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Heterotic compactifications with torsion

o Compactifications with torsion, i.e. H # 0, difficult to deal with in
supergravity

@ Gauge bundle V, tangent bundle TM and H tied together by the
Bianchi identity:

/
dH = 2i9dJ = % (tr R(V7T) AR(VT) — Tr F A F) + O(a'?)

Choice of connection on T M in Bianchi

@ In Bianchi: connection on T M with torsion
% dH should be a (2,2) form = choose Chern connection: V1 = V.
%* no O(a’) corrections to SUSY conditions = Vi =V, = V(w + 1 H)
% to satisfy e.o.m. at order O(a’): SUSY conditions, Bianchi and R(V )
should be an SU(3) instanton = true for V1 but at O(a’) only

@ Bottom line: nearly impossible to get exact SUGRA solutions

@ Moreover: Bianchi identity is non-linear in H = no large-volume limit

v

= 2d worldsheet description more appropriate.
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Important questions

@ Are compactifications with torsion consistent beyond O(a/)?
@ What are their quantum symmetries?
@ What are their moduli spaces?

@ How to compute the four-dimensional effective action?
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Prototypical example: Fu-Yau geometries (& =2in d =4)

Principal T2 bundles over a K3 surface: T2 < Mg = S

@ Duality from type IIB orientifolds with flux (Dasgupta et al., 1999)
@ SU(3)-structure described by Goldstein and Prokushkin (2002)
@ Fu & Yau: solution to Bianchi with Hermitian connection (2006)

e Choose p, € H*(S,Z) N HY(S), i.e. in Pic(S), primitive (J A p, = 0)

* Metric: [ds? = e?Ads?(S) + £ 00| © =dx + Tdy +w"a,

with d® = 27" 7% p,,, complex charges " in lattice Z + TZ
e Torsion: H = xgde?A — %Re (© A *sd©)
% Gauge bundle: pullback of HYM bundle on S: F%2 = F20 =0, JLF =0

% Bianchi identity: tadpole condition / <l#2|m”p,,||2 - %trF A F) =24
bilanchi identity A\ T
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Gauged linear sigma-model approach

@ Worldsheet description? gauged linear sigma-models with torus
bu ndles - tOrSion GLSMS (Adams, Ernedjberg, Lapan 2006)

@ Flow in the IR to non-linear sigma-models on Fu-Yau geometries

In this talk: two applications

@ Exact T-duality transformations in torsional backgrounds, including
topology-changing dualities

@ Computation of the new-supersymmetric index through localization
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© (0.2) Gauged linear sigma-models with torsion
@ (0,2) superfields and Lagrangians
@ Torsion GLSM
© T-duality
@ Perturbative dualities of Fu-Yau geometries
@ A GLSM proof of T-duality
@ Topology change
© New supersymmetric index
@ Index for K3 x T2 compactifications
@ New index for Fu-Yau GLSMS: setting the stage
o Computation through localization
@ Final result
@ Geometrical formula: a conjecture

@ Conclusions
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(0,2) Gauged linear sigma-models with torsion )
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(0,2) superspace and superfields

Superspace coords (x*,0%,0%): Dy = 9pr —i0tV,, D, = —05 + 0V,

Superfields

o Chiral superfield (charged):

Di®d=0 = ®=¢+V20 . — i1 0tV ¢
o Fermi superfield: D, T =0 = [ =~_ +207G — ift6+V _

@ Vector superfields (in WZ gauge):

A=0T0TA,, V=A_ —2i0Tp —2i6tu_ +2076TD
w Field-strength is chiral: T = D, (0- A+ iV_)

v

1 2 = 0 1 2 rara 1 2 Y
L:_E/d 9+¢,(3_+;Q,V)d>,—§/d ot T —@/d orTT

- /d9+ rdy(®1) + /d9+"r e
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Calabi-Yau non-linear sigma-model from the GLSM

Vacuum: CY hypersurface with holomorphic gauge bundle V
© K3 example: Lo = [oJ%(®/) = To(®] + - -

* D-term: >, Q/|¢/|*> — Im (t) =0
* F-term: J%(¢;) = 0 in CP?

o Gauge bundle: L =T" PG, (P))

% In CY regime (p) = 0 = Yukawa couplings G (¢:)y™¢F
% Massless left-moving fermions: sections of the monad bundle

00—V — a0(qm) £8 0(Qr) — 0

+ &) with Q; =1

w CP3 of Kahler modulus t
= Fermat quartic

v

Anomalies

o Gauge anomaly:

@ A GLSM flowing to a (0,2) heterotic NLSM should have 2 = 0 and
% Global right-moving U(1)r

SzLefr = 2 [dOF =T +c.c.

