# Active Matter in two dimensions

### Leticia F. Cugliandolo

Sorbonne Université Institut Universitaire de France

# leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/~leticia

Work in collaboration with

- C. Caporusso, G. Gonnella, P. Digregorio, G. Negro & I. Petrelli (Bari)
- L. Carenza (Bari & Istanbul)
- A. Suma (Trieste, Philadelphia & Bari)
- D. Levis & I. Pagonabarraga (Barcelona & Lausanne)

#### Definition

Active matter is composed of large numbers of active "agents", which consume energy and thus move or exert mechanical forces.

Due to the energy consumption, these systems are intrinsically out of thermal equilibrium.

Homogeneous energy injection (not from the borders, *cfr.* shear).

Coupling to the environment (bath) allows for dissipation

### **Realisations & modelling**

• Wide range of scales: macroscopic to microscopic

Natural examples are birds, fish, cells, bacteria.

Artificial realisations are Janus particles, asymmetric grains, toys, etc.

- Embedding spaces in 3d, 2d and 1d.
- Modelling: very detailed to coarse-grained or schematic:
  - microscopic or *ab initio* with focus on active mechanism,
  - mesoscopic, just forces that do not derive from a potential,
  - Cellular automata like in the Vicsek model.

#### **Natural & artificial systems**



Experiments & observations **Bartolo et al.** Lyon, **Bocquet et al.** Paris, **Cavagna et al.** Roma, **di Leonardo et al.** Roma, **Dauchot et al.** Paris, just to mention some Europeans

### **Realisations & modelling**

• Wide range of scales: macroscopic to microscopic

Natural examples are birds, fish, cells, bacteria.

Artificial realisations are Janus particles, asymmetric grains, toys, etc.

- Embedding spaces in 3d, 2d and 1d.
- Modelling: very detailed to coarse-grained or schematic:
  - microscopic or *ab initio* with focus on active mechanism,
  - mesoscopic, just forces that do not derive from a potential,
  - Cellular automata like in the Vicsek model.

## Active Brownian Disks in 2d

#### (Overdamped) Langevin equations (the standard model)

Active force  $\mathbf{F}_{\mathrm{act}}$  along  $\mathbf{n}_i = (\cos \theta_i, \sin \theta_i)$ 



$$m\ddot{\mathbf{r}}_i + \gamma \dot{\mathbf{r}}_i = F_{\text{act}} \mathbf{n}_i - \nabla_i \sum_{j(\neq i)} U_{\text{Mie}}(r_{ij}) + \boldsymbol{\xi}_i , \qquad \dot{\boldsymbol{\theta}}_i = \eta_i ,$$

 $\mathbf{r}_i$  position of *i*th particle &  $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$  inter-part distance,

 $U_{
m Mie}$  short-range **repulsive** Mie potential, over-damped limit  $m\ll\gamma$ 

 $\xi$  and  $\eta$  zero-mean Gaussian noises with  $\langle \xi_i^a(t) \, \xi_j^b(t') \rangle = 2\gamma k_B T \delta_{ij}^{ab} \delta(t-t')$  and  $\langle \eta_i(t) \, \eta_j(t') \rangle = 2D_{\theta} \delta_{ij} \delta(t-t')$ The units of length, time and energy are given by  $\sigma$ ,  $\tau_p = D_{\theta}^{-1}$  and  $\varepsilon$   $D_{\theta} = 3k_B T/(\gamma \sigma^2)$  controls persistence,  $\gamma/m = 10$  and  $k_B T = 0.05$ Péclet number Pe =  $F_{act} \sigma/(k_B T)$  measures activity and  $\phi = \pi \sigma^2 N/(4S)$ 

#### The typical motion of particles in interaction



The active force induces a persistent random motion due to  $\langle \mathbf{F}_{\mathrm{act}}(t) \cdot \mathbf{F}_{\mathrm{act}}(t') \rangle \propto F_{\mathrm{act}}^2 e^{-(t-t')/\tau_p}$ with  $\tau_p = D_{\theta}^{-1}$ 

#### **Questions – à la Statistical Physics**

- Pe  $\phi$  Phase diagram
- Mechanisms for phase transitions.
  - Topological defects.
  - Dynamics across phase transitions.
- Motility Induced Phase Separation.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

### **Questions – à la Statistical Physics**

- Pe  $\phi$  Phase diagram start from solid and dilute
- Mechanisms for phase transitions.
  - Topological defects.
  - Dynamics across phase transitions.
- Motility Induced Phase Separation.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

