L'ordre en deux dimensions

Leticia F. Cugliandolo

Sorbonne Université

```
leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia
```

Mon travail, en collaboration avec

- C. Caporusso, P. Digregorio, G. Gonnella & I. Petrelli (Bari, Italia)
- A. Suma (Bari & Trieste, Italia & Philadelphia, USA)
- D. Levis, Y. Rouzaire & I. Pagonabarraga (Barcelona, España & Lausanne, Suisse)

Le but

Mieux comprendre la fusion en deux dimensions

Pourquoi le plan?

Quelques situations réelles, mais, aussi,

parce que le problème est intéressant

d'un point de vue fondamental

un exposé sur un problème classique,

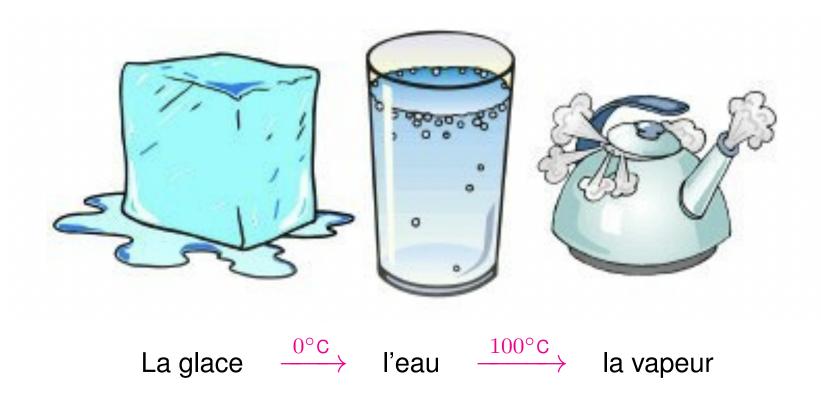
avec une application d'actualité

à la matière active

Une observation

Les états de la matière

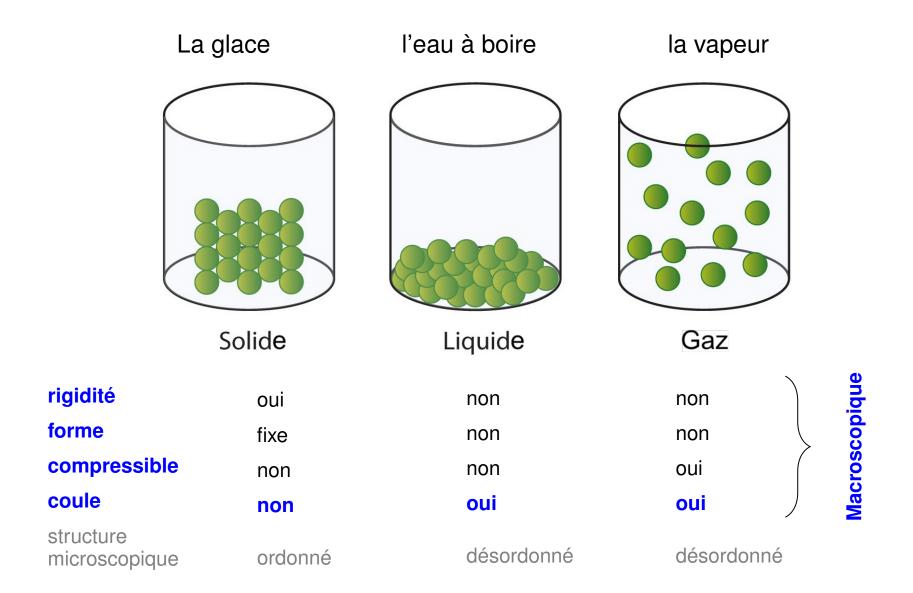
Par example, H₂O et ses transitions de phase



Les molecules sont toujours les mêmes H₂O Un changement physique s'opère, mais pas chimique

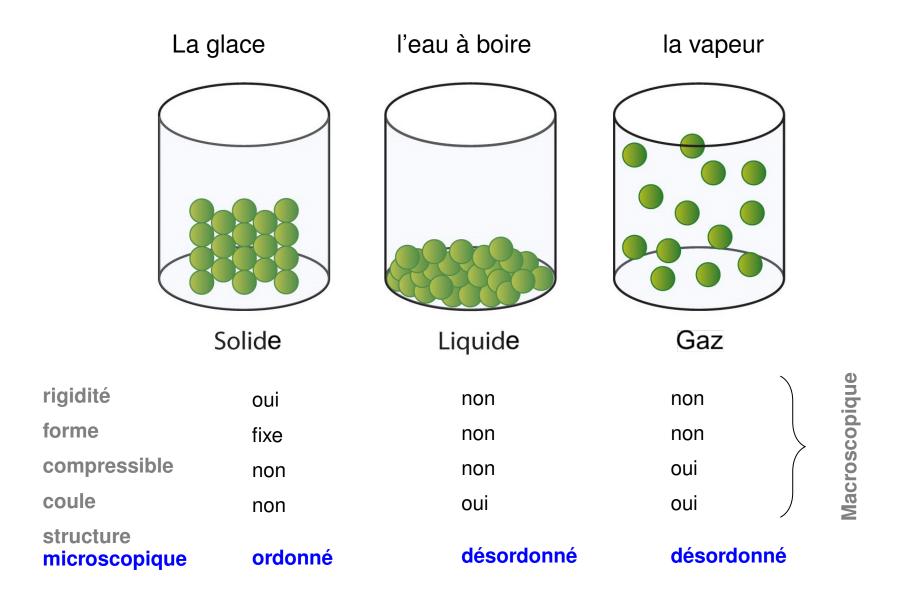
Les états de la matière

Par exemple, H₂O et ses propriétés macroscopiques



Les états de la matière

Par exemple, H₂O et ses propriétés microscopiques



Le cadre théorique

La physique statistique

Du microscopique au macroscopique

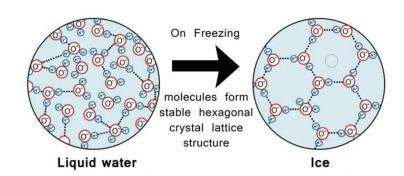
Elle part de modèles simplifiés et utilise des méthodes mathématiques pour

aller du

microscopique

au

macroscopique



Elle décrit le nmacroscopique et les transitions de phase (de façon très precise)

