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1 Introduction

I have undertaken a 9week internship at theHigh Energy and Theoretical Physics Laboratory (LPTHE) a
joint research unit of Sorbonne University (Pierre and Marie Curie Campus) and the Institute of Physics
(INP) of the National Center of Scientific Research (CNRS). LPTHE is composed of 19 CNRS researchers
and 10 teaching researchers divided into 4 groups: Mathematical Physics, Strings Branes & Fields, Parti-
cle Physics & Cosmology and Condensed Matter & Statistical Physics where I conducted my Internship.
My supervisor for this internship was Leticia F. Cugliandolo a professor and researcher at Sorbonne
University. I conducted my work on site at LPTHE for the duration of my internship hosted in an office
shared with other students. During my time in the lab I attended various seminars given by LPTHE
and visiting researchers on topics in and around my subject matter which I found very engaging. I also
participated in Monday tea break discussions and student talks hosted by the doctoral students at my
laboratory.
My internship was focused on stochastic processes andmore specifically a coupledmagneto-mechanical
system. I had not yet covered this subject in my studies and so the first part of my internship was com-
posed of self-studying the techniques needed to tackle the set system. This included learning about the
Langevin and the Fokker-Planck equations, stochastic calculus and path integrals. In addition, I nu-
merically integrated and simulated several model stochastic systems to learn about different numerical
methods and to check that my analytical derivations were correct.
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Figure 1: Illustration of standard Brownian motion

2 Topic

Physics can be said to be the study of interacting entities. Studying macroscopic phenomena using
physics can be difficult however, as we need to be able to take into account an unimaginable number
of said entities. The beauty of physics lies in the fact that one usually does not need more than a few
variables guided by simple laws to be able to effectively describe such systems. In most macroscopic
phenomenological models, one can easily integrate away an enormous number of degrees of freedom to
leave a simple deterministic description. However, in some cases, one needs to more carefully take into
account microscopic descriptions in order to effectively describe the system. These microscopic effects
are usually felt are as noises in the macroscopic domain arising from thermal or quantum fluctuations.
These systems have come to be called Stochastic Processes.
Historically, this domain was born through the attempt to explain Brownian motion Fig.1, the random
jittery motion experienced by a particle when placed in a liquid. This effect was first explained by
Einstein in his seminal 1905 paper [1] and later by Langevin in 1908 [2]. Usefully, one can use techniques
from Brownian motion to describe many different noisy systems. One such system is the dynamic
processional motion of the magnetisation M in a ferromagnet.

2.1 Magnetism

The ability to control magnetic materials is at the centre of information technologies today, and the
search for smaller, more efficient, storage devices has spurred both fundamental and applied investiga-
tions into this subject. The design of such materials relies on a thorough understanding how magneti-
sation is affected by external magnetic fields. Until now, most research has centred around spins placed
on fixed lattices, but recent advancements in smart devices has spurred investigation into magneto-
mechanical materials which can serve as efficient actuators and sensors [3]. These materials are highly
complex due to the interaction between the different degrees of freedom.
Magneto-mechanical effects can include applying stress to a material which cause the magnetic mo-
ments to rotate thus changing the overall magnetisation of the material and an applied field causing the
rotation of magnetic moments which causes a strain in the material. In addition to magneto-mechanical
effects one has to take into account dissipation and thermal fluctuations for sufficiently fine ferromag-
netic particles [4]. Such fluctuations are well described by following Langevin’s approach to Brownian
motion where the spin system is connected to a thermal bath in a canonical way. Accurate numerical
simulations of these effects are essential to test the underlying assumptions of theories and to interpret
and predict experimental observations.
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2.2 Landau-Lifshitz-Gilbert Equation

The standard Langevin equation describes well the dynamical degrees of freedom for such a system.
For the magnetic degrees of freedom, the time evolution of the magnetisation is explained phenomeno-
logically by the Landau-Lifshitz-Gilbert (LLG) equation (eq.4). To allow the equation to also describe
ferromagnetic nano-particles, thermal fluctuations were introduced by Brown [4]. This was done by
including an additional random magnetic field dependant on the temperature in a similar way to the
Langevin equation. Even though the interaction between spins is due to the overlap of the electronic
wave-functions, for most relevant cases, the macroscopic object can be modelled classically. Explicit
analytical solutions to the stochastic LLG (sLLG) equation are only available in a few select cases and
for most applied use cases numerical integration of this equation is required.

