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Many-body Systems in Interaction

Some examples




Many-body systems

Some examples

Ferromagnetic Ising Model Particles in Interaction Active Matter
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In physical systems the action-reaction principle is respected, in other examples it is not

Also many examples beyond physics, like ecosystems, markets, etc. ,‘HFH j =~ ffj_>i



Collective dynamics
the simplest example, coarsening




2d Ising model

Snapshots after an instantaneous quench from 7() — o to 7" < 7T,

~
] V
~

At 7" < T, coarsening

At T = T, critical dynamics

A certain number of interfaces or domain walls in the last snapshots.



Phenomenon

In both cases one sees the growth of ‘red and white’ patches and
interfaces surrounding such geometric domains.

Spatial regions of local equilibrium (with vanishing, at 7, or non-

vanishing, at 7" < 71, order parameter) grow in time and

a single growing length R (¢, 7 /J) can be identified
and it is at the heart of dynamic scaling.




Many-body systems

Some examples
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Also many examples beyond physics, like ecosystems, markets, etc. ,‘HFH j =~ ffj_>i



Collective dynamics
if there is no obvious length ?




Global observables

Two-time correlation and linear responses




Two-time dependencies

Self-dislacement and linear response

The two-time displacement and integrated linear response

Az(t,tw) _Z —xi( tW))2>]

—Z dtht ]1,2 L [M

x(t, 1)

Extend the notion of order parameter

They are not related by FDT out of equilibrium

The averages are thermal (and over initial conditions) (.. .)

and over quenched randomness |. . .| (if present)

1, waiting-time and 7 measuring time



Mean-square displacement

Relevant to follow single particle motion

A%(t,ty) = ~ X [((xi(t) — x; T <T,

s
ANVANVANRYAN

1e+00 : :
1e-01 1e+01 1e+03 1e+05

t-t,,

Two scales qu(t —ty)+ Agg(t, tw)

e—t/teq K(t)
ALt —tw) ~ feq <etw/teq> Rt ) ~ g <M>

In glassy systems, for which there is no clear visualization of X




Physical aging

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the self-correlation

A%(t,1,,) # A% (t —t,)

In each regime, equilibrium and aging, scaling®

A%(t,t,) = A? (f&(t;)))

*the scaling form can be proven from general properties of temporal correlation functions

No obvious interpretation of & () in aging glassy systems




Two-time linear response

An important difference

Coarsening Glassy
1e+00 . .
aging & slow (x 54)
X ea
= rapid & stationary (x )
o 1e-01 : : :
UT ! ! . ! . ! . ! N 1e-01 1e+01 1e+03 1e+05
0 1000 20001 -tw (mcs )3000 4000 5000 t_tW
Lippiello, Corberi & Zannetti 05 Sketch Chamon & LFC 07

Weak long-term memory in the glassy but not in the coarsening problem.
In the latter, just the stationary part survives asymptotically, contrary to the
sketch on the right valid for glasses & spin-glasses.



Memory

Older systems (more time elapsed after the quench)

relax more slowly than younger ones

Breakdown of stationarity of the integrated linear response
X(tatw) 7& X(t _tw)

In the aging regime, difference between coarsening & glassy

=) o w2 ()

Coarsening Glassy

(but no obvious interpretation of Q{(r) In aging glassy systems)




Mean-Field Modelling
Usual Curie-Weiss for PM-FM

More unusual for glasses




Glassy mean-field models

Classical p-spin spherical
Potential energy

V = — Z Jiy iy Xiy - Xi, p integer
i1 i

quenched random couplings J,-l___l-p drawn from a Gaussian P[{J,’l,”,’p}]

(over-damped) Langevin dynamics for continuous spins x; € R

coupled to a white bath (&(r)) = 0and (E(1)E(1)) = 2vkpT8(r — 1)

dx,- 87/ X —|—Z:,
. T T e Xi i
dt 8Si <t

N

Z; is a Lagrange multiplier that fixes the spherical constraint ) xl-2 =N
i=1

p = 2 mean-field domain growth
p = 3 RFOT modelling of fragile glasses



One (surprising) Prediction
from coarsening & glassy mean-field models

and its further development




Fluctuation-dissipation

Linear relation between % and A? in equilibrium
P({xi}tw) = Peq({xi})

