Active Matter in two dimensions

Leticia F. Cugliandolo

Sorbonne Université Institut Universitaire de France

```
leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia
```

Work in collaboration with

- C. Caporusso, G. Gonnella, P. Digregorio & I. Petrelli (Bari, Italia)
- A. Suma (Trieste, Italia, Philadelphia, USA & Bari, Italia)
- D. Levis & I. Pagonabarraga (Barcelona, España & Lausanne, Suisse)

Definition

Active matter is composed of large numbers of active "agents", which consume energy and thus move or exert mechanical forces.

Due to the energy consumption, these systems are intrinsically out of thermal equilibrium.

Homogeneous energy injection (not from the borders, cfr. shear).

Coupling to the environment (bath) lets allows for dissipation

Realisations & modelling

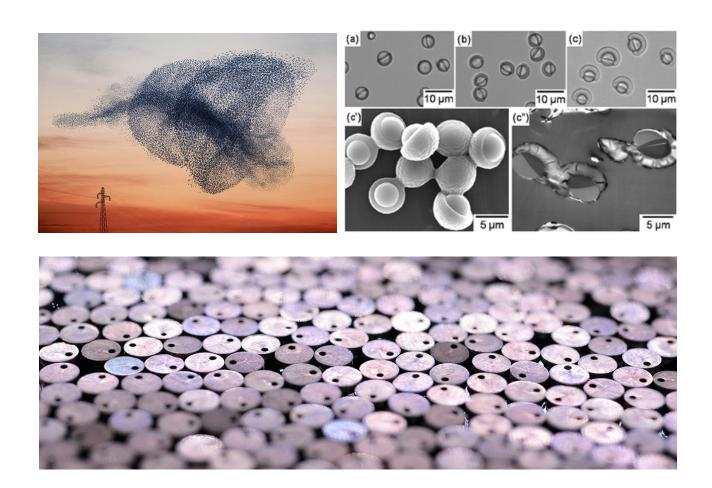
Wide range of scales: macroscopic to microscopic

Natural examples are birds, fish, cells, bacteria.

Artificial realisations are Janus particles, asymmetric grains, toys, etc.

- Embedding spaces in 3d, 2d and 1d.
- Modelling: very detailed to coarse-grained or schematic:
 - microscopic or *ab initio* with focus on active mechanism,
 - mesoscopic, just forces that do not derive from a potential,
 - Cellular automata like in the Vicsek model.

Natural & artificial systems



Experiments & observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna et al.

Roma, di Leonardo et al. Roma, Dauchot et al. Paris, just to mention some Europeans

Realisations & modelling

- Wide range of scales: macroscopic to microscopic
 - Natural examples are birds, fish, cells, bacteria.

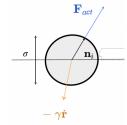
Artificial realisations are Janus particles, asymmetric grains, toys, etc.

- \bullet Embedding spaces in 3d, $\boxed{2d}$ and 1d.
- Modelling: very detailed to coarse-grained or schematic:
 - microscopic or ab initio with focus on active mechanism,
 - mesoscopic, just forces that do not derive from a potential,
 - Cellular automata like in the Vicsek model.

Active Brownian Disks in 2d

(Overdamped) Langevin equations (the standard model)

Active force $\mathbf{F}_{\mathrm{act}}$ along $\mathbf{n}_i = (\cos \theta_i, \sin \theta_i)$



$$m\ddot{\mathbf{r}}_i + \gamma\dot{\mathbf{r}}_i = F_{\mathrm{act}}\mathbf{n}_i - \nabla_i \sum_{j(\neq i)} U_{\mathrm{Mie}}(r_{ij}) + \boldsymbol{\xi}_i \;, \qquad \dot{\theta}_i = \eta_i \;,$$

 \mathbf{r}_i position of ith particle & $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ inter-part distance,

 $U_{
m Mie}$ short-range **repulsive** Mie potential, over-damped limit $m\ll\gamma$

 ξ and η zero-mean Gaussian noises with

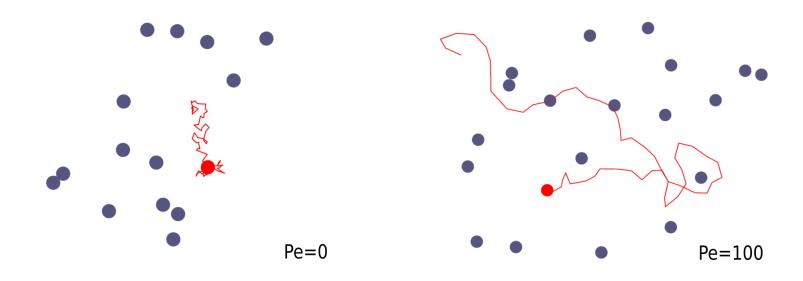
$$\langle \xi_i^a(t) \, \xi_j^b(t') \rangle = 2 \gamma k_B T \delta_{ij}^{ab} \delta(t-t')$$
 and $\langle \eta_i(t) \, \eta_j(t') \rangle = 2 D_{\theta} \delta_{ij} \delta(t-t')$

The units of length, time and energy are given by σ , $au_p = D_{ heta}^{-1}$ and arepsilon

$$D_{ heta}=3k_BT/(\gamma\sigma^2)$$
 controls persistence, $\gamma/m=10$ and $k_BT=0.05$

Péclet number Pe = $F_{\rm act}\sigma/(k_BT)$ and $\phi=\pi\sigma^2N/(4S)$, measures activity

The typical motion of particles in interaction



The active force induces a persistent random motion due to

$$\langle \mathbf{F}_{
m act}(t) \cdot \mathbf{F}_{
m act}(t')
angle \propto F_{
m act}^2 \, e^{-(t-t')/ au_p}$$
 with $au_p = D_{ heta}^{-1}$

Questions

- ullet Pe ϕ Phase diagram
- Mechanisms for phase transitions.
- Topological defects.
- Dynamics across phase transitions.
- Motility Induced Phase Separation.

• Influence of particle shape, e.g. disks vs. dumbbells.

