Domain-Wall Dynamics in SYM and Duality

Dan Israël, IAP

IHP, September 2009

Armoni Giveon D.I. & Niarchos, arXiv:0905.3195

- 4 同 2 4 日 2 4 日 2

э

Introduction

Supersymmetric Yang-Mills

- Supersymmetric non-Abelian gauge theory : shares many features with gluodynamics
 - useful to understand strong coupling dynamics of QCD
- Vacuum structure understood (VY superpotential)
- Admits half-BPS domain walls, invisible at weak coupling

Domain-wall worldvolume theory

- Domain-walls : field theory D-branes ➡ worldvolume 3d theory
- String embedding $\blacktriangleright \mathcal{N} = 1$ Yang-Mills Chern-Simons w/ matter
- SYM point of view predicts strong/weak duality

how is it realized on the walls worldvolume ?

3d CFT's

- Generalizations lead to other $\mathcal{N}=1$ 3d theories with similar dualities
- In some cases non-trivial IR fixed points
- May help to understand flux compactifications via holography

Outline

- $oldsymbol{1}$ Domain walls of $\mathcal{N}=1$ SYM
- 2 String theory embeddings
- Seiberg-like duality on the domain-walls
- 4 3d conformal field theories and AdS₄ vacua

(日) (同) (三) (三)

3

$\mathcal{N}=1$ SYM at low energies

$\mathcal{N}=1~\mathsf{SYM}$

- Non-Abelian SU(N) : gauge field A_{μ} + massless adjoint fermion λ
- Anomalous $U(1)_R$ symmetry broken to \mathbb{Z}_{2N} by instantons
- As pure Yang-Mills, displays color confinement at low energies
- At the same time develops a gaugino condensate (λ²) ~ Λ³e^{2iπk}/_N (with QCD scale |Λ| ∝ exp - ^{8π²}/_{3Ne²}) → breaks Z_{2N} to Z₂

Effective Action

- Features described by (non-Wilsonian) effective action for the gluino bilinear superfield $S = \frac{1}{32\pi^2} \text{Tr}W^2$
- Veneziano-Yankelevitz superpotential fixed by symmetries $\mathcal{W} = S \left[\log \frac{\Lambda^{3N}}{S^N} + 2i\pi n \right]$
- \mathbb{Z}_N invariance of the theory \rightarrowtail sum over integer values of n

Domain walls

- Spontaneously broken discrete global symmetry with N distinct vacua we expects domain-walls interpolating between any pair of vacua, invisible at weak coupling (Dvali, Shifman)
- $\mathcal{N} = 1$ susy algebra admits a central extension for a 3d object $\{Q, Q\} = \frac{N\vec{\sigma}}{4\pi^2} \int d^3x \, \vec{\nabla} \, \mathrm{Tr} \, \lambda^2$
- Half-BPS domain-walls are found for SYM
- Energy density (tension) obtained exactly from the susy algebra $\varepsilon = \frac{N}{8\pi^2} \left| \langle \text{Tr}\lambda^2 \rangle_{\infty} \langle \text{Tr}\lambda^2 \rangle_{-\infty} \right|$

Domain walls as D-branes

- Wall tension scales like N, i.e. like $1/g_{\rm string}$ at large N, whereas a soliton would scale like $N^2 \sim 1/g_{\rm string}^2$
- Exactly like D-branes in string theory
- As shown by Witten using an *M*-theory embedding, confining strings can end on them be similar to open strings in ordinary string theory
- Suggests the existence of a theory describing their worldvolume dynamics (open/closed duality)

Dynamics of domain-walls stacks

- Tension of domain wall between ℓ -th and $\ell + k$ -th vacua given by $\varepsilon_k = \frac{N^2 \Lambda^3}{4\pi^2} \sin \frac{\pi k}{N}$
- Can be viewed as a bound state of k elementary walls (non-zero binding energy)
- Expects some U(k) gauge theory with $\mathcal{N} = 1$ 3d susy, with at least one singlet scalar multiplet (center of mass)

Duality

• Interpolating 'clockwise' between k vacua and 'anti-clockwise' between N - k vacua is equivalent by charge conjugation symmetry of the 4d theory

 \blacktriangleright does it correspond to a non-trivial duality in the 3d worldvolume theory ?

String theory embedding (I) : large N transition

$\mathcal{N}=1$ SYM from string theory

- Strong coupling dynamics of susy field theories accessible at large N through string theory constructions with branes
- Several type IIA/IIB string and *M*-theory constructions related through dualities ➡ geometrical engineering, Hanany-Witten setups,...