The dynamics are stationary

Ap(t,tw) = ([A(t) = B(t)]*) =[Caa(0) + Cpp(0) — 2Cap (t — 1))
— AZp(t —ty)
The fluctuation-dissipation theorem between spontaneous (Asz) and

induced (R 4p) fluctuations

Rap(t —t,) = O(r —t
AB(t = tw) DkpT ot (£ =)
holds and implies
: / / 1 2 2
XaB(t —ty) = [ dt Rap(t,t') = Axp(t —ty) — Axp(0)]
f 2kpT




Glassy non-equilibrium dynamics

Fluctuation-dissipation relation : parametric plot

1e+03
RS
1e+02 25
Azea >
15 |
1e+00 ‘
1e-01 1e+01 1e+03 1e+05
t-t, Xea
1e+03 ‘ S r
x
1e+02 0 | ‘
e+02 | 2 50 2 150 200
A%ea A
Xea
Convergence to % (A?) at long 7,,
1e+00 ‘ ‘ . . ) )
fe-01  fex01  1e+03  1e+05 two linear relations for A~ < AZ,

t-t

W

Analytic solution to the p-spin model LFC & J. Kurchan 93

& effective temperature interpretation LFC, Kurchan & Peliti 97



Fluctuation-dissipation

Linear relation between  and A out of equilibrium ?

P({xi},tw) # Peq(1xi})

The dynamics are not stationary

Ale(tatW):qA(Z)_B<ZW)]2> = AI%&B(I_ZW)

The fluctuation-dissipation theorem between spontaneous (A%B) and

induced (R4p) fluctuations

RAB (tv tw) #
does not hold but one can propose

1 0A%(t,t)
2kpT ot

0(t—t,)

[AI%B (ta tW) - AZ}B (ta t)]
ZkBTeff(tatw)

4
XAB(tytw) — dt/RAB(t,t/) —

Ly




Glassy non-equilibrium dynamics

Fluctuation-dissipation relation : parametric plot
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Analytic solution to the p-spin model LFC & J. Kurchan 93

& effective temperature interpretation LFC, Kurchan & Peliti 97



Glassy non-equilibrium dynamics

Interpretation

Short-scale re-arrangements follow the equilibrium bath rules

The FDT is the equilibrium one with the temperature of the bath 7’

Large-scale re-arrangements do not follow the equilibrium bath rules
but the systems’ own internal slow dynamics.
The equilibrium FDT does not hold, it is modified in a rather simple

way, as if it was applying but with another temperature value 7'*

Is this interpretation correct ?



Statistical physics

Accomplishments

Microscopic definition & derivation of thermodynamic concepts

temperature |, pressure, etc.) and laws (equations of state, etc.)

—

PV =nRT

® Theoretical understanding of collective effects = phase diagrams

,b—EquiIibrium ‘l,—EquiIibrium L. i
Phase transitions : sharp changes in the macro-

’C}HTICAL ) ]
POINT scopic behavior when an external (e.g. the tem-

vaporization

melting liquid
freezing

P | solid

perature of the environment) or an internal (e.g.
the interaction potential) parameter is changed

condensation

sublimation gas
deposition TRIPLE POINT

T ('C)

® Calculations can be difficult but the theoretical frame is set beyond doubt



FDT & effective temperatures

Can one interpret the slope as a temperature ?

Diffusion in a complex bath

5 :
thermal bath \L thermal bath

R

thermal bath co.l d cold batht W

Sketch created by ChatGPT

I'= 1_‘cold + 1_‘hot

Ceoa(t —1") =2y0(t —t')
and temperature 1’
1_‘hot(t - t/) = Yhot e_(t_t,)/T

and temperature 1



FDT & effective temperatures

Can one interpret the slope as a temperature ?

Diffusion in a complex bath

o _
thermal bath \L thermal bath 5

N\ = A ,,
thermal bath 7 o 1/(2T)

= 15 |
' Io-’- xea
A e S| [f1/eT)
thermal bath | cold bath . W 0 | |
COld A2 50 2 150
ea A

Sketch created by ChatGPT

200



FDT & effective temperatures

Can one interpret the slope as a temperature ?