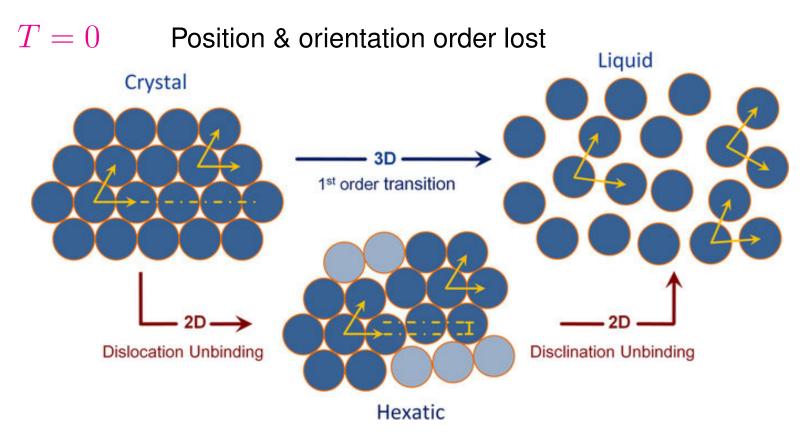
Questions

- ullet Pe ϕ Phase diagram start from solid and dilute
- Mechanisms for phase transitions.
- Topological defects.
- Dynamics across phase transitions.
- Motility Induced Phase Separation.

• Influence of particle shape, e.g. disks vs. dumbbells.

Freezing/Melting

Two step route in passive Pe = 0 2d systems



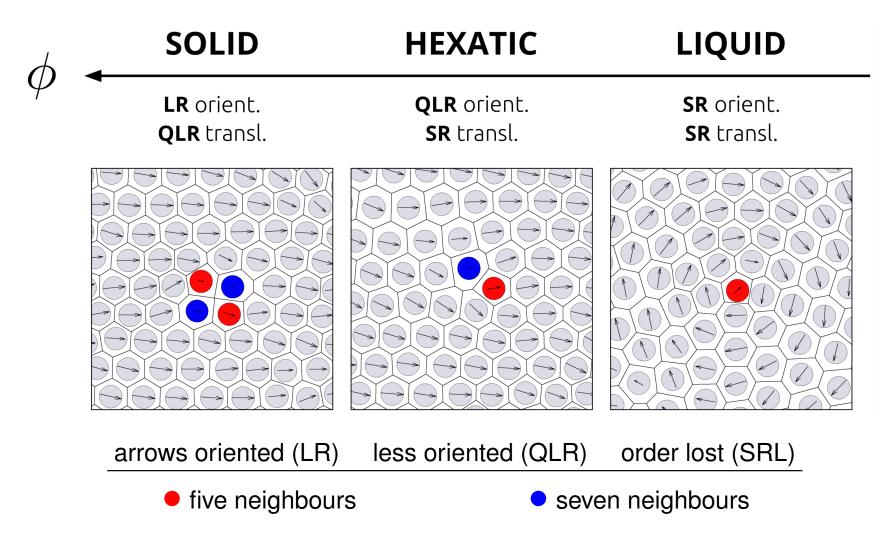
Orientation order preserved

also lost

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

Freezing/Melting

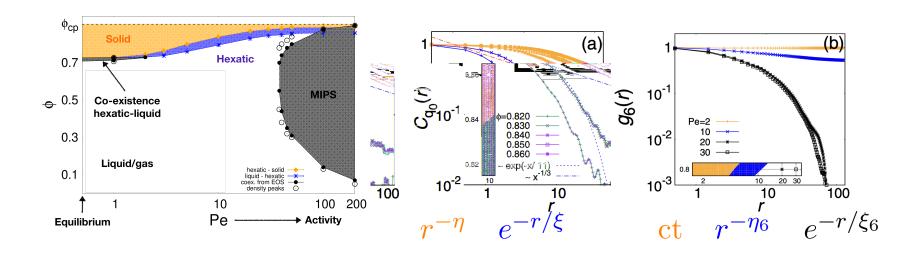
Hexatic (orientational) order $\psi_{6j} = nn_j^{-1} \sum_{k=1}^{nn_j} e^{i6\theta_{jk}}$



Voronoi tessellation

Phase Diagram

Solid, hexatic, liquid, co-existence and MIPS



First order liquid - hexatic transition & co-existence at low Pe from

Pressure $P(\phi, Pe)$ (EoS)

Distributions of ϕ_i and $|\psi_{6i}|$

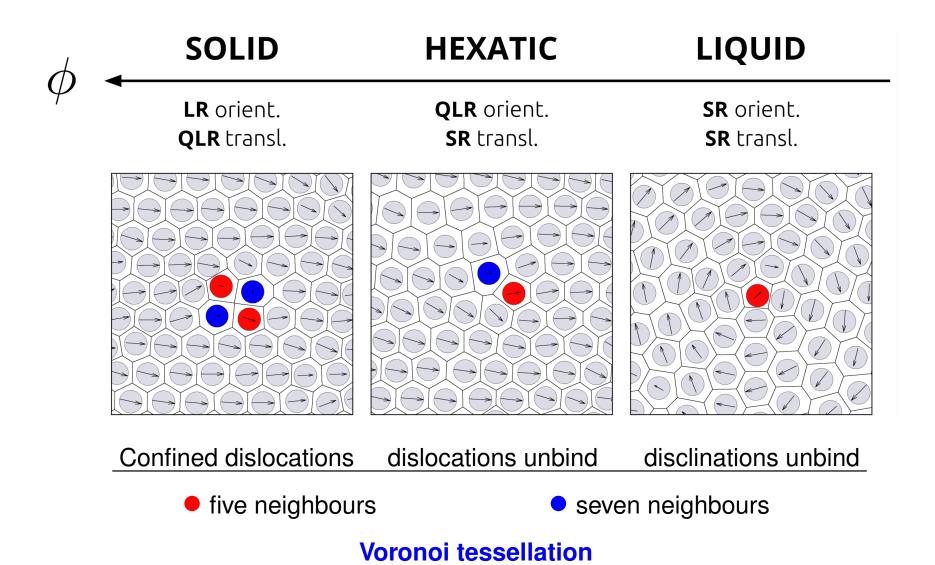
Phases characterized by

Translational correlations $C_{q_0}(r)$ & orientational order correlations $g_6(r)$

