# **Building a path integral calculus**

Leticia F. Cugliandolo

Sorbonne Université Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia/seminars
with T. Arnoulx de Pirey, V. Lecomte & F. van Wijland

Cortona, Italy, 2023

# Setting

### **Multiplicative Gaussian white noise Langevin equations**

d=1 stochastic equation for one  $\mathbb R$  variable x

 $\dot{x}(t) = f(x(t)) + g(x(t))\eta(t)$ 

Zero average Gaussian white noise  $\langle \eta(t)\rangle=0$  &  $\langle \eta(t)\eta(t')\rangle=2D\delta(t-t')$ 

 $\mu = 1, \dots, d \ge 1$  stochastic equations for  $\mathbf{x} = (x^1, \dots, x^d)$  $\dot{x}^{\mu}(t) = f^{\mu}(\mathbf{x}(t)) + g^{\mu i}(\mathbf{x}(t))\eta_i(t)$ 

Gaussian white noise  $\langle \eta_i(t) \rangle = 0$  &  $\langle \eta_i(t) \eta_j(t') \rangle = 2D\delta_{ij}\delta(t-t')$ 

Einstein's summation rule, x(t) continuous time notation,  $x_t$  discrete time notation

# The problem

### Lack of covariance (d = 1 notation)

- For any of the so-far used linear discretization schemes,  $x_t$ , one can make non-linear changes of variables u(t) = U(x(t)) at the level of the Langevin equations using the corresponding chain rules, and go back and forth.
- One next constructs the generating functional (path integral) for original  $\mathbb{P}_{X}(\{x_t\})$  and transformed  $\mathbb{P}_{U}(\{u_t\})$  stochastic processes.
- Surprisingly, one cannot transform one into the other one via the same non-linear transformation,

$$\prod_t \mathrm{d}x_t \,\mathbb{P}_X(\{x_t\}) \neq \prod_t \mathrm{d}u_t \,\mathbb{P}_U(\{u_t\})$$

 $U^{-1}$  exists, e.g. Cartesian & spherical coordinates, measure transf. taken into account

#### We found this problem in

Magnetization dynamics : path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation

C. Aron, D. G. Barci, L. F. Cugliandolo, Z. González-Arenas, G. S. Lozano

J. Stat. Mech. P09008 (2014) but well-known in the literature

A problem already noticed in, e.g.

gravitation & quantum field theory, e.g. de Witt Cécile & Bryce 50s (quantization on curved spaces), Gervais & Jevicki 76, Langouche, Roekaerts & Tirapegui 80s,

statistical physics Gulyaev & Edwards 64, Graham et al. 80s, and mathematics Stratonovich 60s, etc.

Solutions proposed but hard to find, read, understand...

### Our first attempt to solve this problem

Rules of calculus in the path integral representation of white noise Langevin equations:

the Onsager-Machlup approach

L. F. Cugliandolo & V. Lecomte, J. Phys. A 50, 345001 (2017)

### Our solution in d = 1

Building a path-integral calculus : a covariant discretization approach

L. F. Cugliandolo, V. Lecomte & F. van Wijland, J. Phys. A 52, 50LT01 (2019)

### and in d > 1

Path integrals and stochastic calculus

T. Arnoux de Pirey, L. F. Cugliandolo, V. Lecomte & F. van Wijland, Adv. Phys. (2023)

# The solution

### Our proposal: a higher order discretization prescription

The continuous time notation  $\dot{x}(t) \stackrel{\scriptscriptstyle (\beta_g)}{=} f(x(t)) + g(x(t)) \eta(t)$ 

with  $\langle \eta(t) 
angle = 0$  and  $\langle \eta(t) \eta(t') 
angle = 2D \; \delta(t-t')$  is a short-hand notation for

$$\begin{aligned} x_{t+\Delta t} &= x_t + f(\overline{x}_t) \ \Delta t + g(\overline{x}_t) \ \eta_t \ \Delta t & \text{with } \underline{\text{higher order}} \\ \hline \overline{x}_t &= x_t + \frac{1}{2} \Delta x + \beta_g(x_t) (\Delta x)^2 & \text{where} \quad \Delta x = x_{t+\Delta t} - x_t \\ \hline \text{and} \ \beta_g &= \frac{1}{12} \ [g_t''/(2g_t') - g_t'/g_t] \text{ with } g_t = g(x_t) \end{aligned}$$

While the finer discretization  $\mathcal{O}((\Delta x)^2)$  is negligible to ensure covariance of the Langevin equation in the  $\Delta t \to 0$  limit and  $(\beta_g) = (S)$ , it is needed to construct a covariant generating fct. Different form of the path probability ensuring the latter property. (Inspiration from non-Gaussian stochastic processes **Di Paola & Falsone 90s**.)

LFC, Lecomte & van Wijland 19

# The solution

### A higher order discretization prescription : the key properties

 $\overline{x}_t = x_t + \frac{1}{2}\Delta x + \beta_g(x_t)(\Delta x)^2$ 

where  $\Delta x = x_{t+\Delta t} - x_t$  and  $\beta_g = \frac{1}{12} \left[ g_t''/(2g_t') - g_t'/g_t \right]$  with  $g_t = g(x_t)$ 

- With the  $\mathcal{O}((\Delta x)^2)$  discretization the usual chain rule is valid up to  $\Delta t$  corrections, while with the Stratonovich  $\mathcal{O}(\Delta x)$  one it is only valid up to  $\Delta t^{1/2}$  corrections.
- We solve the covariance problem of the generating functional.
- We can generalize to d > 1.

The action has one more term.

LFC, Lecomte & van Wijland 19 (d=1) Arnoulx de Pirey et al 22 (d>1)

### The sketch

### Langevin equation & path integral representation



Measure defined so that  $\mathcal{D}x\leftrightarrow \mathcal{D}u$ 

# Plan of the talk

### Like a lecture

1. Multiplicative noise Langevin equation

(derivation, over-damped limit)

2. Stochastic calculus

(discretization, chain-rule, Fokker-Planck, drift-force,

change of variables)

3. Generating functional formalisms

(Onsager-Machlup, Martin-Siggia-Rose)

- 4. Problems with non-linear transformations in the path-integral
- 5. The solution: a higher order discretization scheme

# **1. Langevin equations**

# Langevin equation

### Focus on d = 1, generalization at the end

Multiplicative white noise stochastic equation

 $\dot{x}(t) = f(x(t)) + g(x(t))\eta(t)$ 

Restriction :  $g^{-1}$  exists, that is,  $g^{-1}(g(x)) = g(g^{-1}(x)) = x$ 

Zero average Gaussian white noise  $\langle \eta(t)\rangle=0$  &  $\langle \eta(t)\eta(t')\rangle=2D\delta(t-t')$ 

x(t) continuous time notation, later  $x_t$  discrete time notation

One can derive this equation by coupling the selected variable x to an ensemble of harmonic oscillators  $\sum_{\alpha} c_{\alpha} q_{\alpha} h(x)$  and taking an over-damped limit