LLLLLLLLLL

Thermometer

(coordinate x)

Observable A Coupling constant k

A A A A

a=1 o=2 o=3 =M

M copies of the system

Thermal bath (temperature T)

(1) Measurement with a thermometer with

Short internal time scale T, fast dynamics is tested and 7" is recorded.

Long internal time scale T, slow dynamics is tested and 7" is recorded.

(2) Partial equilibration (3) Direction of heat-flow

LFC, Kurchan & Peliti 97



FDT & effective temperatures

Can one interpret the slope as a temperature ?

Z LLLL Z

P 3 5 .
Thermometer A =
" (coordinate x) \ o )\
\ ¢ ~R
\ {
Observable A Coupling constant k

= ¢
7

A A A A

Grigera & Israeloff 99 - glassy

D’Anna, Mayor, Barrat, Loreto & Nori 03 - granular
Boudet, Jagielka, Guerin, Barois, Pistolesi & Kellay 24
artificial active matter - robots

o=1 o=2 o=3 o=M

M copies of the system

Thermal bath (temperature T)

Measurement with a thermometer with

Short internal time scale T, fast dynamics is tested and 7 is recorded.

Long internal time scale Ty, slow dynamics is tested and 7" is recorded.



Therm Uncertainty Relations

FDT violations & entropy production

Langevin process - Kramers equation for P(x, v;t)
Function H (1) = [ dxdv P(x,v;t) [T InP(x,vit)+H(x,v)]
such that ‘A < () and H =0 for P(x,v,t) = Peq(x,v)

Like an “out of equilibrium free-energy”

Kubo, Toda & Hashitume 65

The FDT violation |27y (¢,t,,) — A*(t,1,)| of a relaxing system is bounded by

t AN 12
2Ty (1, 1) — A%(1,1)] < <x2(;)>ft Js (_djjs( ))

w

LFC, Dean & Kurchan 97



FDT & Fluctuation Theorems

Take a glass out of equilibrium and take it into a

driven steady glassy state
with a perturbing force.

For which entropy production rate does a fluctuation theorem hold ?

Since there is no meaning to 7" but there is to 7.¢f the proposal is to

replace
T/2 T/2
Wi f W)
f’c/Z dt T ’ —’5/2 dt Teff(t)

with Ti.¢¢(7 ) the effective temperature as measured from

the fluctuation-dissipation relation of the unperturbed relaxing system

with, e.g., its two values 7" and T

Zamponi, Bonetto, LFC & Kurchan 05



Active Brownian particles

The standard model — ABPs

Spherical particles with diameter G
Environment —= Langevin dynamics @

Scales — over-damped motion

Self-propulsion = active force F ¢ along n; = (cos0;(),sin6;(t))

Vi = Faany — Vi ), U(rij) + & 0; =;
fricon  propulsion 7/ ) .

N~ translational rotational

inter-particle repulsion white noise white noise

2d packing fraction | 0 = 62N /(4S) | Péclet number | Pe = Fyo(G4/ (kgT)

Bialké, Speck & Lowen 12, Fily & Marchetti 12



Teff =T

Pe=0 ¢=0.710

Co-existence in equilibrium

Integrated linear response & mean-square displacement: their ratio (FDT) T =1 —1,,

q)cp
0.7
=05
0.3

0.1

A2 - dense phase = -
|y - dilute phase

A2 - dilute phase = =

X - dense phase

10 100 1000

Teit(9)/ Tpath

1.2

1

0.8

0.6

0.4 r

0.2 r

Dilute phase
Dense phase

100 200 300 400 500
T

Method : linear response computed with Malliavin weights (no perturbation applied) as

proposed by Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma 20



Teff £ T

Co-existence in MIPS
Pe=50 ¢=0.5

Integrated linear response & mean-square displacement: their ratio (FDR) T =1 —1,,

