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Introductory talk
Plan

— Many-body systems in interaction

some examples

— Collective dynamics

e.g. domain growth coarsening & the growing length

— Spontaneous and perturbed global relaxation

self-correlation and linear response

— Non-equilibrium Complex Dynamics

coarsening & glassy dynamics

separation of time scales & effective temperatures

effective temperatures
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Many-body Systems in Interaction
Some examples
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Many-body systems
Some examples

Ferromagnetic Ising Model

V =−J ∑
〈i j〉

sis j

Particles in Interaction

V = ∑
i 6= j

V (ri j)

Active Matter

~Fi 6=−~∇iV

In physical systems the action-reaction principle is respected, in other examples it is not

Also many examples beyond physics, like ecosystems, markets, etc. ~Fi→ j 6= ~F j→i

4



Collective dynamics
the simplest example, coarsening
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2d Ising model
Snapshots after an instantaneous quench from T0→ ∞ to T ≤ Tc

t = 0 t1 t2

T = Tc

T < Tc

At T = Tc critical dynamics At T < Tc coarsening

A certain number of interfaces or domain walls in the last snapshots.
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Phenomenon

In both cases one sees the growth of ‘red and white’ patches and

interfaces surrounding such geometric domains.

Spatial regions of local equilibrium (with vanishing, at Tc, or non-

vanishing, at T < Tc, order parameter) grow in time and

a single growing length R (t,T/J) can be identified

and it is at the heart of dynamic scaling.
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Many-body systems
Some examples

Ferromagnetic Ising Model

V =−J ∑
〈i j〉

sis j

Particles in Interaction

V = ∑
i 6= j

V (ri j)

Active Matter

~Fi 6=−~∇iV

In physical systems the action-reaction principle is respected, in other examples it is not

Also many examples beyond physics, like ecosystems, markets, etc. ~Fi→ j 6= ~F j→i
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Collective dynamics
if there is no obvious length?
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Global observables
Two-time correlation and linear responses
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Two-time dependencies
Self-dislacement and linear response

The two-time displacement and integrated linear response

∆2(t, tw) ≡ 1
N ∑

i
[〈(xi(t)− xi(tw))2〉]

χ(t, tw) ≡ 1
N ∑

i

∫ t

tw
dt ′ R(t, t ′) =

1
N ∑

i

∫ t

tw
dt ′ [

δ〈xi(t)〉h
δhi(t ′)

∣∣∣∣
h=0

]

Extend the notion of order parameter

They are not related by FDT out of equilibrium

The averages are thermal (and over initial conditions) 〈. . .〉
and over quenched randomness [. . . ] (if present)

tw waiting-time and t measuring time
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Mean-square displacement
Relevant to follow single particle motion

∆2(t, tw)≡ 1
N ∑i [〈(xi(t)− xi(tw))2〉] T < Tc

1e+00

1e+02

1e+03

1e-01 1e+01 1e+03 1e+05

∆
2

ea

∆
2

t-t
w

tw1 <

tw2 <

tw3 <

tw4 <

Two scales ∆2
eq(t− tw)+∆2

ag(t, tw)

∆2
eq(t− tw)∼ feq

(
e−t/teq

e−tw/teq

)
∆2

ag(t, tw)∼ fag

(
R (t)
R (tw)

)
In glassy systems, for which there is no clear visualization of R
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Physical aging

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the self-correlation

∆2(t, tw) 6= ∆2(t− tw)

In each regime, equilibrium and aging, scaling∗

∆2(t, tw) = ∆2
(

R (t)
R (tw)

)
∗the scaling form can be proven from general properties of temporal correlation functions

No obvious interpretation of R (t) in aging glassy systems
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Two-time linear response
An important difference

Coarsening Glassy

1e+00

1e-01
1e+051e+031e+011e-01

χ

t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Lippiello, Corberi & Zannetti 05 Sketch Chamon & LFC 07

Weak long-term memory in the glassy but not in the coarsening problem.
In the latter, just the stationary part survives asymptotically, contrary to the
sketch on the right valid for glasses & spin-glasses.
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Memory

