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Quantum computation
Some ideas

Basic units of information

classical (bit) quantum (qubit)

ni = 0, 1 |ψi〉= ai|0〉+bi|1〉 with |ai|2 + |bi|2 = 1 - advantage

but problems on the quantum side

Protection of quantum information

against coupling to environment

decoherence→ classical

Action with quantum gates

unitary transformations

continuum values→ dephasing
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Quantum encoding
Kitaev’s 2D toric quantum code & the stabilizer formalism

Kitaev’s 2D toric quantum code

Quantum information is encoded in the global topological properties of a

macroscopic state and can then be fully recovered using error correcting

codes up to a certain error rate, called accuracy threshold

A. Y. Kitaev 97

Quantum error correcting codes could be extensions of the classical repetition ones :
bit 0 copied 0 7→ 000 ;
transferred with, possibly, one error 010 ;
apply majority rule 010 7→ 0 ;
original bit recovered

The stabilizer code identifies

check operators to detect errors & correction operators to rectify them

D. Gottesman 97
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Encoding and error correction
Stabilizer method

A two state qubit |0〉 or |1〉

Susceptible to flip, e.g. σ̂x|0〉= |1〉, and phase, e.g. σ̂z|1〉=−|1〉, errors

A code is a joint state of n qubits, e.g. |0〉⊗ |0〉⊗ |1〉⊗ |0〉⊗ · · ·⊗ |1〉︸ ︷︷ ︸
n

n︷ ︸︸ ︷
σ̂x⊗ σ̂z⊗ σ̂x⊗·· ·⊗ σ̂z is an example of operator acting on an n qubit state

The stabilizer operators {P̂α} form a group and leave the basis set of a code

{|ψa〉} invariant : P̂α|ψa〉= |ψa〉 for all α,a

Quantum information can be stored in |ψa〉 or superpositions |ψ〉

Take an error operator Ê such that Ê|ψ〉= |ψ ′〉 6= |ψ〉
it anti-commutes with any P̂α, ÊP̂α =−ÊP̂α, and P̂α|ψ′ 〉=−|ψ′ 〉

4



Quantum Toric Codes
Definition

Call |ψi〉= ai|1〉+bi|0〉 the state of the ith qu-bit

Place the qu-bits on the links of a square lattice defined on a 2d surface with

non trivial topology, e.g. a torus

The state of the n = L2 qu-bits is |ψ〉=
n
∏
i=1
⊗|ψi〉

Local check/stabilizer operators P̂α : tensor product of four Pauli operators

acting on the four selected qu-bits on a plaquette or link,⊗ I on all other

Ôp = ∏
i∈p
⊗ σ̂

z
i Ôv = ∏

i∈v
⊗ σ̂x

i

They all commute

can be diagonalized simultaneously
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Quantum Toric Codes
Storing information

Hamiltonian

Ĥ =−J ∑
p

Ôp− J ∑
v

Ôv

Model defined on a torus

ground state manifold dim 4

trivial GS Ôp,v|GS〉=+1|GS〉 for all p,v

a loop of “reversed” links in one or the other direction

a double loop winding in both directions of this kind

Excitations created by string operators - anyons

Ground states protected against local perturbation
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Quantum Toric Codes
Errors

An error occurs (on a link) or a set of errors (on a path)

a pair of defects (on the attached vertices) nucleate

To correct it/them

act with operators along a “recovery chain” bounded by the two defects

(Like bringing together the two defects and letting them annihilate)

If the closed loop of both the error chain and the recovery chain is

homologically trivial

⇒ correction is possible

homologically nontrivial

⇒ correction is not possible
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Quantum Toric Codes
Errors assumed to be stochastic and independent

They appear independently on different sites, those created by σ̂x and σ̂z are

equally likely and have probability p

The probability that the measured syndrome bit is faulty is q

horizontal (space) :

bit-flip or bit-phase errors p
vertical (time) :

measurement errors q

From the statistics of these lines and the ones used to correct the errors : map-

ping to canonical equilibrium of classical statistical physics disordered

models
E. Dennis, A. Y. Kitaev, A. Landahl & J. Preskill 02
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Limits to correction
Mapping to classical models

