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Setting

Multiplicative Gaussian white noise Langevin equations

d = 1 stochastic equation for one IR variable x
z(t) = f(x(t)) + g(x(t))n(t)

Zero average Gaussian white noise (1()) = 0& (n(t)n(t")) = 2Do(t —1t")

it =1,...,d > 1 stochastic equations for x = (!, ..., 2%)
Th(t) = fr(x(t)) + g (x(t))mi(t)

Gaussian white noise (7;(t)) = 0 & (1;(t)n;(t")) = 2Dd;;0(t —t)

Einstein’s summation rule, x(¢) continuous time notation, x; discrete time notation



The problem

Lack of covariance (d = 1 notation)

— For any of the so-far used linear discretization schemes, x;, one can
make non-linear changes of variables w(t) = U(x(t)) at the level
of the Langevin equations using the corresponding chain rules, and
go back and forth.

— One next constructs the generating functional (path integral) for original
P ({x;}) and transformed [P, ({u, } ) stochastic processes.

— Surprisingly, one cannot transform one into the other one via the same

non-linear transformation,
Ht dz; Py ({2:}) # Ht duy Py ({u })

U~ exists, e.g. Cartesian & spherical coordinates, measure transf. taken into account



We found this problem in

Magnetization dynamics : path-integral formalism for the stochastic Landau-Lifshitz-
Gilbert equation

C. Aron, D. G. Barci, L. F. Cugliandolo, Z. Gonzalez-Arenas, G. S. Lozano

J. Stat. Mech. P09008 (2014) but well-known in the literature

A problem already noticed in, e.g.

gravitation & quantum field theory, e.g. de Witt Cécile & Bryce 50s (quanti-
zation on curved spaces), Gervais & Jevicki 76, Langouche, Roekaerts &
Tirapegui 80s,

statistical physics Gulyaev & Edwards 64, Graham et al. 80s, and

mathematics Stratonovich 60s, etc.

Solutions proposed but hard to find, read, understand...



Our first attempt to solve this problem

Rules of calculus in the path integral representation of white noise Langevin equations:
the Onsager-Machlup approach

L. F. Cugliandolo & V. Lecomte, J. Phys. A 50, 345001 (2017)

Our solutionind = 1
Building a path-integral calculus : a covariant discretization approach

L. F. Cugliandolo, V. Lecomte & F. van Wijland, J. Phys. A 52, 50LT01 (2019)

andind > 1
Path integrals and stochastic calculus

T. Arnoux de Pirey, L. F. Cugliandolo, V. Lecomte & F. van Wijland, Adv. Phys. (2023)



The solution

Our proposal: a higher order discretization prescription

The continuous time notation & (£) =2 f(x(t)) + g(x(t)) n(t)

with (1(¢)) = O and (n(t)n(t")) = 2D §(t —t") is a short-hand notation for

Tione = o + f(T) At + g(T;) ny At with higher order

T = Ty + %Aaj + O,(x)(Ax)*  where Az =z, — 14

and 8, = 5 [9//(29)) — g}/ g:) with g; = g(x)

While the finer discretization O ((Ax)?) is negligible to ensure covariance of the Lan-
gevin equation in the At — O limitand (3,) = (), itis needed to construct a covar-
iant generating fct. Different form of the path probability ensuring the latter property.
(Inspiration from non-Gaussian stochastic processes Di Paola & Falsone 90s.)

LFC, Lecomte & van Wijland 19



The solution

A higher order discretization prescription : the key properties

Tt = ¢ + 5 A1 + By(xr) (Ax)?
where Ax = x4y Ay — 2 and B, = 1—12 9t /(291) — 91/ 9t]
with g; = ()

— With the O((Ax)?) discretization the usual chain rule is valid up to At cor-
rections, while with the Stratonovich O(/Ax) one it is only valid up to At'/?
corrections.

— We solve the covariance problem of the generating functional.

— We can generalize to d > 1.

The action has one more term.