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the integrated linear response

χ(t, tw) 6= χ(t− tw)

In the aging regime, difference between coarsening & glassy

χ(t, tw) = t−a χ
(

R (t)
R (tw)

)
or χ(t, tw) = χ

(
R (t)

R (tw)

)
Coarsening Glassy

(but no obvious interpretation of R (t) in aging glassy systems)
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Mean-Field Modelling
Usual Curie-Weiss for PM-FM

More unusual for glasses
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Glassy mean-field models
Classical p-spin spherical

Potential energy

V =− ∑
i1 6= ... 6=ip

Ji1... ip xi1 . . . xip p integer

quenched random couplings Ji1... ip drawn from a Gaussian P[{Ji1... ip}]

(over-damped) Langevin dynamics for continuous spins xi ∈ R
coupled to a white bath 〈ξ(t)〉= 0 and 〈ξ(t)ξ(t ′)〉= 2γkBT δ(t− t ′)

γ
dxi

dt
=−δV

δsi
+ ztxi +ξi

zt is a Lagrange multiplier that fixes the spherical constraint
N
∑

i=1
x2

i = N

p = 2 mean-field domain growth
p≥ 3 RFOT modelling of fragile glasses

17



One (surprising) Prediction
from coarsening & glassy mean-field models

and its further development
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Fluctuation-dissipation
Linear relation between χ and ∆2 in equilibrium

P({xi}, tw)→ Peq({xi})

• The dynamics are stationary

∆2
AB(t, tw)=〈[A(t)−B(tw)]2〉=[CAA(0)+CBB(0)−2CAB(t− tw)]

→ ∆2
AB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (∆2
AB) and

induced (RAB) fluctuations

RAB(t− tw) =
1

2kBT
∂∆2

AB(t− tw)
∂t

θ(t− tw)

holds and implies

χAB(t− tw)≡
∫ t

tw
dt ′RAB(t, t ′) =

1
2kBT

[∆2
AB(t− tw)−∆2

AB(0)]
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Glassy non-equilibrium dynamics
Fluctuation-dissipation relation : parametric plot
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Convergence to χ(∆2) at long tw

two linear relations for ∆2 ≶ ∆2
ea

Analytic solution to the p-spin model LFC & J. Kurchan 93

& effective temperature interpretation LFC, Kurchan & Peliti 97
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Fluctuation-dissipation
Linear relation between χ and ∆2 out of equilibrium?

P({xi}, tw) 6= Peq({xi})

• The dynamics are not stationary

∆2
AB(t, tw)=〈[A(t)−B(tw)]2〉 ��−→ ∆2

AB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (∆2
AB) and

induced (RAB) fluctuations

RAB(t, tw) 6=
1

2kBT
∂∆2

AB(t, tw)
∂t

θ(t− tw)

does not hold but one can propose

χAB(t, tw)≡
∫ t

tw
dt ′RAB(t, t ′) =

[∆2
AB(t, tw)−∆2

AB(t, t)]
2kBTeff(t, tw)
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Glassy non-equilibrium dynamics
Fluctuation-dissipation relation : parametric plot
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22



Glassy non-equilibrium dynamics
Interpretation

• Short-scale re-arrangements follow the equilibrium bath rules

The FDT is the equilibrium one with the temperature of the bath T

• Large-scale re-arrangements do not follow the equilibrium bath rules

but the systems’ own internal slow dynamics.

The equilibrium FDT does not hold, it is modified in a rather simple

way, as if it was applying but with another temperature value T ∗

Is this interpretation correct?
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Statistical physics
Accomplishments

• Microscopic definition & derivation of thermodynamic concepts

( temperature , pressure, etc.) and laws (equations of state, etc.)

PV = nRT

• Theoretical understanding of collective effects⇒ phase diagrams

Phase transitions : sharp changes in the macro-

scopic behavior when an external (e.g. the tem-

perature of the environment) or an internal (e.g.

the interaction potential) parameter is changed

• Calculations can be difficult but the theoretical frame is set beyond doubt
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FDT & effective temperatures
Can one interpret the slope as a temperature?

