Active Matter in two dimensions

Leticia F. Cugliandolo

Sorbonne Université Institut Universitaire de France

leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/~leticia

Work in collaboration with

- C. Caporusso, G. Gonnella, P. Digregorio, G. Negro & I. Petrelli (Bari)
- L. Carenza (Bari & Istanbul)
- **A. Suma** (Trieste, Philadelphia & Bari)
- D. Levis & I. Pagonabarraga (Barcelona & Lausanne)

2d Active Matter

Goal

To understand the collective behavior of **bidimensional active matter**

from the statistical physics viewpoint

with the help of massive numerical simulations

and some analytic arguments

Active Brownian Matter

Questions – à la Statistical Physics – on bidimensional systems

- Activity (Pe) packing fraction (ϕ) phase diagram.
- Order of, and mechanisms for, the phase transitions.
 - Correlations, fluctuations.
 - Topological defects.
- Motility Induced Phase Separation.
 - Internal structure of dense phase.
 - Mechanisms for growth of dense phase.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

2d Active Matter

Why two dimensions?

Melting in two dimensions is not fully understood

It poses a **theoretical** challenge

It is **experimentally** 'easier' than in three dimensions (...)

It is computationally lighter to simulate 2d systems than 3d ones

Manifold realisations of 2d active matter

Active Brownian Matter

Questions – à la Statistical Physics

- Activity (Pe) packing fraction (ϕ) phase diagram.
- Order of, and mechanisms for, the phase transitions.
 - Correlations, fluctuations.
 - Topological defects.
- Motility Induced Phase Separation.
 - Internal structure of dense phase.
 - Mechanisms for growth of dense phase.

• Influence of particle shape, *e.g.* **disks** *vs.* dumbbells.

Active Brownian Disks

(Overdamped) Langevin equations (the standard 2d model)

Active force $\mathbf{F}_{\mathrm{act}}$ along $\mathbf{n}_i = (\cos \theta_i, \sin \theta_i)$

$$m\ddot{\mathbf{r}}_i + \gamma \dot{\mathbf{r}}_i = F_{\text{act}} \mathbf{n}_i - \nabla_i \sum_{j(\neq i)} U_{\text{Mie}}(r_{ij}) + \boldsymbol{\xi}_i , \qquad \dot{\theta}_i = \eta_i ,$$

 \mathbf{r}_i position of *i*th particle & $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ inter-part distance,

 $U_{\rm Mie}$ short-range hardly repulsive Mie potential, over-damped limit $m/\gamma = 0.1$

$$\begin{split} &\xi \text{ and } \eta \text{ Gaussian noises with } \langle \xi_i^a(t) \rangle = \langle \eta_i(t) \rangle = 0 \\ &\langle \xi_i^a(t) \, \xi_j^b(t') \rangle = 2 \gamma k_B T \delta_{ij}^{ab} \delta(t-t') \text{ with } k_B T = 0.05, \text{ and } \langle \eta_i(t) \, \eta_j(t') \rangle = 2 D_\theta \delta_{ij} \delta(t-t') \\ &\text{Persistence time } \tau_p = D_\theta^{-1} = \gamma \sigma^2 / (3k_B T). \text{ Units of length } \sigma \text{ and energy } \varepsilon. \\ &\text{Péclet number Pe} = F_{\text{act}} \sigma / (k_B T) \text{ measures the activity and} \\ &\phi = \pi \sigma^2 N / (4S) \text{ the packing friction} \end{split}$$

Active Brownian disks

The typical motion of particles in interaction

The active force induces a persistent random motion due to $\langle \mathbf{F}_{act}(t) \cdot \mathbf{F}_{act}(t') \rangle \propto F_{act}^2 e^{-(t-t')/\tau_p}$ with $\tau_p = D_{\theta}^{-1} = \gamma \sigma^2 / 3k_B T$

Active Brownian disks

Questions – à la Statistical Physics

- Pe ϕ Phase diagram start from solid and dilute progressively.
- Order of, and mechanisms for, the phase transitions.
 - Correlations, fluctuations.
 - Topological defects.
- Motility Induced Phase Separation.
 - Internal structure of dense phase.
 - Mechanisms for growth of dense phase.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