D6-branes on the conifold

- Conifold : singular Ricci-flat cone over a 5d base $T^{1,1} \sim SU(2)^2/U(1)$ (Calabi-Yau₃) : $\sum_{i=1}^4 z_i^2 = 0$
- Deformed conifold : non-collapsing 3-sphere at the tip of the cone $\sum_{i=1}^4 z_i^2 = \rho$
- Wrap N D6-branes in type IIA around this compact susy cycle
 ➡ At low energies, reduces to N = 1 SU(N) SYM (no adjoint scalars as the D6-branes cannot move)

イロト イポト イヨト イヨト

D4-branes and domain walls

Vafa's large-N transition

- Large N: branes replaced by their *backreaction* in 10d IIA supergravity, giving a completely smooth solution (holography)
- One obtains a *resolved conifold* with *N* units of Ramond-Ramond 2-form flux through the non-vanishing two-sphere at the tip (transverse to the D6's)
- Has features of strongly coupled SYM (vacua, symmetries)
- IIA flux superpotential reproduces the VY field theory answer (where S is the complex Kähler modulus of the \mathbb{CP}^1)
- SYM confining string realized as the fundamental string in this background,

Domain walls

- One can look for an analogue of SYM domain-walls in the IIA background *after* the large *N* transition
- Wrapping *k* D4-branes around the blown-up two-sphere preserves 2 supercharges
- At low energies : 3d N = 1 gauge theory
 → N = 2 U(k) SYM in 3d with an N = 1 Chern-Simons interaction for the gauge field at level N, obtained from the DBI-CS action for D4-branes, in the presence of RR 2-form flux.
- Fundamental strings end on them as for any D-brane → identified with N = 1 SYM domain walls

✓ This string theory construction allows to obtain a worldvolume theory for SYM domain walls. One of the requested features of this theory should be the duality outlined above.

3

Acharya-Vafa field theory

✓ The low-energy theory on *k* D4-branes wrapped on the two-cycle in the resolved conifold with RR two-form flux should give the worldvolume theory for the SYM domain wall $\ell \rightarrow \ell + k$

Action of the AV theory

- $\mathcal{N} = 1$ theory of an U(k) vector multiplet (A, χ) with a massless adjoint real scalar multiplet (ϕ, ψ)
- $\mathcal{N}=1$ Chern-Simons term at level N , breaks explicitely $\mathcal{N}=2$ susy
- As usual implies that the vector multiplet is massive $(m_{
 m CS}=gN)$

•
$$S = \frac{1}{4g^2} \int d^3x \operatorname{Tr} \left(-F^2 + i\bar{\chi} \not D\chi + (D\phi)^2 + i\bar{\psi} \not D\psi + 2i\bar{\chi} [\phi, \psi] \right. \\ \left. + \frac{N}{4\pi} \int \operatorname{Tr} (AdA + \frac{2}{3}A^3) - \frac{N}{4\pi} \int d^3x \operatorname{Tr} \chi \bar{\chi} \right.$$

 \checkmark Classically, one has a moduli space spanned by gauge-invariant polynomials in ϕ

Perturbative potential

- $\mathcal{N} = 1$ susy in 3d does not protect the moduli space from corrections (no holomorphy constraints or R-symmetry)
- Split adjoint scalar $\Phi = \Phi_0 + \hat{\Phi}$ as $\mathfrak{u}(k) \simeq \mathfrak{u}(1) + \mathfrak{su}(k)$
- For k = 2 (two elementary Walls) Coleman-Weinberg 2-loop potential for $\hat{\phi}$ has been computed at large N (Armoni, Hollowood) $V \sim \frac{1}{N} \frac{u}{1+u}$ (with $u = \operatorname{Tr} \hat{\phi}^2/m_{\rm CS}^2$) \Longrightarrow loop-generated mass $m_{\rm LOOP} = m_{\rm CS}/N$
- Binding energy matches large N limit of 2-wall tension
- Free massless U(1) multiplet remains : center of mass degrees of freedom of the 2-walls bound state

 \checkmark As hinted in the introduction, the theory should contain *more* than the free dynamics of the free massless scalar multiplet

geometrical engineering is not the easiest way to obtain the strong/weak duality expected (fluxed geometry)

・ 同 ト ・ ヨ ト ・ ヨ ト

Brane engineering of the AV theory

✓ A different string realization of the AV theory is achieved with brane engineering. It gives a more intuitive picture of symmetries and possible transitions (although the link with 4d SYM is less obvious).