2.3 LAMMPS equations

LAMMPS is a molecular dynamics package that can be used to simulate magnetic nano-particles that
have coupled dynamics and spins. The differential equations used in this package are variations of La-
grangian and sLLG equations and are presented in a paper by Tranchida et al. [5] (eq.19). Recently, a
team in Argentina (F. Roma, E. Bringa and G. dos Santos) have been using LAMMPS to simulate various
systems but found certain anomalous results when using a high damping constant in the equations.
Most spin-lattice dynamics packages, including LAMMPS, depend on a spin temperature independent
of damping, however, the Argentinian team discovered that the equilibrium results (e.g. average mag-
netisation) at temperature T depend on the value of the spin damping (whose dynamics is modelled by
Tranchida’s sLLG) with a pre-factor that tends to one for small damping. The package works approxi-
mately well for low damping but there are several cases where it is useful to have a higher value than
assumed in the approximation e.g. for atomistic spin dynamics and micro-magnetism where artificially
high damping (even as high as 100) allows the magnetisation to reach a steady state more quickly and
thus decreases the computational cost. Initial investigations from F. Roma pointed to the fact that the
error came from the equations laid out by Tranchida in [5]. The sLLG equation used is slightly differ-
ent to the one defined by Brown (eq.4) as it does not couple a noise term to the dissipative part of the
equation which we predict is the cause of adverse effects.

The task for this project is then stated as follows: after getting comfortable with topics in stochastic pro-
cesses and corresponding analytical and numerical methods I will derive the Langevin equations given
by Tranchida [5] using a concrete model for the environment giving rise to dissipations and noise. Then,
I will obtain the corresponding Fokker-Planck equations and check whether the Boltzmann measure is
a solution to the steady state equation [6].

3 Methods

In this investigation I have had to develop my understanding of Langevin equations and how to derive
the corresponding Fokker-Planck equation. I have also learned how to numerically integrate these
equations and the following section outlines these analytical and numerical techniques.

3.1 Langevin Equation

In the Langevin description of stochastic processes, the focus is on the movement of a single particle
as opposed to finding a differential equation for the whole system. For Brownian motion, the simplest
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stochastic system, starting from Newton’s Second Law of Motion F⃗ = m¨⃗x, we first account for the
friction experienced by the particle due to the viscosity of the surrounding medium by separating out a
drag term:

m¨⃗x = −γ ˙⃗x+ F⃗ , (1)

where γ is the coefficient of friction. If one knows the force, F⃗ , acting on this particle, its motion can be
described by a completely deterministic equation. However, in order to explain the jittery motion, we
have to accept that we can never truly know the value of F⃗ as it is itself random. Langevin’s solution
was to split the force into a deterministic background potential (V ) and a random force term (ξ). The
resulting equation is known as the Langevin Equation: [2]

m¨⃗x = −γ ˙⃗x−∇V + ξ⃗(t) . (2)

Note that we do not know the exact value of ξ⃗(t) at any time and it is because of this that we call it
a stochastic differential equation. However, it is possible to deduce certain characteristics of this term.
One usually defines ξ⃗(t) according to a specific prescription which in our case is Gaussian White Noise
(GWN) which is valid whenever the environment relaxes back down to equilibrium much faster than
the system. The average and variance of GWN (1st and 2nd moments) are defined as [7]

⟨ξ⃗(t)⟩ = 0

⟨ξ⃗i(t)ξ⃗j(t′)⟩ = 2D δijδ(t
′ − t),

(3)

where D is the fluctuation-dissipation relation derived by Einstein as D = γ kbT . These equations
allow us to accurately describe the phenomenon of Brownian Motion but more importantly for us, it
gives us the necessary formalism to be able to model other, more pertinent systems. The main Langevin
equation in our investigation is the stochastic Landau-Lifshitz-Gilbert (sLLG) equation which is given
by Brown [4] as :

dM

dt
= − γ0

1 + γ2
0η

2
M ×

[
(H + ζ) +

ηγ0
Ms

M × (H + ζ)