‘ 1.2 : :
Pep A? - dilute phase = - Dilute phase
A2 - all particles .- = 3 1t All particles
0.7 | A?-dense phase = - P~ o Dense phase
- - 1] 08
_e_ .
05 = 06
=
< 0.4
0.3 x - dilute phase f; '
e x - all particles ] 02 |
0.1 i ’ x - dense phase y
| - - Cogghsri?y peaks O 0.001 L L L 0 L L L L
0 1 10 100 200 1 10 100 1000 0 200 400 600 800 1000
Pe T T

Method : linear response computed with Malliavin weights (no perturbation applied) as

proposed by Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma 20



Teff in MIPS

¢cp* """"""""""
078
. Finite,
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Classical dynamics

A particle on the sphere under anisotropic harmonic potentials

SN 1

-y
- lll-..‘

—
-

Integrable system
Neumann 1850, Uhlenbeck 80s

L,({xy,py}) foru=1,... N known

Constraints
0: Ys;—N=0
u

0 : %sypy =0



Correlation and response

Fluctuation-dissipation theorem in Boltzmann equilibrium

1 N

C(t,ty) = N;<sy(t)sy(tw)>l c.  self correlation
1 & 8(s,(t));c

R(t,ty) = — £ linear response
N u; Ohy (ty) -

Stationary limit C(7,1,,) — Cg(f —1,,) and R(¢.t,,) — Ry (t —t,,)

Fourier transforms Fluctuation-dissipation thm
C(w) =FT. Cy(t —t,,) ImR ()
R(w) =FT. Ry(t —1,) oC (o)

- B



Correlation and response

Fluctuation-dissipation theorem in Boltzmann equilibrium

1 N
C(t,ty) = N Z (5u(t)su(ty))ic. self correlation
u=1
1 & 8(s,(1))ic
R(t,ty) = — £ linear response

Stationary limit C(7,1,,) — Cy(t —1,,) and R(¢,t,,) — Ry (t —t,,)

Fourier transforms Fluctuation-dissipation thm
. ImR(®)

(5((0) = FT. Cy(t —t) —m = Besr(®)
R(®W) =FT. Ry(t —1ty)

Read Beff(ﬂ))



Frequency domain FDR

The T};s from the FDR at , = [(z — A,)/m]'/? in Phase |

0.5 |

[Tu(w,)] !, N =1024

/ —Im[R(w)]/(wC(w)), N = o0 =—
025 1 GGE N — oo

0.75 1 1.25 1.5
w

A way to measure the mode temperatures with a single measurement

Petr(®y) = —Im]?((x)y)/((x)yé((x)y)) = By

No “partial equilibration” contradiction from the effective temperature perspective. The modes are uncoupled,
they do not exchange energy, and can then have different 7;;s

|ldea in LFC, de Nardis, Foini, Gambassi, Konik & Panfil 17 for quantum

Barbier, LFC, Lozano, Nessi 22



Final remarks
Some other applications/extensions of DMFT

— Large d approach to glassiness

Agoritsas, Charbonneau, Kurchan, Maimbourg, Parisi, Urbani & Zamponi, ...
— Ecological models

Altieri, Biroli, Bunin, Cammarotta & Roy, ...

— Neural networks & non-reciprocal interactions

Crisanti & Sompolinsky 80s, Brunel et al., etc.

LFC, Kurchan, Le Doussal & Peliti 90s, Berthier, Barrat & Kurchan 00s

Biroli, Mignacco, Urbani, Zdeborova, ...




Final remarks




Time reparametrization invariance




Separation of time-scales

In the long 7,, limit

Fast 71—, <1,

1 The aging part is slow

«_stationary Ce
{ea Slow K( )/K(fw) — O(l)

,,,,,,,,,,,,,,,,,,,, Cag(t,tw) ~ fag ( )

0;Cag (t,1,,) g%gg — 0

10! 10! 10° 10°
t—1t, 0/Cag(1,1y,) <K Cag(t,1yy)

Eqgs. for the slow relaxation Cg < gea

Approx. asymptotic time-reparametization invariance [ — h(t)




Time reparametrization

Example: the equation (0; — z;)R(¢,t,,) = [dt’ X(t,t")R(¢,t,,)

Focus on times such that z; — Zeo, € ~ Cyg @and R ~ Ry,

Separation of time-scales (drop 0d;R and approximate the integral) :

