(md? —z,)C(t,1,) = /dr’ X(1,t)C(¢', 1) + D(t,t")R(ty,1")]

BOOZD t,0)C,(t,,,0)

(mo? — z;)C, fdtZtt (7 O+MZDthQab

a=1,...,n— 0, replica method to deal with ¢ P” and fix O,



The p = 2 integrable model

The phase diagram

extended
(s3) = O(1)
(rx) = O(1)

T/ Jy

Injection

II
%))
R =0(1) C
< (N1/2 g
quasi- nsed Lo
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(&)
=
<
J/Jy 2
Extraction

For all parameters lim, <., limy e <Sf,(t)> — <S3>GGE etc.

Barbier, LFC, Lozano, Nessi, Picco & Tartaglia 18-22



Conclusions
Some other applications/extensions

— Large d approach to glassiness

Agoritsas, Charbonneau, Kurchan, Maimbourg, Parisi, Urbani & Zamponi, ...
— Ecological models

Altieri, Biroli, Bunin, Cammarotta & Roy, ...

— Neural networks & non-reciprocal interactions

Crisanti & Sompolinsky 80s, Brunel et al.

LFC, Kurchan, Le Doussal & Peliti 90s, Berthier, Barrat & Kurchan 00s

Biroli, Mignacco, Urbani, Zdeborova, ...




Local correlations & responses

3d Edwards-Anderson spin-glass

| , 0s;(1)
(t,ty) 7 ;/’HSI si(ty), Xz(t,ty) = 7 l; d Shult)|_
sl @ % ' o o
il . FDT
+ Bulk *,
0O %5 \\1

+ Bulk : Parametric plot (7, 7,,) vs C(t,1,,) for ,, fixedand 7 ¢ (> 1,,)

p corresponds to the maximum 7 yielding the smallest C (left-most +)

Castillo, Chamon, LFC, Iguain, Kennett 02

Kinetically constrained models + Charbonneau, Reichman & Sellitto 04



Sigma Model

Conditions & expression

h(7, 1) = e ®(F0) Cag(F 1, 1y) = fag (e I @ 2001

i. The action must be invariant under a global time reparametrization ¢ — h(t).

it. If our interest is in short-ranged problems, the action must be written using local
terms. The action can thus contain products evaluated at a single time and point in
space of terms such as (7, t), 0,p(7,t), V(7 t), VOip(7,t), and similar derivatives.

i45. The scaling form in eq. (29) is invariant under ¢(7,t) = ¢(7,t) + ®(7), with ®(7)
independent of time. Thus, the action must also have this symmetry.

1. The action must be positive definite.

These requirements largely restrict the possible actions. The one with the smallest
number of spatial derivatives (most relevant terms) is

- o 0]

Chamon & LFC 07




Sigma Model

Some consequences - 3d Edwards Anderson model

7 t / = ./
h(7,t) = e~ ?7) Cag(F,1,1) = fag(e_ftw A ool ))
Distribution of local correlations depends on times 7. 7,, only through C,&

P(Gs 1,0, £,6(2,1)) = PGz Cag(2, 1), £/6(2,1))

4

Tto=1k —— ‘ ‘ “to=1k ——
t, =10k —— t, =10k ——
3l t, =100k —— | 3l t, =100k —— |
S 2 S 2
(o Q
1 1
0 ‘ 0
0 02 04 06 08 1 0 02 04 06 08 1
C C

t,t,, such that Cag (t, l‘w) =C / such that f/E_, — ¢St Jaubert, Chamon, LFC, Picco 07

predictions on the form of p derived from S| too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12



How general is this ?

Coarsening & domain growth

e.g. the d-dimensional O(N) model in the large N limit (continuous

space limit of the Heisenberg ferro with V. —> o)

N component field O = (01, ..,0y) with Langevin dynamics

0:0a(7,1) = V200 (7F,1) + AN TL0% (7,1) — 1] 00, (7, 1) +Ea (7, 1)

(I)oc(ié, 0) Gaussian distributed with variance A?

Time reparametrization invariance is reduced to time rescalings
t — h(t) = =M

Same in the p = 2 spherical model Chamon, LFC, Yoshino 06



How general is this ?

Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings
t — h(t) = =M

04 -

1 L
3000 4000 5000 0
tt_(mes) 0 0.2 04 0.6 08 1

C

Ising FM, O(N) field theory, or p = 2 spherical model

Related to 7" — oo and simplicity of free-energy landscape



Triangular relations

Scaling of the aging global correlation

Take three times 11 > 1, > 13 and compute the three global correlations
C(l‘l,tz), C(tz,t3) C(tl t3)

If, in the aging regime C;‘é = Cyg(ti,tj) = fag ( ) with7; > 1; =

12 h(tl) h(t3) o fag (ng)
Cie = (h(rg) h(tz)> e (fag (c%))

ag
{ea

1

0.8 | f choose 73 and #; so that C'° = 0.3
o 067 \ ’ the arrow shows the 7, ‘flow’ from 73 to 7
© 04 \¥
(ea

0.2} S

N eg.C"? = g, /C*

0 02 04 06 08 1



Triangular relations

Scaling of the slow part of the global correlation

Take three times 11 > 1, > 13 and compute the three local correlations
Cy(t1,12), Ci(t2,13), Cz(t1,13)

If, in the aging regime CcY =, ti,t:) = fa (i) ) with >t =
r J g J

hy(t5)
—1/13
C—l»z _ fag fag (C7 )
r fag' (CF)
{ea
1
0.8 | f choose 73 and #; so that C'° = 0.3
o 067 \ ’ the arrow shows the 7, ‘flow’ from 73 to 7
° 04 \¥
(ea
0.2 | S
0 e.g9.C* = qe, C1° |C.

0 02 04 06 08 1



Triangular relations
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