Qubit (flip & phase) error

2D±J spin-glass

H =−1
2 ∑
〈i j〉

Ji jσiσ j

P(Ji j) = pδJi j ,−J +(1− p)δJi j ,J

Control parameters

βJ & error concentration p

one Nishimori relation

e−2βJ =
p

1− p

Qubit (flip & phase) and measurement errors

sequential measurements 7→ time

(2+1)D random plaquette gauge model

H =−∑
ph

Jph ∏
i∈ph

σi−∑
pv

Jpv ∏
i∈pv

σi

P(Jph ) = pδJph,−J +(1− p)δJph,J

P(Jpv ) = qδJpv,−K +(1−q)δJpv,K

βJ, βK & p (qubit) & q (meas) error prob

two Nishimori relations

e−2βJ =
p

1− p
e−2βK =

q
1−q
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Limits to correction
Accuracy thresholds

Qubit (flip & phase) error

2D±J spin-glass

Nishimori critical point

(pN ,TN(pN))

between FM and PM phases

Qubit (flip & phase) and measurement errors

(2+1)D random plaquette gauge model

Disordered Wegner 71 gauge model

if p = q⇒ (PN ,TN(pN))

confinement transition

E. Dennis, A. Y. Kitaev, A. Landahl & J. Preskill 02
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Plan
Statistical physics perspective

— The±J 2D Ising Model

The equilibrium phase diagram revisited

Nishimori curve & critical behaviour

Out of equilibrium critical dynamics - Universality? CFT ?

Space-time correlations & winding angle, short-time dynamics

— The pure 3D Gauge Model

The equilibrium phase diagram revisited

Fortuin-Kasteleyn clusters & geometric loops

Out of equilibrium critical dynamics

— The±J and±K 3D Gauge Model

The equilibrium phase diagram revisited

Out of equilibrium critical dynamics
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±J 2d Ising Model
Definition

H =−1
2 ∑
〈i j〉

Ji j sis j

si =±1
Ji j =±J quenched randomness

P(Ji j) = p δJi j,−J︸ ︷︷ ︸
AF

+(1− p) δJi j,J︸︷︷︸
FM

[Ji j] = (1−2p)J

[J2
i j] = J2

p controls the level of frustration

p = 0 Ferromagnetic Ising Model

p = 1/2 (unbiased) Ising Spin-Glass

p = 1 Anti-Ferromagnetic Ising Model

symmetry p↔ 1− p
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Effects of disorder
Results for weak disorder

– Does disorder kill the ordered phase? no, but Tc(p)↘ for p↗ expected

– Effect on the phase transition

Harris Criterium : the randomness is relevant (irrelevant) if the specific heat

exponent α of the pure (p = 0) model is positive (negative)

A. B. Harris, J. Phys. C7, 1671 (1974) but for the 2d Ising Model α = 0

– Conformal field theory in 2d ?

The n = 0 Gross-Neveu model (for not too large p, see below)

Vik. S. Dotsenko & Vl. S. Dotsenko, Sov. Phys. JETP Lett. 33, 37 (1981)

– Do critical exponents change?

No, close to TIs Vl. S. Dotsenko, M. Picco & P. Pujol, Nucl. Phys. 455, 701 (1995)
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±J 2d Ising Model
The equilibrium phase diagram (J = 1)

Second order phase transition between FM & PM phases

(TIs = 2.27, p = 0) L. Onsager, Phys. Rev. 65, 117 (1944)

Ferro

Para

Spin glass

N

<

<

<

<

0 p0

TIs

p

T

Paramagnetic phase

Ferromagnetic phase
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±J 2d Ising Model
The equilibrium phase diagram

Second order phase transition between FM & PM phases

(TIs = 2.27, p = 0)

Ferro

Para

Spin glass

N

<

<

<

<

0 p0

TIs

p

T

e−2βJ = p
1−p

dotted Nishimori line∗

enhanced symmetry properties

(TN = 0.95, pN = 0.109)

∗H. Nishimori, Prog. Theor. Phys. 66, 1169 (1981)
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The Nishimori line
Special features

Local gauge invariance : simultaneous spin and couplings transformation which

leave the functional form of H invariant but change P(Ji j)

On the Nishimori line e−2βJ = p
1−p : exact expression for [〈H 〉](p), etc.