3d Yang-Mills-Chern-Simons theories from branes

- via T-duality, D4-branes around the S^2 mapped to D3-branes ending a pair of fivebranes at distance L fivebrane fivebrane
- NS-Fivebranes being extremely heavy → non-dynamical objects, impose boundary conditions (Dirichlet-type) for the low-energy d.o.f. on D3-branes that end on them (*i.e.* to N = 4 SYM in 4d)
- Replacing one fivebrane by its bound state with N D5-branes
 twisted boundary conditions
- Susy preserved classically by the configuration depends on NS5 and (N, 1)5-brane relative orientations
- At energies ≪ 1/L Kaluza-Klein modes decouple
 ⇒ 3d gauge theory with (dimensionful) coupling g² = g_s/L
- Twisted boundary conds. give a supersymmetric CS term at level N

Getting the domain walls theory

- NS5-brane along dimensions x^{0,1,2,3,4,5}
- (N, 1)-fivebrane along $x^{0,1,2,3,8}$ at distance L along x^6 , and at angle $\theta = \operatorname{Arctan}(g_s N)$ in (5,9)-plane (angle fixed by susy once everything else is chosen)
- k D3-branes along $x^{0,1,2,6}$, ending on 5-branes along x^6 $\rightarrow U(k)$ YM-CS theory at level N
- Accidental common direction x^3 not dictated from $\mathcal{N} = 1$ susy (special tuning of angles in (3,7)-plane)

✓ Ab-initio construction of Acharya-Vafa theory → not exactly T-dual to Vafa's construction

indeed, the RR flux from the D5-branes in the bound state does not have the orientation expected from the dual of the RR two-form flux, in the T-dual of the resolved conifold

 \star However at low energies one gets the same field theory \Rightarrow 2 different UV completions イロト 不得 とくほ とくほ とうほう

3

Dynamics of the AV brane setup

Vacua of AV theory from the branes picture

- Low-energy dynamics: dimensional reduction of $\mathcal{N}=4$ SYM in 4d on an interval with $\mathcal{N}=1$ -preserving boundary conds.
- $\mathcal{N} = 1$ U(k) YM-CS w. massless adjoint & $\mathcal{N} = 1$ CS term
- Classically arbitrary number of D3-branes suspended between fivebrane and (N, 1)5-brane → contradiction with domain walls expectations (k ≤ N as N coincident elementary walls are equivalent to the vacuum)
- In this tree-level string construction, motion of D3's are free along common direction x³ → no potential for adjoint scalar Φ

clearly one needs to take into account quantum effects in the string setup

Witten index and susy breaking

- For well-defined counting of vacua needs to compactify on a torus
- T-duality along x² and lift to *M*-theory → fivebranes become a pair of M5-branes intersecting on a two-torus (x², x¹⁰) N times
- D3-branes mapped to M2-branes, that need to end at M5 intersections by supersymmetry
- Using the *s* − *rule* for brane ending on branes, only one M2-brane is allowed at each intersection (Hanany,Witten; Ohta)
 ➡ related to the Pauli principle in D0/D8 systems (Bachas, Green, Schwimmer)
- Then susy is preserved only for k ≤ N, otherwise spontaneous susy breaking → matches expectations from domain walls
- Number of configurations easy to find : ^N_k) → gives Witten index of AV field theory

< 17 >

- ∢ ≣ ▶

Forces between D3-branes

- Supersymmetry dictates an *attractive force* → otherwise one would get a susy configuration from any number of D3-branes, separated along the x³ direction common to all fivebranes
- Compatible with brane creation effect

```
(Hanany-Witten)
```

- 4 同 6 - 4 三 6 - 4 三 6

- Hard to obtain directly the binding potential from the *M*-theory description (quantum dynamics of the M5-branes)
- However in the low-energy & large N limit captured by the perturbative field theory result

✓ Therefore a generalization of the usual rules of brane constructions (s-rule, brane creation,...) to systems with 2 supercharges fits with the expectations from the domain-wall worldvolume picture

A (1) > A (2) > A

Seiberg duality

Brane creation effect

- One can move the (N, 1)5-brane along x⁶ freely
 ➡ IR dynamics on D3-branes invariant (L is not a field theory parameter at low energies)
- As the (N, 1)5-brane crosses the fivebrane, N extra D3-branes should be created to ensure smooth susy dynamics
- *k* of them annihilate with original D3's that are carried along hence change orientation

 \blacktriangleright this is possible only if $k \leq N$, consistently with the s-rule

Seiberg-like duality on the domain walls

- Along the Hanany-Witten transition (fivebranes crossing) one expects no phase transition in the theory on the D3-branes, hence one should get equivalent IR dynamics
- Low-energy limit of field theory on D3-branes after the transition
 → U(N − k) Acharya-Vafa theory, also at level N
- Therefore gives a Seiberg-like duality for the domain-wall worldvolume theory between U(k) and U(N k) both at level N
- Remark : usual Seiberg duality in 4d $\mathcal{N} = 1$ SQCD can be found by similar methods (Elitzur, Giveon, Kutasov)

✓ From the point of view of domain-walls in 4d SYM this duality is a simple consequence of charge conjugation symmetry

➡ however from the 3d point of view it is far from trivial

< ロ > < 同 > < 三 > < 三 >

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Comments on low-energy dynamics of AV theory

Deep IR limit

- At energies below the dynamically generated mass $m_{\text{LOOP}} = m_{\text{CS}}/N$ for the SU(k) adjoint scalar multiplet, all fields are massive, (except the free center-of-mass multiplet)
- It gives purely bosonic U(N k) Chern-Simons theory at level k, which is topological

duality reduces to well-known *level-rank duality* in Chern-Simons and WZW models :

 $SU(k)_{N-k} \longleftrightarrow SU(N-k)_k$

 \checkmark Did we find eventually something trivial ? is the duality dynamical or purely topological ?