Passive systems

the good old melting problem

Freezing/Melting

Two step route in passive \mbox{Pe} = 0 2d systems

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

Phases & transitions

2d passive Pe = 0 systems: BKT-HNY scenario

	BKT-HNY	
Solid	QLR pos & LR orient	
transition	ВКТ	
Hexatic	SR pos & QLR orient	
transition	BKT	
Liquid	SR pos & orient	

Standard scenario: two step melting with two 'infinite order' transitions driven by the unbinding of defects

BKT-HNY Berezinskii-Kosterlitz-Thouless Halperin-Nelson-Young 70s

Freezing/Melting - arrows

Hexatic (orientational) order parameter $\psi_{6j} = \frac{1}{nn_j} \sum_{k=1}^{nn_j} e^{i6\theta_{jk}}$

Correlations

Hexatic orientational Po

Positional density-density

Orientational	Positional	Phase	Kind of order
G_6	G_T		
ct	$r^{-\eta}$	Solid	long quasi-long range order
$r^{-\eta_6}$	$e^{-r/\xi}$	Hexatic	quasi-long short range order
e^{-r/ξ_6}	$e^{-r/\xi}$	Liquid	short short range

Phases & transitions

2d passive Pe = 0 systems: BKT-HNY *vs.* a new scenario

	BKT-HNY	BK	
Solid	QLR pos & LR orient	QLR pos & LR orient	
transition	BKT BKT		
Hexatic	SR pos & QLR orient	SR pos & QLR orient	
transition	BKT	BKT 1st order	
Liquid	SR pos & orient	SR pos & orient	

Basically, the phases are the same, but the hexatic-liquid transition is different,

allowing for **coexistence of the two phases** for **hard enough particles**

Event driven MC simulations. Bernard & Krauth PRL 107, 155704 (2011)

ABPs in the passive limit

Local density & local hexatic parameter

ABPs

how does the phase diagram

project into the Pe axis?

Phase Diagram

Solid, hexatic, liquid, co-existence and MIPS

Phases characterized by

— Translational correlations $C_{q_0}(r)$ & orientational order correlations $g_6(r)$

First order liquid - hexatic transition & co-existence at low Pe from

- Pressure $P(\phi, \text{Pe})$ (Equation of State EoS)
- Distributions of local densities ϕ_i and hexatic order parameter $|\psi_{6\,i}|$

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Phase Diagram

Solid, hexatic, liquid, co-existence and MIPS

KT-HNY solid-hexatic transition

1st order **hexatic**-liquid close to Pe = 0

until ${\rm Pe}\sim 2$

Different from BKTHN picture!

Pressure $P(\phi, \text{Pe})$ (EOS), correlations $C_{q_0}(r)$, $g_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$ defect identification & counting

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Mechanism for the transitions?

Unbinding of point-like topological defects?

Phases & transitions

2d passive Pe = 0 systems: BKT-HNY scenario

	BKT-HNY	
Solid	QLR pos & LR orient	
transition	BKT (unbinding of dislocations)	
Hexatic phase	SR pos & QLR orient	
transition	BKT (unbinding of disclinations)	
Liquid	SR pos & orient	

Standard scenario: two step melting with two 'infinite order' transitions driven by the unbinding of defects

BKT-HNY Berezinskii-Kosterlitz-Thouless Halperin-Nelson-Young 70s

BKT-HNY theory

Solid-hexatic transition & the emergence of the liquid

Exponential decrease of the number density of defects at the transition

coming from the disordered side $\phi
ightarrow \phi_c^-$

5

$$\rho_d \sim a \exp\left[-b \left(\frac{\phi_c}{\phi_c - \phi}\right)^{\nu}\right]$$
Disclination Dislocation

57

with $\nu = 0.37$ for dislocations at the **solid** - **hexatic** transition and $\nu = 0.5$ for disclinations at the **hexatic** - **liquid** transition

Mechanisms

Unbinding of dislocations & disclinations?