LFC, Lecomte & van Wijland 19 (d=1) Arnoulx de Pirey et al 22 (d>1)



The sketch

Langevin equation & path integral representation

Chain rule for 3
x= f(x)+glx)nt) |* | u=F(u)+ G(u)n(t
f(x) + g(2)n(t) u(t) = U(z(t)) (u) (u)n(t)
g A 5 A
g g
< <
@V QQ} \
Action for z(t) in | Same chain rule | Action for u(t) in
covariant discretization covariant discretization

Measure defined so that Dx < Du



Plan of the talk

Like a lecture

. Multiplicative noise Langevin equation

(derivation, over-damped limit)

. Stochastic calculus
(discretization, chain-rule, Fokker-Planck, drifi-force,

change of variables)

. Generating functional formalisms

(Onsager-Machlup, Martin-Siggia-Rose)
. Problems with non-linear transformations in the path-integral

. The solution: a higher order discretization scheme



1. Langevin equations




Langevin equation

Focus on d = 1, generalization at the end

Multiplicative white noise stochastic equation

w(t) = f(2(t)) + g(x(t))n(t)
Restriction : ¢~ exists, thatis, ¢ " (g(2)) = g(¢ ' (2)) =
Zero average Gaussian white noise (1()) = 0& (n(t)n(t")) = 2Do(t —t")

x(t) continuous time notation, later x; discrete time notation

One can derive this equation by coupling the selected variable o to an ensemble of

harmonic oscillators ) coqq () and taking an over-damped limit



2. Stochastic calculus




Stochastic calculus

Linear (usual) discretization prescriptions

The continuous time notation () < flz(t)) + g(x(t)) n(t)
with (1)(t)) = 0 and (n(t)n(t")) = 2D §(t —t") needs a time-discretization

Lt At (a:) Ty T+ f(ft> At + g(ft> Tt At with, usually,

Ty = arpn + (1 — )z = xp + aldx where Ax = 200 — Xy

and 0 < « < 1. Particular cases are o« = 0 Ito and o@ = 1/2 Stratonovich.

Tt oz, Tt = Ty + Az

t t+ At

Stratonovich 67, Gardiner 96, Oksendal 00, van Kampen 07



Stochastic calculus

Noise correlation

The continuous time notation &(¢) = f(x(t)) + g(z(t)) n(t)

with (1)(t)) = 0 and (n(t)n(t")) = 2D §(t —t") is a short-hand notation for

x(t) — x;wheret = kAtand k = 0, ..., N, At infinitesimal, and

Tty At 2 x4 (@) At + g(Ty) ne At

with

Ty = axins + (1 — @)ry = 2 + oA

and 0 < o < 1. Particular cases are &« = 0 It6; o = 1/2 Stratonovich.

2D
The noise-noise J-corr. becomes <77mt/> = — O = <77t2> — %

At




Stochastic calculus

Orders of magnitude & different stochastic processes

n = O(At~1/2)

Scaling of the variable increment | Az = 2y oy — 2y = O(At/?)

because of the Dirac-delta correlations of a
white bath

What is the difference between the two terms in the right-hand-side of the Langevin eq.

when they are evaluated using different «v discretization schemes ?

f(f§a)) - f(fﬁa)) = C’)(Atl/Q) vanishes for At — 0

g(f§o‘))nt — g(fga))m — (’)(Ato) remains finite for At — 0

For multiplicative noise processes the discretization matters:

different « yield different stochastic processes, unless f modified to f,




Stochastic calculus

The chain rule: time derivative of a function U ()

i(t) = fx(t) + g(a(t) n(t)

means | i At (i_) Ty + f(ft) At + g(ft) Tt At

with Ty = axynr + (1 —a)r, | and | (mny) = % Ot

The chain rule for the time-derivative is (just from Langevin-eq. & Taylor)

U(ZUHAt) - U(CCt) _ Lt At — Lt
At At

+ U (%) O(AtY/?)