]
(4)

whereH is the local magnetic field, × is the cross product, ζ is the Gaussian white noise term defined
by eq. (3) and γ0 = γµ0 is the product of gyromagnetic ratio relating the magnetisation to the angular
momentum and the vacuum permeability constant. η is a damping constant taking into account sev-
eral dissipative mechanisms (spin-orbit coupling, magnon-phonon, magnon-impurity, etc.). Ms is the
saturation magnetisation and the fluctuation-dissipation relation D [8] is given as

D =
η kBT

Ms
. (5)

The first term in the rhs of eq (4) describes the magnetisation precession around the local effective mag-
netic field H, while the second term is a phenomenological description of the dissipative mechanisms,
introduced by Gilbert, which slow down this precession and push M towards the magnetic field H
while keeping the modulus Ms fixed.

3.2 Fokker Planck equation

The Fokker-Planck equation takes a slightly different approach to the Langevin equation. It is a deter-
ministic partial differential equation that models the evolution of the probability that the particle will be
in a certain state at a certain time [9]. It is a useful formalism to prove that a certain Langevin equation
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with Gaussian White Noise takes the system to equilibrium at the working temperature.
We start from the Chapman-Kolmogorov equation [7]

P (y⃗, t+∆t) =

∫
dy⃗0 P (y⃗, t+∆t|y⃗0, t)P (y⃗0, t) (6)

where P (y⃗, t+∆t|y⃗0, t) is the conditional probability of finding y⃗ at time t+∆t given that the system
was in the state y⃗0 at time t. We obtain the Fokker-Planck description from the Langevin one by defining
the conditional probabilities and using the definition of P (y⃗, t) via the Dirac delta

P (y⃗, t+∆t|y⃗0, t) = ⟨δ(y⃗ − y⃗ξ(t))⟩ (7)

where y⃗ξ,ζ(t + ∆t) is the solution to the Langevin equation evaluated at time t + ∆t, with initial
condition y⃗(t) = y⃗0, which clearly depends on the noises. We now expand around y⃗ξ(t) ∼ y⃗0 since the
time increment (∆t) and y⃗ increment (∆y⃗) are small. Using y⃗ = y⃗0 +∆y⃗,

P (y⃗, t+∆t|y⃗0, t) =

δ(y⃗ − y⃗0)− ∂α (δ(y⃗ − y⃗0)⟨∆yα⟩) +
1

2
∂α∂β (δ(y⃗ − y⃗0)⟨∆yα∆yβ⟩) +O(∆t2). (8)

Combining the three previous equations one gets

P (y⃗, t+∆t) = P (y⃗, t)− ∂α (⟨∆y⃗α⟩P (y⃗, t)) +
1

2
∂α∂β (⟨∆yα∆yβ⟩P (y⃗, t)) +O(∆t2) . (9)

Taking the limit for the differential of P ,

∂tP (y⃗, t) = lim
∆t→0

P (y⃗, t+∆t)− P (y⃗, t)

∆t
,

eliminates any terms higher than ∆t in the rhs of (9). The Fokker-Planck equation thus must have the
structure

∂tP (y⃗, t) = −∂α

[
⟨∆yα⟩
∆t

P (y⃗, t)

]
+

1

2
∂α∂β

[
⟨∆yα∆yβ⟩

∆t
P (y⃗, t)

]
. (10)

3.3 Stochastic Calculus

The way in which a stochastic differential equation is integrated or evaluated is important. Consider a
first order stochastic differential equation of the form

dtx(t) = f(x(t)) + g(x(t))ξ(t) (11)

where ξ is a Gaussian White Noise process satisfying eq.3 and f & g are the drift and diffusion terms
respectively. The fact that ξ has infinite variance means the integral is ill defined and thus we need to
give the product g(x(t))ξ(t) a microscopic meaning. Integrating this equation, we introduce theWiener
process W as ξ(t) = dW (t)/dt, giving

x(t) =

∫
f(x(t))dt+

∫
g(x(t))dW (t). (12)