La théorie des probabilités et la statistique sont centrales $1\mapsto N\gg 1$

La physique statistique

De nombreux succès

Définition microscopique & dérivation de concepts thermodynamiques

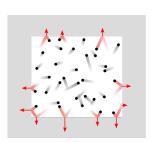
Compréhension de l'origine de

Température, pression

équations d'état

Loi des gaz parfaits

$$PV = nRT$$



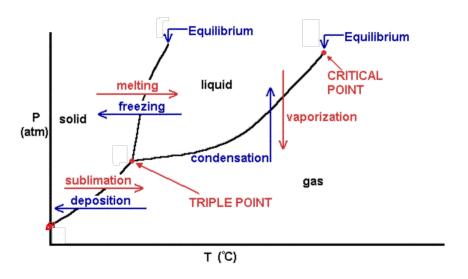
Loi de van der Waals

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

La physique statistique

De nombreux succès

Compréhension des effets collectifs ⇒ diagrammes de phase



Transitions de Phase : changement abrupt du comportement macroscopique si un paramètre externe (*e.g.* la température ambiente) ou un paramètre interne (*e.g.* l'énergie potentielle) est modifié

Les calculs peuvent être durs mais le cadre théorique est bien établi.

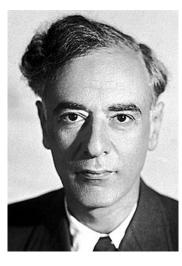
Physique Statistique

Trois acteurs importants

L. D. Landau

P. W. Anderson

K. G. Wilson



Transitions de Phase

Brisure de symétrie

Mécanism de Higgs

Verres, Localization

Renormalization

Universalité

Theoretical description of phase transitions Importance of randomness More is different

Physique Statistique

Transitions de Phase

L. D. Landau (Kharkiv/Moscow) - URSS

Nobel 1962 "for his development of a mathematical theory of superfluidity that accounts for the properties of liquid helium II at a temperature below $2.17K(-270.980^{\circ}C)$ "

P. W. Anderson (Princeton) - USA

Nobel 1977 "for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems"

K. G. Wilson (Cornell) - USA

Nobel 1982 "for his theory for critical phenomena in connection with phase transitions"

Tout va bien en dimension trois; mais en deux?

La question

Fusion en deux dimensions

Questions

Understanding the complex by studying the simple

Le cadre : physique classique non-relativiste

sans effets quantiques $\hbar \to 0$, basses vitesses $v/c \to 0$

Les constituents :

On simplifie, on passe de molecules aux disques.

On identifie une situation facile

L'état le plus ordonné et compacte

Comment le système transite de cet état ordonné au liquide,

en augmentant la température ambiente ou en diminuant la densité?

Le problème

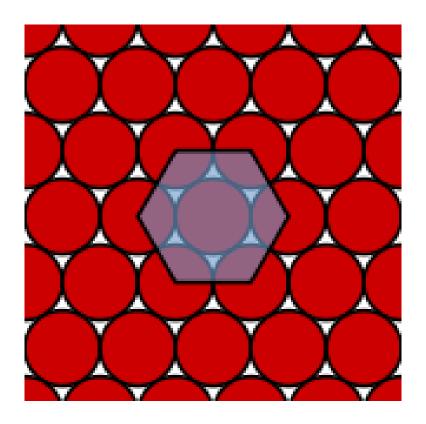
Disques durs sur une table

Réseau carré avec quatre voisins

Taux d'empilement $\phi=S_{\rm occupied}/S$ Réseau carré, $\phi_{\square}\sim 0.78$, il n'est pas optimal

Disques durs sur une table

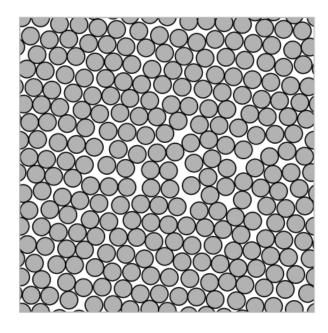
Réseau triangulaire avec six voisins



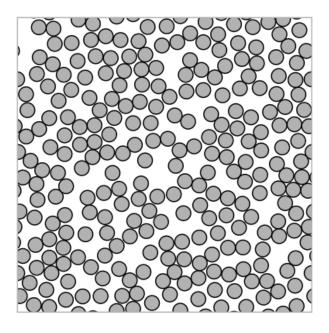
Taux d'empilement $\phi=S_{\rm occupied}/S$ Empilement le plus compact $~\phi_{\triangle}\approx 0.91>\phi_{\square}=0.78$

Fusion

Disques durs sur une table



Solide à haute densité



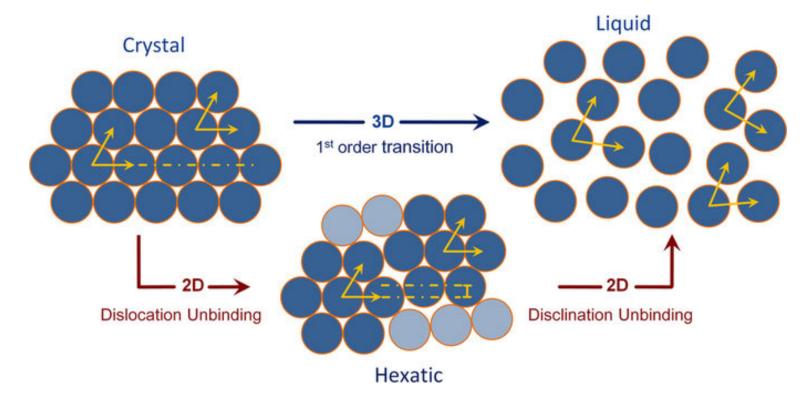
Liquide à basse densité

Figure E. Bernard, PhD Thesis, Paris

Fusion

Quels mécanismes?