U/(ft> —+ D(]_ — 20&) 92<Et) U//<ft>

Note the O(At1/2) correction (that vanishes for At — 0)

Make it O (At) (or exact) with a higher order discretization scheme




Stochastic calculus

The chain rule: time derivative of a function U ()

i(t) = fx(t) + g(a(t) n(t)

means | i At (i_) Ty + f(ft) At + g(ft) Tt At

with Ty = axynr + (1 —a)r, | and | (mny) = % Ot

The chain rule for the time-derivative is (just from Langevin-eq. & Taylor)

in continuous time notation

U(z) =4 U'(z) + D(1 — 2a) ¢*(z) U" ()

Only for « = 1/2 (Stratonovich) or U () = ax one recovers the usual

form. Even for additive noise ¢ = ¢t the chain rule is unusual if ov 7 1/2




Stochastic calculus

The chain rule: time derivative of a function U ()

i(t) = fx(t) + g(a(t) n(t)

means | i At (i_) Ty + f(ft) At + g(ft) Tt At

with Ty = axynr + (1 —a)r, | and | (mny) = % Ot

The chain rule for the time-derivative is (just from Langevin-eq. & Taylor)

in continuous time notation

U(z) =4 U'(z) + D(1 — 2a) ¢*(z) U" ()

Note that the continuous time limit of the chain rule will not be modified

if we use a higher order discretization scheme




Stochastic calculus

Apply a non-linear transformation of variables to the Langevin-eq.

Take a generic function U () with an inverse.

Calculate the infinitesimal increment w1 A — Uy = U(xriar) — Uxy)

to derive the stochastic equation satisfied by ;.

Replace x1 1Ay = x¢ + f(Ty) At + g(T ) At, with Ty = 24 + oAz in the
1st term in the rhs, replace x; in terms of u;, and Taylor expand for small At

Ut—i—AAtt_ Ut (é) (ﬂt) 4+ G(ﬂt)nt i O(At1/2)

with F(u:) = (U o U ) () (f o U 1) () + D(1 — 2a)(go U~ ) (w))? and
G(ae) = (U o U 1) (we)(go U™ ) ().

The right-hand-side takes the Langevin form | up to corrections O(At1/2)




3. Generating functionals
with linear discretizations




Generating functionals

From noise to trajectories: Onsager-Machlup

From the noise joint pdf P, [{7;}]| = HOSth Py (n)

(independently drawn at each time step)
At 2

. 1/2 At
with Py, (1)) = (ﬁ—g) / e 4Dt (Gaussian white statistics)

Use the recursion at each time step (i.e., the Langevin equation in discretization d)

Lt+ At — Lt (d) ,,_ o
: At = f(T) +9(@)m: = xear = Ra(Terat, T, ne)

to derive the trajectory (joint) probability

Pxl{z:}] = [[ Tulwirant+ Atlz,t) Pi(zo)

~~ Vv
0<t<ty trans.prob. initial cond.

{V}(cd) [{fﬁt}l exp {— §§§l) [{ft}l}

TV TV
pre—factor action




Three slides with details of the derivation
for the linear discretization ()

— skip them —



Generating functionals

Infinitesimal transition probability from ¢ to ¢t + At

Langevin eq. in generic discretization scheme x:: A+ = Ro (Tr o Ar, T, 1t)

Definition of the infinitesimal transition probability
To(Tipnt, t + At|lay, t) = [ dng Pa(ne) 0(zrat — Ra(Tieat, Te, mt))

In order to integrate over d7); we have to transform the ¢ into one with the form

o(ny — Ra(xt+At, x+)), but we need a Jacobian
Use of (f(n)) = 1/|dyf(m)] 6(n —n*) = |T(n)|~" d(n —n*) with f(n*) =0
d[$t+At - Ra($t+At, L, 77t)]
dny
To(Trrat, t + At|xy, t) fd77t () | I~ (e — Ra<$t—|—Ata Tt))

dyf(n) — J

One can forget the modulus if there is a single solution



Generating functionals

Infinitesimal transition probability from ¢ to ¢t + At

~

The 0(1; — R (x4 a¢, 24)) forces the Gaussian noise weight to be

_ 2 At [Tepar—oe—Atf (@) 17
e_f_Dt[Ra(xtJrAt,wt)] _ 6_4D[ At g(z¢) ]

What about the Jacobian ?

d[$t+At — Ra(ﬂft+At, Lt, Ut)]
dny
Since Ro (2 ng, xp, 1) = xp+ At f(T) + At g(T4) 1, the noise is also in

d, f(n) — J =

T via the Langevin equation itself. One has to expand, to the relevant O(At")

and only later take the dn- This is a long calculation.