A Wiener process, unfortunately, is nowhere differentiable and thus we must define the factor g(t),
sampling the function in the Riemann sum in different places. We discretise the time, and select the α
covariant notation seen in [8]:

g(x̄) = g (αx(tn+1) + (1− α)x(tn)) , (13)

5
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for which there are two popular schemes: Itô, where α = 1, and Stratonovich, where α = 1/2 [10]. Itô
samples the function at the beginning of the sub-interval and Stratonovich samples it with the mean
of its value at both ends of the sub-intervals. Itô calculus is more efficient computationally because it
is based on the Taylor expansion and random quantities become independent however in our case we
will stick to mostly using Stratonovich as it conserves the modulus of the magnetisation in the sLLG
equation that we will be studying (eq.4) [8].

3.4 Numerical Methods

In order to numerically integrate the Langevin equation, we discretise the time, tk = ϵk, where ϵ is the
time step and k is an integer, reaching a compromise between the result being accurate enough and the
time interval being long enough.
When discretising the Langevin equation in order to numerically integrate it the stochastic field can be
described using the definition of a Wiener Process [7]:

ξ∆τ = ∆Wi = ωi

√
2Ds∆t, (14)

whereωi is a randomnormally distributed valuewith 0mean and unit variance andDs is the fluctuation-
dissipation relation. For Langevin equations with multiplicative noise, one has to choose an integration
prescription as explained in section 3.3 which will depend on the type of system that you are modelling.
The numerical algorithm thatwill be usedwill beHeun’sMethod [11]which is described in the following
way: First, an initial estimation step is made of the Euler method:

x̃(t+∆t) = x(x(t), t, ξ) + ẋ(x(t), t, ξ)∆t (15)

Then the next step is calculated using the trapezoidal rule

x(t+∆t) = x(t) +
1

2
[ẋ(x(t), t, ξ) + ẋ(x̃(t+∆t), t, ξ)]∆t (16)

4 Analysis and Results

4.1 Study of Tranchida’s Equations

In this section I will take Tranchida’s Langevin equations [5], derive the corresponding Fokker-Planck
equation and prove that the steady state solution doesn’t go to equilibrium.

4.1.1 Langevin set of equations

We take a set of i = 1, . . . , N particles at positions r⃗ i = (ri1, . . . , r
i
d) with magnetic moments si. The

magnetic moments are normalised such that |si|2 = s2s for each particle.
The interactions, as defined by Tranchida are quantified by the energy function Hsl. It reads

Hsl = −µBµ0

N∑
i=0

gisi ·Hext −
N∑

i,j,i ̸=j

J(rij) s
i · sj +

N∑
i=1

|pi|2

2mi
+

N∑
i,j=1

V (rij) (17)

where µ0 is the vacuum permeability, µB is the Bohr magneton, gi is the Landé g-factor,m is the mass
of the particle and V (rij) is the mechanical pair-potential term. The sub-index a runs from one to three,
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the dimension of space and the number of components of the magnetic moment as well. J(rij) is the
coupling strength and depends on the distance between the particles

rij = |r⃗ i − r⃗ j | =

[
d∑

b=1

(rib − rjb)
2

]1/2
. (18)

The first term in eq.17 is the interaction energy due to an external magnetic uniform fieldHext. We set
this field to 0 in our equations. The Langevin equations are given as

dtr
i
a =

pia
mi

,

dtp
i
a =

N∑
j(̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
si · sj

]
− γL

mi
pia + ξ(t)ia ,

dts
i
a = giab h

∗
eff,b + fab ζb ,

(19)

h∗
eff = − 1

ℏ
∂H
∂s⃗i

a spin force and γL is a damping parameter. Summation over repeated b = 1, 2, 3 indices
is assumed; not over the particle indices, which we wrote explicitly when needed. We have used the
notation of Aron et al. [8] where

gab =
1

1 + η20
(ϵabcsc + η0(s

2
sδab − sasb)

fab =
1

1 + η20
(ϵabcsc)