### Linear (usual) discretization prescriptions

The continuous time notation  $\dot{x}(t) \stackrel{(\alpha)}{=} f(x(t)) + g(x(t)) \eta(t)$ 

with  $\langle \eta(t) 
angle = 0$  and  $\langle \eta(t) \eta(t') 
angle = 2D \; \delta(t-t')$  needs a time-discretization

$$\boxed{x_{t+\Delta t} \stackrel{(\alpha)}{=} x_t + f(\overline{x}_t) \ \Delta t + g(\overline{x}_t) \ \eta_t \ \Delta t} \quad \text{with, } \underline{\textbf{usually}},$$
$$\overline{x}_t \equiv \alpha x_{t+\Delta t} + (1-\alpha)x_t = x_t + \alpha \Delta x \text{ where } \Delta x = x_{t+\Delta t} - x_t$$

and  $0 \le \alpha \le 1$ . Particular cases are  $\alpha = 0$  Itō and  $\alpha = 1/2$  Stratonovich.

Stratonovich 67, Gardiner 96, Øksendal 00, van Kampen 07

### **Noise correlation**

The continuous time notation  $\dot{x}(t) \stackrel{\scriptscriptstyle(\alpha)}{=} f(x(t)) + g(x(t)) \eta(t)$ 

with  $\langle \eta(t) 
angle = 0$  and  $\langle \eta(t) \eta(t') 
angle = 2D \; \delta(t-t')$  is a short-hand notation for

 $x(t)\mapsto x_t$  where  $t=k\Delta t$  and  $k=0,\ldots,N$ ,  $\Delta t$  infinitesimal, and

$$x_{t+\Delta t} \stackrel{\scriptscriptstyle (\alpha)}{=} x_t + f(\overline{x}_t) \ \Delta t + g(\overline{x}_t) \ \eta_t \ \Delta t$$

with

$$\overline{x}_t = \alpha x_{t+\Delta t} + (1-\alpha)x_t = x_t + \alpha \Delta x$$

and  $0 \le \alpha \le 1$ . Particular cases are  $\alpha = 0$  Itō ;  $\alpha = 1/2$  Stratonovich.

The noise-noise  $\delta$ -corr. becomes  $\langle \eta_t \eta_{t'} \rangle = \frac{2D}{\Delta t} \, \delta_{tt'} \Rightarrow \left[ \langle \eta_t^2 \rangle = \frac{2D}{\Delta t} \right]$ 

**Orders of magnitude & different stochastic processes** 

$$\eta_t = \mathcal{O}(\Delta t^{-1/2})$$

because of the Dirac-delta correlations of a

white bath

Scaling of the variable increment

$$\Delta x \equiv x_{t+\Delta t} - x_t = \mathcal{O}(\Delta t^{1/2})$$

What is the difference between the two terms in the right-hand-side of the Langevin eq. when they are evaluated using different  $\alpha$  discretization schemes?

$$f(\overline{x}_t^{(\alpha)}) - f(\overline{x}_t^{(\overline{\alpha})}) = \mathcal{O}(\Delta t^{1/2})$$
 vanishes for  $\Delta t \to 0$ 

$$g(\overline{x}_t^{(\alpha)})\eta_t - g(\overline{x}_t^{(\overline{\alpha})})\eta_t = \mathcal{O}(\Delta t^0)$$
 remains finite for  $\Delta t \to 0$ 

For multiplicative noise processes the discretization matters: different  $\alpha$  yield different stochastic processes, unless f modified to  $f_{\alpha}$ 

The chain rule: time derivative of a function  $oldsymbol{U}(x)$ 

 $\dot{x}(t) \stackrel{\scriptscriptstyle(\alpha)}{=} f(x(t)) + g(x(t)) \eta(t)$ 

means 
$$x_{t+\Delta t} \stackrel{\scriptscriptstyle(\alpha)}{=} x_t + f(\overline{x}_t) \Delta t + g(\overline{x}_t) \eta_t \Delta t$$

 $\left| \left\langle \eta_t \eta_{t'} \right\rangle = \frac{2D}{\Lambda t} \, \delta_{tt'} \right|$ 

 $\overline{x}_t = \alpha x_{t+\Delta t} + (1-\alpha)x_t$  and

with

The chain rule for the time-derivative is (just from Langevin-eq. & Taylor)

$$\frac{U(x_{t+\Delta t}) - U(x_t)}{\Delta t} = \frac{x_{t+\Delta t} - x_t}{\Delta t} U'(\overline{x}_t) + D(1 - 2\alpha) g^2(\overline{x}_t) U''(\overline{x}_t) + U''(\overline{x}_t) \mathcal{O}(\Delta t^{1/2})$$

Note the  $\mathcal{O}(\Delta t^{1/2})$  correction (that vanishes for  $\Delta t \to 0$ ) Make it  $\mathcal{O}(\Delta t)$  (or exact) with a higher order discretization scheme

The chain rule: time derivative of a function  $oldsymbol{U}(x)$ 

 $\dot{x}(t) \stackrel{\scriptscriptstyle(\alpha)}{=} f(x(t)) + g(x(t)) \eta(t)$ 

means 
$$x_{t+\Delta t} \stackrel{\scriptscriptstyle(\alpha)}{=} x_t + f(\overline{x}_t) \Delta t + g(\overline{x}_t) \eta_t \Delta t$$

 $|\langle \eta_t \eta_{t'} \rangle = \frac{2D}{\Lambda t} \delta_{tt'}$ 

with

 $\overline{x}_t = \alpha x_{t+\Delta t} + (1-\alpha)x_t$  and

in continuous time notation

$$\dot{U}(x) = \dot{x} U'(x) + D(1 - 2\alpha) g^2(x) U''(x)$$

**Only** for  $\alpha = 1/2$  (Stratonovich) or U(x) = ax one recovers the usual form. Even for additive noise g = ct the chain rule is unusual if  $\alpha \neq 1/2$ 

The chain rule: time derivative of a function  $oldsymbol{U}(x)$ 

 $\dot{x}(t) \stackrel{\scriptscriptstyle(\alpha)}{=} f(x(t)) + g(x(t)) \eta(t)$ 

means 
$$x_{t+\Delta t} \stackrel{\scriptscriptstyle(\alpha)}{=} x_t + f(\overline{x}_t) \Delta t + g(\overline{x}_t) \eta_t \Delta t$$

 $\left|\left\langle \eta_t \eta_{t'} \right\rangle = \frac{2D}{\Delta t} \,\delta_{tt'}$ 

with

 $\overline{x}_t = \alpha x_{t+\Delta t} + (1-\alpha)x_t$  and

in continuous time notation

$$\dot{U}(x) = \dot{x} U'(x) + D(1 - 2\alpha) g^2(x) U''(x)$$

Note that the <u>continuous time limit</u> of the <u>chain rule</u> will not be modified if we use a higher order discretization scheme

Apply a non-linear transformation of variables to the Langevin-eq.