The Nishimori line meets the FM-PM transition line at a tri-critical point (pN ,TN)

Phase transition in the Kitaev’s quantum toric code

A. Yu. Kitaev, Russian Math. Surveys 52, 1191 (1997)

Below pN encoded information can be protected arbitrarily well

Above pN it cannot

p is the qu-bit (independent) error probability, in the limit of a large code block

E. Dennis, A. Kitaev, A. Landahl & J. Preskill, J. Math. Phys. 43, 4452 (2002)
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±J 2d Ising Model
The equilibrium phase diagram

TIs ≥ T > TN Disorder is marginally relevant⇒ (TIs, p = 0) PM-FM Ising criticality

Vik. Dotsenko and Vl. Dotsenko, Adv. Phys. 32, 129 (1983)

M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech. P09006 (2006)

Ferro

Para

Spin glass

N

<
<

<

<

0 p0

TIs

p

T

e−2βJ = p
1−p

dotted Nishimori line∗

(T0 = 0, p0 = 0.103) (TN = 0.95, pN = 0.109)

0≤ T < TN Strong disorder⇒ (T0 = 0, p0) criticality and then T = 0 spin-glass

F. Parisen Toldin, A Pelisetto & E. Vicari, J Stat Phys 135, 1039 (2009)
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Critical points
Exponents & equilibrium universality classes

pc Tc ν η κ∗

0 TIs = 2.29 1 0.25 3 FM-PM Ising1

pN = 0.109 TN = 0.95 4/1.5 0.18 2.22 Bi-critical2

p0 = 0.103 T0 = 0 1.5 0.128 1.93 FM-SG3

p0 < p < 1− p0 TSG = 0 ∞ 0.14 2.1 SG-PM4

1L. Onsager, Phys. Rev. 65, 117 (1944)
∗O. Schramm, Isr. J. Math. 118, 221 (2000) J. Cardy, Ann. Phys. 318, 81 (2005)
2W. L. Mc Millan, PRB 29, 4026 (1984) M. Hasenbusch et al., PRE 77, 051115 (2008)
3F. Parisen Toldin, A. Pelissetto & E. Vicari, J. Stat. Phys 135, 1039 (2009)
4H. Katzgraber, L. W. Lee & I. A. Campbell, PRB 75, 014412 (2007)

J. Poulter & J. A. Blackman, Phys. Rev. B 72, 104422 (2005).

2−1/ν = (6−κ)/κ works at T > TN and also on the SG if κ = 2
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Is there a Conformal Field Theory for the N point?

At least, what is κ?

Consider single spin flip stochastic dynamics

Critical dynamics of the±J 2D Ising Model?

Dynamic Universality?
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2d FM Ising Model
p = 0 critical dynamics under single spin MC updates

Instantaneous quench to the Ising FM-PM critical point from Ti→ ∞

Progressive growth of critical structures

Typical length scale of critical patches growing algebraically

ξ(t)∼ t1/zc

Similar phenomenology expected on the full critical FM-PM line

How to measure zc ?
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Space-time correlations
of simultaneous fluctuations

C(r, t) = [〈si(t)s j(t)〉]− [〈si(t)〉][〈s j(t)〉] for ~ri−~r j = r

Scaling for the infinite size L→ ∞ system

C(r, t) = r−η f
(

r
ξ(t)

)
Effective dynamic exponent tends to Dynamic critical exponent

1
zeff(t)

=
d lnξ(t)

d ln t
⇒ zc = lim

t→∞
zeff(t)

zc = 2.17 at the p = 0 FM 2d case

from Monte Carlo numerical simulations, but also RG, high temperature

series expansions, damage spreading, etc
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Short-time dynamics
at a critical point

m2(t) =

[〈(
1
N

N
∑

i=1
si(t)