Diffusion in a complex bath

Sketch created by ChatGPT

Γ = Γcold + Γhot

Γcold(t− t ′) = 2γδ(t− t ′)

and temperature T

Γhot(t− t ′) = γhot e−(t−t ′)/τ

and temperature T ∗
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FDT & effective temperatures
Can one interpret the slope as a temperature?

Diffusion in a complex bath

Sketch created by ChatGPT
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FDT & effective temperatures
Can one interpret the slope as a temperature?

M
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e 
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em

Observable A

’

’

Thermometer

(coordinate x)

Coupling constant k

Thermal bath (temperature T)

A A A A

.   .   .

α=1 α=3 α=Μ

x

α=2

(1) Measurement with a thermometer with

• Short internal time scale τ0, fast dynamics is tested and T is recorded.

• Long internal time scale τ0, slow dynamics is tested and T ∗ is recorded.

(2) Partial equilibration (3) Direction of heat-flow

LFC, Kurchan & Peliti 97
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FDT & effective temperatures
Can one interpret the slope as a temperature?

M
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em

Observable A

’

’

Thermometer

(coordinate x)

Coupling constant k

Thermal bath (temperature T)

A A A A

.   .   .

α=1 α=3 α=Μ

x

α=2

Grigera & Israeloff 99 - glassy
D’Anna, Mayor, Barrat, Loreto & Nori 03 - granular
Boudet, Jagielka, Guerin, Barois, Pistolesi & Kellay 24

artificial active matter - robots

Measurement with a thermometer with

• Short internal time scale τ0, fast dynamics is tested and T is recorded.

• Long internal time scale τ0, slow dynamics is tested and T ∗ is recorded.
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Therm Uncertainty Relations
FDT violations & entropy production

Langevin process - Kramers equation for P(x,v; t)

Function H (t) =
∫

dxdvP(x,v; t) [T lnP(x,v; t)+H(x,v)]

such that Ḣ ≤ 0 and Ḣ = 0 for P(x,v, t) = Peq(x,v)

Like an “out of equilibrium free-energy”

Kubo, Toda & Hashitume 65

The FDT violation |2T χ(t, tw)−∆2(t, tw)| of a relaxing system is bounded by

|2T χ(t, tw)−∆2(t, tw)| ≤ 〈x2(t)〉
∫

t

tw
ds
(
−dH (s)

ds

)1/2

LFC, Dean & Kurchan 97
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FDT & Fluctuation Theorems

Take a glass out of equilibrium and take it into a

driven steady glassy state

with a perturbing force.

For which entropy production rate does a fluctuation theorem hold?

Since there is no meaning to T but there is to Teff the proposal is to
replace ∫

τ/2

−τ/2
dt W (t)

T →
∫

τ/2

−τ/2
dt W (t)

Teff(t)

with Teff(t) the effective temperature as measured from

the fluctuation-dissipation relation of the unperturbed relaxing system

with, e.g., its two values T and T ∗

Zamponi, Bonetto, LFC & Kurchan 05
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Active Brownian particles
The standard model – ABPs

Spherical particles with diameter σd

Environment =⇒ Langevin dynamics

Scales =⇒ over-damped motion

Self-propulsion =⇒ active force Fact along ni = (cosθi(t),sinθi(t))

γṙi︸︷︷︸
friction

= Factni︸ ︷︷ ︸
propulsion

− ∇i ∑
j(6=i)

U(ri j)︸ ︷︷ ︸
inter-particle repulsion

+ ξi︸︷︷︸
translational
white noise

θ̇i = ηi︸ ︷︷ ︸
rotational

white noise

2d packing fraction φ = πσ2
dN/(4S) Péclet number Pe = Factσd/(kBT )

Bialké, Speck & Löwen 12, Fily & Marchetti 12
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Teff = T
Co-existence in equilibrium