Take a generic function U(x) with an inverse.

Calculate the infinitesimal increment  $u_{t+\Delta t} - u_t \equiv U(x_{t+\Delta t}) - U(x_t)$ to derive the stochastic equation satisfied by  $u_t$ .

Replace  $x_{t+\Delta t} = x_t + f(\overline{x}_t)\Delta t + g(\overline{x}_t)\eta_t\Delta t$ , with  $\overline{x}_t = x_t + \alpha\Delta x$  in the 1st term in the rhs, replace  $\overline{x}_t$  in terms of  $\overline{u}_t$ , and Taylor expand for small  $\Delta t$ 

$$\frac{u_{t+\Delta t} - u_t}{\Delta t} \stackrel{(\alpha)}{=} F(\overline{u}_t) + G(\overline{u}_t)\eta_t + \mathcal{O}(\Delta t^{1/2})$$

with  $F(\overline{u}_t) = (U' \circ U^{-1})(\overline{u}_t)(f \circ U^{-1})(\overline{u}_t) + D(1 - 2\alpha)(g \circ U^{-1})(\overline{u}_t))^2$  and  $G(\overline{u}_t) = (U' \circ U^{-1})(\overline{u}_t)(g \circ U^{-1})(\overline{u}_t).$ 

The right-hand-side takes the Langevin form up to corrections  $\mathcal{O}(\Delta t^{1/2})$ 

# 3. Generating functionals with linear discretizations

### From noise to trajectories: Onsager-Machlup

From the noise joint pdf  $\mathbb{P}_{\eta}[\{\eta_t\}] = \prod_{0 \le t < t_f} P_n(\eta_t)$ 

with  $P_{\rm n}(\eta_t) = \left( \frac{\Delta t}{4\pi D} 
ight)^{1/2} \, e^{- \frac{\Delta t}{4D} \eta_t^2}$ 

(independently drawn at each time step) (Gaussian white statistics)

Use the recursion at each time step (i.e., the Langevin equation in discretization d)

$$\frac{x_{t+\Delta t} - x_t}{\Delta t} \stackrel{(d)}{=} f(\overline{x}_t) + g(\overline{x}_t) \eta_t \quad \Rightarrow \quad x_{t+\Delta t} = R_d(x_{t+\Delta t}, x_t, \eta_t)$$

to derive the trajectory (joint) probability

$$\mathbb{P}_{X}[\{x_{t}\}] \stackrel{(d)}{=} \prod_{\substack{0 \leq t < t_{f} \\ 0 \leq t < t_{f}}} \underbrace{T_{d}(x_{t+\Delta t}, t+\Delta t | x_{t}, t)}_{\text{trans.prob.}} \underbrace{P_{X}^{i}(x_{0})}_{\text{initial cond.}}$$
$$\equiv \underbrace{\mathcal{N}_{X}^{(d)}[\{x_{t}\}]}_{\text{pre-factor}} \exp\left\{-\underbrace{S_{X}^{(d)}[\{x_{t}\}]}_{\text{action}}\right\}$$

Three slides with details of the derivation for the linear discretization  $(\alpha)$  – skip them –

### Infinitesimal transition probability from t to $t+\Delta t$

Langevin eq. in generic discretization scheme  $x_{t+\Delta t} = R_{\alpha}(x_{t+\Delta t}, x_t, \eta_t)$ 

Definition of the infinitesimal transition probability

 $T_{\alpha}(x_{t+\Delta t}, t+\Delta t | x_t, t) = \int d\eta_t P_n(\eta_t) \,\delta(x_{t+\Delta t} - R_{\alpha}(x_{t+\Delta t}, x_t, \eta_t))$ 

In order to integrate over  $d\eta_t$  we have to transform the  $\delta$  into one with the form  $\delta(\eta_t - \tilde{R}_{\alpha}(x_{t+\Delta t}, x_t))$ , but we need a Jacobian

Use of  $\delta(f(\eta)) = 1/|\mathbf{d}_{\eta}f(\eta)| \ \delta(\eta - \eta^*) = |J(\eta)|^{-1} \ \delta(\eta - \eta^*)$  with  $f(\eta^*) = 0$ 

$$d_{\eta}f(\eta) \mapsto J \equiv \frac{d[x_{t+\Delta t} - \mathsf{R}_{\alpha}(x_{t+\Delta t}, x_t, \eta_t)]}{d\eta_t}$$

 $T_{\alpha}(x_{t+\Delta t}, t+\Delta t | x_t, t) = \int \mathrm{d}\eta_t \ P_{\mathrm{n}}(\eta_t) \ |J|^{-1} \ \delta(\eta_t - \tilde{R}_{\alpha}(x_{t+\Delta t}, x_t))$ 

One can forget the modulus if there is a single solution

Infinitesimal transition probability from t to  $t+\Delta t$ 

The  $\delta(\eta_t - \tilde{R}_{\alpha}(x_{t+\Delta t}, x_t))$  forces the Gaussian noise weight to be

$$e^{-\frac{\Delta t}{4D} \left[ \tilde{R}_{\alpha}(x_{t+\Delta t}, x_{t}) \right]^{2}} = e^{-\frac{\Delta t}{4D} \left[ \frac{x_{t+\Delta t} - x_{t} - \Delta t f(\overline{x}_{t})}{\Delta t g(\overline{x}_{t})} \right]^{2}}$$

What about the Jacobian?

$$d_{\eta}f(\eta) \mapsto J = \frac{d[x_{t+\Delta t} - R_{\alpha}(x_{t+\Delta t}, x_t, \eta_t)]}{d\eta_t}$$

Since  $R_{\alpha}(x_{t+\Delta t}, x_t, \eta_t) = x_t + \Delta t f(\overline{x}_t) + \Delta t g(\overline{x}_t) \eta_t$ , the noise is also in  $\overline{x}_t$  via the Langevin equation itself. One has to expand, to the relevant  $\mathcal{O}(\Delta t^n)$  and only later take the  $d_{\eta}$ . This is a long calculation.

Three ways of doing it in LFC & Lecomte 17

Infinitesimal transition probability from t to  $t+\Delta t$ 

The  $\delta(\eta_t - \tilde{R}_{\alpha}(x_{t+\Delta t}, x_t))$  forces the Gaussian noise weight to be

$$e^{-\frac{\Delta t}{4D} \left[\tilde{R}_{\alpha}(x_{t+\Delta t}, x_{t})\right]^{2}} = e^{-\frac{\Delta t}{4D} \left[\frac{x_{t+\Delta t} - x_{t} - \Delta t f(\overline{x}_{t})}{\Delta t g(\overline{x}_{t})}\right]^{2}}$$

After the lengthy calculation, one can write the Jacobian as

$$J^{-1} \propto \frac{1}{|g(x_t)|} \exp\left\{-2\alpha\Delta t\eta_t g'(\overline{x}_t) - \alpha\Delta t f'(\overline{x}_t) - \alpha\Delta t f(\overline{x}_t) \frac{g'(\overline{x}_t)}{g(\overline{x}_t)} - D\alpha^2\Delta t \left[2(g'(\overline{x}_t))^2 - g(\overline{x}_t)g''(\overline{x}_t))\right]\right\}$$

Note that  $J^{-1}$  depends on the functions f and g, the pre and post points & the noise:  $J^{-1} = J^{-1}(x_t, x_{t+\Delta t}, \eta_t)$ . We kept up to  $\mathcal{O}(\Delta t)$  terms in the exp.