)2
〉]

for Rmin� ξ(t)� ξeq,L

Increase right after the quench from Ti→∞ with (similar to initial slip exponent)

m2(t)∼ tζ with ζ =
1
zc

(
d− 2β

ν

)
H. Janssen, B. Schaub & B. Schmittmann, Z. Phys. B Cond. Matt. 73, 539 (1989)

E. V. Albano et al., Rep. Prog. Phys. 74, 026501 (2011)
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Winding angle
Definition - critical curves

[〈θ2(r, t)〉]
si = 1

si =−1

In equilibrium at a critical point [〈θ2(r)〉] = c+
4κ

8+κ
ln
( r

a

)
d f = 1+κ/8 κ = 3 Critical Ising κ = 6 Critical percolation

Out of equilibrium [〈θ2(r, t)〉]∼ 4κ

8+κ
ln
(

r
ξd f(t)

)
Blanchard, LFC, Picco & Tartaglia, 2012-2018
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Winding angle
2d FM (p = 0) Ising Model quenched from Ti→ ∞ to TIs

Out of equilibrium [〈θ2(r, t)〉]∼ 4κ

8+κ
ln
(

r
ξd f(t)

)
α = d f /zc

κ = 6 & d f = 7/4 Critical percolation r > ξ(t)∼ t2.17 (t > tp)

κ = 3 & d f = 11/8 Critical Ising r < ξ(t)∼ t2.17

Blanchard, LFC & Picco, J. Stat. Mech. P05026 (2012)
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±J 2d Ising Model
More interesting simulation parameters

Second order phase transition between FM & PM phases

(TIs = 2.27, p = 0)

Ferro

Para

Spin glass

N (pN ,TN)
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2.26

p

T
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0

e−2βJ = p
1−p

dotted Nishimori line∗

enhanced symmetry properties

(T0 = 0, p0 = 0.103) (TN = 0.95, pN = 0.109)
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Results
Dynamic scaling of the space-time correlation⇒ ξ(t)?

T = TN η = 0.18

0 1 2 3 4 5

r/ξ(t)

0

0.2

0.4
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0.8
rη

C
(r

,t
)

t = 100
t = 500

t = 10
3

t = 10
4

t = 10
5

T = T
N
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Results
Pre-asymptotic dynamic critical exponent⇒ z−1

eff (t) = d lnξ(t)/d ln t

T < TN

T = TN

T > TN

T = TIs
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 = 0

Data-points

L = 1024
Solid lines

L = 128

No visible finite

size effects

FM-PM Ising critical point zc ∼ 2.17 OK

Then, disorder dependent dynamic critical exponent?

Should not be... usually exponents do not vary on critical lines
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Results
Decay from a magnetized initial condition M(t)∼ t−β/(νzc)

T > TN
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L = 4096

β/ν = 0.125 the Ising critical value and zc = 2.96 from the space-time correlation

Crossover at an L independent time tcross ∼ 104 presumably fixed by the disorder

strength p very weak drift zc↘ after tcross

It was still a pre-asymptotic zeff(t)
we expect it to converge to zc = 2.17, the critical Ising value

28



Results
Quenches from Ti→ ∞ to T

∀T r > ξ(t) κ = 6 Critical percolation

. . . . . . . . . . . . lines
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T = TIs T = TN T = Tc < TN

r < ξ(t) −−−−−− lines

κ = 3 κ = 2.2 κ = 1.93︸ ︷︷ ︸
Critical Ising CFT???
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Conclusions 2D±J IM
Hard to get strong quantitative results

– TN < T ≤ TIs static universality class of the Ising critical point

Most probably also the same dynamic universality class zc ∼ 2.17

– T = TN new dynamic & static universality classes zc ∼ 6 and κ∼ 2.2

– T0 ≤ T < TN strong disorder static universality class, zeff(t)→ ∞ but κ?

The low T dynamics are way

too slow to conclude

Agrawal, LFC, Faoro, Ioffe & Picco

Phys. Rev. E 108, 064131 (2023)

Universality with respect to lattice geometry,

disorder distribution, etc. : in preparation
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Plan
Statistical physics perspective

— The±J 2D Ising Model

The equilibrium phase diagram revisited

Nishimori curve & critical behaviour

Out of equilibrium critical dynamics - Universality ? CFT ?