Three ways of doing it in LFC & Lecomte 17



Generating functionals

Infinitesimal transition probability from ¢ to ¢t + At

~

The 0(1; — R (x4 a¢, 24)) forces the Gaussian noise weight to be

~ 2 x —xs—Atf(Tt) 2
e—f—Dt[Ra(thrAt,wt)] — e_fpt[ t+AtAtgt(Et) t ]
After the lengthy calculation, one can write the Jacobian as
g'(Tt)
9(T¢)

1
lg(x¢)|

J exp{ — 2aAtn ' (Ty) — aAtf'(Ty) — aAtf(Ty)
—Da’At [2(g' @) — 9(7)g" (7)) |

Note that .J ! depends on the functions [ and g, the pre and post points & the

noise: J 1 = J 1 (s, x4 s, 1t ). | We kept up to O (At) terms in the exp.

For additive noise ¢’ (2) = 0, the familiar form J ! oc exp[—af/(z;)At] is

found and .J ! o ¢t for It6.



Important

one has to keep O (At) terms in the exponential

because there is a sum over all time steps

(a0 =1/2)

The final expressions for the (.5
discretization is



Generating functionals

Onsager-Machlup representation

After some rearrangements (e.g. the prefactor re-expressed in x4 A¢, etc.) and

cancellations, the Stratonovich (S, v = 1/2) transition probability reads

At_l 1 — (S) T T
T(S) (It—i-At; t _l_ At’xh t) — 27T2D ‘g(xt—{_At)‘ (& ASX ( t+At t’At)

with the prefactor in V' )((S) and the Onsager-Machlup infinitesimal action

2
ASE (i ar oy, At) = - f(@)]

4

1 At 1 {(It—i—At — It)

Gaussian noise weight

“if?ﬁliwt)} + 228 o @) — 9@ )]

\ . 4
V

Jacobian, originates in the change of variables from 7)¢ to ¢




Generating functionals

From Onsager-Machlup to Martin-Siggia-Rose

Use the Hubbard-Stratonovich (Gaussian integral) trick to go from the exponen-

tial of a square (from the Gaussian noise) to the one of a linear term

1y? ) a .o
[2m — 5  Try+ -z
— e 2a = / dz e 2
a iR
that with the parameters in the action y; = {xHAAtt_ o f (ft)}At and

a; = 2D(g(7;))? At, and a convenient choice of sign, yields

A

2D (g(T))? — T
J (9(@1)* At / L
2T iR

TS f(m)| At + Dlg(m) 5

9(7¢)

g(ﬂ?t+At)

Note that the normalization prefactor is proportional to Important!




4. Problems w/non-linear
transformations




Linear discretization

Failure of the non-linear transformation

Why does it fail at the level of the action ? Because

AS((JQ)(ut+At, U, At) —> ASﬁf‘)(xHAt, Lt, At) -+ O(At)
N——
change
Indeed, the guilty term in the Onsager-Machlup action is
1 Au\’ (S) 1 Az ’
At —> O(AtY/?)| At
<G(m) At) g ar OB

transformed using the discrete time chain rule.