### **Freezing/Melting**

### Two step route in passive Pe = 0.2d systems



Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

# Freezing/Melting - arrows

Hexatic (orientational) order parameter  $\psi_{6j} = \frac{1}{nn_j} \sum_{k=1}^{nn_j} e^{i6\theta_{jk}}$ 





### **Phase Diagram**

#### Solid, hexatic, liquid, co-existence and MIPS



First order liquid - hexatic transition & co-existence at low Pe from

- Pressure  $P(\phi, \mathsf{Pe})$ (EoS)
- Distributions of local densities  $\phi_i$  and hexatic order parameter  $|\psi_{6i}|$

Phases characterized by

- Translational correlations  $C_{q_0}(r)$  & orientational order correlations  $g_6(r)$ 

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

# Freezing/Melting - defects

### Mechanisms in $2d\ {\rm passive\ systems}$



Phase diagram with solid, hexatic, liquid, co-existence and MIPS



### **Different from BKTHN picture**

1st order **hexatic**-liquid close to Pe = 0

KT-HNY solid-hexatic dislocation unbinding

disclination unbinding in liquid

percolation of defect clusters in liquid

Pressure  $P(\phi, \text{Pe})$  (EOS), correlations  $C_{q_0}(r)$ ,  $g_6(r)$ , and distributions of  $\phi_i$ ,  $|\psi_{6i}|$  defect identification & counting

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018) Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

## **Topological defects**

#### **Summary of results**

• Solid - hexatic à la BKT-HNY even quantitatively ( $\nu$  value) and independently of the activity (Pe) Universality

• **Hexatic** - **liquid** very few disclinations and not even free Breakdown of the BKT-HNY picture for all Pe (even zero)

- Close to, but in the liquid, percolation of *clusters of defects* with properties of uncorrelated critical percolation ( $d_{\rm f}, \tau$ )
- In MIPS, network of defects on top of the interfaces between hexatically ordered regions, interrupted by the gas bubbles in cavitation

Digregorio, D Levis, LF Cugliandolo, G Gonnella, I Pagonabarraga, Soft Matter 18, 566 (2022)

### Mechanisms

#### **Unbinding of dislocations & disclinations?**



**Dislocations** ▼ unbind at the **solid** - **hexatic** transition as in BKT-HNY theory

$$\rho_{dislocations} \sim a \, \exp\left[-b \, \left(\frac{\phi_c}{\phi_c - \phi}\right)^{\nu}\right] \qquad \nu \sim 0.37 \ \forall \, \mathrm{Pe}$$

**Disclinations** I unbind when the **liquid** appears in the co-existence region

Digregorio et al. Soft Matter 18, 566 (22); experiments Han, Ha, Alsayed & Yodh, PRE 77, 041406 (08)

### **Disclinations**

#### At the hexatic - liquid transition $\phi_l$ at all Pe



dislocations disclinations

Very few disclinations, and always very close to other defects, so not free



#### **Close to the hexatic - liquid transition**



As soon as the liquid appears in co-existence, defects in clusters dominate

### **Clusters**

#### Percolation of defect clusters: the critical curve



Critical percolation with

fractal properties  $d_{
m f} \sim 1.9$  and

corresponding algebraic size distribution  $\tau\sim 2.05$ 

With some coarse-graining the percolation curve moves upward towards the

hextic-liquid critical one.

Do they coincide?

#### **Questions – à la Statistical Physics**

• Pe -  $\phi$  Phase diagram.

• Mechanisms for phase transitions.

- Topological defects.

- Dynamics across phase transitions.
- Motility Induced Phase Separation.

• Influence of particle shape, *e.g.* disks *vs.* dumbbells.

#### Phase diagram with solid, hexatic, liquid, co-existence and MIPS



Motility induced phase separation (MIPS) gas & dense Cates & Tailleur Ann. Rev. CM 6, 219 (2015) Farage, Krinninger & Brader PRE 91, 042310 (2015)

Pressure  $P(\phi, \text{Pe})$  (EOS), correlations  $G_T(r)$ ,  $G_6(r)$ , and distributions of  $\phi_i$ ,  $|\psi_{6i}|$ 

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

# **Motility Induced Phase Separation**

#### The basic mechanism



Particles collide heads-on and cluster even in the absence of attractive forces



 $\rightarrow \textbf{blue 0} \qquad \qquad \leftarrow \textbf{red } \pi$ 

The colours indicate the direction along which the particles are pushed by the active force  $m{F}_{
m act}$ 

### **MIPS**

#### **Particle orientation at the borders**



Zoom over left border  $\rightarrow 0$ 

### **MIPS**

#### **Particle orientation at the borders**



Zoom over **right border**  $\leftarrow \pi$ 

### **MIPS**

#### Local density distributions - dense & gas



The position of the peaks does not change while changing the global packing fraction  $\phi$  but their relative height does. Transfer of mass from gas to **dense** component as  $\phi$  increases



#### Is it just a conventional phase separation?



Similar to phase separation with percentage of system covered by dense and gas phases determined by a level rule?