(20)

and η0 is a transverse damping constant. In the following, we evaluate the stochastic integrals according
to the Stratonovich formalism to conserve the modulus of the magnetisation as explained in section 3.3.
The noises ξ⃗i and ζ⃗i are independent, and white with zero mean and correlations are defined in [5] as

⟨ξia(t)ξ
j
b(t

′)⟩ = DLδabδ
ijδ(t− t′) , ⟨ζia(t)ζ

j
b (t

′)⟩ = 2Dsδabδ
ijδ(t− t′) . (21)

There is no cross correlation between ξ⃗i and ζ⃗i. In the following we note ⟨. . . ⟩ the average over both
noises. Tranchida defines the fluctuation dissipation relations as

Ds =
2πη0kBT

ℏ
, (22)

DL = γkBT. (23)
The aim is to find whether the values of DL and Ds given by Tranchida take the system to thermal
equilibrium.

4.1.2 Deriving the Fokker-Planck Equation

Using eq.10, we now need to calculate the averages ⟨∆yα⟩ and ⟨∆yα∆yβ⟩ to leading order in∆t using
the Langevin eq. (19) which read in discrete time:

∆ria ≡ ria(t+∆t)− ria(t) =
pia
mi

∆t ,

∆sia ≡ sia(t+∆t)− sia(t) = giab h
i∗
eff,b ∆t + f i

ab ζ
i
b ∆t ,

∆pia ≡ pia(t+∆t)− pia(t) =

N∑
j( ̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
s⃗ i · s⃗ j

]
∆t− γL

mi
pia∆t+ ξ(t)ia∆t .

(24)
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All variables in the right-hand-side (rhs), and in particular s⃗ in g and r in J , are evaluated at the mid-
point y⃗mp = [y⃗(t)+y⃗(t+∆t)]/2 since we chose to workwith the Stratonovich prescription as explained
in section 3.3. When working at O(∆t) we will be able to, in some cases, replace this mid-point by the
initial one y⃗0 in the interval [t, t+∆t].
The averages of the position component increments are

⟨∆ria⟩ = ⟨pia
∆t

mi
⟩

=
pia
mi

∆t+O(∆t2)

(25)

The average of the product of two position increments is

⟨∆ria ∆rjb⟩ = O(∆t2) (26)

The averages of the momentum component increments are

⟨∆pia⟩ = ⟨
N∑

j( ̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
s⃗ i · s⃗ j

]
∆t− γL

mi
pia∆t⟩

=

N∑
j(̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
si · sj

]
∆t− γL

mi
pia∆t+O(∆t3/2)

(27)

The average of the product of two momentum increments is

⟨∆pia ∆pjb⟩ = DLδabδ
ij∆t+O(∆t3/2) (28)

The averages of the magnetisation component increments are

⟨∆sia⟩ = ⟨gab h∗
eff,b ∆t + fab ζb ∆t⟩

= gabh
∗
eff,b∆t+ ⟨fab[s⃗+

∆s⃗

2
]ζb∆t⟩

= gabh
∗
eff,b∆t+ ⟨fabζb∆t⟩+ ⟨∆fcd

2
∂cfabζdζb∆t2⟩

= gabh
∗
eff,b∆t+Dsδbdfcd∂cfab ∆t+O(∆t3/2)

=
2gab
ℏ

N∑
i,j,i ̸=j

J(rij)s
j
b ∆t− 2Ds

sia
(1 + η20)

2
∆t+O(∆t3/2)

(29)

where h∗
eff,b = −∂SbH/ℏ

The average of the product of two magnetisation increments is

⟨∆sia ∆sjb⟩ = f i
ad ξd ∆t f j

bc ξc ∆t+O(∆t3/2)

=
2

(1 + η20)
2
Ds

(
s2sδab − sias

i
b

)
∆t+O(∆t3/2)

(30)