—ZooRag (1, 1) /dt Cag(t,)|Rag (,1") Rag (¢, 1)) (1)

The transformation
Cog(t,t) = Cag(hy, hy,,)

t — hy = h(t) A
Rag (1,1) — G Rag (e, I, )

with /1; positive and monotonic leaves eq. (1) invariant :

~2Raglh 1n,) ~ [ dho D (Cug e, ) Ragt, ) Rag(h )



Time reparametrization

One can compute analytically f,, and ) a4 (Cag)

[
for times ¢ and 7, suchthat Cyo(7,%,) ~ fao (jé((t ))) ,e.g.
w

I — 1
qua + F [%:a _ Cag(tatw)]

Xag(tvtw) ™~

but not the ‘clock’ X (7)

0B

.
.
06 F e~

04

x(t,t,)

02 T &
&

5, 44 5 B | . 1 .
0.2 04 C 06 0.8 1

4
5
> e
]

C(f, tw) Kim & Latz 00 very precise numerical solution



Implications on Fluctuations




Leading fluctuations

Global to local correlations & linear responses

global correlation

Caglt,10) % fug ( 0 )

R.(tw)

_ L ag )
Global time-reparametrization invariance = C.°(,1,,) ~ fag ( i zw))

a>1
Ex. /1y — % hy, = ln( ) hz, = el (to) in different spatial regions

1e+00 ‘ ‘ ‘ 1 ‘ ‘ ‘
I \ T Castillo, Chamon, LFC, Iguain &
0.75 | Kennett 02, 03
1e-01 t ] ®  05¢
© e 5 e Chamon, Charbonneau, LFC,
0.25 ¢ h2 1 H H
Pﬁ? — h : Reichman & Sellitto 04
h3 —— 0 ‘ ‘ ‘
1e-02 ‘ ‘ ‘ 0 025 05 075 1 i
&4 .00 1es02 1004 16s06 Jaubert, Chamon, LFC & Picco 07

C
t-tw



Conclusions on Fluctuations




Fluctuations

(Annoying) global time-reparametrization invariance ¢ — /(1) in models
In which
— Cyg(t.ty) > 0;Cye(t,1,,) (slow dynamics)

— Xag(f,1) > di)ag(t,1,) (weak long-term memory)
and finite effective temperature 7o < o0 Chamon, LFC & Yoshino 06

Reason for the large dynamic fluctuations (heterogeneities)  /(7.1)

Effective action for ©(7,7) in h(7,1) = e~ 90) Chamon & LFC & Yoshino 07

Quantum : the rapid equilibrium regime is modified but the slow aging

one is classical controlled by a 7.¢s > 0 = the same applies

LFC & Lozano 98, 99 ; Kennett & Chamon 00, 01



Each problem
with its own peculiarities

& much more to say!




Dynamic equations

Conservative dynamics - closed classical systems

In the | N — oo | limit exact causal Schwinger-Dyson equations

(md? —z)R(t,1,) = /dt’ Y(t,t"R(t' 1) +0(t — 1)

(md? —z,)C(t,1,) = /dr’ 2(1,t)C(t', 1) + D(t,1")R(t,,1")]

BOOZD t,0)C,(t,,,0)

(mo? —z)C, fdtZtt (1 O+MZDthQab

a=1,...,n— 0, replica method to deal with e P and fix O,



The p = 2 integrable model

The phase diagram

extended
(s3) = O(1)
(rx) = O(1)

T/ Jy

Injection

II
%))
R =0(1) C
< (N1/2 g
quasi- nsed Lo
-
®)
(&)
=
<
J/Jy 2
Extraction

For all parameters lim, <., limy e <Sf,(t)> — <S3>GGE etc.