Az 1/2 0
The double product is | o N O(AtY/?) = O(AL°) |and cannot be neglected

Increase the order of the extra terms improving the accuracy of the chain rule




Quadratic discretization

Orders of magnitude, chain rule & transformations

Take a generic function U () with an inverse.
Calculate the infinitesimal increment w1 A — Uy = U(xrinr) — Ulxy)

Replace x1 Ay = x¢ + f(T) At + g(Tp)ne At

with T, = @ + Az + ByAz? and By = 59"/ (29') — ' /g

in the 1st term in the rhs, transform to 7; and Taylor expand for small At

MBS )+ Gl + O(At)

with F'(u;) = U (U~ Ywy)) f(U~*(u;)) and similarly for .

The right-hand-side takes the Langevin form | up to corrections O (At)

In the At — 0 limit the improvement is irrelevant at the level of the

Langevin equation ; but it is not to build the path integral !




Quadratic discretization

Orders of magnitude, chain rule & transformations

Why does the transformation fail at the level of the action for the linear Stratonovich rule ?

AS) (wpy ar,u, At)  AS) (21 ar, e, Al) + O(AL)

1 Au)? (S) 1 Az Lo ]?
, O(AtY/?
(G(m) At) {g@) ac TOBET)

Ax
the double product is o : O(At/2) = O(At?) and cannot be neglected

Why does the transformation work fine for the 3, discretization ?
As(ﬁg) A As(ﬁg) A O(A 3/2
o O (U at, g, At) = x (T, T, At) + O (A7)

N (Bg) Az :
(35 a0 B, a2 oan] o

Ax Lo
the double product is | o< At O(At) = O(AtY/?) | and drop it




Generating functional

Onsager-Machlup path integral representation

Using standard procedures (careful calculation of the Jacobian)

1 N CTINT

vV 47TDA |g<xt—|—At)’

1A — [(Tt)
2 21; [ 9(Tt) }

T(gg)(wt_|_At,t + At|3}t,t) =

f(@t)g ’(ft)]

AS( (CUt+At, Tt) = (@)

@ -

which in the continuous-time writing reads

S;{_Bg)[{x}] _ fotf d¢ {4&) [x—f(l‘)}2+%f,(x)_%f(x)g’@)}

g(x)

New term
Remarks:

e The action is more sensitive to discretization details than the Langevin equation
e The pre-factor in T( Bg) takes care of the transformation of the measure
e A trivial example: the kinetic energy %va of a Brownian particle mv + yv =7



Generating functional

Onsager-Machlup path integral representation

Using standard procedures (careful calculation of the Jacobian)

1 (Bg)
T(Bg)(xt—l—Ata t+ At|xe, t) = e~ ASx T (@i atL,wt)

vV 47TDAt |g(xt—|—At)|
1 At i—f —f(ft)r_i_ At

(Bg)
AS 9 (x L L) = —
x 7 (@eran®) = 5 o0 9(Ft) 2

f(ft)g’(ft)]
9(xt)

[f'(ft) -

which encodes the continuous-time writing

ngg)[{x}] _ Ltfdt {4&) [96 — f(il?)r N % ) - %f(x)g’(a:)

g(x) 2

Comments:
e Once written this way one can operate with the usual chain rule.

e Same continuous-time writing as de Witt 57, Stratonovich 60, Graham 77
but different meaning, none of them identified the discrete time origin



Proof of covariance

Onsager-Machlup path integral representation

) ) ) ) dut d.CUt
The measure with the normalization transforms as desired, e.g. =
- G(ut)  g(xt)
Usmg du dr
il U'(x) T (note that we now work in the continuous time formulation)
dF(u) 1 d
F'(u) = = — (U (2) f(z)]

du  U'(z) dzx
1 7 / /
= Ty V@@ +U @7 @]

& similarly for (5, to transform the action St [{w }]

st = o (G £+ o~

(Y [ L U@E U @@ L L e
= [T { H [ U (@)f (@) + U'@)f (@)]

U@f@) 1
2 U/ (2)g(x) U'(2)

U (@)g(e) + U'(2)g' ()] }

we identify many cancellations



Proof of covariance

Onsager-Machlup path integral representation

) . ) ) dut da:t
The measure with the normalization are transform as desired, e.g. =
- G(ut)  g(xt)
Usmg du dr
il U'(x) T (note that we now work in the continuous time formulation)
dF(u) 1 d
F'(u) = = — (U (2) f(z)]

du  U'(z) dzx
1 1! / /
= g V@@ U@/ @)