The averages over the cross products are all sub-leading since ξ⃗ , ζ⃗ are not correlated.
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We will now write eq.(10) in a more explicit form

P (y⃗, t+∆t)− P (y⃗, t) = − ∂

∂ria

[
⟨∆ria⟩P

]
− ∂

∂pia

[
⟨∆pia⟩P

]
− ∂

∂sia

[
⟨∆sia⟩P

]
+
1

2

∂

∂sia

∂

∂sjb

[
⟨∆sia∆sjb⟩P

]
+
1

2

∂

∂pia

∂

∂pjb

[
⟨∆pia∆pjb⟩P

]
+O(∆t3/2) (31)

in which a sum over repeated indices (i, j, a, b) is assumed in the rhs. Replacing

∂tP (y⃗, t) = − ∂

∂ria

[
pia
mi

P

]

− ∂

∂pia

 N∑
j( ̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
s⃗ i · s⃗ j

]
P − γL

mi
pia P


− ∂

∂sia

2gab
ℏ

N∑
i,j,i ̸=j

J(rij)s
j
b P − 2Ds

sia
(1 + η20)

2
P


+
1

2

∂

∂pia

∂

∂pjb

[
DLδabδ

ij P
]
+

1

2

∂

∂sia

∂

∂sjb

[
2Ds

(1 + η20)
2

(
s2sδab − sias

i
b

)
P

]
(32)

4.1.3 Stationary Solution

We will now check if P = Z−1e−βH satisfies a stationary solution of the Fokker-Planck equation (32).

0 = −
N∑
i

pia
mi

∂P

∂ria

−
N∑

j(̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
s⃗ i · s⃗ j

]
∂P

∂pia
+ 3

N∑
i

γL
mi

P +

N∑
i

γL
mi

pia
∂P

∂pia

+

N∑
i

4sibη0
ℏ(1 + η20)

N∑
i,j,i ̸=j

J(rij)s
j
b P − 2gab

ℏ

N∑
i,j,i ̸=j

J(rij)s
j
b

∂P

∂sia
+

6Ds

(1 + η20)
2
P + 2Ds

N∑
i

sia
(1 + η20)

2

∂P

∂sia

+
DL

2

∂2P

∂pi 2a
+

Ds

(1 + η0)2

[
−6P − 4sia

∂P

∂sia
+
(
s2sδab − sias

i
b

) ∂P

∂sia∂s
i
b

]
(33)
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where ∂Sagab =
−2sibη0

1+η2
0
. Now calculating the probability derivatives remembering ∂xP = −βP ∂xH

∂

∂ria
P =

∑
k ̸=j

dJ(rkj)

dria
s⃗ k · s⃗ j −

n∑
i,j=1

dV (rij)

dria

β P (34)

∂

∂sia
P =

∑
k ̸=j

J(rkj)[δabδ
iksjb + δabδ

ijskb ] β P

= 2
∑
k(̸=i)

J(rik)s
k
a β P (35)

∂2P

∂sia∂s
i
b

= 4β2
N∑
k ̸=i

(J(rik))
2
skbs

k
aP (36)

∂

∂pia
P = −

N∑
i

pia
mi

β P (37)

∂2

∂(pia)
2
P = −

N∑
i

3

mi
βP +

(
N∑
i

pia
mi

)2

β2 P (38)

4.1.4 Dynamical terms

For the dynamical terms, replacing the probability derivatives gives:

0 = −
N∑
i

pia
mi

∑
k ̸=j

∂J(rkj)

∂ria
s⃗ k · s⃗ j −

n∑
i,j=1

∂V (rij)

∂ria

β

+

N∑
j(̸=i)

[
−dV (rij)

drij
+

dJ(rij)

drij
sia · sja

] N∑
i

pia
mi

β + 3

N∑
i

γL
mi

− γLβ

(
N∑
i

pia
mi

)2

+
DL

2

− N∑
i

3

mi
β +

(
N∑
i

pia
mi

)2

β2

 (39)