Dislocations ▼ unbind at the **solid** - **hexatic** transition as in BKT-HNY theory

$$\rho_{dislocations} \sim a \, \exp\left[-b \, \left(\frac{\phi_c}{\phi_c - \phi}\right)^{\nu}\right] \qquad \nu \sim 0.37 \ \forall \, \mathrm{Pe}$$

Disclinations I unbind when the **liquid** appears in the co-existence region

Digregorio et al. Soft Matter 18, 566 (22); experiments Han, Ha, Alsayed & Yodh, PRE 77, 041406 (08)

Topological defects

Summary of results

• Solid - hexatic à la BKT-HNY even quantitatively (ν value) and independently of the activity (Pe) Universality (with respect to ν)

• Hexatic - liquid very few disclinations and not even free

Breakdown of the BKT-HNY picture for all Pe (even zero)

- Close to, but in the liquid, **percolation** of *clusters of defects* with properties of uncorrelated critical percolation $(d_{\rm f}, \tau)$
- In MIPS, network of defects on top of the interfaces between hexatically ordered regions, interrupted by the gas bubbles in cavitation

Digregorio, Levis, Cugliandolo, Gonnella, Pagonabarraga, Soft Matter 18, 566 (2022)

Solid-hexatic driven by unbinding of dislocation For all Pe V **Universality? Hexatic-liquid Disclinations?**

Disclinations

At the hexatic - liquid transition ϕ_l at all Pe

dislocations disclinations

Very few disclinations, and always very close to other defects, so not free

Clusters of nn defected particles

Close to the hexatic - liquid transition

As soon as the liquid appears in co-existence, defects in clusters dominate

Clusters of nn defected particles

Percolation: the critical curve

Critical percolation with

fractal properties $d_{
m f} \sim 1.9$ and

corresponding algebraic size distribution $au \sim 2.05$

Coarse-grained Clusters

Percolation: the critical curve

fractal properties $d_{
m f} \sim 1.9$ and

Critical percolation with

corresponding algebraic size distribution $au \sim 2.05$

With some coarse-graining the **percolation curve** moves upward towards the **hexatic-liquid** critical one.

Some open issues

- Is the solid-hexatic transition trully universal?¹ Could ν be constant and not the other exponents?²
- For the liquid-hexatic transition, which are the critical clusters?
- why is there no difference between the clusters behavior at the first and continuous phase transitions?

Hard to go further with current numerical methods

¹Shi and Chaté, Phys. Rev. Lett. 131, 108301 (2023) : claims for non-universality of η ²Agrawal, LFC, Faoro, loffe & Picco, in preparation, on a totally different problem !

Active Brownian disks

Questions – à la Statistical Physics

- \bullet Pe ϕ Phase diagram start from solid and dilute progressively
- Order of, and mechanisms for, the phase transitions.
 - Correlations, fluctuations.
 - Topological defects.
- Motility Induced Phase Separation.
 - Internal structure of dense phase.
 - Mechanisms for growth of dense phase.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

Phase Diagram

Solid, hexatic, liquid, co-existence and MIPS

Motility induced phase separation (MIPS) gas & dense Cates & Tailleur Ann. Rev. CM 6, 219 (2015) Farage, Krinninger & Brader PRE 91, 042310 (2015)

Pressure $P(\phi, \text{Pe})$ (EOS), correlations $G_T(r)$, $G_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Motility Induced Phase Separation

The basic mechanism

Particles collide heads-on and cluster even in the absence of attractive forces

 $\rightarrow \textbf{blue 0} \qquad \qquad \leftarrow \textbf{red } \pi$

The colours indicate the direction along which the particles are pushed by the active force $m{F}_{
m act}$

MIPS

Local density distributions - dense & gas

The position of the peaks does not change while changing the global packing fraction ϕ but their relative height does. Transfer of mass from gas to **dense** component as ϕ increases

Is it just a conventional phase separation?

Similar to phase separation with percentage of system covered by dense and gas phases determined by a level rule?