& similarly for (7, to transform the action St [{w}], we recover Sx [{z}]

st = o (G £+ -5

B /Otf dt {41) [Wégéﬁgﬂx): T % U/l(w) M"‘ U’(:B)f/(a:)}

LK@ 1
S A s [T sta) + U@ ¢ )

=) {4;[$;<£§x)]2+%f'<x>‘ %“Zif”} - oxlie]




The solution

Martin-Siggia-Rose (Janssen) path integral representation

(Bg) .
PU[{utaﬂ’t}] duOPI U’O 5 H dutdut MQ_SU [{ut, bt }]

(z1 9Ty At)
0<t<tf

One 1 per t. Using standard procedures, in the continuous-time writing

1_, 1 G’ (u)
30 5 F<u>}

\ . 7
~

Remarks : new

By a)] = N wlu — F(u)] — w))? a2
SE9 [{u, )] /Odt{[ F(w)] — D(G ()% +

e The last term would be absent in the linear Stratonovich discretization.

e It is absent for additive white noise G’ = 0.

Proof of covariance using & = /U’ (x) and the same transformations of « and % as for Onsager-Machlup

t / /
sP9 (g, ayl = [ ae I 4 — fa)] — Doe))2a2 LEETT
0 Jolcaal (e

1 1 / / 1 U/(:C)f(:c) / /
3 U’ (x) M+ Ui@)f (w)] 2 (U (2))29(x) M—'_ v (x)} }




Stochastic calculus

In higher dimension u = 1,...,d > 1

In continuous time notation the Langevin equation for the d dimensional time-

dependent contra-variant vector x(t) = (z'(t),..., 2% (1)) is
BH(t) = fH(x(t) + g" (x(t)) mi(t)
(sumoveri = 1,....d) and means

xéL—I—At = CCQJJ + f’u(ft) At + gm(it) nz(t) At

After a non-linear change of variables u(t) = U(x(%)), in the At — 0 limit,

the Langevin equation keeps the same form,

uy Ay = gy + FP(T) At + GF(ay) n;(t) At
with

L
o) — oU

oxY

Under changes of coordinates (i.e. reparametrization of variables), f and g

f”[U_1 (U¢)]  if Stratonovich, otherwise extra term, etc.

1

transform as contra-variant vectors in d-dimensional Riemann geometry.



Stochastic calculus

In higher dimensionu = 1,...,d > 1

A bit more on differential geometry
g (x)g"? (x)dij = wh (x) (d=1 = w' = g°)

transforms as a contra-variant rank two tensor field, is symmetric with respect
to ;1 < 1 and positive definite for all x. It defines a proper Riemann metric with

inverse w'w,,, = 5% d=1 = w,, — g%

Using the notation 0,, = 8% and o# = wW(x)ai the Christoffel symbol is
x x¥

I (x) = 3w (X) (Buwpu (%) + Ouwpp (%) — Opwyu (X))
(d=1 = 1"+ —¢'/g) and the scalar curvature d=1 = R~ 0)

R =t (0,1, = 9,1, + T30, — T5,T5,)

The covariant derivativeis V, [ = dw +FV oS d=1= f'—g'f/9



Stochastic calculus

In higher dimensionu = 1,...,d > 1

The trick is to find 13/, (), with d”(d + 1) /2 (1 in d = 1) degrees of freedom, such
that with the improved discretization

TH = ot + Azt + Bl (X) Az Azl
the non-covariant terms in the action cancel (ford =1, B“B — Bg)

One finds an implicit scalar equation for the unknown Bgﬁ, involving the metric w,,,,

the Christoffel’s Fgﬁ, and the scalar curvature . It has solution(s).