T=0 L'ordre de positions & orientations est perdu simultanément



Il n'y a pas d'ordre périodique des centres des disques

L'ordre d'orientation est préservé → il est aussi perdu

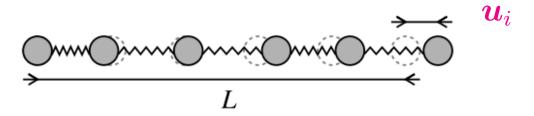
Image Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

Un calcul simple

Solides harmoniques

Peierls 30s: il n'y a pas d'ordre translationnel à longue portée à T>0

Considérons un cristal constitué d'atomes reliés à leurs plus proches voisins par des ressorts de Hooke. À température finie T, les positions atomiques, \mathbf{r}_i , fluctuent, $\mathbf{r}_i = \mathbf{R}_i + \mathbf{u}_i$, où \mathbf{u}_i représente le déplacement local à partir d'un site régulier du réseau situé en \mathbf{R}_i .



Open dashed: réseau parfait R_i Filled gray: les positions réelles r_i

L'ordre positionnel à longue portée subsiste-t-il à température finie?

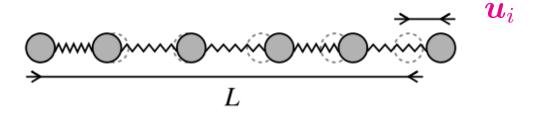
Non, en d=2, car le déplacement quadratique moyen croît avec la distance

$$\Delta^2(\mathbf{r}) \equiv \langle (\mathbf{u}(\mathbf{r}) - \mathbf{u}(\mathbf{0}))^2 \rangle \simeq k_B T \ln r$$

Solides harmoniques

Peierls 30s: mais l'ordre orientationnel est possible à T>0

Considérons un cristal constitué d'atomes reliés $\tilde{\mathbf{A}}$ leurs plus proches voisins par des ressorts de Hooke. À température finie T, les positions atomiques, \mathbf{r}_i , fluctuent, $\mathbf{r}_i = \mathbf{R}_i + \mathbf{u}_i$, où \mathbf{u}_i représente le déplacement local à partir d'un site régulier du réseau situé en \mathbf{R}_i .



Dashed: réseau parfait R_i Gray: positions réelles r_i

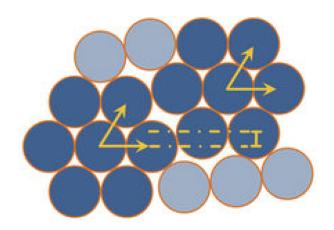
L'ordre positionnel à longue portée subsiste-t-il à température finie?

oui, même en d=2 parce que

$$C_{
m orient}(m{r}) \equiv \langle m{u}(m{r}) \cdot m{u}(m{0})
angle
ightarrow {
m cst}$$

Solides harmoniques

Il n'y a pas d'ordre de translations à longue portée mais il y a d'ordre d'orientation à longue portée



Les angles sont préservés tandis que l'ordre périodique ne l'est pas

Peut-on quantifier l'ordre d'orientation?

Observables

Ordre des positions

Densité

La densité locale

$$\rho(\boldsymbol{r}_0) = \sum_{i=1}^{\text{Box}(\boldsymbol{r}_0)} \delta(\boldsymbol{r}_0 - \boldsymbol{r}_i)$$

avec normalisation $\int d^d \mathbf{r}_0 \, \rho(\mathbf{r}_0) = N$.

La correlation densité-densité

$$C(\mathbf{r} + \mathbf{r}_0, \mathbf{r}_0) = \langle \rho(\mathbf{r} + \mathbf{r}_0) \rho(\mathbf{r}_0) \rangle$$

Homogène : indépendence d point de reference r_0

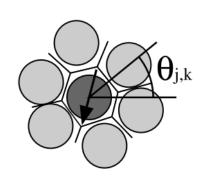
Isotropique : indépendence de l'angle de mesure $m{r}\mapsto |m{r}|=r$

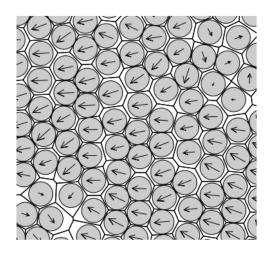
$$C(\boldsymbol{r} + \boldsymbol{r}_0, \boldsymbol{r}_0) = C(r)$$

Ordre d'orientation

Le paramètre d'ordre hexatique

Le paramètre d'ordre hexatique local
$$\psi_{6j}=\frac{1}{N_{\rm nn}^j}\sum_{k=1}^{N_{\rm nn}^j}e^{6{\rm i}\theta_{jk}}$$
 (Voronoï cells)





(Disques placés sur les noeuds d'un réseau triangulaire, chaque disque j a six voisins,

$$k=1,\ldots,N_{\mathrm{nn}}^{j}=6$$
, les angles sont $\Delta\theta_{jk}=\frac{2\pi}{6}$ et $\psi_{6j}=1$ if $\theta_{j1}=0$)

associe des fleches (directions) aux disques

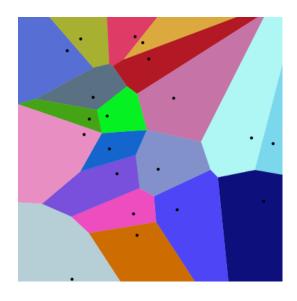
et mesure l'ordre d'orientation

Voisinage

Tessellation de Voronoï pour identifier les plus proches voisins

Un diagramme de Voronoï est induit par un ensemble de points, appelés sites, qui dans notre cas sont les centres des disques.

Le plan est divisé en faces, les régions qui sont plus proches d'un site.



Concentrons-nous sur la face vert clair au centre.

Tous les points de cette région sont plus proches du point qu'elle contient que de tout autre point du plan.

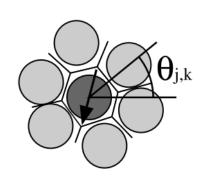
Cette région possède cinq cellules voisines dont elle est séparée par une arête.