For additive noise g'(x) = 0, the familiar form  $J^{-1} \propto \exp[-\alpha f'(\overline{x}_t)\Delta t]$  is found and  $J^{-1} \propto ct$  for Itō.

### Important

one has to keep  ${\cal O}(\Delta t)$  terms in the exponential

because there is a sum over all time steps

The final expressions for the  $(S)=(\alpha=1/2)$  discretization is

### **Onsager-Machlup representation**

After some rearrangements (e.g. the prefactor re-expressed in  $x_{t+\Delta t}$ , etc.) and cancellations, the Stratonovich ( $S, \alpha = 1/2$ ) transition probability reads

$$T_{(S)}(x_{t+\Delta t}, t+\Delta t | x_t, t) = \sqrt{\frac{\Delta t^{-1}}{2\pi 2D}} \frac{1}{|g(x_{t+\Delta t})|} e^{-\Delta S_X^{(S)}(x_{t+\Delta t}, x_t, \Delta t)}$$

with the prefactor in  $\mathcal{N}_X^{(S)}$  and the **Onsager-Machlup** infinitesimal action

$$\Delta S_X^{(S)}(x_{t+\Delta t}, x_t, \Delta t) \equiv \frac{1}{2} \frac{\Delta t}{2D} \frac{1}{g^2(\overline{x}_t)} \left[ \frac{(x_{t+\Delta t} - x_t)}{\Delta t} - f(\overline{x}_t) \right]^2$$
Gaussian noise weight
$$+ \frac{\Delta t}{2} \left[ f'(\overline{x}_t) - \frac{f(\overline{x}_t)g'(\overline{x}_t)}{g(\overline{x}_t)} \right] + \frac{D\Delta t}{4} \left[ 2(g'(\overline{x}_t))^2 - g(\overline{x}_t)g''(\overline{x}_t) \right]$$

Jacobian, originates in the change of variables from  $\eta_t$  to  $x_t$ 

### From Onsager-Machlup to Martin-Siggia-Rose

Use the Hubbard-Stratonovich (Gaussian integral) trick to go from the exponential of a square (from the Gaussian noise) to the one of a linear term

$$\sqrt{\frac{2\pi}{a}} e^{-\frac{1}{2}\frac{y^2}{a}} = \int_{i\mathbb{R}} d\hat{x} e^{\pm\hat{x}y + \frac{a}{2}\hat{x}^2}$$

that with the parameters in the action  $y_t = \left[\frac{x_{t+\Delta t} - x_t}{\Delta t} - f(\overline{x}_t)\right] \Delta t$  and  $a_t = 2D(g(\overline{x}_t))^2 \Delta t$ , and a convenient choice of sign, yields

$$\sqrt{\frac{2D(g(\overline{x}_t))^2 \Delta t}{2\pi}} \int_{i\mathbb{R}} d\hat{x}_t \ e^{-\hat{x}_t} \left[\frac{x_{t+\Delta t} - x_t}{\Delta t} - f(\overline{x}_t)\right] \Delta t + D(g(\overline{x}_t))^2 \hat{x}^2$$

Note that the normalization prefactor is proportional to  $\frac{g(\overline{x}_t)}{g(\overline{x}_t)}$  Important!

# 4. Problems w/non-linear transformations

# Linear discretization

### **Failure of the non-linear transformation**

Why does it fail at the level of the action? Because

$$\Delta S_{U}^{(\alpha)}(u_{t+\Delta t}, u_{t}, \Delta t) \mapsto \Delta S_{X}^{(\alpha)}(x_{t+\Delta t}, x_{t}, \Delta t) + \underbrace{\mathcal{O}(\Delta t)}_{\text{change}}$$

Indeed, the guilty term in the Onsager-Machlup action is

$$\left(\frac{1}{G(\overline{u}_t)}\frac{\Delta u}{\Delta t}\right)^2 \Delta t \quad \xrightarrow{(S)} \quad \left[\frac{1}{g(\overline{x}_t)}\frac{\Delta x}{\Delta t} + \mathcal{O}(\Delta t^{1/2})\right]^2 \Delta t$$

transformed using the discrete time chain rule.

The double product is  $\propto \frac{\Delta x}{\Delta t} \mathcal{O}(\Delta t^{1/2}) = \mathcal{O}(\Delta t^0)$  and cannot be neglected

Increase the order of the extra terms improving the accuracy of the chain rule

# **Quadratic discretization**

### Orders of magnitude, chain rule & transformations

Take a generic function U(x) with an inverse.

Calculate the infinitesimal increment  $u_{t+\Delta t} - u_t \equiv U(x_{t+\Delta t}) - U(x_t)$ 

Replace  $x_{t+\Delta t} = x_t + f(\overline{x}_t)\Delta t + g(\overline{x}_t)\eta_t\Delta t$ 

with 
$$\overline{x}_t = x_t + \frac{1}{2}\Delta x + \beta_g \Delta x^2$$
 and  $\beta_g = \frac{1}{12}[g''/(2g') - g'/g]$ 

in the 1st term in the rhs, transform to  $\overline{u}_t$  and Taylor expand for small  $\Delta t$ 

$$\frac{u_{t+\Delta t} - u_t}{\Delta t} \stackrel{(\beta_g)}{=} F(\overline{u}_t) + G(\overline{u}_t)\eta_t + \mathcal{O}(\Delta t)$$

with  $F(\overline{u}_t) = U'(U^{-1}(\overline{u}_t))f(U^{-1}(\overline{u}_t))$  and similarly for G.

The right-hand-side takes the Langevin form up to corrections  $\mathcal{O}(\Delta t)$ 

In the  $\Delta t \rightarrow 0$  limit the improvement is irrelevant at the level of the Langevin equation; but it is not to build the path integral!