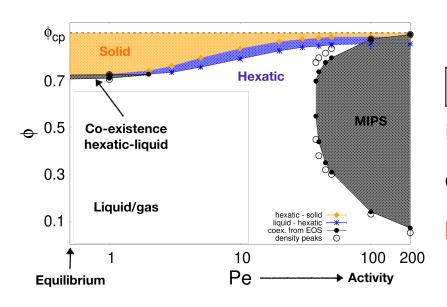
Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Freezing/Melting

Mechanisms in 2d passive systems : defects



Phase diagram with solid, hexatic, liquid, co-existence and MIPS



1st order **hexatic-liquid** close to Pe = 0

KT-HNY solid-hexatic dislocation unbinding disclination unbinding in liquid percolation of defect clusters in liquid

Pressure $P(\phi, \text{Pe})$ (EOS), correlations $C_{q_0}(r)$, $g_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$ defect identification & counting

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018) Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

Topological defects

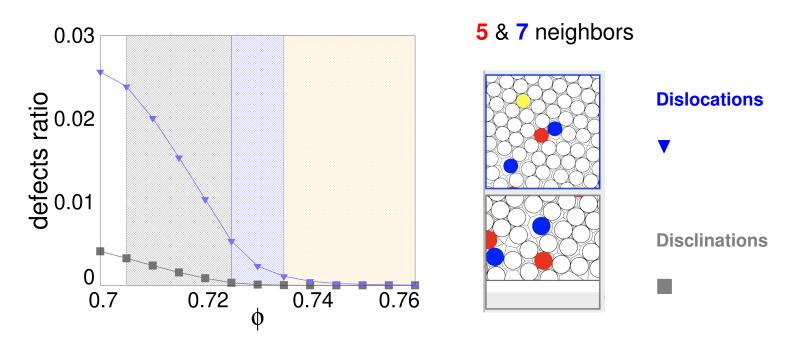
Summary of results

- Solid hexatic à la BKT-HNY even quantitatively (ν value) and independently of the activity (Pe) Universality
- **Hexatic liquid** very few disclinations and not even free.

 Breakdown of the BKT-HNY picture for all Pe (even zero)
- Close to, but in the liquid, percolation of *clusters of defects* with properties of uncorrelated critical percolation $(d_{\rm f}, au)$
- In MIPS, network of defects on top of the interfaces between hexatically ordered regions, interrupted by the gas bubbles in cavitation

Mechanisms

Unbinding of defects?



Dislocations ▼ unbind at the solid - hexatic transition as in BKT-HNY theory

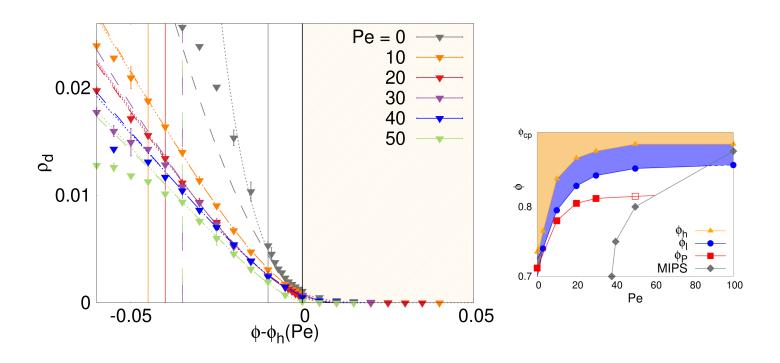
$$\rho_{dislocations} \sim a \exp\left[-b \left(\frac{\phi_c}{\phi_c - \phi}\right)^{\nu}\right] \qquad \nu \sim 0.37$$

Disclinations ■ unbind when the **liquid** appears in the co-existence region

Digregorio et al. Soft Matter 18, 566 (22); experiments Han, Ha, Alsayed & Yodh, PRE 77, 041406 (08)

Dislocations

At the solid-hexatic transition for all Pe $\nu=0.37$ Universality

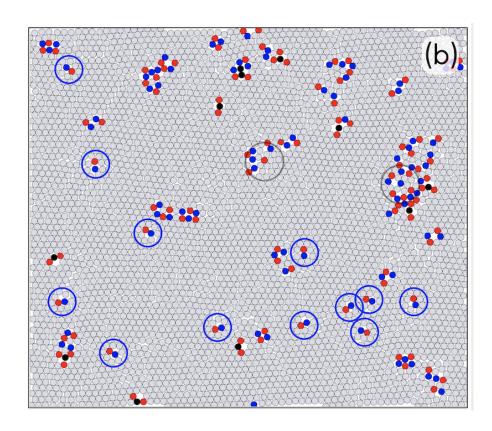


Four (ϕ_c, ν, a, b) dotted) vs. three $(\phi_c, \nu = 0.37, a, b)$ dashed) parameter fits on data in the hexatic & solid phases only. Criteria to support $\nu = 0.37$:

- $-\chi^2$ cfr. Batrouni et al for 2dXY
- not crazy values for a, b but crazy values for ν if let to be fitted
- difference between ϕ_c and ϕ_h erased by coarse-graining