The dense phase

Hexatic patches, defects, bubbles

Dense/dilute separation¹ For low packing fraction ϕ a single round droplet Growth² of clusters³ with a mosaic of hexatic orders³ with gas bubbles^{2,4,5} & defects⁶

¹Cates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)
 ²Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)
 ³Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023)
 ⁴Tjhung, Nardini & Cates, PRX 8, 031080 (2018)
 ⁵Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)
 ⁶Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)
Structure

Dynamic structure factor \Rightarrow growing length of dense component

 $k_{\rm I}(t) \propto R^{-1}(t)$

No sign of fractality here. Porod's law $S(k) \sim k^{-(d+1)}$ for compact domains with sharp interfaces

The growth law

Growing length of the dense component and regimes

In scaling regime $t^{1/3}$ like in Lifshitz-Slyozov-Wagner, scalar phase separation.

More about it & asymptotic value later

Local hexatic order

Growing length of the orientational order – regimes

 $R_H \sim t^{0.13}$ in the scaling regime and $R_H \rightarrow R_H^s \ll L$ Similar to pattern formation, e.g. Vega, Harrison, Angelescu, Trawick, Huse, Chaikin & Register, PRE 71, 061803 (2005)

Bubbles in cavitation

At the internal interfaces bubbles pop up

Bubbles appear and disappear at the interfaces between hexatic patches

Algebraic distribution of bubble sizes with a Pe-dependent exponential cut-off

Growth of the dense phase

Beyond what has been done: focus on the clusters

On the averaged scaling regime and the $t^{1/3}$: Redner, Hagan & Baskaran, PRL 110, 055701 (2013) Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014) Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)

Beyond?

Goal, answer the questions:

1. Is the growth like the one of **passive attractive particles**?

Ostwald ripening

2. Are there other mechanisms at work in the active case?

Cluster-cluster aggregation

Instantaneous configurations (DBSCAN)

Passive - attractive

The Mie potential is not truncated in the passive case \Rightarrow attractive Parameters are such that R(t) is the same in the two systems Colors in the zoomed box indicate orientational order

Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023)

Visual facts about the instantaneous configurations

Similarities

- Large variety of shapes and sizes (masses)

Co-existence of

small regular (dark blue) and large elongated (gray) clusters

Differences

- Rougher interfaces in active
- Homogeneous (passive) vs. heterogeneous (active) orientational order within the clusters

Cluster dynamics

Tracking of individual cluster motion - video

In red the center of mass trajectory

Active is much faster than passive

Visual facts about the cluster dynamics

In both cases, **Ostwald ripening** features

- small clusters evaporate
- gas particles attach to large clusters

In the active system

- clusters displace much more & sometimes aggregate
- they also break & recombine

like in diffusion limited cluster-cluster aggregation

Averaged mass

$$\overline{M} \equiv \frac{1}{N_c(t)} \sum_{\alpha=1}^{N_c(t)} M_\alpha(t) \sim t^{2/3}$$

Same three regimes as in R from the structure factor

Clusters' dynamics origin?

Mean Square Displacement: diffusion

Average over all clusters

 $\Delta_k^2(t, t_0) = [\mathbf{r}_{\text{c.o.m.}}^{(k)}(t) - \mathbf{r}_{\text{c.o.m.}}^{(k)}(t_0)]^2 \sim 2d D(M_k, \text{Pe}) (t - t_0)$

A sum of random forces yields $D\sim M^{-1}$ Passive tracer in a dilute active bath $D\sim R^{-1}\sim M^{-1/2}$ Solon & Horowitz (22) Passive & very heavy isolated active clusters $D\sim M^{-1}$

Scatter plots: small regular - large fractal

Data sampled in the scaling regime $t=10^3-10^5$ every 10^3 time steps

 $\overline{M}(t) = rac{1}{N_c(t)} \sum_{k=1}^{N_c(t)} M_k(t)$ and $N_c(t)$ the total number of clusters at time t

Cluster-cluster aggregation

Extended Smoluchowski argument

From $\overline{R}_g \sim t^{1/z}$ and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f(1 + \alpha) - (d - d_w)$