Space-time correlations & winding angle, short-time dynamics

— The pure 3D Gauge Model

The equilibrium phase diagram revisited

Fortuin-Kasteleyn clusters & geometric loops

Out of equilibrium critical dynamics

— The disordered 3D Gauge Model

The equilibrium phase diagram revisited

Out of equilibrium critical dynamics
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Wegner’s Gauge Model
3D Ising Model 7→ Plaquette Model

Extension of Kramers-Wannier D = 2 duality to D > 2 J = 1

The cubic lattice IM is dual to a Z2 gauge-invariant IM on a cubic lattice :

the plaquette model with Ising spins on the links of a cubic lattice

H3DIM =− ∑
〈i j〉

sis j ↔ Hplaq =−∑
p
∏
i∈p

σi︸ ︷︷ ︸
flux Op

=−∑
p

Op

The partition functions transform as Wegner 71

Z 3DIM(β) ↔ Z plaq(β
∗)

(Tc = 4.51) − 1
2

ln tanhβ = β
∗

(T ∗c = 1.31)

high/low = low/high

Spins σi 7→ elements in group : Lattice Gauge Theory Kogut 79

Classical limit of Kitaev’s 03 Toric Code
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Wegner’s Gauge Model
Local gauge invariance

Two obvious T = 0 ground states σi = 1 or σi =−1 for all i ⇒ Op = 1

Local gauge invariance : reversal of the 6 spins connected to any vertex

σ1∈pσ2∈pσ3∈pσ4∈p 7→
(−σ1∈p)(−σ2∈p)σ3∈pσ4∈p

⇒ Macroscopic degeneracy of ground states

Extensive ground state entropy

No local order parameter lim
h→0
〈σi〉h = 0 Wegner 71, Elitzur 75

Excitations Op =−1 frustrated plaquettes magnetic ‘charges’ created in pairs

disorder the system and eventually lead to a continuous phase transition
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Wegner’s Gauge Model
Local gauge invariance and non-local order parameter

Two obvious T = 0 ground states σi = 1 or σi =−1 for all i ⇒ Op = 1

Local gauge invariance : reversal of the 6 spins connected to any vertex

σ1∈pσ2∈pσ3∈pσ4∈p 7→
(−σ1∈p)(−σ2∈p)σ3∈pσ4∈p

⇒ Macroscopic degeneracy of ground states

No local order parameter 〈σi〉= 0 but still a continuous phase transition

Gauge invariant non-local order parameter: average of the spin product along

any Wilson loop W` = ∏
i∈`

σi

〈W`=∂S〉= 〈∏
p in ∂S

Op〉 ∼

e−α(β)S high T

e−γ(β)` low T
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Wegner’s Gauge Model
Local gauge invariance and non-local order parameter

Two obvious T = 0 ground states σi = 1 or σi =−1 for all i ⇒ Op = 1

⇒ Macroscopic degeneracy of ground states

No local order parameter 〈σi〉= 0 but still a continuous phase transition

Gauge invariant non-local order parameter: average of the spin product along

a Wilson loop W` = ∏
i in`

σi
Gauge model

〈W`=∂S〉= 〈∏
p in ∂S

Op〉 ∼

e−α(β)S high T

e−γ(β)` low T

Topological phase

Ising disorder order

Ising model
3DIM universality class same critical exponents
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Wegner’s Gauge Model
Non-local order parameter

Px ≡ 〈 ∏
i∈Px

σi〉 on a Polyakov loop

that is a spanning Wilson loop, ` 6= ∂S

Gauge invariant non-local order parameter : the expectation value of a pro-

duct of spins along a Polyakov loop ` 6= ∂S

In {σ′i}, flip spins on the plane only

Hplaq({σi}) = Hplaq({σ′i})
Px({σi}) = −Px({σ′i})

One bit of information per ground state {σi}
Breaks a global Z2 symmetry

Robustness against external perturbations Poulin, Melko & Hastings 18
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Phase transition
Standard measurements

3D Ising Universality class

α = 0.11, β = 0.33, γ = 1.24, δ = 4.79, η = 0.04, ν = 0.63, ω = 0.83

Checks E. Kehl, H. Satz & B. Waltl, Nucl. Phys. B305 [FS23] (1988)
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Excitations
Flux loops

Frustrated plaquettes Op =−1 Threading fluxes - closed loops

A percolating and a finite size loop

Fig. from Hastings, Watson & Melko 13
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Do defect lines percolate at the thermodynamic critical tempe-

rature Tc ?