# **Quadratic discretization**

### Orders of magnitude, chain rule & transformations

Why does the transformation fail at the level of the action for the linear Stratonovich rule?

$$\Delta S_U^{(S)}(u_{t+\Delta t}, u_t, \Delta t) \mapsto \Delta S_X^{(S)}(x_{t+\Delta t}, x_t, \Delta t) + \mathcal{O}(\Delta t)$$
$$\left(\frac{1}{G(\overline{u}_t)} \frac{\Delta u}{\Delta t}\right)^2 \xrightarrow{(S)} \left[\frac{1}{g(\overline{x}_t)} \frac{\Delta x}{\Delta t} + \mathcal{O}(\Delta t^{1/2})\right]^2$$

the double product is  $\propto \frac{\Delta x}{\Delta t} \mathcal{O}(\Delta t^{1/2}) = \mathcal{O}(\Delta t^0)$  and cannot be neglected

Why does the transformation work fine for the  $\beta_g$  discretization?

$$\Delta S_{U}^{(\beta_{g})}(u_{t+\Delta t}, u_{t}, \Delta t) \mapsto \Delta S_{X}^{(\beta_{g})}(x_{t+\Delta t}, x_{t}, \Delta t) + \mathcal{O}(\Delta t^{3/2})$$
$$\left(\frac{\Delta u}{\Delta t}\right)^{2} \Delta t \xrightarrow{(\beta_{g})} \left[U'(\overline{x}_{t})\frac{\Delta x}{\Delta t} + \mathcal{O}(\Delta t)\right]^{2} \Delta t$$

the double product is

$$\propto rac{\Delta x}{\Delta t}\, \mathcal{O}(\Delta t) = \mathcal{O}(\Delta t^{1/2})$$
 and drop it

### **Onsager-Machlup path integral representation**

Using standard procedures (careful calculation of the Jacobian)

$$T_{(\beta_g)}(x_{t+\Delta t}, t+\Delta t | x_t, t) = \frac{1}{\sqrt{4\pi D\Delta t}} \frac{1}{|g(x_{t+\Delta t})|} e^{-\Delta S_X^{(\beta_g)}(x_{t+\Delta t}, x_t)}$$
$$\Delta S_X^{(\beta_g)}(x_{t+\Delta t}, x_t) = \frac{1}{2} \frac{\Delta t}{2D} \Big[ \frac{\frac{\Delta x}{\Delta t} - f(\overline{x}_t)}{g(\overline{x}_t)} \Big]^2 + \frac{\Delta t}{2} \Big[ f'(\overline{x}_t) - \frac{f(\overline{x}_t)g'(\overline{x}_t)}{g(\overline{x}_t)} \Big]$$

which in the continuous-time writing reads

$$S_X^{(\beta_g)}[\{x\}] = \int_0^{t_f} \mathrm{d}t \; \left\{ \frac{1}{4D} \left[ \frac{\dot{x} - f(x)}{g(x)} \right]^2 + \frac{1}{2} f'(x) - \frac{1}{2} \frac{f(x)g'(x)}{g(x)} \right\}$$

#### New term

#### **Remarks:**

- The action is more sensitive to discretization details than the Langevin equation
- The pre-factor in  $T_{(\beta_q)}$  takes care of the transformation of the measure
- A trivial example: the kinetic energy  $\frac{1}{2}mv^2$  of a Brownian particle  $m\dot{v} + \gamma v = \eta$

### **Onsager-Machlup path integral representation**

Using standard procedures (careful calculation of the Jacobian)

$$T_{(\beta_g)}(x_{t+\Delta t}, t+\Delta t | x_t, t) = \frac{1}{\sqrt{4\pi D\Delta t}} \frac{1}{|g(x_{t+\Delta t})|} e^{-\Delta S_X^{(\beta_g)}(x_{t+\Delta t}, x_t)}$$
$$\Delta S_X^{(\beta_g)}(x_{t+\Delta t}, x_t) = \frac{1}{2} \frac{\Delta t}{2D} \Big[ \frac{\frac{\Delta x}{\Delta t} - f(\overline{x}_t)}{g(\overline{x}_t)} \Big]^2 + \frac{\Delta t}{2} \Big[ f'(\overline{x}_t) - \frac{f(\overline{x}_t)g'(\overline{x}_t)}{g(\overline{x}_t)} \Big]$$

which encodes the continuous-time writing

$$S_X^{(\beta_g)}[\{x\}] = \int_0^{t_f} \mathrm{d}t \,\left\{ \frac{1}{4D} \left[ \frac{\dot{x} - f(x)}{g(x)} \right]^2 + \frac{1}{2} f'(x) - \frac{1}{2} \frac{f(x)g'(x)}{g(x)} \right\}$$

#### Comments:

- Once written this way one can operate with the usual chain rule.
- Same continuous-time writing as **de Witt 57**, **Stratonovich 60**, **Graham 77** but different meaning, none of them identified the **discrete time origin**

# **Proof of covariance**

### **Onsager-Machlup path integral representation**

The measure with the normalization transforms as desired, e.g.  $\frac{du_t}{G(u_t)} = \frac{dx_t}{g(x_t)}$ Using  $\frac{du}{dt} = U'(x) \frac{dx}{dt}$ (note that we now work in the continuous time formulation)  $F'(u) = \frac{dF(u)}{du} = \frac{1}{U'(x)} \frac{d}{dx} \left[ U'(x)f(x) \right]$   $= \frac{1}{U'(x)} \left[ U''(x)f(x) + U'(x)f'(x) \right]$ 

& similarly for G, to transform the action  $S_U[\{u\}]$ 

$$S_{U}[\{u\}] = \int_{0}^{t_{f}} dt \left\{ \frac{1}{4D} \left[ \frac{\dot{u} - F(u)}{G(u)} \right]^{2} + \frac{1}{2} F'(u) - \frac{1}{2} \frac{F(u)G'(u)}{G(u)} \right\}$$
$$= \int_{0}^{t_{f}} dt \left\{ \frac{1}{4D} \left[ \frac{U'(x)\dot{x} - U'(x)f(x)}{U'(x)g(x)} \right]^{2} + \frac{1}{2} \frac{1}{U'(x)} \left[ U''(x)f(x) + U'(x)f'(x) \right] - \frac{1}{2} \frac{U'(x)f(x)}{U'(x)g(x)} \frac{1}{U'(x)} \left[ U''(x)g(x) + U'(x)g'(x) \right] \right\}$$

we identify many cancellations

# **Proof of covariance**

### **Onsager-Machlup path integral representation**

The measure with the normalization are transform as desired, e.g.  $\frac{du_t}{G(u_t)} = \frac{dx_t}{g(x_t)}$ Using  $\frac{du}{dt} = U'(x) \frac{dx}{dt}$  (note that we now work in the continuous time formulation)  $F'(u) = \frac{dF(u)}{du} = \frac{1}{U'(x)} \frac{d}{dx} \left[ U'(x)f(x) \right]$  $= \frac{1}{U'(x)} \left[ U''(x)f(x) + U'(x)f'(x) \right]$ 