Disclinations

At the hexatic - liquid transition ϕ_l at all Pe

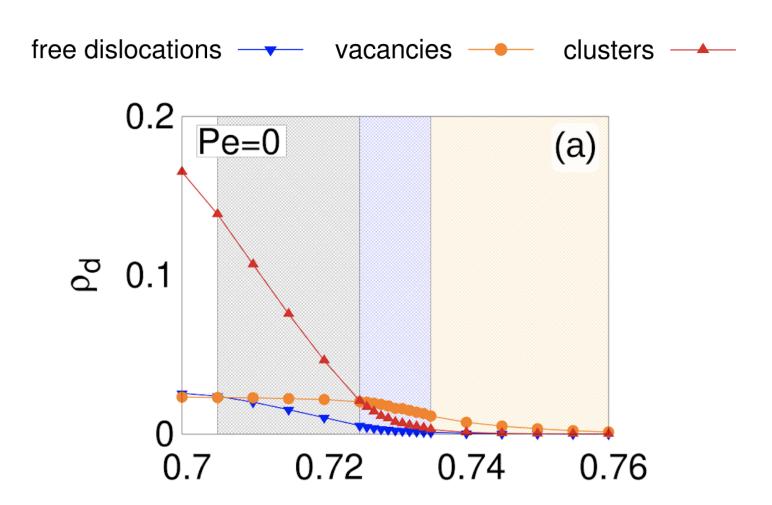


dislocations disclinations

Very few disclinations, and always very close to other defects, so **not free**

Clusters

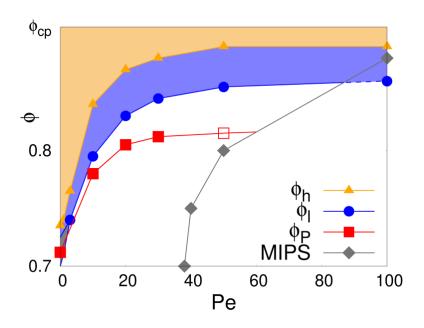
Close to the hexatic - liquid transition



As soon as the liquid appears in co-existence, defects in clusters dominate

Clusters

Percolation of defect clusters: the critical curve



Critical percolation with

fractal properties $d_f \sim 1.9$ and

corresponding algebraic size distribution $au \sim 2.05$

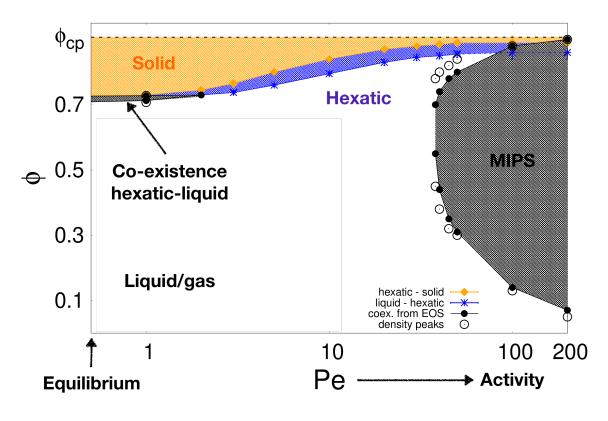
With some coarse-graining the percolation curve moves upward towards the **hextic-liquid** critical one

Questions

- ullet Pe ϕ Phase diagram.
- Mechanisms for phase transitions.
- Topological defects.
- Dynamics across phase transitions.
- Motility Induced Phase Separation.

• Influence of particle shape, e.g. disks vs. dumbbells.

Phase diagram with solid, hexatic, liquid, co-existence and MIPS



Motility induced
phase separation (MIPS)
gas & dense

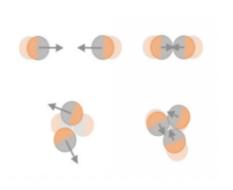
Cates & Tailleur
Ann. Rev. CM 6, 219 (2015)
Farage, Krinninger & Brader
PRE 91, 042310 (2015)

Pressure $P(\phi, \text{Pe})$ (EOS), correlations $G_T(r)$, $G_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$

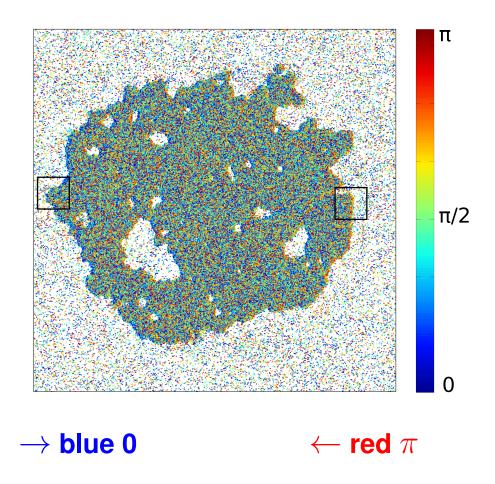
Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Motility Induced Phase Separation

The basic mechanism

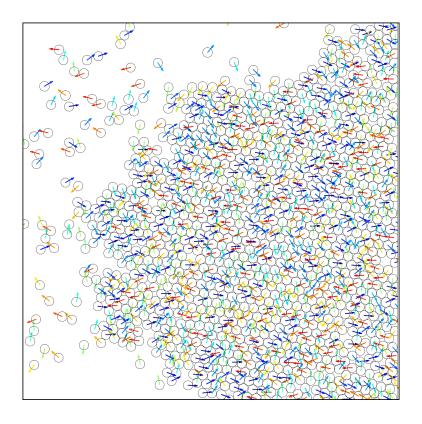


Particles collide heads-on and cluster even in the absence of attractive forces



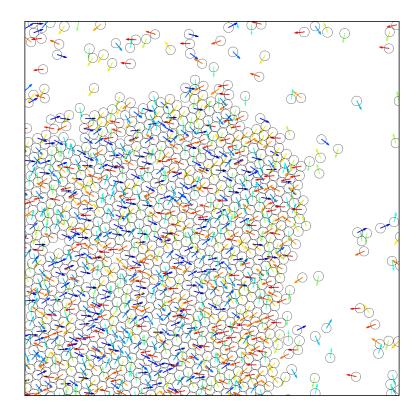
The colours indicate the direction along which the particles are pushed by the active force $m{F}_{
m act}$

Particle orientation at the borders



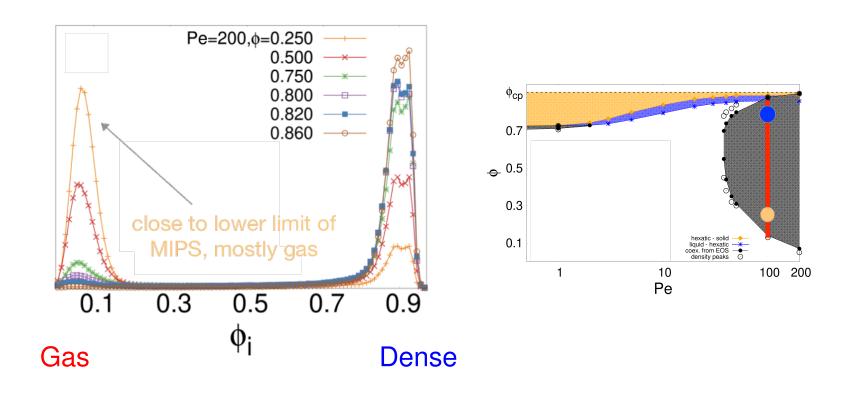
Zoom over **left border** $\rightarrow 0$