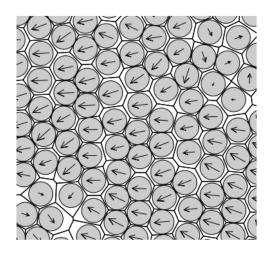
La zone grise possède six cellules voisines

Ordre d'orientation

Le paramètre d'ordre hexatique

Le paramètre d'ordre hexatique local
$$\psi_{6j}=\frac{1}{N_{\rm nn}^j}\sum_{k=1}^{N_{\rm nn}^j}e^{6{\rm i}\theta_{jk}}$$
 (Voronoï cells)





(Disques placés sur les noeuds d'un réseau triangulaire, chaque disque j a six voisins,

$$k=1,\ldots,N_{\mathrm{nn}}^{j}=6$$
, les angles sont $\Delta\theta_{jk}=\frac{2\pi}{6}$ et $\psi_{6j}=1$ if $\theta_{j1}=0$)

associe des fleches (directions) aux disques

et mesure l'ordre d'orientation

Observables

L'ordre Hexatique

Le paramètre d'ordre hexatique local

$$\psi_6(\boldsymbol{r}_0) \propto \sum_{j=1}^{\mathrm{Box}(\boldsymbol{r}_0)} \frac{1}{N_{\mathrm{nn}}} \sum_{k=1}^{N_{\mathrm{nn}}} e^{6\mathrm{i}\theta_{jk}}$$

La fonction de corrélation

$$G_6(\boldsymbol{r}_0 + \boldsymbol{r}, \boldsymbol{r}_0) = \langle \psi_6^*(\boldsymbol{r}_0 + \boldsymbol{r})\psi_6(\boldsymbol{r}_0) \rangle$$

Homogène : indépendence du point de reference $m{r}_0$

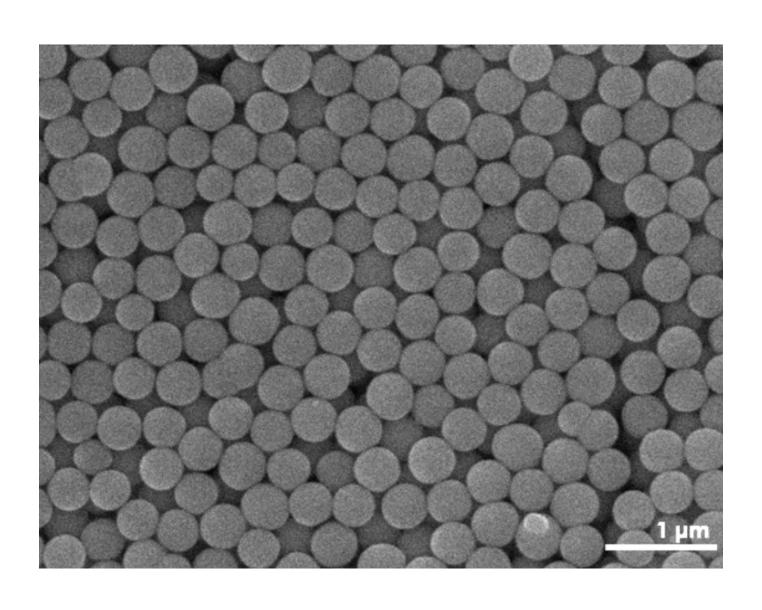
Isotropique : indépendence de l'angle de mesure $m{r}\mapsto |m{r}|=r$

$$G_6(\boldsymbol{r}_0 + \boldsymbol{r}, \boldsymbol{r}_0) = G_6(r)$$

Expériences

Suspension colloïdale

Expériences



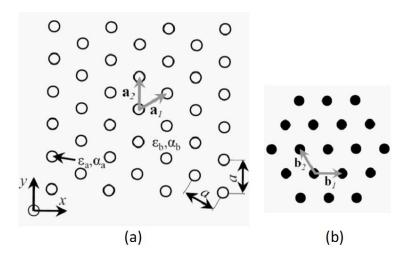
Test de l'ordre des positions

Facteur de structure

 r_i et r_j sont les positions des disques i et j et q est un vecteur d'onde.

$$S(\boldsymbol{q}) = \frac{1}{N} \sum_{ij} \langle e^{i\boldsymbol{q}\cdot(\boldsymbol{r}_i - \boldsymbol{r}_j)} \rangle$$

Visualisation: représentation sur le plan (q_x, q_y) des pics ponctuels.



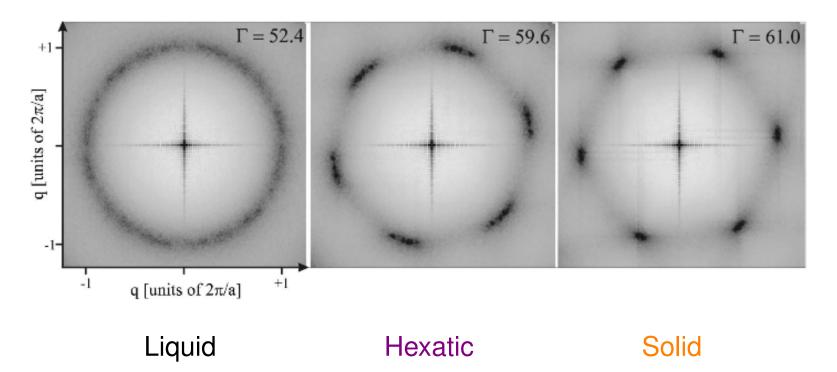
Suspensions colloïdales

Facteur de structure : des pics flous lorsque T diminue

$$S(\boldsymbol{q}) = \frac{1}{N} \sum_{ij} \langle e^{-i\boldsymbol{q}\cdot(\boldsymbol{r}_i - \boldsymbol{r}_j)} \rangle$$