Yes, Hastings, Watson & Melko 13, Agrawal, LFC, Faoro, Ioffe & Picco 24

If Tp = Tc, do the geometric properties of defect loops capture

the critical exponents at Tc ?

No, Agrawal, LFC, Faoro, Ioffe & Picco 24

cfr. in the 2D Ising model the geometric clusters (excited droplets of parallel

spins) percolate at Tc but they do not have the properties of critical clusters

In the 3D Ising model the geometric clusters percolate at Tp < Tc

The (smaller) stochastic Fortuin-Kasteleyn clusters percolate at Tc and cap-

ture the thermodynamic critical properties of Ising models in all D.

Can Fortuin-Kasteleyn clusters be built and measure critical

exponents from them?

Seems so, Agrawal, LFC, Faoro, Ioffe & Picco, in progress
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Phase transition
Flux loops

Locate Tc
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Phase transition
Flux loops

At Tc ∼ 1.31

algebraic decay N(S) ∼ l−τ

measured τ∼ 2.7⇒
fractal dimension

D f =
D

τ−1
= 1.75

if τ = 5/2⇒ D f = 2

At T > Tc compare to these results

– l� L2 Gaussian statistics l−5/2

Flory 41, de Gennes 79 (polymers) Vachaspati & Vilenkin 84 (cosmology)

– l� L2 fully-packed loops large-scale statistics l−1

Nahum & Chalker 12 (statistical physics)

41



U(1) field theory in 3D
Number of vortex loops in equilibrium (fixed L, varying T )

L = c−2 |ψ̇|2 + iµ{ψ∗ψ̇− cc}− |∇ψ|2 +gρ|ψ|2− g
2 |ψ|4

Langevin dynamics −γψ̇ viscosity, η Gaussian normal noise

time-dependent complex Ginzburg-Landau, stochastic Goldstone µ→ 0 and Gross-Pitaevskii c→ ∞ model

for BECs close to the Mott insulator transition and in their gaseous phase

Low T

10−6

10−4

10−2

100

102

101 102 103 104 105

N
(S
)

l
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∝ l−1

High T

N(S)(l) Number of vortex loops with length l in a system with linear size L and pbc

Kobayashi & LFC 16
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Phase transition
Critical exponents from loop analysis

Crit. Ising

ν = 0.63

Crit. Ising

β/ν = 0.59

γ/ν = 1.96

do not scale

High-T Ising

β/ν = 1.27

γ/ν = 0.46

cfr. Winter, Janke & Schakel Phys. Rev. E 77, 061108 (2008)
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Phase transition
Critical exponents from Fortuin-Kasteleyn analysis

Critical Ising exponents ν = 0.63, β/ν = 0.59, γ/ν = 1.96 OK

Flux loops are shorten with a probabilistic prescription

In progress, to be checked and improved

cfr. R. Ben-Av, D. Kandel, E. Katzneison, P. G. Lauwers, and S. Solomon, J. Stat. Phys. 58, 1/2 (1990)
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Thermodynamic mapping between the 3DIM and the plaquette Gauge

Model (high/low T ) but no obvious relation between their stochastic

dynamics.

Value of zc in the gauge model with single spin flip dynamics?