### The dense phase

#### Hexatic patches, defects, bubbles



Dense/dilute separation<sup>1</sup> For low packing fraction  $\phi$ a single round droplet Growth<sup>2</sup> of clusters<sup>3</sup> with a mosaic of hexatic orders<sup>3</sup> with gas bubbles<sup>2,4,5</sup> & defects<sup>6</sup>

<sup>1</sup>Cates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)
<sup>2</sup>Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)
<sup>3</sup>Caporusso, Digregorio, LFC, Gonnella, Levis & Suma, PRL 131, 068201 (2023)
<sup>4</sup>Tjhung, Nardini & Cates, PRX 8, 031080 (2018)
<sup>5</sup>Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)
<sup>6</sup>Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

### Structure

#### Dynamic structure factor $\Rightarrow$ growing length of dense component



 $k_{\rm I}(t) \propto R^{-1}(t)$ 

No sign of fractality here. Porod's law  $S(k) \sim k^{-(d+1)}$  for compact domains with sharp interfaces

### The growth law

#### Growing length of the dense component and regimes



In scaling regime  $t^{1/3}$  like in Lifshitz-Slyozov-Wagner, scalar phase separation.

More about it & asymptotic value later

### Local hexatic order

#### **Growing length of the orientational order – regimes**



 $R_H \sim t^{0.13}$  in the scaling regime and  $R_H \rightarrow R_H^s \ll L$ Similar to pattern formation, e.g. Vega, Harrison, Angelescu, Trawick, Huse, Chaikin & Register, PRE 71 061803 (2005)

### **Bubbles in cavitation**

#### At the internal interfaces bubbles pop up



Bubbles appear and disappear at the interfaces between hexatic patches

Algebraic distribution of bubble sizes with a Pe-dependent exponential cut-off

### **Growth of the dense phase**

#### Scaling of the structure factor and growth regimes



In the scaling regime  $t^{1/3}$  like in Lifshitz-Slyozov-Wagner, scalar phase separation Ostwald ripening small cluster evaporate and large ones capture gas particles

but is it just that?

### **Growth of the dense phase**

#### Focus on the clusters



On the averaged scaling regime: Redner, Hagan & Baskaran, PRL 110, 055701 (2013) Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014) Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)





1. Is it like the one undergone by a system of **passive attractive particles**?



#### **Ostwald ripening**

2. Other **mechanisms** for the growth process?



**Cluster-cluster aggregation** 

### **Dense clusters**

#### **Instantaneous configurations (DBSCAN)**

#### **Passive**





**Active** 

The Mie potential is not truncated in the passive case  $\Rightarrow$  attractive

Parameters are such that R(t) is the same

Colors in the zoomed box indicate orientational order

Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023)

### **Dense clusters**

### Visual facts about the instantaneous configurations

#### **Similarities**

- Large variety of shapes and sizes (masses)

Co-existence of

small regular (dark blue) and large elongated (gray) clusters

#### **Differences**

- Rougher interfaces in active
- Homogeneous (passive) vs. heterogeneous (active) orientational order within the clusters

## **Cluster dynamics**

#### Tracking of individual cluster motion - video





#### In red the center of mass trajectory

Active is much faster than passive

### **Dense clusters**

#### **Visual facts about the cluster dynamics**

In both cases, **Ostwald ripening** features

- small clusters evaporate
- gas particles attach to large clusters

In the active system

- clusters displace much more & sometimes aggregate
- they also break & recombine

#### like in diffusion limited cluster-cluster aggregation

### **Dense clusters**

### Averaged mass $\overline{M}\equiv N_c^{-1}(t)\sum_{\alpha=1}^{N_c(t)}M_\alpha(t)\sim t^{2/3}$



Same three regimes as in R from the structure factor

**Clusters' dynamics origin?** 

### **Active cluster evolution**

#### **Mean Square Displacement: diffusion**

#### **Average over all clusters**





 $\Delta_k^2(t, t_0) = [\mathbf{r}_{\text{c.o.m.}}^{(k)}(t) - \mathbf{r}_{\text{c.o.m.}}^{(k)}(t_0)]^2 \sim 2d D(M_k, \text{Pe}) (t - t_0)$ 