The first line cancels out the first part of the second line leaving

0 = 3

N∑
i

γL
mi

− γLβ

(
N∑
i

pia
mi

)2

+
DL

2

− N∑
i

3

mi
β +

(
N∑
i

pia
mi

)2

β2

 , (40)

which gives the dynamical fluctuation-dissipation relation as

DL = 2γLkBT (41)

This is the exact same term as derived by Einstein and fits well in with our expectations. Tranchida’s
dynamic Langevin equation tends to equilibrium in the steady state. Note that there is a factor two
difference between eq.41 and the D value below eq.3, this is due to the fact that Tranchida defined the
correlations between the noises a factor of two from the standard definition.
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4.1.5 Magnetic terms

The remaining magnetic terms are rearranged as

0 = +

N∑
i

4sibη0
ℏ(1 + η20)

N∑
i,j,i ̸=j

J(rij)s
j
b −Dsβ

N∑
i

4sia
(1 + η20)

2

∑
k(̸=i)

J(rij)s
j
a

+
4η0β

ℏ(1 + η20)

N∑
i,j,i ̸=j

J(rij)
2
(
s2sδab − sias

i
b

)
−Ds

4β2

(1 + η20)
2

N∑
i

J(rij)
2
(
s2sδab − sias

i
b

)
+

6Ds

(1 + η20)
2
− 6Ds

(1 + η20)
2

(42)

This leaves the fluctuation-dissipation relation for the magnetic degree’s of freedom as

Ds = η0(1 + η20)kBT/ℏ (43)

Which is different to Tranchida’s value forDs (eq. 22) meaning that Tranchida’s equations do not take
the system to equilibrium. One can see that for small values of η0, apart from some numerical prefactors,
the two equations are equivalent. This is confirms the results from the numerical experiments conducted
by the Argentinian teamwhere equations in the LAMMPS package led to anomalous results when a high
damping constant was applied.

4.1.6 Correct sLLG

Another issue noted is the fact that Tranchida’s equations only couple the noise term to the magneti-
sation presession and not to the dissipative mechanisms as well like in the standard sLLG equation
developed by Brown eq.4.
We re-did this derivation using the standard sLLG equation and found the fluctuation-dissipation rela-
tion to be Ds ∝ kBTη0. This value is similar to the one proposed by Tranchida (eq.22) and thus it is
likely that this is where their error came from.

4.2 Numerical Integration of Langevin Equations

To develop my proficiency in modelling stochastic systems both analytically and numerically, I numer-
ically integrated the Langevin equation for Brownian motion in one dimension with no background
potential (∇V = 0).
Starting off with the 2nd order eq.2, we turn it into two 1st order equations (where one is v = dx/dt)
and discretise it to get

m dtv(t) = −γv(t) + ξ(t)

v(tj+1) = v(tj)e
−γδt/m +

e−γδt/m

m
dw(tj)

(44)

where dW (t) is a Wiener process as mentioned in section 3.4 with ui a normally distributed value with
0 mean and unit variance. We evaluated this integral using Itô calculus but note that as the noise is
additive in this equation, Itô and Stratonovich calculi are equivalent.
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Figure 2: Plot showing the time evolution of the velocity of a particle undergoing Brownian Motion.
Three sample runs are displayed including the velocity averaged over 100 runs and a derived analytical
value

(a) Plot showing the averaged numerical and analytical values
for the correlation between velocities at 3 different points

(b) Plot comparing the numerical and analytical values of the
mean squared displacement of a Brownian system. ᾱwas set to
one

Figure 3

For the numerical simulation, we averaged over 1000 runs of the equation with a starting velocity of 5
and a time step of 0.02. We used the Heun method outlined in Section 3.4, and also investigated other
implicit methods. Figure 2 shows three sample runs, the average and the expected analytical value
following eq.44. As one can see the numerical and analytical values match up as expected.
Next, the correlation function is derived as

⟨v(t)v(t′)⟩ = Dγ

m

(
e|t−t′| − e|t+t′|

)
(45)

which is used to see how likely it is that the particle has a a certain velocity at time t’ given that it had
a certain velocity at time t. The numerical simulation of the correlation between velocity is shown in

12
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Figure 3b where we can see that the numerical and analytical values match up for 3 different compared
velocities.
Finally, the mean square displacement is

∆2(t) = ⟨(x(t)− ⟨x(t)⟩)2⟩ = 2D tᾱ (46)

which is used to see what kind of diffusion our system is undergoing for large t. If ᾱ > 1 it is undergoing
superdiffusion and if ᾱ < 1 it is undergoing subdiffusion. Figure 3a shows the numerical simulation
of this value and the analytical line is plotted with ᾱ = 1 which shows that this specific system is
undergoing normal diffusion as expected.