Pe = 0 φ = 0.710

Integrated linear response & mean-square displacement : their ratio (FDT) τ = t− tw
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e
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th

τ
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Dense phase

Method : linear response computed with Malliavin weights (no perturbation applied) as

proposed by Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma 20
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Teff 6= T
Co-existence in MIPS

Pe = 50 φ = 0.5

Integrated linear response & mean-square displacement : their ratio (FDR) τ = t− tw
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proposed by Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma 20
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Teff in MIPS
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Classical dynamics
A particle on the sphere under anisotropic harmonic potentials

Integrable system

Neumann 1850, Uhlenbeck 80s

Iµ({xν, pν}) for µ = 1, . . . ,N known

Constraints

φ : ∑
µ

s2
µ−N = 0

φ′ : ∑
µ

sµ pµ = 0
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Correlation and response
Fluctuation-dissipation theorem in Boltzmann equilibrium

C(t, tw) =
1
N

N

∑
µ=1
〈sµ(t)sµ(tw)〉i.c. self correlation

R(t, tw) =
1
N

N

∑
µ=1

δ〈sµ(t)〉i.c.
δhµ(tw)

∣∣∣∣∣
h=0

linear response

Stationary limit C(t, tw) 7→Cst(t− tw) and R(t, tw) 7→ Rst(t− tw)

Fourier transforms Fluctuation-dissipation thm

Ĉ(ω) = F.T. Cst(t− tw)

R̂(ω) = F.T. Rst(t− tw)
− ImR̂(ω)

ωĈ(ω)
= β
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Correlation and response
Fluctuation-dissipation theorem in Boltzmann equilibrium

C(t, tw) =
1
N

N

∑
µ=1
〈sµ(t)sµ(tw)〉i.c. self correlation

R(t, tw) =
1
N

N

∑
µ=1

δ〈sµ(t)〉i.c.
δhµ(tw)

∣∣∣∣∣
h=0

linear response

Stationary limit C(t, tw) 7→Cst(t− tw) and R(t, tw) 7→ Rst(t− tw)

Fourier transforms Fluctuation-dissipation thm

Ĉ(ω) = F.T. Cst(t− tw)

R̂(ω) = F.T. Rst(t− tw)

− ImR̂(ω)
ωĈ(ω)

= βeff(ω)

Read βeff(ω)
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Frequency domain FDR
The Tµs from the FDR at ωµ = [(z f −λµ)/m]1/2 in Phase I

A way to measure the mode temperatures with a single measurement

βeff(ωµ) =−ImR̂(ωµ)/(ωµĈ(ωµ)) = βµ

No “partial equilibration” contradiction from the effective temperature perspective. The modes are uncoupled,

they do not exchange energy, and can then have different Tµs

Idea in LFC, de Nardis, Foini, Gambassi, Konik & Panfil 17 for quantum

Barbier, LFC, Lozano, Nessi 22
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Final remarks
Some other applications/extensions of DMFT

– Large d approach to glassiness

Agoritsas, Charbonneau, Kurchan, Maimbourg, Parisi, Urbani & Zamponi, ...

– Ecological models

Altieri, Biroli, Bunin, Cammarotta & Roy, ...

– Neural networks & non-reciprocal interactions

Crisanti & Sompolinsky 80s, Brunel et al., etc.

LFC, Kurchan, Le Doussal & Peliti 90s, Berthier, Barrat & Kurchan 00s

Biroli, Mignacco, Urbani, Zdeborová, ...
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Final remarks
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Time reparametrization invariance
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Separation of time-scales
In the long tw limit

Fast t− tw� tw

tα

1
qea

Cag

aging

stationary Ceq

t − tw
10510310110−1

1

The aging part is slow

Slow R (t)/R (tw) = O(1)

Cag(t, tw)∼ fag

(
R (t)

R (tw)

)
∂tCag(t, tw)∝ Ṙ (t)

R (t) −−−→t→∞
0

∂tCag(t, tw)�Cag(t, tw)

Eqs. for the slow relaxation Cag < qea :