Particle orientation at the borders



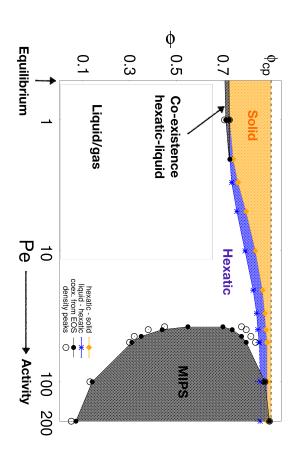
Zoom over **right border** $\leftarrow \pi$

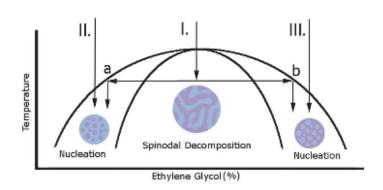
Local density distributions - dense & gas



The position of the peaks does not change while changing the global packing fraction ϕ but their relative height does. Transfer of mass from gas to dense component as ϕ increases

Is it just a conventional phase separation?



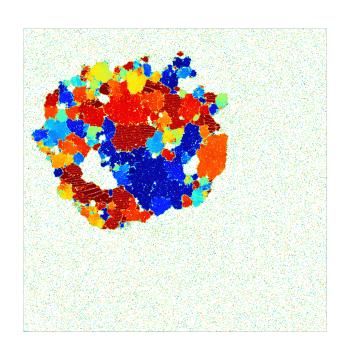


Similar to phase separation with percentage of system covered by dense and gas phases determined by a level rule?

Cates & Tailleur 12

The dense phase

Hexatic patches, defects, bubbles



Dense/dilute separation 1 For low packing fraction ϕ a single round droplet
Growth 2,3 of a mosaic of hexatic orders 3 with gas bubbles 3,4,5 & defects 6

¹Cates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)

²Caporusso, Digregorio, LFC, Gonnella, Levis & Suma, in preparation

³Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)

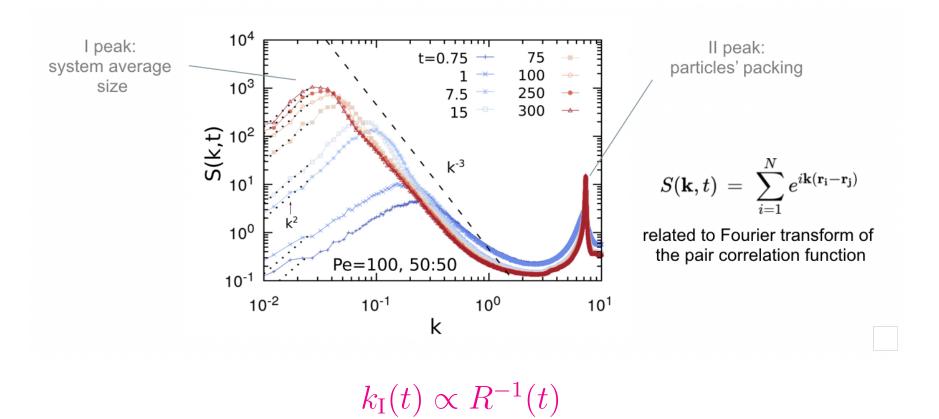
⁴Tjhung, Nardini & Cates, PRX 8, 031080 (2018)

⁵Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)

⁶ Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

Structure

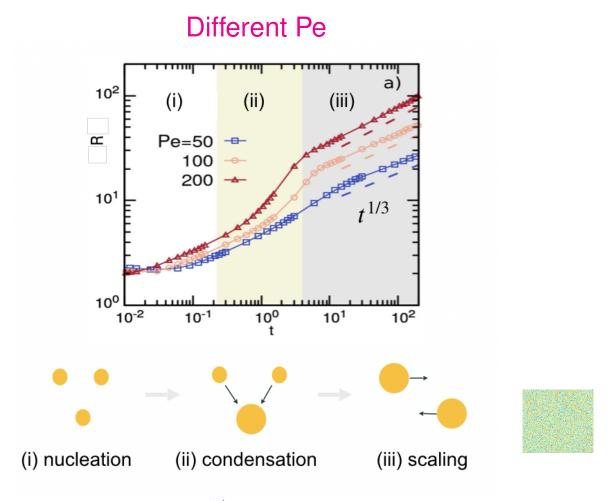
Dynamic structure factor ⇒ **growing length of dense component**



No sign of fractality here. Porod's law $S(k) \sim k^{-(d+1)}$ for compact domains with sharp interfaces

The growth law

Growing length and regimes



In scaling regime $t^{1/3}$ like in Lifshitz-Slyozov-Wagner, scalar phase separation.

More about it & asymptotic value later

Internal structure

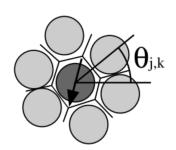
The coloured patches

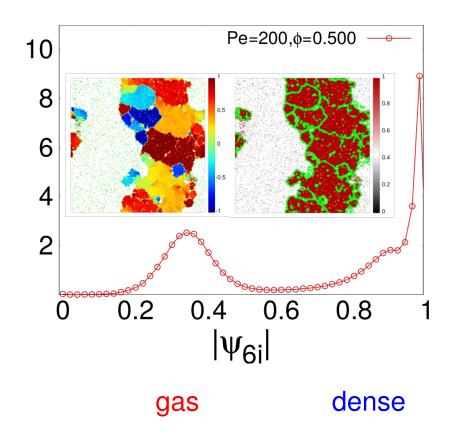
Local hexatic order parameter video

Orientational order

Local hexatic order parameter

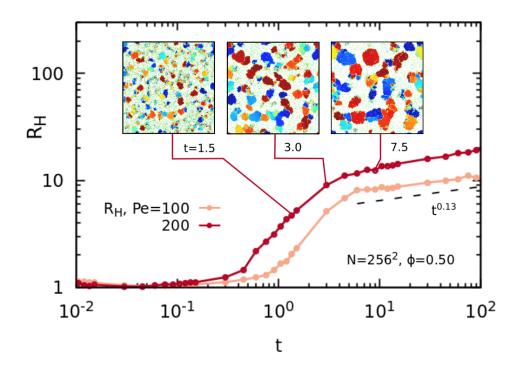
$$\psi_{6j} = \frac{1}{nn_j} \sum_{k=1}^{nn_j} e^{i6\theta_{jk}}$$