High T low ϕ

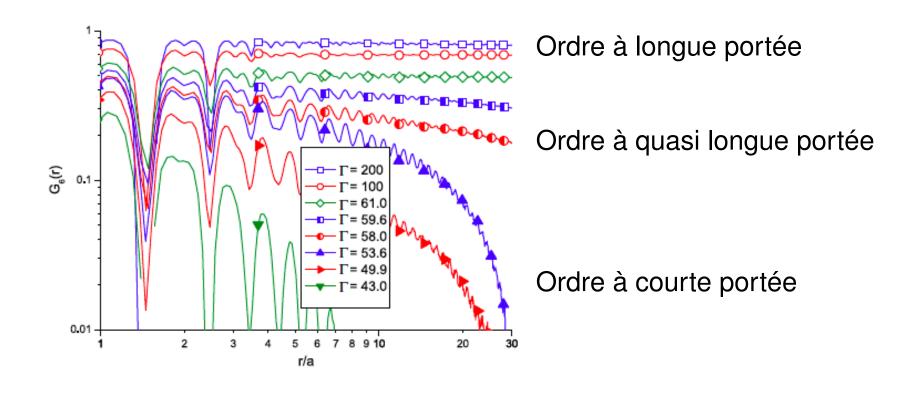
Low T high ϕ



Keim, Maret and von Grünberg, PRE 75, 031402 (2007)

Suspensions colloïdales

Corrélation hexatiques $G_6(r) = \langle \psi_6^*(\boldsymbol{r}) \psi_6(\boldsymbol{0}) \rangle$



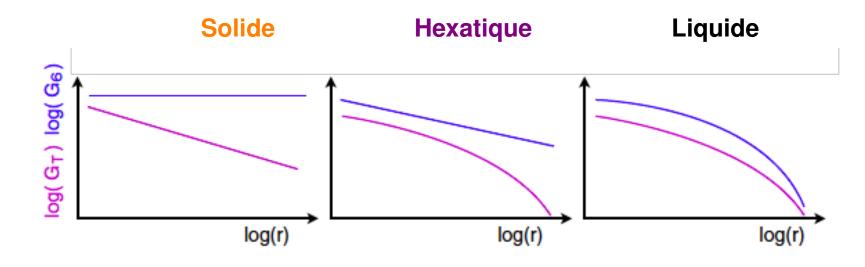
Keim, Maret & von Grünberg, PRE 75, 031402 (2007)

Corrélations & défauts

Hexatique

Positionnel

• 7 voisins • 5 voisins

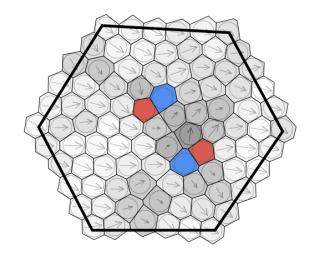


$$G(r) \approx \left\{ \begin{array}{ll} {\rm ct} & r^{-\eta} & {\rm Solide} & {\rm long/quasi-long\ range\ order} \\ r^{-\eta_6} & e^{-r/\xi} & {\rm Hexatique} & {\rm quasi-long/short\ range\ order} \\ e^{-r/\xi_6} & e^{-r/\xi} & {\rm Liquide} & {\rm short/short\ range\ order\ - \ disorder} \end{array} \right.$$

Sketches Gasser 10

Défauts

Déliement des dislocations : du solide vers la phase hexatique



Une paire liée de dislocations

Une dislocation libre

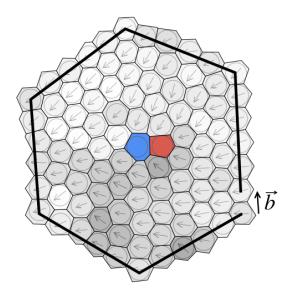
Dans le cristal, les centres des disques forment un réseau triangulaire.

Les disques blues ont sept voisins et les disques rouges ont cinq

Sur l'image de gauche : le contour extérieur se referme et forme un hexagone parfait. Les effets des défauts sont confinés. C'est la phase solide.

Défauts

Déliement des dislocations : du solide vers la phase hexatique



Une paire liée de dislocations

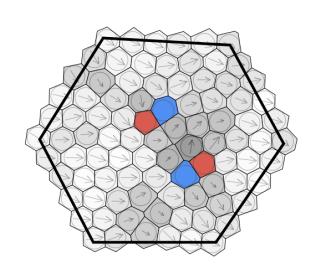
Une dislocation libre

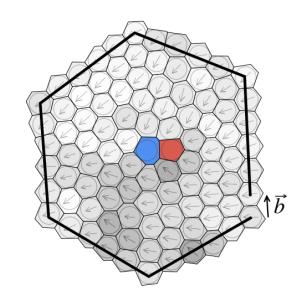
Dans le cristal, les centres des disques forment un réseau triangulaire Les disques bleus ont sept voisins et les disques rouges en ont cinq.

Sur l'image de droite : le contour extérieur ne forme pas un hexagone parfait. L'effet des défauts détruit l'ordre de translation : phase hexatique.

Défauts

Déliement des dislocations : du solide vers la phase hexatique





Une paire liée de dislocations

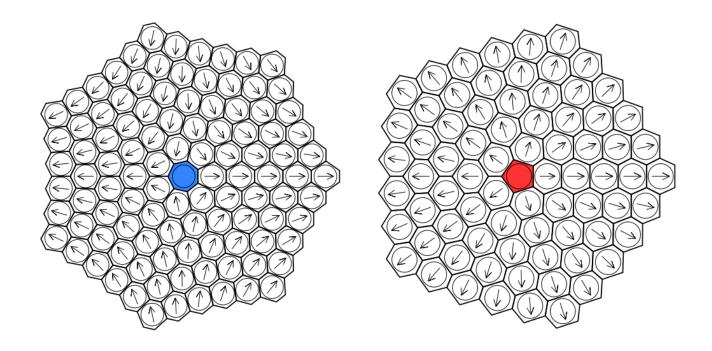
Une dislocation libre

Dans le cristal, les centres des disques forment un réseau triangulaire Les disques bleus ont sept voisins et les disques rouges en ont cinq.

Les flèches sont approximativement alignées dans les deux images. La phase hexatique conserve un ordre orientational à quasi longue portée.