Energy-energy & Polyakov loop time-delayed correlation functions fitted to

decay as e−t/τ in equilibrium

Ben-Av, Kandel, Katzneison, Lauwers & Solomon J. Stat. Phys. 58, 125 (1989)

zc ∼ 2.50±0.3

Kibble-Zurek scaling under annealing

Xu, Castelnovo, Melko, Chamon & Sandvik, PRB 97, 024432 (2018)

zc ∼ 2.70

Also in progress
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Conclusions 3D Gauge Model

– Standard measurements confirm 3D Ising criticality

– Flux loops percolate at Tc but their geometric and statistical properties

are non-trivial but do not capture the critical exponents

– FK clusters yield the critical exponents (to be improved)

– Dynamic critical exponent (to be measured)

– Disordered case, especially on Nishimori line (to be studied !)
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Appendices
Details
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U(1) field theory in 3d
Vorticity & reconnection conventions

2πvx = ∑plaq[∆θ]2π = 0,±1, . . . (6= 0 when the field turns around on a plaquette)

One field configuration with two possible line structures

Typical choices : maximal & stochastic reconnection rules

while just one choice in

Kajantie et al. 00, Bittner, Krinner & Janke 05, Kobayashi & LFC 16
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Codes
Definition

During the transmission of information, errors may occur

The aim is to minimize their number/strength

Idea, code the message and uncode it at the end
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Quantum Toric Codes
Definition

A qu-bit is a two-state quantum variable, |ψi〉= ai| ↑ 〉+bi| ↓ 〉
Flip errors, σ̂x| ↑↓ 〉= | ↓↑ 〉 & phase errors, σ̂z| ↑ 〉=±| ↑ 〉 occur

independently with probability p

Place qu-bits on the links of a square lattice defined on a 2d surface with non

trivial topology, e.g. a torus ∏
i
⊗|ψi〉

Check local operators : plaquette or link operators, tensor product of four Pauli

operators acting on the four qu-bits on the links times identities on all other links

Check operators commute

Measurements of check operators yield

+1 no error, or−1 error.
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Quantum Toric Codes
Definition

Stabilizer group G a set of n check operators which applied to a basis state of

the quantum error correction code have eigenvalue one, Pk|ψ j〉= |ψ j〉 for any

kth element in the group and any jth element of the basis. Abelian group

Particular case : product of σ̂x or product of σ̂z operators.

∏ of neighbouring plaquette operators : loop on the lattice.

∏ of neighbouring vertex operators : loop on the dual lattice.

Error operators E|ψ〉= |ψ′〉
String of flip errors on the lattice : vertex operators on the ends yield−1

Correction operators E ′ such that E ′E ∈ G

Another string with the same end points so as to close the loop
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Error correction
Optimal toric code decoder threshold

Call p the (independent) probability of a qu-bit error

What is the maximal p such that code can be corrected?

Probability of a string E ′ on the lattice that corrects another string of errors E

P(E ′) = (1− p)N
∏

k

(
p

1− p

)n′Ek
= e

β ∑
〈i j〉

Ji jsis j

Ji j =±J with probability 1− p, p and p/(1− p)≡ e−2βJ (Nishimori)

Have to study the sum over all paths E ′

Z = ∑
E ′/EE ′∈G

e
β ∑
〈i j〉

Ji jsis j

Mapping to the classical±J 2d Ising model on the Nishimori line

pN is the optimal decoding threshold
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Local Gauge invariance
Ising disordered spin models

Transform the Ising spins si =±1 into new Ising spins σi = ηi si =±1

Transform the couplings Ji j =±J into new ones Ji j = ηiη j Ji j =±J

with ηi =±1 so that η2
i = 1 for all i

The Hamiltonian of the system remains unchanged

H Ji j
[{σi}] =− ∑

〈i j〉
Ji j σiσ j =− ∑

〈i j〉
Ji j sis j = H Ji j [{si}]

but the distribution of couplings may change depending on the ηis

P(Ji j) 7→ P(Ji j)

Valid ∀ Ising models with two-body couplings on any lattice/graph
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The Nishimori line
Special features