5 Conclusion

Over the course of this internship I developed the analytical and numerical tools needed to study
stochastic processes. I applied these techniques to a magneto-mechanical system and showed that a
set of equations used in the LAMMPS molecular dynamics package [5] did not reach equilibrium for the
steady state solution. The value for the dissipation-fluctuation relation stated in [5] came to be approxi-
mately correct for small damping values but for use cases with a higher damping constant we proposed
an alternate value. Tranchida came to use a sLLG equation that was different to the standard definition,
which is where we believe the error in their calculations came from.
I also performed numerical integrations of a few Langevin equations which provided a useful first task
as it helped me get a better understanding of noisy systems. It also helped me in my analytical skills as
it allowed me to verify my derivations for several systems. I also managed to perform some numerical
simulations of Tranchida’s equations showing them not to reach equilibrium. However, I did not have
enough time to derive complete results and present them in this document. With more time I would
have liked to finish off these numerical simulations and further explore the effect the damping values
had on the system.
I wholeheartedly enjoyed my time at LPTHE. I would sincerely like to thank Leticia Cugliandolo for
supervising me during this internship and supporting me throughout this process to ensure I could get
the most out of this experience. I have learned an incredible amount during this internship, not only
hard skills but also the value of collaboration and teamwork. I greatly enjoyed discussions with other
interns and doctoral students alike and have made many friends who I will hope to continue to stay in
contact with.

For the bibiography, I started with the paper by Aron [8] which provided a clear introduction into the
subject matter. I then moved onto the paper by Tranchida [5] which formed a basis for most of my
work. I expanded on these resources based on references found in these papers and searching through
various archives like ArXiv.

13



REFERENCES MU4PY119

References

[1] Albert Einstein. “Uber die von der molekularkinetischen Theorie der Warme geforderte Bewe-
gung von in ruhenden Flussigkeiten suspendierten Teilchen”. In: Annalen der physik 4 (1905).

[2] Paul Langevin. “Sur la theorie du mouvement brownien”. In: Compt. Rendus 146 (1908), pp. 530–
533.

[3] Ralph C Smith. Smart material systems: model development. SIAM, 2005.
[4] William Fuller Brown Jr. “Thermal fluctuations of a single-domain particle”. In: Physical review

130.5 (1963), p. 1677.
[5] Julien Tranchida et al. “Massively parallel symplectic algorithm for coupled magnetic spin dy-

namics and molecular dynamics”. In: Journal of Computational Physics 372 (2018), p. 406 425.
[6] William T Coffey and Yuri P Kalmykov. “Thermal fluctuations of magnetic nanoparticles: Fifty

years after Brown”. In: Journal of Applied Physics 112.12 (2012), p. 121301.
[7] Matthew Scott. “Applied stochastic processes”. In: Lecture Notes (2013).
[8] Camille Aron et al. “Magnetization dynamics: path integral formalism for the stochastic Lan-

dau Lifshitz Gilbert equation”. In: Journal of Statistical Mechanics: Theory and Experiment 2014.9
(2014), P09008.

[9] Adriaan Daniël Fokker. “Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld”.
In: Annalen der Physik 348.5 (1914), pp. 810–820.

[10] Peter Hänggi. “Stochastic processes. I. Asymptotic behaviour and symmetries”. In: Helv. Phys.
Acta 51 (1978), pp. 183–201.

[11] W Rüemelin. “Numerical treatment of stochastic differential equations”. In: SIAM Journal on Nu-
merical Analysis 19.3 (1982), pp. 604–613.

14