Défauts

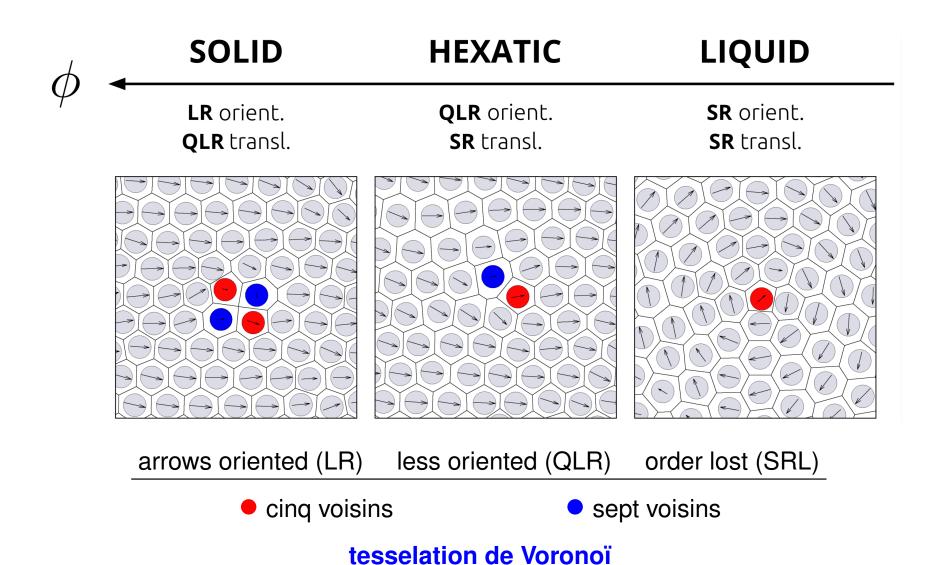
Déliement des disclinaisons : de la phase hexatique vers la phase liquide



L'orientation tourne de $\pm 2\pi$ autour des défauts **bleus** (sept) et **rouges** (cinq). Très similaire aux vortex dans le modèle magnétique 2d XY.

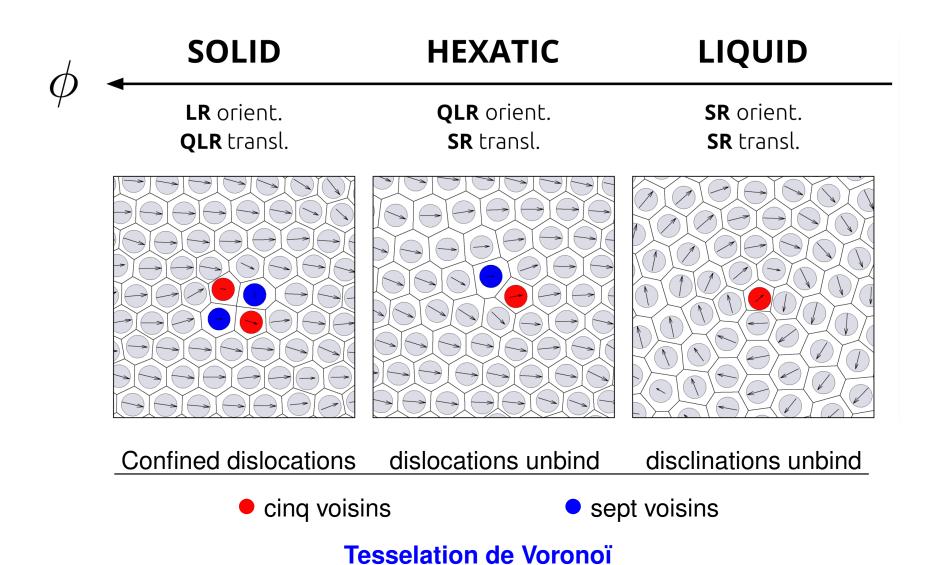
Scénario de Halperin, Nelson & Young : le déliement des disclinaisons provoque une seconde transition de type BKT vers le **liquide**.

Fusion



Fusion - défauts

Mécanismes



Physique Statistique

Trois acteurs importants

D. J. Thouless

J. M. Kosterlitz F. H. Haldane

Topologie défauts

Topologie défauts

Topologie défauts

Description théorique des transitions de phase en 2d

F. D. Haldane (Princeton), J. M. Kosterlitz (Brown) & D. J. Thouless (Seattle) - UK

Nobel 2016 "for theoretical discoveries of topological phase transitions and topological phases of matter"

Transitions de phase en 2d

Berezinskii, Kosterlitz, Thouless, Halperin, Nelson & Young 70s

	BKT-HNY	
Solide	QLR positionnel & LR orientationnel	
transition	BKT (déliement des dislocations)	
Hexatique	SR positionnel & QLR orientationnel	
transition	BKT (déliement des disclinations)	
Liquide	SR positionnel & orientationnel	

Longueur de corrélation $\xi \propto e^{\delta^{-\nu}}$ for $\delta = |\phi - \phi_c| \to 0$ transitions de **Berenzinskii**, **Kosterlitz & Thouless** Group de renormalisation $\nu_{\rm SH} \simeq 0.37$ and $\nu_{\rm HL} \simeq 0.5$

C'est ça?

Transitions de phase

BKT-HNY vs. un nouvel scénario

	BKT-HNY	BK
Solide	QLR pos & LR orient	QLR pos & LR orient
transition	BKT (déliement des dislocations)	ВКТ
Hexatique	SR pos & QLR orient	SR pos & QLR orient
transition	BKT (déliement des disclinations)	1er ordre
Liquide	SR pos & orient	SR pos & orient

Les phases sont les mêmes, mais la transition hexatique-liquide est différente, permettant la coexistence des deux phases