Local hexatic order

Regimes



Full hexatically ordered small clusters

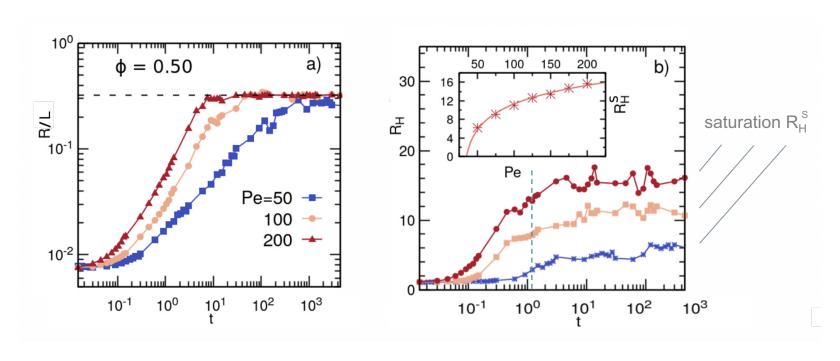
Larger clusters with several orientational order within

 $R_H \sim t^{0.13}$ in the scaling regime and $R_H
ightarrow R_H^s \ll L$

Similar to pattern formation, e.g. Vega, Harrison, Angelescu, Trawick, Huse, Chaikin & Register, PRE 71 061803 (2005)

Macro vs. micro

Dense phase vs. hexatic growth



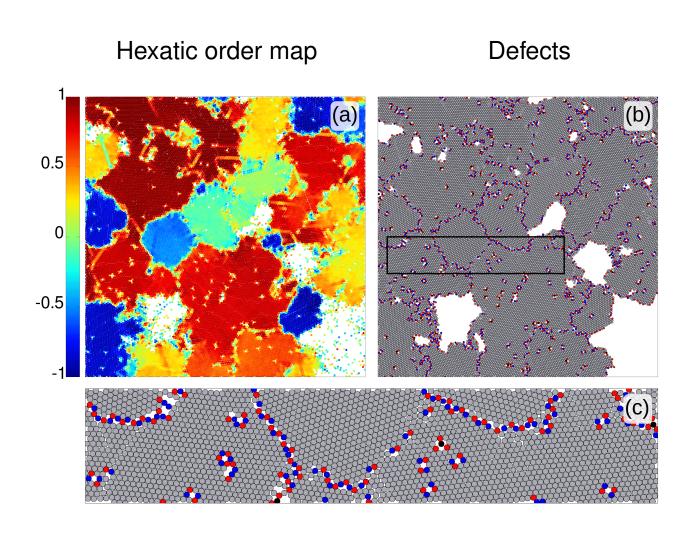
$$R(t) \to aL$$

$$R_H(t) o R_H^s$$
 finite

 \sim Exponential distribution of hexatic cluster sizes

Interfaces

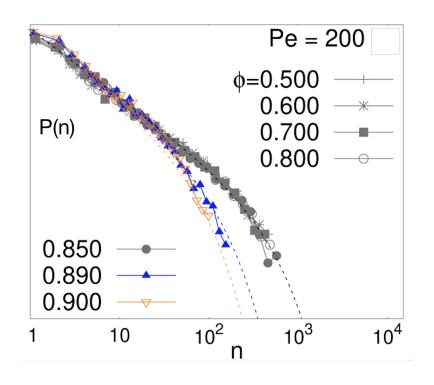
Clusters of defects – mostly along hexatic-hexatic interfaces



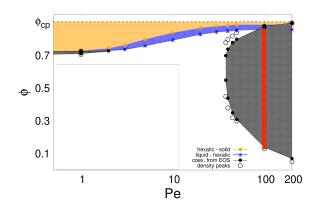
Zoom over the rectangular selection

Clusters of defects

Size distribution - Finite size cut-off



$$P(n) \simeq n^{-\tau} e^{-n/n^*}$$

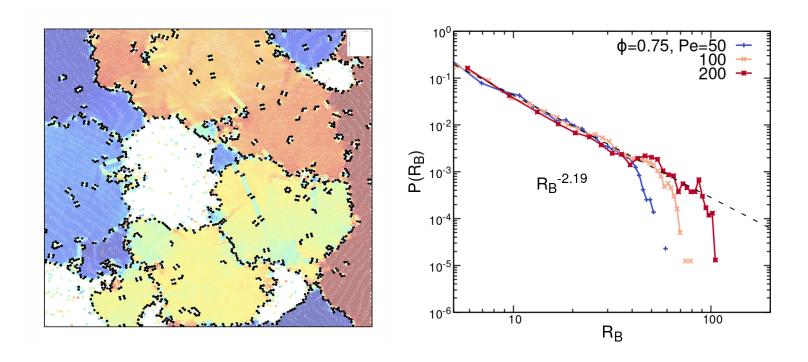


Independence of ϕ at fixed Pe within MIPS

 $n^* \sim 30, 50, 200$ in the solid, hexatic and MIPS, respectively, and $\tau \sim 2.2$