& similarly for G, to transform the action  $S_U[\{u\}]$ , we recover  $S_X[\{x\}]$ 

$$S_{U}[\{u\}] = \int_{0}^{t_{f}} dt \left\{ \frac{1}{4D} \left[ \frac{\dot{u} - F(u)}{G(u)} \right]^{2} + \frac{1}{2} F'(u) - \frac{1}{2} \frac{F(u)G'(u)}{G(u)} \right\}$$
$$= \int_{0}^{t_{f}} dt \left\{ \frac{1}{4D} \left[ \frac{U'(x)\dot{x} - U'(x)f(x)}{U'(x)g(x)} \right]^{2} + \frac{1}{2} \frac{1}{U'(x)} \left[ U''(x)f(x) + U'(x)f'(x) \right] - \frac{1}{2} \frac{U'(x)f(x)}{U'(x)g(x)} \frac{1}{U'(x)} \left[ U''(x)g(x) + U'(x)g'(x) \right] \right\}$$
$$= \int_{0}^{t_{f}} dt \left\{ \frac{1}{4D} \left[ \frac{\dot{x} - f(x)}{g(x)} \right]^{2} + \frac{1}{2} f'(x) - \frac{1}{2} \frac{f(x)g'(x)}{g(x)} \right\} = S_{X}[\{x\}]$$

# The solution

### Martin-Siggia-Rose (Janssen) path integral representation

$$\mathbb{P}_{U}[\{u_{t}, \hat{u}_{t}\}] = \mathrm{d}u_{0}P_{U}^{i}(u_{0}) \frac{g(\overline{x}_{0})}{g(x_{1})} \prod_{0 < t < t_{f}} \mathrm{d}u_{t} \mathrm{d}\hat{u}_{t} \frac{g(\overline{x}_{t})}{g(x_{t+\Delta t})} e^{-S_{U}^{(\beta g)}[\{u_{t}, \hat{u}_{t}\}]}$$

One  $\hat{u}_t$  per t. Using standard procedures, in the continuous-time writing

$$S_{U}^{(\beta_{g})}[\{u,\hat{u}\}] = \int_{0}^{t_{f}} dt \left\{ \hat{u}[\dot{u} - F(u)] - D(G(u))^{2} \hat{u}^{2} + \frac{1}{2}F'(u) - \frac{1}{2}\frac{G'(u)}{G(u)}F(u) \right\}$$
Remarks .

- The last term would be absent in the linear Stratonovich discretization.
- It is absent for additive white noise G' = 0.

Proof of covariance using  $\hat{u}=\hat{x}/U'(x)$  and the same transformations of u and  $\dot{u}$  as for Onsager-Machlup

$$S_{U}^{(\beta_{g})}[\{u,\hat{u}\}] = \int_{0}^{t_{f}} dt \left\{ \frac{U'(x)}{U'(x)} \hat{x}[\dot{x} - f(x)] - D(g(x))^{2} \hat{x}^{2} \frac{(U'(x))^{2}}{(U'(x))^{2}} + \frac{1}{2} \frac{1}{U'(x)} \left[ U''(x)f(x) + U'(x)f'(x) \right] - \frac{1}{2} \frac{U'(x)f(x)}{(U'(x))^{2}g(x)} \left[ U''(x)g(x) + U'(x)g'(x) \right] \right\}$$

### In higher dimension $\mu=1,\ldots,d>1$

In continuous time notation the Langevin equation for the d dimensional timedependent contra-variant vector  $\mathbf{x}(t) = (x^1(t), \dots, x^d(t))$  is

$$\dot{x}^{\mu}(t) = f^{\mu}(\mathbf{x}(t)) + g^{\mu i}(\mathbf{x}(t)) \eta_i(t)$$

(sum over  $i=1,\ldots,\overline{d}$  ) and means

 $x_{t+\Delta t}^{\mu} = x_t^{\mu} + f^{\mu}(\overline{\mathbf{x}}_t) \,\Delta t + g^{\mu i}(\overline{\mathbf{x}}_t) \,\eta_i(t) \,\Delta t$ 

After a non-linear change of variables  $\mathbf{u}(t) = \mathbf{U}(\mathbf{x}(t))$ , in the  $\Delta t \to 0$  limit, the Langevin equation keeps the same form,

$$u_{t+\Delta t}^{\mu} = u_t^{\mu} + F^{\mu}(\overline{\mathbf{u}}_t) \,\Delta t + G^{\mu i}(\overline{\mathbf{u}}_t) \,\eta_i(t) \,\Delta t$$

with

 $F^{\mu}(\overline{\mathbf{u}}_{t}) = \frac{\partial U^{\mu}}{\partial x^{\nu}} f^{\nu}[\mathbf{U}^{-1}(\overline{\mathbf{u}}_{t})] \quad \text{if Stratonovich, otherwise extra term, etc.}$ 

Under changes of coordinates (i.e. reparametrization of variables),  $\mathbf{f}$  and  $\mathbf{g}^{i}$  transform as contra-variant vectors in d-dimensional Riemann geometry.

### In higher dimension $\mu=1,\ldots,\,d>1$

A bit more on differential geometry

 $g^{\mu i}(\mathbf{x})g^{\nu j}(\mathbf{x})\delta_{ij} = \omega^{\mu\nu}(\mathbf{x})$   $(d = 1 \Rightarrow \omega^{\mu\nu} \mapsto g^2)$ 

transforms as a contra-variant rank two tensor field, is symmetric with respect to  $\mu \leftrightarrow \nu$  and positive definite for all  $\mathbf{x}$ . It defines a proper Riemann metric with inverse  $\omega^{\mu\nu}\omega_{\nu\rho} = \delta^{\mu}_{\ \rho}$   $(d = 1 \Rightarrow \omega_{\mu\nu} \mapsto g^{-2})$ Using the notation  $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}$  and  $\partial^{\mu} \equiv \omega^{\mu\nu}(\mathbf{x}) \frac{\partial}{\partial x^{\nu}}$  the Christoffel symbol is  $\Gamma^{\alpha}_{\mu\nu}(\mathbf{x}) = \frac{1}{2}\omega^{\alpha\rho}(\mathbf{x}) (\partial_{\mu}\omega_{\rho\nu}(\mathbf{x}) + \partial_{\nu}\omega_{\rho\mu}(\mathbf{x}) - \partial_{\rho}\omega_{\mu\nu}(\mathbf{x}))$  $(d = 1 \Rightarrow \Gamma \mapsto -g'/g)$  and the scalar curvature  $(d = 1 \Rightarrow R \mapsto 0)$  $R = \omega^{\mu\nu} \left(\partial_{\alpha}\Gamma^{\alpha}_{\mu\nu} - \partial_{\mu}\Gamma^{\alpha}_{\alpha\nu} + \Gamma^{\alpha}_{\alpha\beta}\Gamma^{\beta}_{\mu\nu} - \Gamma^{\alpha}_{\mu\beta}\Gamma^{\beta}_{\alpha\nu}\right)$ 

The covariant derivative is  $\nabla_{\mu} f^{\nu} = \frac{\mathrm{d} f^{\nu}}{\mathrm{d} x^{\mu}} + \Gamma^{\nu}_{\mu\rho} f^{\rho}$   $(d = 1 \Rightarrow f' - g' f/g)$ 

### In higher dimension $\mu=1,\ldots,\,d>1$

The trick is to find  $B^{\mu}_{\alpha\beta}(\overline{\mathbf{x}})$ , with  $d^2(d+1)/2$  (1 in d=1) degrees of freedom, such that with the improved discretization

$$\overline{x}^{\mu} = x^{\mu} + \frac{1}{2}\Delta x^{\mu} + B^{\mu}_{\alpha\beta}(\overline{\mathbf{x}})\Delta x^{\alpha}\Delta x^{\beta}$$

the non-covariant terms in the action cancel

(for  $d=1, B^{\mu}_{\alpha\beta} \mapsto \beta_g$ )

One finds an implicit scalar equation for the unknown  $B^{\mu}_{\alpha\beta}$ , involving the metric  $\omega_{\mu\nu}$ , the Christoffel's  $\Gamma^{\mu}_{\alpha\beta}$ , and the scalar curvature R. It has solution(s).