Approx. asymptotic time-reparametization invariance t→ h(t)
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Time reparametrization
Example : the equation (∂t− zt)R(t, tw) =

∫
dt ′ Σ(t, t ′)R(t ′, tw)

• Focus on times such that zt → z∞, C ∼Cag and R∼ Rag

• Separation of time-scales (drop ∂tR and approximate the integral) :

−z∞Rag(t, tw)∼
∫

dt ′ D′[Cag(t, t ′)]Rag(t, t ′)Rag(t ′, tw) (1)

• The transformation

t→ ht ≡ h(t)

 Cag(t, tw)→Cag(ht ,htw)

Rag(t, tw)→ dhtw
dtw

Rag(ht ,htw)

with ht positive and monotonic leaves eq. (1) invariant :

−z∞ Rag(ht ,htw)∼
∫

dht ′ D′[Cag(ht ,ht ′)]Rag(ht ,ht ′) Rag(ht ′,htw)
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Time reparametrization
One can compute analytically fag and χag(Cag)

for times t and tw such that Cag(t, tw)∼ fag

(
R (t)
R (tw)

)
, e.g.

χag(t, tw)∼
1−qea

T
+

1
T ∗

[qea−Cag(t, tw)]

but not the ‘clock’ R (t)

T ∗T
tw3
tw2
tw1

1
kBT ∗

1
kBT

χ(
t,

t w
)

C(t, tw)
0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

Kim & Latz 00 very precise numerical solution
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Implications on Fluctuations
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Leading fluctuations
Global to local correlations & linear responses

Cag(t, tw)≈ fag

(
R (t)
R (tw)

)
global correlation

Global time-reparametrization invariance ⇒ Cag
~r (t, tw)∼ fag

(
h~r(t)

h~r(tw)

)
Ex. h~r1 =

t
t0

, h~r2 = ln
(

t
t0

)
, h~r3 = elna>1

(
t

t0

)
in different spatial regions
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Castillo, Chamon, LFC, Iguain &
Kennett 02, 03

Chamon, Charbonneau, LFC,
Reichman & Sellitto 04

Jaubert, Chamon, LFC & Picco 07
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Conclusions on Fluctuations
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Fluctuations
(Annoying) global time-reparametrization invariance t→ h(t) in models

in which

– Cag(t, tw)� ∂tCag(t, tw) (slow dynamics)

– χag(t, tw)� ∂tχag(t, tw) (weak long-term memory)

and finite effective temperature Teff <+∞ Chamon, LFC & Yoshino 06

Reason for the large dynamic fluctuations (heterogeneities) h(~r, t)

Effective action for ϕ(~r, t) in h(~r, t) = e−ϕ(~r,t)
Chamon & LFC & Yoshino 07

Quantum : the rapid equilibrium regime is modified but the slow aging

one is classical controlled by a Teff > 0⇒ the same applies

LFC & Lozano 98, 99 ; Kennett & Chamon 00, 01
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Each problem
with its own peculiarities

& much more to say !

49



Dynamic equations
Conservative dynamics - closed classical systems

In the N→ ∞ limit exact causal Schwinger-Dyson equations

(m∂2
t − zt)R(t, tw) =

∫
dt ′ Σ(t, t ′)R(t ′, tw)+δ(t− tw)

(m∂2
t − zt)C(t, tw) =

∫
dt ′
[
Σ(t, t ′)C(t ′, tw)+D(t, t ′)R(tw, t ′)

]
+

β0J0

J

n

∑
a=1

Da(t,0)Ca(tw,0)

(m∂2
t − zt)Ca(t,0) =

∫
dt ′Σ(t, t ′)Ca(t ′,0)+

β0J0

J

n

∑
a=1

Db(t,0)Qab

a = 1, . . . ,n→ 0, replica method to deal with e−β0H0 and fix Qab
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The p = 2 integrable model
The phase diagram

0

2

0 1 2J/J0

T
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〈p2N〉 = O(1)
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〈s2N〉 = O(N)
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Injection Extraction
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For all parameters limt�tst limN→∞ 〈s2
µ(t)〉i.c. = 〈s2

µ〉GGE etc.