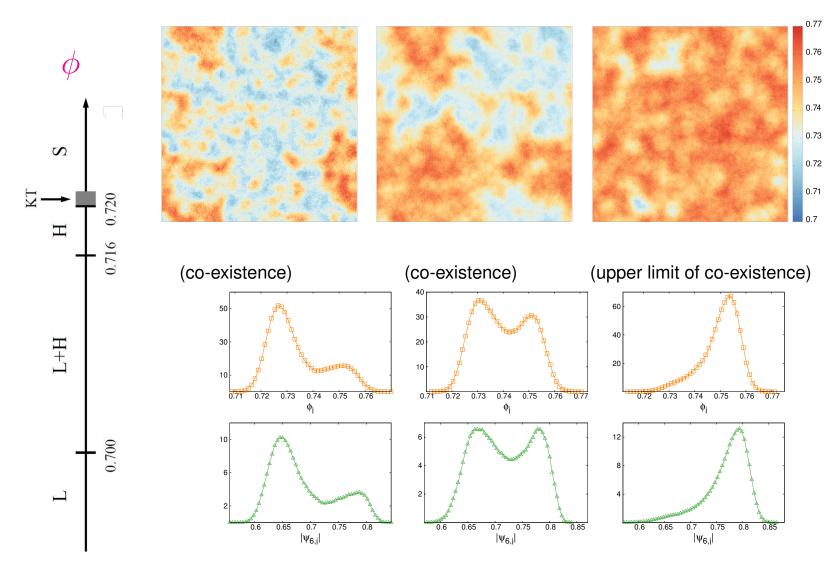
Bernard & Krauth, Phys. Rev. Lett. 107, 155704 (2011)

Event driven MC simulations

Simulations numériques

Mesures locales

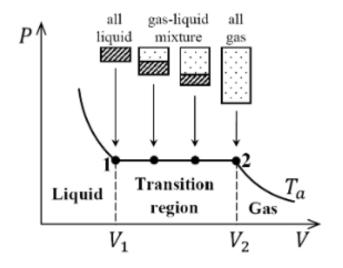
Co-existence, Densité & paramèter d'ordre hexatique

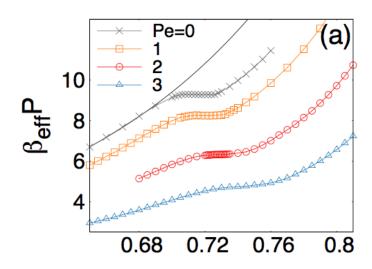


Liquid Hexatic

Equation d'état

Pression vs Volume

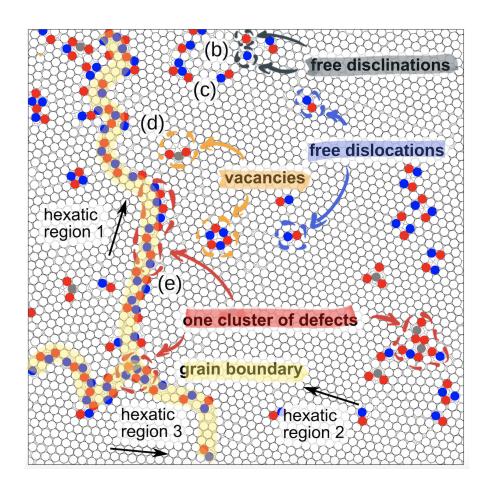




$$\Delta P = P - P_{\text{gas}} = -\frac{1}{4V} \sum_{i,j} \langle \nabla_i U(r_{ij}) \cdot (\mathbf{r}_i - \mathbf{r}_j) \rangle$$

Clusters de défauts

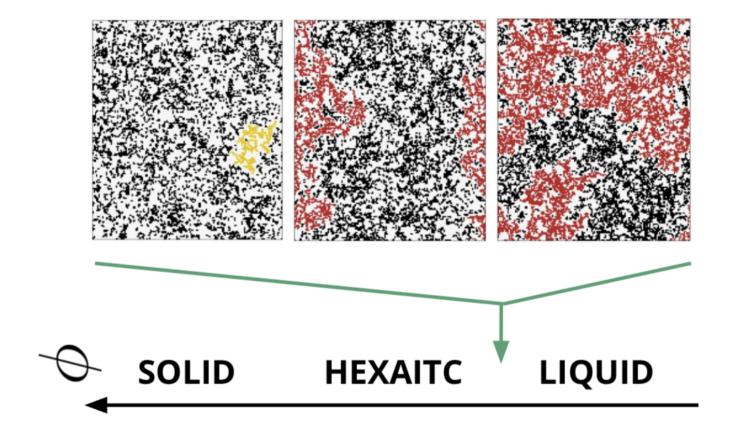
Proliferation dans la zone de transition hexatique-liquide



The classification in Pertsinidis & Ling, PRL 87, 098303 (2001)

Clusters de défauts

Percolation



Les clusters de défauts plus grands sont marqués en jaune et rouge

Percolation : le plus grand cluster traverse le système d'un bout à l'autre

Transitions de phase

BKT-HNY vs. un nouvel scénario

	BKT-HNY	BK
Solide	QLR pos & LR orient	QLR pos & LR orient
transition	BKT (déliement des dislocations)	BKT
Hexatique	SR pos & QLR orient	SR pos & QLR orient
transition	BKT (déliement des disclinations)	1er ordre
Liquide	SR pos & orient	SR pos & orient

Les phases sont les mêmes, mais la transition **hexatique-liquide** est différente, permettant la **coexistence des deux phases**

Event driven MC simulations - Dynamique moléculaire

La matière active

Active matter

Définition

La matière active est composée d'un grand nombre d'agents actifs, dont chacun consomme de l'énergie afin de se déplacer ou d'exercer des forces mécaniques.

En raison de cette consommation d'énergie, ces systèmes sont intrinsèquement hors d'équilibre thermique.

Injection d'énergie uniforme à l'intérieur des échantillons (et non depuis les bords).

Le couplage avec l'environnement (le bain) permet la dissipation de l'énergie injectée.