The infinitesimal action reads 
$$\begin{split} \Delta S_{\mathbf{x}}^{(B)}(x_{t+\Delta t}, x_{t}) &= \frac{1}{2} \omega_{\mu\nu}(\overline{\mathbf{x}}) \left( \frac{\Delta x^{\mu}}{\Delta t} - h^{\mu}(\overline{\mathbf{x}}) \right) \left( \frac{\Delta x^{\nu}}{\Delta t} - h^{\nu}(\overline{\mathbf{x}}) \right) \Delta t \\ &\quad + \frac{1}{2} \nabla_{\mu} h^{\mu}(\overline{\mathbf{x}}) \Delta t + \mathbf{\lambda} R(\overline{\mathbf{x}}) \Delta t \end{split}$$
with  $h^{\mu} = f^{\mu} - \frac{1}{2} g^{\mu i} \partial_{\nu} g^{\nu j} \delta_{ij} - \frac{1}{2} \omega^{\mu\nu} \Gamma^{\rho}_{\rho\nu}$ 

one recovers  $B\mapsto \beta_g, h^\mu\mapsto f, \nabla_\mu h^\mu\mapsto f'-fg'/g$  and  $S_{\scriptscriptstyle X}^{(\beta_g)}$  in d=1



### **Building path integral calculus**

We are happy with our construction!

Discretization issues in stochastic classical  $\Leftrightarrow$  operator ordering in quantum

Revisit the (super) symmetry properties, cfr. Barci & González Arenas 11, Marguet, Agoritsas, Canet & Lecomte 21

Apply this to a physical problem, candidates are interfaces with internal degrees of freedom effect on pre-factor of Arrhenius law

Moreno, Barci, González Arenas 19

etc.

# The initial measure

### **Non-linear transformation**

Let us call  $x_0$  the initial value of the time-dependent variable x(t).

Its normalised probability density is  $P_X(x_0)$ , such that

$$\int_{x_0^{\min}}^{x_0^{\max}} \mathrm{d}x_0 \, P_X(x_0) = 1$$

We now perform a non-linear change of variables  $u_0 = U(x_0)$ , that implies  $du_0 = U'(x_0)dx_0$ , and the measure transforms as

$$1 = \int_{u_0^{\min}}^{u_0^{\max}} \mathrm{d}u_0 \, P_U(u_0)$$

with

$$P_U(u_0) = \frac{P_X(U^{-1}(u_0))}{U'(u_0)}$$

# **Reduced system**

### Model the environment and the interaction

*E.g.*, an ensemble of harmonic oscillators and a linear in  $q_a$  and non-linear in x, via the function  $\mathcal{V}(x)$ , coupling :

$$H_{env} + H_{int} = \sum_{\alpha=1}^{\mathcal{N}} \left( \frac{p_{\alpha}^2}{2m_{\alpha}} + \frac{m_{\alpha}\omega_{\alpha}^2}{2} q_{\alpha}^2 \right) + \sum_{\alpha=1}^{\mathcal{N}} c_{\alpha}q_{\alpha}\mathcal{V}(x)$$

**Equilibrium**. Imagine the whole system in contact with a bath at inverse temperature  $\beta$ . Compute the reduced classical partition function or quantum density matrix by tracing away the bath degrees of freedom.

**Dynamics**. Classically (coupled Newton equations) and quantum (easier in a path-integral formalism) to get rid of the bath variables.

In all cases one can integrate out the oscillator variables as they appear only quadratically.

# **Reduced system**

### **Dynamics of a classical system: general Langevin equations**

The system, p, x, coupled to an **equilibrium environment** evolves according to the multiplicative noise non-Markov Langevin equation



The friction kernel is  $\gamma(t - t') = \Gamma(t - t')\theta(t - t')$  (causality) The noise has zero mean and correlation  $\langle \eta(t)\eta(t') \rangle = k_B T \Gamma(t - t')$  with T the temperature of the bath and  $k_B$  the Boltzmann constant.

# **Reduced system**

### **Dynamics of a classical system : general Langevin equations**

The system, p, x, coupled to an **equilibrium environment** evolves according to the multiplicative noise non-Markov Langevin equation



**Important** Noise arises from lack of knowledge on bath; noise can be multiplicative; memory kernel generated; equilibrium assumption on bath variables implies detailed balance between friction and noise

# White noise

### Assumption on the bath's time-scale

In classical systems one usually takes a bath kernel with the shortest relaxation time

 $t_{env} \ll t_{all}$ 

with *all* representing all other time scales.

The bath is approximated by the white form  $\Gamma(t-t') = 2\gamma_0 \delta(t-t')$ 

The Langevin equation becomes

 $m\ddot{x}(t) + \gamma_0 (\mathcal{V}'(x(t)))^2 \dot{x}(t) = F(x(t)) + \mathcal{V}'(x(t)) \eta(t)$ 

with  $\langle \eta(t) \rangle = 0$  and  $\langle \eta(t)\eta(t') \rangle = 2\gamma_0 k_B T \,\delta(t-t')$ .

# **Separation of time-scales**

### **Velocity and position**



In this limit, one can drop  $m\dot{v}=m\ddot{x}$  and work with the

over-damped equation

$$\gamma_0 (\mathcal{V}'(x(t)))^2 \dot{x}(t) = F(x(t)) + \mathcal{V}'(x(t)) \eta(t)$$

### **Fokker-Planck equation**

The probability of y at time  $t + \Delta t$ 

$$P(y,t+\Delta t) = \int dx_t T(y,t+\Delta t | x_t,t) P(x_t,t)$$

with the transition probability

$$T(y,t + \Delta t | x_t,t) \equiv \langle \delta(y - x_t - \Delta x) \rangle_{\eta_t}$$
  
=  $\delta(y - x_t) - \partial_y [\delta(y - x_t) \langle \Delta x \rangle_{\eta_t}]$   
+  $\frac{1}{2} \partial_y^2 [\delta(y - x_t) \langle (\Delta x)^2 \rangle_{\eta_t}] + \mathcal{O}(\Delta x^3)$ 

From the Langevin equation,

$$\langle \Delta x \rangle_{\eta_t} = f(x_t) \,\Delta t + 2D\alpha \, g(x_t) g'(x_t) \,\Delta t \langle (\Delta x)^2 \rangle_{\eta_t} = 2D \, g^2(x_t) \,\Delta t$$

### Fokker-Planck equations for different $\boldsymbol{\alpha}$

Call  $y \mapsto x$ , perform the integral over  $x_t$  and rearrange terms.