A sum of random forces yields  $D \sim M^{-1}$ Passive tracer in a dilute active bath  $D \sim R^{-1} \sim M^{-1/2}$  Solon & Horowitz (22) Passive & very heavy isolated active clusters behave as  $D \sim M^{-1}$ 



#### Scatter plots: small regular - large fractal



Data sampled in the scaling regime  $t=10^3-10^5$  every  $10^3$  time steps

 $\overline{M}(t) = rac{1}{N_c(t)} \sum_{k=1}^{N_c(t)} M_k(t)$  and  $N_c(t)$  the total number of clusters at time t

### **Cluster-cluster aggregation**

#### **Extended Smoluchowski argument**

From  $\overline{R}_g \sim t^{1/z}$  and using  $D(M) \sim M^{-\alpha}$ Smoluchowski eq.  $\Rightarrow z = d_f(1 + \alpha) - (d - d_w)$ 

Regular clusters  $M < \overline{M}$ Fractal clusters  $M > \overline{M}$  $d_f = d = d_w = 2$  $d_f = 1.45, d = 2$  and  $d_w \sim 2$  $\alpha = 0.5$  $\alpha = 0.5$  in the bulkz = 2(1+0.5) = 3z = 1.45(1+0.5) = 2.18 < 3

**Reviews** on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

### **Regular vs fractal clusters**

#### **Radius of gyration and number**



fractal z < 3

Less

average  $z = 1/0.31 \sim 3$ 

All

regular  $z \gtrsim 3$ More Dominate

### **Results** I

We established the full phase diagram of ABPs solid, hexatic, liquid & MIPS





We clarified the role played by point-like (dislocations & disclinations) and clustered defects in passive & active 2d models.

In MIPS

Micro vs. macro: hexatic patches & bubbles



### **Results II**



Difference between

**Passive** 

**Active** 

growth

Ostwald ripening & cluster-cluster diffusive aggregation in active case cluster-cluster aggregation almost not present in passive

Co-existence of regular and fractal clusters

Heterogeneous orientational order in large active clusters

### **Beyond disks**

#### Phase diagrams & plenty of interesting facts



**Disks** 

**Dumbbells** 

LFC, Digregorio, Gonnella & Suma, Phys. Rev. Lett. 119, 268002 (2017)

### **Dumbbell clusters**

### **Trajectories**



The radius of the c.o.m. trajectory



Non-vanishing : active torque  $T_{act}$  & force  $F_{act}$ Rotation instead of ABP diffusion Video

Caporusso, Negro, Suma, Digregorio, Carenza, Digregorio, Gonnella & LFC, Soft Matter (2024)

Caporusso, LFC, Digregorio, Gonnella & Suma, in preparation

### **Extras**

### **Cluster-cluster aggregation**

#### **Extended Smoluchowski argument**

From  $\overline{R}_g \sim t^{1/z}$  and using  $D(M) \sim M^{-\alpha}$ Smoluchowski eq.  $\Rightarrow z = d_f(1 + \alpha) - (d - d_w)$ 

Regular clusters  $M < \overline{M}$ Fractal clusters  $M > \overline{M}$  $d_f = d = d_w = 2$  $d_f = 1.45, d = 2$  and  $d_w \sim 2$  $\alpha = 0.5$ if, instead,  $\alpha = 1$ z = 2(1 + 0.5) = 3 $z = 1.45(1 + 1) \sim 3$ 

**Reviews** on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)

### **Dislocations**

#### At the solid-hexatic transition for all Pe $\nu = 0.37$ Universality



Four ( $\phi_c$ ,  $\nu$ , a, b dotted) vs. three ( $\phi_c$ ,  $\nu = 0.37$ , a, b dashed) parameter fits on data in the hexatic & solid phases only. Criteria to support  $\nu = 0.37$ :

- $-\chi^2$  *Cfr.* Batrouni et al for 2dXY
- not crazy values for a, b but crazy values for  $\nu$  if let to be fitted
- difference between  $\phi_c$  and  $\phi_h$  erased by coarse-graining

### Interfaces

#### **Clusters of defects – mostly along hexatic-hexatic interfaces**



Zoom over the rectangular selection

### **Clusters of defects**

#### Size distribution - Finite size cut-off



Independence of  $\phi$  at fixed Pe within MIPS

 $n^* \sim 30, 50, 200$  in the solid, hexatic and MIPS, respectively, and  $\tau \sim 2.2$