Regular clusters $M < \overline{M}$ Fractal clusters $M > \overline{M}$ $d_f = d = d_w = 2$ $d_f = 1.45, d = 2$ and $d_w \sim 2$ $\alpha = 0.5$ $\alpha = 0.5$ in the bulkz = 2(1+0.5) = 3z = 1.45(1+0.5) = 2.18 < 3

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

Regular vs fractal clusters

Radius of gyration and number

regular $z \gtrsim 3$ More Dominate

fractal z < 3 average $z = 1/0.31 \sim 3$ Less All

Results I on ABPs

We established the full phase diagram of ABPs solid, hexatic, liquid & MIPS

We clarified the role played by point-like (dislocations & disclinations) and clustered defects in passive & active 2d models.

In MIPS

Micro vs. macro: hexatic patches & bubbles

Results II on ABPs

Difference between

Passive

Active

growth

Ostwald ripening & cluster-cluster diffusive aggregation in active case cluster-cluster aggregation almost not present in passive

Co-existence of regular and fractal clusters in both cases

Heterogeneous orientational order in large active clusters only

Active Brownian disks

Questions – à la Statistical Physics

- \bullet Pe ϕ Phase diagram start from solid and dilute progressively
- Order of, and mechanisms for, the phase transitions.
 - Correlations, fluctuations.
 - Topological defects.
- Motility Induced Phase Separation.
 - Internal structure of dense phase.
 - Mechanisms for growth of dense phase.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

Active dumbbell

Diatomic molecule - toy model for bacteria

Escherichia coli Picture borrowed from the internet

A dumbbell

Active Dumbbells

e.g., a diatomic molecule or a dumbbell

Two spherical atoms with diameter $\sigma_{
m d}$ and mass $m_{
m d}$

Massless spring modelled by a finite extensible non-linear elastic (fene) force between the atoms $\mathbf{F}_{\text{fene}} = -\frac{k(r_i - r_j)}{1 - r_{ij}^2/r_0^2}$ with an additional repulsive contribution (WCA potential) to avoid atomic/colloidal overlapping (see next slides)

Langevin modeling of the interaction with the embedding fluid:

isotropic viscous forces, $-\gamma v_i$, and independent noises, ξ_i , on the beads.

Translational motion (centre of mass) Rotations due to effective torque applied by noise Vibrations due to the fene potential

Active Dumbbells

a dumbbell made of a colloid 1 and a colloid 2

$$m\ddot{\boldsymbol{r}}_{1} = -\gamma\dot{\boldsymbol{r}}_{1} + \mathbf{F}_{\text{pot}_{1}}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) + \mathbf{F}_{\text{act}} + \boldsymbol{\xi}_{1}$$
$$m\ddot{\boldsymbol{r}}_{2} = -\gamma\dot{\boldsymbol{r}}_{2} + \mathbf{F}_{\text{pot}_{2}}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) + \mathbf{F}_{\text{act}} + \boldsymbol{\xi}_{2}$$

with ${\bf F}_{\rm pot}={\bf F}_{\rm wca}+{\bf F}_{\rm fene}$, $V=V_{\rm wca}+V_{\rm fene}~$ hard and repulsive

$$V_{\text{wca}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = \begin{cases} V_{\text{LJ}}(r_{12}) - V_{LJ}(r_{c}) & r < r_{c} \\ 0 & r > r_{c} \end{cases}$$
$$V_{LJ}(r_{12}) = 4\epsilon \left[\left(\frac{\sigma}{r_{12}} \right)^{2n} - \left(\frac{\sigma}{r_{12}} \right)^{n} \right] & r_{c} = 2^{1/n} \sigma = \sigma_{d} \end{cases}$$

Active Dumbbells

a dumbbell made of a colloid 1 and a colloid 2

$$egin{array}{rl} m_{
m d} \ddot{m{r}}_1 &=& -\gamma \dot{m{r}}_1 + {f F}_{
m pot_1}(m{r}_1,m{r}_2) + {f F}_{
m act} + m{\xi}_1 \ m_{
m d} \ddot{m{r}}_2 &=& -\gamma \dot{m{r}}_2 + {f F}_{
m pot_2}(m{r}_1,m{r}_2) + {f F}_{
m act} + m{\xi}_2 \end{array}$$

with $\mathbf{F}_{\mathrm{pot}} = \mathbf{F}_{\mathrm{wca}} + \mathbf{F}_{\mathrm{fene}}$, $V = V_{\mathrm{wca}} + V_{\mathrm{fene}}$ and