The infinitesimal action reads

1 AzH Az
ASE (Teyat, o) = §wuv(§) ( At hu(§)> ( At h”(i)) a
1
+5 V" (R)At + AR(X)At

with hH = fF — %g“i(‘?yg”j&j — %w“”ng

one recovers B +— By, h* — f,V , h* — " — fg'/g and Siﬁg) ind =1



Summary

Building path integral calculus

We are happy with our construction!

Discretization issues in stochastic classical <= operator ordering in quantum

Revisit the (super) symmetry properties, cfr. Barci & Gonzalez Arenas 11,

Marguet, Agoritsas, Canet & Lecomte 21

Apply this to a physical problem, candidates are
interfaces with internal degrees of freedom
effect on pre-factor of Arrhenius law

Moreno, Barci, Gonzalez Arenas 19

etc.



The Initial measure

Non-linear transformation

Let us call ; the initial value of the time-dependent variable x(?).

lts normalised probability density is Py (), such that

L/;:l dZCO PX(ZC()) =1

0

We now perform a non-linear change of variables 1y = U(xg), that
implies duy = U'(x¢)dxq, and the measure transforms as

1 = LZOH dug Py (uo)

0

with
Px (U~ (uo))

U (up)

PU(UO) —



Reduced system

Model the environment and the interaction

E.g., an ensemble of harmonic oscillators and a linear in ¢, and non-linear in x,

via the function (), coupling :

2Mm,, 2

a=1 —

N p2 m w2 N
Hem) + Hint — Z ( = =+ - QQZ) - Z Conon(x)
a=1

Equilibrium. Imagine the whole system in contact with a bath at inverse tempe-
rature (3. Compute the reduced classical partition function or quantum density

matrix by tracing away the bath degrees of freedom.

Dynamics. Classically (coupled Newton equations) and quantum (easier in a

path-integral formalism) to get rid of the bath variables.

In all cases one can integrate out the oscillator variables as they appear only

quadratically.



Reduced system

Dynamics of a classical system: general Langevin equations

The system, p, x, coupled to an equilibrium environment evolves according

to the multiplicative noise non-Markov Langevin equation

Inertia friction

A
' N\

A\ oo
mi(t) +V (x(t)) /t dt' v(t =tz ()Y V'(z(t)) =

0

F(x(t) +V'(x(t)) n(t)
~—— ~~—
deterministic force noise

The friction kernel is (¢t — t") = I'(t — t")0(t — t’) (causality)
The noise has zero mean and correlation ( 7)(¢)n(t") ) = kT T'(t — t") with

1" the temperature of the bath and £ p the Boltzmann constant.



Reduced system

Dynamics of a classical system : general Langevin equations

The system, p, x, coupled to an equilibrium environment evolves according

to the multiplicative noise non-Markov Langevin equation

Inertia friction

_/\

~

( t)+V (z /Oodt’w—t T(t) V' (x(t)) =

0 F(a(t)) +V (2(8)) n(t)
N — —~—

deterministic force noise

Important Noise arises from lack of knowledge on bath ; noise can be mul-
tiplicative ; memory kernel generated; equilibrium assumption on bath va-

riables implies detailed balance between friction and noise




White noise

Assumption on the bath’s time-scale

In classical systems one usually takes a bath kernel with the shortest

relaxation time

tenv < tall

with all representing all other time scales.

The bath is approximated by the white form | I'(t — ') = 2,0 (¢t — t/)

The Langevin equation becomes

mi(t) + o (V'(x(t)))* 2(t) = F(z(t)) + V'(z(t)) n(t)

with (1(£)) = 0 .and (n(E)n(t')) = 2voksT 8(t — t').



Separation of time-scales

For

t> T,

Velocity and position

one expects the velocity to equilibrate to the

Maxwell distribution P(v) o~ Bmv? /2

In this limit, one can drop "mv = mx and work with the

over-damped equation

v V(1)) 2(t) = Fa(t) + V'(z(t)n(t)




Stochastic calculus

Fokker-Planck equation

The probability of i at time ¢ + At
P(y,t+ At) = /dmt T(y,t + At|xy,t) P(ay,t)
with the transition probability

T(y,t + Atlag, t) = (0(y — 20 — Ax))y,
= 5(y — 1) — 0, [0(y — 24)(Az)y,]
+ L3216y - 2 (AP} + O(AS?)