The Fokker-Planck equation

$$\partial_t P(x,t) = -\partial_x ((f(x) + 2D\alpha g(x)d_x g(x))P(x,t)) + D \partial_x^2 (g^2(x)P(x,t))$$

depends on  $\alpha$  and g

Two processes will be statistically the same if

 $f + 2D \alpha g d_x g = f_{\text{drifted}} + 2D \overline{\alpha} g d_x g$ 

Correspondence between  $(f, \alpha)$  and  $(f_{\mathrm{drifted}}, \overline{\alpha})$ 

### Fokker-Planck & stationary measure

The Fokker-Planck equation

$$\partial_t P(x,t) = -\partial_x ((f(x) + 2D\alpha g(x)d_x g(x))P(x,t)) + D \partial_x^2 (g^2(x)P(x,t))$$

has the stationary measure

$$P_{\rm st}(x) = Z^{-1} \left( g(x) \right)^{2(\alpha-1)} e^{\frac{1}{D} \int^x \frac{f(x')}{g^2(x')}} = Z^{-1} e^{-\frac{1}{D}V_{\rm eff}(x)}$$

with  $V_{\text{eff}}(x) = -\int^x \frac{f(x')}{g^2(x')} + 2D(1-\alpha)\ln g(x)$ 

Remark : the potential  $V_{\mathrm{eff}}(x)$  depends upon lpha and g(x)

#### Noise induced phase transitions

Stratonovich 67, Sagués, Sancho & García-Ojalvo 07

### Drift

The Gibbs-Boltzmann equilibrium

$$P_{\rm GB}(x) = Z^{-1} e^{-\beta V(x)}$$

is approached if (recall the physical writing of the equation)



**Important choice**: if one wants the dynamics to approach thermal equilibrium independently of  $\alpha$  and g the drift term has to be added.

### Fokker-Planck & stationary measure

The Fokker-Planck equation

$$\begin{split} \partial_t P(x,t) &= -\partial_x ((f(x) + 2D\alpha g(x) \mathrm{d}_x g(x)) P(x,t)) \\ &+ D \, \partial_x^2 (g^2(x) P(x,t)) \end{split}$$

for the drifted force  $f(x)\mapsto -g^2(x)\mathrm{d}_xV(x)+2D(1-\alpha)g(x)\mathrm{d}_xg(x)$  becomes

$$\begin{split} \partial_t P(x,t) &= -\partial_x ((-g^2(x) \mathrm{d}_x V(x) + 2Dg(x) \mathrm{d}_x g(x)) P(x,t)) \\ &\quad + D \, \partial_x^2 (g^2(x) P(x,t)) \end{split}$$

with the expected Gibbs-Boltzmann measure stationary measure

$$P_{\rm st}(x) = Z^{-1} e^{-\frac{1}{D}V(x)}$$

independently of g(x) and  $\alpha$ 



### **Transformations in the MSR path-integral representation**

Let us group the two terms in the action that are due to the coupling to the bath

$$S_{\text{diss}}^{(\beta_g)}[\{x, \hat{x}\}] = \int_{-t_f}^{t_f} \mathrm{d}t \; \hat{x}(t) \; [\dot{x}(t) - D(g(x(t)))^2 \hat{x}(t)]$$

This expression suggests to use the transformation

$$T = \begin{cases} x(t) & \mapsto x(-t) ,\\ \hat{x}(t) & \mapsto \hat{x}(-t) + \frac{D^{-1}}{[g(x(-t))]^2} \frac{dx(-t)}{dt} , \end{cases}$$

$$\begin{aligned} \mathsf{Proof} \quad S_{\mathrm{diss}}^{(\beta g)}[\{\mathrm{T}x,\mathrm{T}\hat{x}\}] &= \int_{-t_f}^{t_f} \mathrm{d}t \, \left[\hat{x}(-t) + \frac{D^{-1}}{[g(x(-t))]^2} \, \frac{\mathrm{d}x(-t)}{\mathrm{d}t}\right] \\ &\times \left\{ \underbrace{\frac{\mathrm{d}x(-t)}{\mathrm{d}t} - D[g(x(-t))]^2}_{-dt} \left[\hat{x}(-t) + \underbrace{\frac{D^{-1}}{[g(x(-t))]^2} \, \frac{\mathrm{d}x(-t)}{\mathrm{d}t}}_{-dt}\right] \right\} \\ &= \int_{-t_f}^{t_f} \mathrm{d}t \, \left[ -D[g(x(-t))]^2 \, \hat{x}(-t) - \frac{\mathrm{d}x(-t)}{\mathrm{d}t} \right] \hat{x}(-t) \, = \, S_{\mathrm{diss}}^{(\beta g)}[\{x, \hat{x}\}] \end{aligned}$$



### **Transformations in the MSR path-integral representation**

What about the other terms?

$$S_{\text{det,jac}}^{(\beta_g)}[\{x, \hat{x}\}] = \int_{-t_f}^{t_f} \mathrm{d}t \; \left[ -\hat{x}(t)f(x(t)) + \frac{1}{2}f'(x(t)) - \frac{1}{2}\frac{g'(x(t))f(x(t))}{g(x(t))} \right]$$

Under the transformations

$$x(t) \mapsto x(-t)$$
 and  $\hat{x}(t) \mapsto \hat{x}(-t) + \frac{D^{-1}}{[g(x(-t))]^2} \frac{\mathrm{d}x(-t)}{\mathrm{d}t}$ 

the last two terms are invariant. The first one transforms as

$$-\int_{-t_f}^{t_f} \mathrm{d}t \, \left[ \hat{x}(-t) + \frac{D^{-1}}{[g(x(-t))]^2} \, \frac{\mathrm{d}x(-t)}{\mathrm{d}t} \right] f(x(-t))$$
$$= -\int_{-t_f}^{t_f} \mathrm{d}t \, \hat{x}(t) f(x(t)) + \int_{-t_f}^{t_f} \mathrm{d}t \, \frac{D^{-1}}{[g(x(t))]^2} \, \dot{x}(t) \, f(x(t))$$

For the drifted force  $f = -g^2 V' + Dgg'$  the last term yields  $D^{-1}[-V(x(t_f)) + V(x(-t_f))] + \frac{1}{2D} \ln[g(x(t_f))/g(x(-t_f))]$ : the first one allows to rebuild the initial pdf and the last one cancels with the transformation of the prefactor !