 $\boldsymbol{\xi}_i$ independent Gaussian thermal noises acting on the two beads, zero average $\langle \xi_a^i(t) \rangle = 0$ and $\langle \xi_a^i(t) \xi_b^j(t') \rangle = 2 \gamma k_B T \, \delta_{ij} \delta_{ab} \, \delta(t - t')$.

i, j = 1, 2 bead labels, $a, b = 1, \ldots, d$ coordinate labels

Beyond disks

Phase diagrams & plenty of interesting facts

AB Disks

AB Dumbbells

LFC, Digregorio, Gonnella & Suma, Phys. Rev. Lett. 119, 268002 (2017)

ABPs vs. ABDs

Hexatic order & Correlations

Digregorio, Levis, Suma, LFC, Gonnella, Pagonabarraga, J. Phys. C : Conf. Ser. 1163, 012073 (2019)

ABPs vs. ABDs

Growth of dense phases both at Pe = 100 and 50 :50

Caporusso, LFC, Digregorio, Gonnella & Suma, Soft Matter (2024)

Active Brownian Dumbbells

Growth of the hexatic order

Video

Much faster growth than for ABPs

Full order is reached

No bubbles

Caporusso, LFC, Digregorio, Gonnella & Suma, Soft Matter (2024)

Active Brownian Dumbbells

Motion of isolated dumbbell clusters

time

- Instability of clusters with multi-orientational order : they break up along the hexatic interfaces
- The center of mass (c.o.m.) of each cluster α rotates with constant angular velocity ω_{α}
- The clusters rotate around their c.o.m. with the same angular velocity ω_{α}

Torque

Solid body motion

Active Brownian Dumbbells

Motion of isolated dumbbell clusters video

Active Dumbbell clusters

Trajectories

$$r = MR_g \frac{F_{\rm act}^{\perp}}{T_{\rm act}}$$

The radius of the c.o.m. trajectory

Trajectories in the bulk

Non-vanishing : active torque $T_{\rm act}$ & force $F_{\rm act}$

Rotation instead of ABP diffusion

Video

Caporusso, LFC, Digregorio, Gonnella & Suma, Soft Matter (2024)

Results III ABPs vs ABDs

AB Disks

AB Dumbbells

diffusion

rotations

Extras

Cluster-cluster aggregation

Extended Smoluchowski argument

From $\overline{R}_g \sim t^{1/z}$ and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f(1 + \alpha) - (d - d_w)$

Regular clusters $M < \overline{M}$ Fractal clusters $M > \overline{M}$ $d_f = d = d_w = 2$ $d_f = 1.45, d = 2$ and $d_w \sim 2$ $\alpha = 0.5$ if, instead, $\alpha = 1$ z = 2(1 + 0.5) = 3 $z = 1.45(1 + 1) \sim 3$

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

Dislocations

At the solid-hexatic transition for all Pe $\nu = 0.37$ Universality

Four (ϕ_c , ν , a, b dotted) vs. three (ϕ_c , $\nu = 0.37$, a, b dashed) parameter fits on data in the hexatic & solid phases only. Criteria to support $\nu = 0.37$:

- $-\chi^2$ *Cfr.* Batrouni et al for 2dXY
- not crazy values for a, b but crazy values for ν if let to be fitted
- difference between ϕ_c and ϕ_h erased by coarse-graining

Interfaces

Clusters of defects – mostly along hexatic-hexatic interfaces

Zoom over the rectangular selection

Clusters of defects

Size distribution - Finite size cut-off

Independence of ϕ at fixed Pe within MIPS

 $n^* \sim 30, 50, 200$ in the solid, hexatic and MIPS, respectively, and $\tau \sim 2.2$