Bubbles in cavitation

At the internal interfaces bubbles pop up



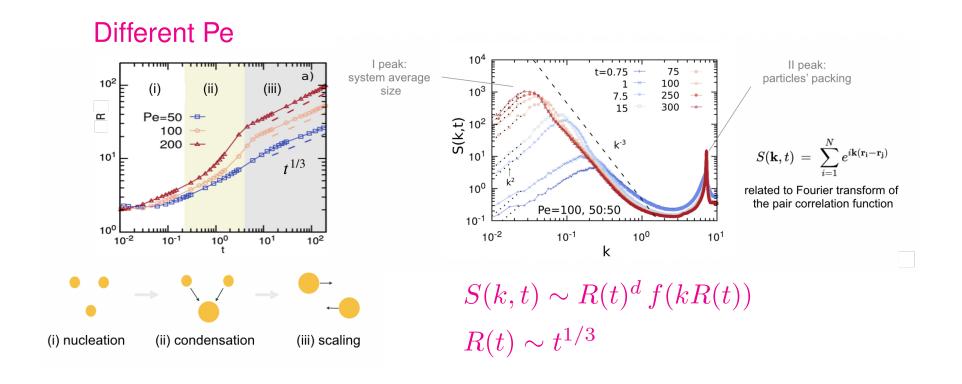
Bubbles appear and disappear at the interfaces between hexatic patches

Algebraic distribution of bubble sizes with a Pe-dependent exponential cut-off

Growth of dense components

Growth of the dense phase

Scaling of the structure factor and growth regimes

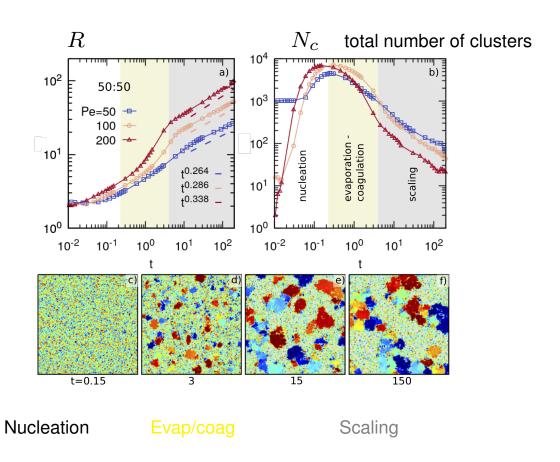


In the scaling regime $t^{1/3}$ like in Lifshitz-Slyozov-Wagner, scalar phase separation Ostwald ripening small cluster evaporate and large ones capture gas particles

but is it just that?

Growth of the dense phase

Focus on the clusters



On the averaged scaling regime:

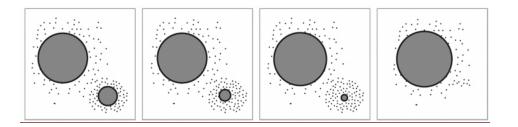
Redner, Hagan & Baskaran, PRL 110, 055701 (2013)

Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014)

Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)

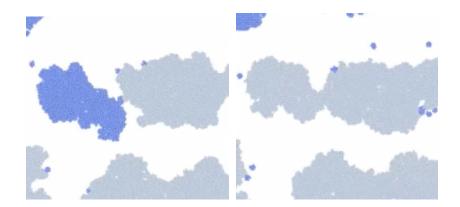
Goals:

1. Is it like the one undergone by a system of passive attractive particles?



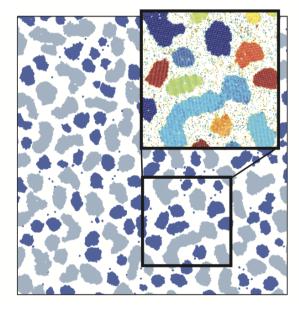
Ostwald ripening

2. Other **mechanisms** for the growth process?

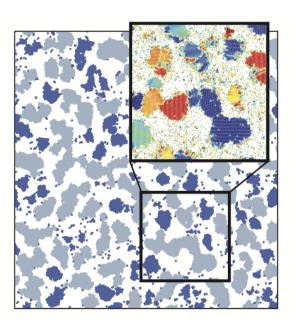


Instantaneous configurations (DBSCAN)

Passive



Active



The Mie potential is not truncated in the passive case \Rightarrow attractive

Parameters are such that R(t) is the same

Colors in the zoomed box indicate orientational order

Visual facts about the instantaneous configurations

Similarities

- Large variety of shapes and sizes (masses)

Co-existence of

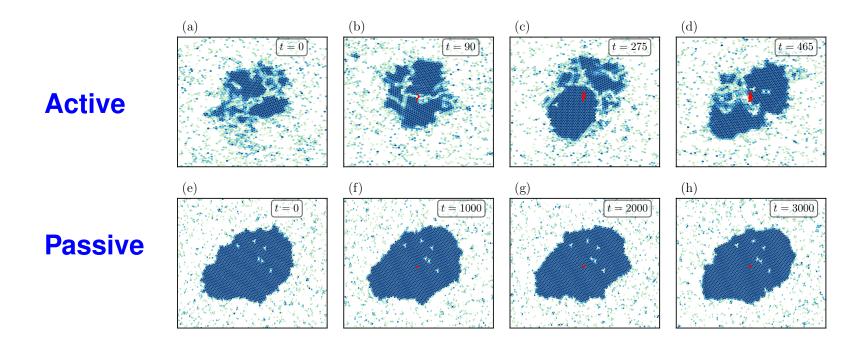
small regular (dark blue) and large elongated (gray) clusters

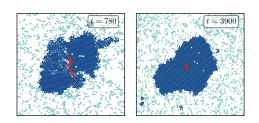
Differences

- Rougher interfaces in active
- Homogeneous (passive) vs. heterogeneous (active) orientational order within the clusters

Cluster dynamics

Tracking of individual cluster motion - video





In **red** the center of mass trajectory

Active is much faster than passive

Visual facts about the cluster dynamics

In both cases, **Ostwald ripening** features

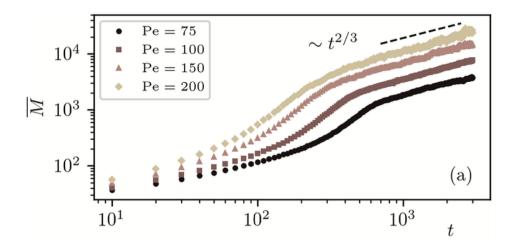
- small clusters evaporate
- gas particles attach to large clusters