From the Langevin equation,

(Az)p, = f(z1) At +2Da g(t)g (1) At
(Az)?)y, = 2D g°(z) At



Stochastic calculus

Fokker-Planck equations for different «

Call y — x, perform the integral over x; and rearrange terms.

The Fokker-Planck equation

0P (z,t) = —0((f(x) +2Dag(x)d.g(x))P(z,1))
+D 0; (9" () P(,1))

depends on «x and g

Two processes will be statistically the same if
f + 2D Oégda:g — fdrifted -+ 2Dagdazg

Correspondence between (f, ) and ( fasifted, )



Stochastic calculus

Fokker-Planck & stationary measure

The Fokker-Planck equation

0P (z,t) = —0:((f(x) +2Dag(x)d.g(x))P(z,1))
+D 0;(g" () P(,1))

has the stationary measure
Py(2)=2"" <g<x>>2<a Ver !

x f(x
2(33/) — Z—le—%‘/eff(il?)

with Vg (2 —f +2D(1 —a)lng(x)

’)
Remark : the potential V¢ () depends upon «v and g(x)

Noise induced phase transitions

Stratonovich 67, Sagués, Sancho & Garcia-Ojalvo 07



Stochastic calculus

Drift

The Gibbs-Boltzmann equilibrium
PGB(CE) — Z_l G—BV(x)

is approached if (recall the physical writing of the equation)

f(z) = —g*(x)d.V (z) +2D(1 — a)g(x)d.g(2)

A\ J/
VY N

Potential drift

The drift is also needed for the Stratonovich mid-point scheme

Important choice: if one wants the dynamics to approach thermal equi-

librium independently of v and ¢ the drift term has to be added.



Stochastic calculus

Fokker-Planck & stationary measure

The Fokker-Planck equation

0P (z,1) = =0:((f(z) + 2Dag(r)d.g(z)) P(z,1))

+D 9;(g*(x) P(x,1))
for the drifted force f(x) — —g%(x)d,V (2)

becomes
0iP(x,t) = =0, ((—g*(2)d,V (2) + 2Dg(x)d,g(2)) P(z, )
+D 9, (g* () P(x,1))

with the expected Gibbs-Boltzmann measure stationary measure

+2D(1 — a)g(z)dzg(z)

Pu(z) = Z e pV@

independently of g(x) and o



Symmetry

Transformations in the MSR path-integral representation

Let us group the two terms in the action that are due to the coupling to the bath

S (2, 4)] = / "t #(t) [6(8) — D(g(a ()28 ()]

This expression suggests to use the transformation

1T =3 D1 dz(—t)

—1
Proof 5”9 {1z, 12 g |:x _ P dx(_t)}
! e /—tf P o

{‘;(Zy Dlg(a(—t))] [( t>+m)‘“/y]}

o (_ ) (59) T, &
= [ a —Dlga(-)Pa(—0) - 2 a(-0) = 558 (e, 2}




Symmetry

Transformations in the MSR path-integral representation

What about the other terms ?

/tf y [ 1 Lg'(z(t)) f(z(t))

Séitg,iac [{337 é\j}] —

Under the transformations

2(t) = x(—t) and  #(t) — (1) + D=1 dw(—t)

g(z(=1))]*  dt

the last two terms are invariant. The first one transforms as

B ty ol D1 dx(—t) ol
/_tf R e L)

bty by D—'
_ /_ RECEOR /_ ., & R 0 @)

For the drifted force f = —¢°V’ + Dgg’ the last term yields D~ *[—V (z(t)) +
V(z(—tf))] + 55 In[g(x(ts))/g(z(—tf))]: the first one allows to rebuild the

initial pdf and the last one cancels with the transformation of the prefactor!