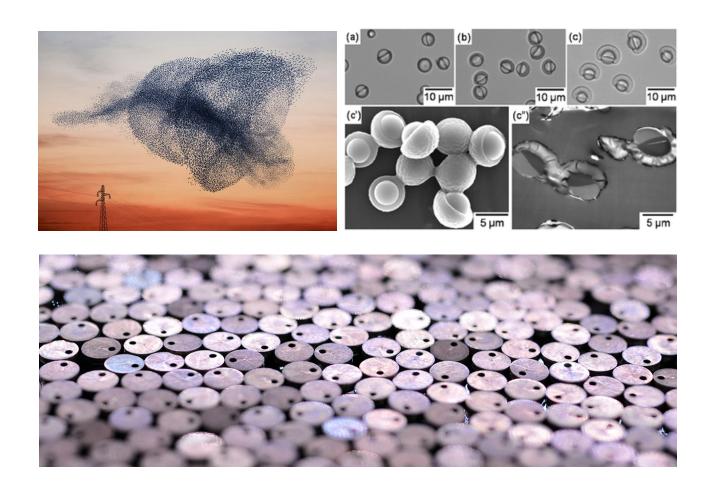
Active matter

Realisations & modelling

- Large gamme d'échelles! : du macroscopique au microscopique
 Exemples naturels : les oiseaux, les poissons, les cellules et les bactéries.
- Réalisations artificielles : particules de Janus, milieux granulaires, etc.
- \bullet 3d, 2d et 1d.
- Modélisation : du très détaillé aux modèles schématiques.
 - microscopique ou ab initio, centrée sur le mécanisme actif,
 - mésoscopique, des forces ne dérivant pas d'un potentiel,
 - Automates cellulaires, comme dans le modèle de Vicsek.

Active matter

Systèmes naturels et artificiels



Expéeriences & observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna, et al. Roma, di Leonardo et al. Roma, Dauchot et al. Paris, e.g. en Europe

Le modèle standard

Active Brownian disks

Le modèle standard

Force active \mathbf{F}_{act} selon la direction fluctuante $\mathbf{n}_i = (\cos \theta_i(t), \sin \theta_i(t))$

$$m\ddot{\mathbf{r}}_i + \gamma\dot{\mathbf{r}}_i = F_{\mathrm{act}}\mathbf{n}_i - \nabla_i \sum_{j(\neq i)} U_{\mathrm{Mie}}(r_{ij}) + \boldsymbol{\xi}_i , \qquad \dot{\theta}_i = \eta_i ,$$

 $m{r}_i$ position du centre de la part i & $r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|$ distance inter-part,

potential d'interaction
$$U_{\rm Mie} \approx (\frac{r}{\sigma})^{-2n} - (\frac{r}{\sigma})^{-n}$$

Bruit Gaussian avec $\xi_i^a \propto \sqrt{2\gamma k_B T}$ and $\eta_i \propto \sqrt{2D_{ heta}}$

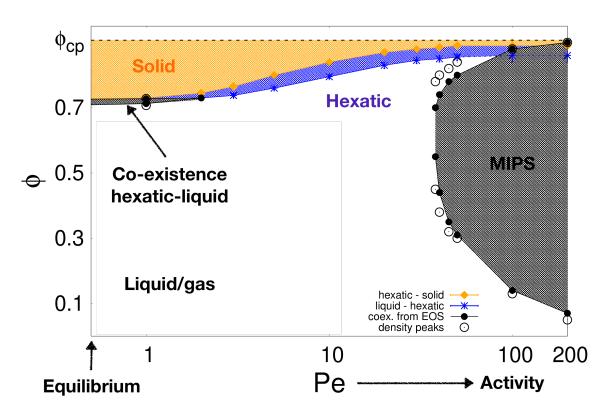
Echelle temporelle $\tau_p=D_{\theta}^{-1}$ avec $D_{\theta}=3k_BT/(\gamma\sigma_d^2)$ crossover entre mouvement ballistic et diffusif (\approx persistent random walk)

Péclet number Pe = $F_{\rm act}\sigma_d/(k_BT)$ fraction d'empilement $\phi=\pi\sigma_d^2N/(4S)$

Bialké, Speck & Löwen, PRL 108, 168301 (2012). Fily & Marchetti, PRL 108, 235702 (2012).

Active Brownian disks

Phase diagram hexatic, liquid, co-existence and MIPS



Gray zone at high Pe

Motility induced

phase separation (MIPS)

gas & dense

Cates & Tailleur Ann. Rev. CM 6, 219 (2015) Farage, Krinninger & Brader PRE 91, 042310 (2015)

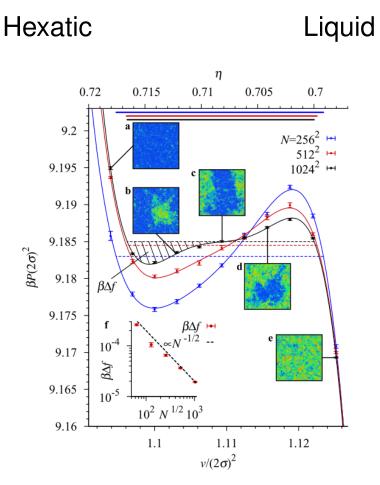
Pressure $P(\phi, \text{Pe})$ (EOS), correlations $G_T(r)$, $G_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Un comportement très riche!

Hard disks in two dimensions

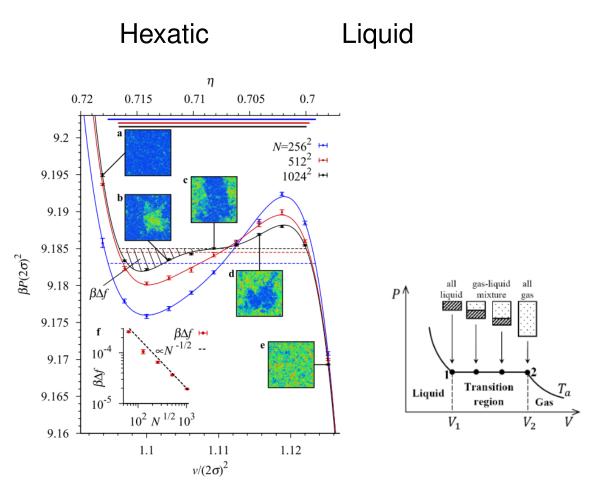
Pressure loop and finite N dependence



A system with PBCs has a \sim flat interface with surface energy scaling as $S\simeq L^{d-1}=\sqrt{N}$ and $f\simeq N^{-1/2}$. Verified in the inset for $\phi\simeq 0.708$

Hard disks

Pressure loop and finite N dependence: evidence for 1st order



Similar to Van der Waals model for 1st order phase transitions

 ${\it P}$ cannot increase with ${\it V}$ (stability): phase separation ${\it via}$ Maxwell construction

Active disks

Solid, hexatic, liquid & MIPS