In the active system

- clusters displace much more & sometimes aggregate
- they also break & recombine

like in diffusion limited cluster-cluster aggregation

Averaged mass
$$\overline{M} \equiv N_c^{-1}(t) \sum_{\alpha=1}^{N_c(t)} M_{\alpha}(t) \sim t^{2/3}$$



Same three regimes as in R from the structure factor

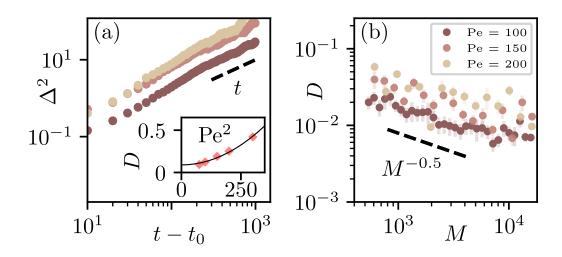
Clusters' dynamics origin?

Active cluster evolution

Mean Square Displacement

Average over all clusters

Mass dependence



$$\Delta_k^2(t, t_0) = [\mathbf{r}_{\text{c.o.m.}}^{(k)}(t) - \mathbf{r}_{\text{c.o.m.}}^{(k)}(t_0)]^2 \sim 2d D(M_k, \text{Pe}) (t - t_0)$$

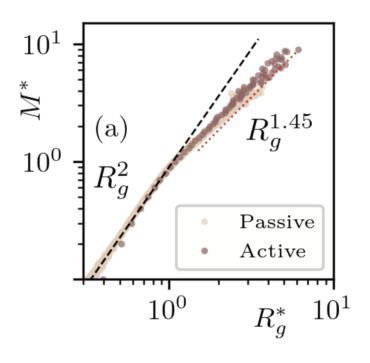
A sum of random forces yields $D \sim M^{-1}$

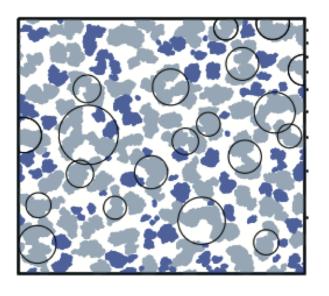
Passive tracer in a dilute active bath $D \sim R^{-1} \sim M^{-1/2}$ Solon & Horowitz (22)

Passive & very heavy isolated active clusters behave as $D \sim M^{-1}$

Geometry

Scatter plots: small regular – large fractal





Cluster mass
$$M^*(t)=rac{M_k(t)}{\overline{M}(t)}$$
 Gyration radius $R_g^*(t)=rac{R_{g_k}(t)}{\overline{R_g}(t)}$

Gyration radius
$$R_g^*(t) = rac{R_{g_k}(t)}{\overline{R_g}(t)}$$

Data sampled in the scaling regime $t=10^3-10^5\,{
m every}\,10^3\,{
m time}\,{
m steps}$

$$\overline{M}(t)=rac{1}{N_c(t)}\sum_{k=1}^{N_c(t)}M_k(t)$$
 and $N_c(t)$ the total number of clusters at time t

Cluster-cluster aggregation

Extended Smoluchowski argument

From
$$\overline{R}_g \sim t^{1/z}$$
 and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f (1+\alpha) - (d-d_w)$

Regular clusters
$$M < \overline{M}$$

$$d_f = d = d_w = 2$$

$$\alpha = 0.5$$

$$z = 2(1+0.5) = 3$$

Fractal clusters $M>\overline{M}$

$$d_f=1.45,\, d=2$$
 and $d_w\sim 2$

$$\alpha = 0.5$$
 in the bulk

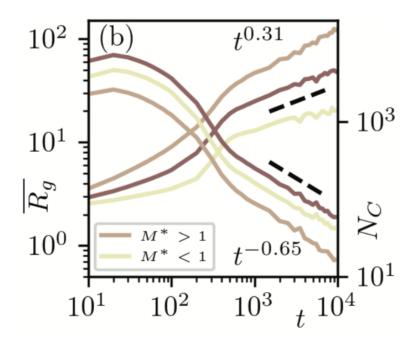
$$z = 1.45(1 + 0.5) = 2.18 < 3$$

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

Regular vs fractal clusters

Radius of gyration and number



 $\begin{array}{c} \text{regular } z \gtrsim 3 \\ \text{More} \end{array}$

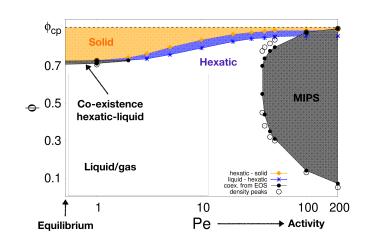
fractal z < 3

average $z=1/0.31\sim 3$

Dominate

Results I

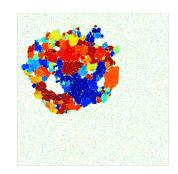
We established the full phase diagram of ABPs solid, hexatic, liquid & MIPS



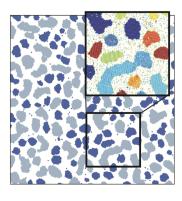
We clarified the role played by point-like (dislocations & disclinations) and clustered defects in passive & active 2d models.

In MIPS

Micro vs. macro: hexatic patches & bubbles



Results II



Difference between

Passive

Active

growth

Ostwald ripening & cluster-cluster aggregation in active case cluster-cluster aggregation almost not present in passive

Co-existence of regular and fractal clusters

Heterogeneous orientational order in large active clusters

Cluster-cluster aggregation

Extended Smoluchowski argument

From
$$\overline{R}_g \sim t^{1/z}$$
 and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f (1+\alpha) - (d-d_w)$

Regular clusters
$$M < \overline{M}$$

$$d_f = d = d_w = 2$$

$$\alpha = 0.5$$

$$z = 2(1+0.5) = 3$$

Fractal clusters $M>\overline{M}$

$$d_f=1.45,\, d=2$$
 and $d_w\sim 2$

if, instead, $|\alpha=1|$

$$z = 1.45(1+1) \sim 3$$

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)