Barbier, LFC, Lozano, Nessi, Picco & Tartaglia 18-22
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Local correlations & responses
3d Edwards-Anderson spin-glass

C~r(t, tw)≡
1
V~r

∑
i∈V~r

si(t)si(tw) , χ~r(t, tw)≡
1
V~r

∑
i∈V~r

∫ t

tw
dt ′

δsi(t)
δhi(t ′)
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+ Bulk : Parametric plot χ(t, tw) vs C(t, tw) for tw fixed and 7 t (> tw)
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Sigma Model
Conditions & expression

h(~r, t)= e−ϕ(~r,t) Cag(~r, t, tw)= fag(e−
∫ t

tw dt ′ ∂t′ϕ(~r,t
′))

Chamon & LFC 07
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Sigma Model
Some consequences - 3d Edwards Anderson model

h(~r, t) = e−ϕ(~r,t) Cag(~r, t, tw) = fag(e−
∫ t

tw dt ′ ∂t′ϕ(~r, t ′))

Distribution of local correlations depends on times t, tw only through C,ξ

ρ(C~r; t, tw, `,ξ(t, tw))→ ρ(C~r; Cag(t, tw), `/ξ(t, tw))

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

ρ
(C

r)

Cr

tw=1k
tw=10k

tw=100k

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

ρ
(C

r)

Cr

tw=1k
tw=10k

tw=100k

t, tw such that Cag(t, tw) =C ` such that `/ξ = cst Jaubert, Chamon, LFC, Picco 07

predictions on the form of ρ derived from S[ϕ] too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12
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How general is this?
Coarsening & domain growth

e.g. the d-dimensional O(N) model in the large N limit (continuous

space limit of the Heisenberg ferro with N→ ∞)

N component field~φ = (φ1, . . . ,φN) with Langevin dynamics

∂tφα(~r, t) = ∇2φα(~r, t)+λ|N−1φ2(~r, t)−1|φα(~r, t)+ξα(~r, t)

φα(~k,0) Gaussian distributed with variance ∆2

Time reparametrization invariance is reduced to time rescalings

t→ h(t) ⇒ t→ λt

Same in the p = 2 spherical model Chamon, LFC, Yoshino 06
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How general is this?
Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings

t→ h(t) ⇒ t→ λt

χ

C

Ising FM, O(N) field theory, or p = 2 spherical model

Related to T ∗→ ∞ and simplicity of free-energy landscape
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Triangular relations
Scaling of the aging global correlation

Take three times t1 ≥ t2 ≥ t3 and compute the three global correlations

C(t1, t2), C(t2, t3), C(t1, t3)

If, in the aging regime Ci j
ag ≡Cag(ti, t j) = fag

(
h(ti)
h(t j)

)
with ti ≥ t j⇒

C12
ag = fag

(
h(t1)
h(t3)

h(t3)
h(t2)

)
= fag

(
f−1
ag (C13

ag )

f−1
ag (C23

ag )

)
qea
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choose t3 and t1 so that C13 = 0.3
the arrow shows the t2 ‘flow’ from t3 to t1

qea

e.g. C12 = qeaC13/C23
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Triangular relations
Scaling of the slow part of the global correlation

Take three times t1 ≥ t2 ≥ t3 and compute the three local correlations

C~r(t1, t2), C~r(t2, t3), C~r(t1, t3)

If, in the aging regime Ci j
~r ≡C~r(ti, t j) = fag

(
h~r(ti)
h~r(t j)

)
with ti ≥ t j⇒

C12
~r = fag

(
f−1
ag (C13

~r )

f−1
ag (C23

~r )

)
qea
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choose t3 and t1 so that C13 = 0.3
the arrow shows the t2 ‘flow’ from t3 to t1

qea
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~r = qeaC13

~r /C23
~r .
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Triangular relations
3d Edwards-Anderson model
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