IR dynamics beyond the topological regime

- Non-trivial dynamics is expected in the energy range $m_{\rm LOOP} \ll E \ll m_{\rm CS}$ where the YM kinetic term can be dropped from the action (at least in the large N when the two-loop computation is trustable)
- Duality is of the strong/weak type : dimensionless 't Hooft coupling mapped as $\frac{k}{N} \leftrightarrow \frac{N-k}{N}$
- Remember the domain-wall's tension formula : $\varepsilon_k = \frac{N^2 \Lambda^3}{4\pi^2} \sin \frac{\pi k}{N}$
 - $\stackrel{4}{\rightarrow}$ explicitely invariant under the proposed duality $k \leftrightarrow N k$
- It shows that the duality contains *more* than only topological information
 - indeed the binding energy is a dynamical quantity (CW potential)

✓ This strong/weak dual pair although non-trivial reduces in the extreme IR to a pair of topological theories → it would be interesting to generalize these methods to theories with non-trivial IR fixed points

- 4 同 6 - 4 三 6 - 4 三 6

3

3d conformal field theories and AdS₄ vacua

AdS/CFT duals of flux compactifications ?

- Most superstring compactifications with flux have an AdS_4 ground state with ${\cal N}=1$ or no 4d susy
- Should be holographically dual to 3d conformal field theories with at most N = 1 3d susy ➡ would help to understand non-perturbative dynamics of the compactification landscape
- Can we use our new understanding to build examples of such CFT's ?
- A priori Chern-Simons theories with matter (as the YM kinetic term is not conformal hence plays little role in the IR dynamics)
- Difficult to get non-topological theories in the extreme IR (masses are not quantum protected because of low supersymmetry hence generically dynamically generated)
- As for 4d SQCD, Seiberg-like duality of the sort discussed here helps to find a range of parameter giving a CFT

A non-trivial CFT candidate

- Start with k D3-branes stretched between n coincident NS5-branes and a (N, 1) fivebrane with the same relative orientation
- Extra adjoint scalar multiplet X, with superpotential TrX^{n+1}

 \blacktriangleright this coupling is classically irrelevant for n > 3

3

Supersymmetric vacuum : if and only if k/N ≤ n (using similar arguments as before)

• upper value for 't Hooft coupling $\lambda_t = k/N$ above which susy is spontaneously broken in the presence of the tree-level superpotential

- Above some critical coupling $\lambda_t^* < n$ the X^{n+1} interaction becomes necessarily relevant in the IR, acquiring a large anomalous dimension
- Below this value, one gets only pure CS in the deep IR

Seiberg-dual description

- Seiberg-dual theory : U(nN − k) at level N with same tree superpotential, weakly coupled at large 't Hooft coupling k/N → n
 gets a similar upper bound on the dual 't Hooft coupling below which the tree superpotential is IR-irrelevant (as the dual theory is weakly coupled then)
- It corresponds to a lower bound λ_t^{**} for the original 't Hooft coupling above which the dual description becomes topological in the IR (CS for the dual gauge group)
- From this picture one expects to get a *conformal window* $[\lambda_t^\star, \lambda_t^{\star\star}]$ between these two critical values. Inside, the two dual descriptions are strongly coupled in the IR

• One expects a non-trivial IR fixed point for any λ_t inside the window, giving interacting superconformal field theories

 \checkmark It would be hard to find evidence for this statement purely in terms of the 3d field theory

イロン 不同 とくほう イヨン

Conclusions

- $\mathcal{N}=1$ SYM and massive QCD admit domain walls (only visible at strong coupling)
- Worldvolume theory on the walls obtained by various string setups
- Seiberg-like duality in the 3d AV theory compatible with expectations from the walls picture
- Generalizing the string constructions one can get new interacting 3d CFT's ➡ may help to understand non-perturbatively string flux vacua via AdS₄/CFT₃

Perspectives

- Is there a similar 5d/6d embedding of 4d Seiberg duality where the duality trivializes ?
- Extend the construction to domain walls of 4d SYM with other classical gauge groups, using orientifolds
 however the AV theory is not really known
- Construct other 3d CFTs, relation with AdS_4 flux vacua