The bimodal distribution of couplings can be rewritten as

P(Ji j) = (1− p)δJi j,J + pδJi j,−J =
eKp Ji j/J

2coshKp

with e2Kp ≡ 1− p
p

It transforms according to P(Ji j) 7→ P(Ji j) = ηiη j
eKpJi jηiη j/J

2coshKp

The Nishimori line is defined by βJ = Kp =
1
2 ln
(

1− p
p

)
with the limits p = 0,T = 0 and p = 1/2,T → ∞

Several exact results can be derived on the Nishimori line

(pN ,TN) is a multi-critical point, different from critical percolation
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Wegner’s Gauge Model
Gauge invariance and order parameter

Two obvious T = 0 ground states σi = 1 or σi =−1 for all i ⇒ AP = 1

Excitations AP =−1 akin to magnetic fluxes

Local gauge invariance : reversal of the 6 spins connected to a vertex

σ1∈Pσ2∈Pσ3∈Pσ4∈P 7→
(−σ1∈P)(−σ2∈P)σ3∈Pσ4∈P

Macroscopic degeneracy of ground states

No local order parameter 〈σi〉= 0 for all i but still a continuous phase transition

Topological transition between deconfined (low T ) to confined (high T ) phases

Same universality class as the 3DIM
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Random networks
Localization phenomena

Express the partition function as Z ∝ Tr∏
k

T̂k a product of transfer matrices

All T̂k are different since disorder-dependent, expressed in terms of σ̂x
i , σ̂

z
i

Use Jordan-Wigner transformation to introduce fermions, then transform them

to Dirac fermions (by doubling the model)

Network tight-binding Hamiltonian for free fermions with random hopping

paramagnet≡ insulator

ferromagnet≡ quantum Hall conductor
Localization problem

S. Cho and M. P. A. Fisher, PRB 55, 1025 (1997)

I. Gruzberg, N. Read, and A. Ludwig, PRB 63, 024404 (2001)

F. Merz and J. T. Chalker, PRB 65, 054425 (2002)
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±J 2d Ising Model
The equilibrium phase diagram

TIs ≥ T > TN Disorder is marginally relevant⇒ (TIs, p = 0) PM-FM Ising criticality

A. B. Harris, J. Phys. C : Sol. St. Phys. 7, 1671 (1974)

M. Picco, A. Honecker, and P. Pujol, J. Stat. Mech. P09006 (2006)

Ferro

Para

Spin glass

N

<

<

<

<

0 p0

TIs

p

T

e−2βJ = p
1−p

dotted Nishimori line∗

(T = 0, p0 < p < 1− p0) spin-glass

T. Jörg, J. Lukic, E. Marinari, and O. C. Martin, Phys. Rev. Lett. 96, 237205 (2006)

F. Parisen Toldin, A Pelisetto, and E. Vicari, Phys. Rev. E 82, 021106 (2010)
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Ultra slow dynamics at pN,TN
Quench from Ti = TIs to TN

A portion of the system

The overall structure changes very little over a long time span
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Results
Decay from a magnetized initial condition M(t)∼ t−β/(νzc)

T > TN

zc = 2.56 for p = 0.05

zc = 2.96 for p = 0.07

β/ν = 0.125 the Ising critical value and zc from the space-time correlation

tcross ∼ 7×103 for p = 0.05 < tcross ∼ 2×104 for p = 0.07

L independent tcross (being checked) drift zc↘ after tcross

For p = 0.05, zc has already reached 2.2 at t = 105 (not far from zc = 2.17)
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Self-correcting memories

A passive physical device that stores information robustly at finite T despite

fluctuations of its external parameters like magnetic field, pressure, etc

Symmetry broken finite-temperature phase, stable against perturbations

2DIM : stores two bits but they are not stable under a magnetic field

Many equivalent states to store many things

Mixing time grows with the system size

Probability that the system spontaneously transitions from one phase to ano-

ther, exponentially suppressed with the system size.

The Gibbs phase rule can be avoided in cases with non-local order parameters.

Poulin, Melko & Hastings 18
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Wegner’s Gauge Model
Loop representation : lines along • spins σi = 1

Spin configuration

Line configuration

T = 0 ground state T → ∞ state

Closed flux loops ? end points at frustrated plaquettes

Fig. from Greplova, Valenti, Boschung, Schäfer, Lörch & Huber 20
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