Barbier, LFC, Lozano, Nessi, Picco & Tartaglia 18-22



Local correlations & responses

3d Edwards-Anderson spin-glass

1 Os; (1)
2(t,1,) = si(1)si(t Yt ty) = — d /
W V;.’ l;ﬁ l l W 9 7’( W) V? l; Bhl(t/) b0
1 ,
)
- FOT
Xr 0.5
+ Bulk S
0 : *
0 0.5 1
C

+ Bulk : Parametric plot (7, 1,,) vs C(t,1,,) for ,, fixedand 7 ¢ (> 1,,)

P corresponds to the maximum 7 yielding the smallest C (left-most +)

Castillo, Chamon, LFC, Iguain, Kennett 02

Kinetically constrained models + Charbonneau, Reichman & Sellitto 04



Sigma Model

Conditions & expression

h(7, 1) = e ®(F0) Cag(F 1, 1y) = fag (e I @ 2001

i. The action must be invariant under a global time reparametrization ¢ — h(t).

it. If our interest is in short-ranged problems, the action must be written using local
terms. The action can thus contain products evaluated at a single time and point in
space of terms such as (7, t), 0,p(7,t), V(7 t), VOip(7,t), and similar derivatives.

i45. The scaling form in eq. (29) is invariant under ¢(7,t) = ¢(7,t) + ®(7), with ®(7)
independent of time. Thus, the action must also have this symmetry.

1. The action must be positive definite.

These requirements largely restrict the possible actions. The one with the smallest
number of spatial derivatives (most relevant terms) is

- o 0]

Chamon & LFC 07




Sigma Model

Some consequences - 3d Edwards Anderson model

7 t / = ./
h(7,t) = e~ ?7) Cag(F,1,1) = fag(e_ftw A ool ))
Distribution of local correlations depends on times 7. 7,, only through C,&

P(Gs 1,0, £,6(2,1)) = PGz Cag(2, 1), £/6(2,1))

4

Tto=1k —— ‘ ‘ “to=1k ——
t, =10k —— t, =10k ——
3l t, =100k —— | 3l t, =100k —— |
S 2 S 2
(o Q
1 1
0 ‘ 0
0 02 04 06 08 1 0 02 04 06 08 1
C C

t,t,, such that Cag (t, l‘w) =C / such that f/E_, — ¢St Jaubert, Chamon, LFC, Picco 07

predictions on the form of p derived from S| too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12



How general is this ?

Coarsening & domain growth

e.g. the d-dimensional O(N) model in the large N limit (continuous

space limit of the Heisenberg ferro with V. —> <o)

N component field (B = (01,...,05) with Langevin dynamics

atq)a(?at) — Vz(‘)d(?at) —|—7\4‘N_1(1)2(?,l‘) - 1’¢a(?7t) _|_§OL(?J)

—

0o (k,0) Gaussian distributed with variance A

Time reparametrization invariance is reduced to time rescalings
t — h(t) = t—M

Same in the p = 2 spherical model Chamon, LFC, Yoshino 06



How general is this ?

Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings
t — h(t) = =M

04 -

1 L
3000 4000 5000 0
tt_(mes) 0 0.2 04 0.6 08 1

C

Ising FM, O(N) field theory, or p = 2 spherical model

Related to 7" — oo and simplicity of free-energy landscape



Triangular relations

Scaling of the aging global correlation

Take three times 11 > 1» > 13 and compute the three global correlations
C(t1,1), C(t2,13), C(t1,13)

If, in the aging regime C;Jg = Cag(ti,tj) = fag (%) witht; > 1; =
J

12 h(t1) h(t3) B fafgl(Cig)
Fie = (h(rg) h(tz)> e (fagl(cﬁ))

ag
{ea

1

0.8 | choose 73 and 7] so that C'® = 0.3
= 06 1 the arrow shows the 7, ‘flow’ from 73 to 7
04
{ea

0.2} SR

0 e.g. C12 — qeacl3/c23

0 02 04 06 08 1

C23



Triangular relations

Scaling of the slow part of the global correlation

Take three times 11 > 1, > 13 and compute the three local correlations
C(t1,12), Cr(t2,13), Cp(t1,13)

f, in the aging regime C/ = C(1;,1;) = fue ( ) with 7; > 1; =

o, (fe(G)
V(e

{ea

1

0.8 | choose 73 and 7] so that C'® = 0.3
= 06 1 the arrow shows the 7, ‘flow’ from 73 to 7
04
{ea
0.2} SR
12 _ 13 /23
N e.9. C:~ = qea C:7 / C2

0 02 04 06 08 1

C23



Triangular relations

Ceylty )

172
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