, with 20 = QiQ" — g,q”

% Global left-moving U(1), = GSO

= |R N = 2 superconformal algebra

projection with Z, C U(1),

IDELREET]
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Torsion multiplet

Gauge anomaly A = Q;Q" — g,q" is a measure of cha(V) — cha(T)
= solutions with dH # 0, i.e. torsion?

o Hint: Fayet-lliopoulos term £ [df™ T
= Re(t) is a constant B-field in target space

o Field strength T is chiral (unlike (2,2) susy)
= Field-dependent Fl term (axial coupling):
—%IQT+C.C., with h € Z and Q ~ Q + 2irw
@ Corresponds to a non-trivial B-field
@ D-term = C* fibration over the 'base GLSM’

% If shift-symmetry of Q gauged = classical non-gauge invariance!

Lr=—1[d®0(Q+Q+2wA) (0_(Q— Q) + 2iwV) — 2 [dg+ QT + c.c.

o Gauge transformation: 6=Q = iv= =— LT = hTm Jdot=T
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Torsion GLSMs

Generic case = T2 of moduli (T, U) & charge w = v + T, (D.1. 2013)
iUy

Lr=—
T 8T>

/dze (1 + Q1 + Ti(Q + Q) + 2(w07 + Tiwy)A) (0-( — Q1 + T1(Q — D)) + 2i(v0y + Tiwy)V)
. _ _ hg
- éU2T2/d20 (2 + Qo + 2wy A) (O_(Qp — Qo) + 2iwa V) — IT /do*TQz fee
+ éul /d26 [(Ql + Q4 2w1A4) (0- (0 — Q) + 2i02V) — (o + D + 22 A) (0_ () — () + 2iv01 V) }
Compact models

@ So far (C*)? fibrations over a K3 base

o Decoupling of Re(wy)? = both kinetic and FI Lagrangians contain
'dangerous’ terms in D Re (wy) + ﬁ,u_m,g + cc

o If the coefficient in front vanishes = decoupled radial multiplet and
torsion multiplet

Coupling to gauge superfields becomes chiral:

e / d20* [|m|2AV—éA (Re(m)d_ (4 — Q1) + Re(T*m)d_ (2 — Q) ) }+r.d.

left current

T
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Torus moduli stabilization and tadpole conditions

Moduli quantization

@ Decoupling of radial multiplet if:

LRe(tw) — Urtop + At =0,
7Re(T*w) 4 Uiroy + h* = 0.

@ Quantization conditions from gauge instantons: h’ € Z.
= one-dimensional subspace of T2 moduli space

Next section: T-dualities give further moduli quantization conditions.

Anomaly cancellation and tadpole condition

o Using quantization conds, the gauge anomaly is canceled by the
2U2 ‘m|2

torsion multiplet if | Q;Q" — gnq"

@ With the relevant choice of charges for chiral and Fermi multiplets:
= integrated Bianchi identity of Fu-Yau compactifications
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T-duality ]
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Perturbative dualities of Fu-Yau geometries

@ T-dualities: exact symmetries of toroidal compactifications
@ Generalization to non-trivial backgrounds ?

% Exchanging metric and B-field components
% Mixing of gauge bundle and metric for heterotic solutions

T-dualities of Fu-Yau solutions in supergravity

T-dualities of T2 fibrations with H-flux (Bouwknegt, Evslin, Mathai 2004)

Topology changing dualities (gauge <> torus bundles) (sin & wminasian, 2009)

@ As Fu-Yau solutions have no large (torus) volume limit, are these
statements reliable?

Are there global obstructions?

Corrections by worldsheet instantons?
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A GLSM proof of T-duality

@ T-dualities proven exactly starting from a torsion GLSM (D.1. 2013)
o Adapt Rocek & Verlinde quotient method (1992)

Extra ingredients

@ An extra pair of vector superfields (A, V), with no kinetic terms
o A Lagrange multiplier chiral superfield A to enforce T = 0

@ Minimal couplings of Q, shift-symmetry and/or axial couplings

Example: G5 duality (s € Z)

£=~B(Q+ 01 + 2014+ 24) (9 (R — Q) + 201V + 217
+- 4 % [V(Ql + Ql + 2/,() +iA (8,(91 — Ql) + 21'1,})]

+1 (VA +B)+ido (8- B)) + 5 (VR + Q) + 140 (2 — 02))

o Gauge variation w.r.t. 'unhatted’ gauge sym.: 1(h! + sty) [dOT=T
= A should have a non-zero shift-charge

Dan lIsraél Fu-Yau compactifications from GLSMs Amsterdam, April 215t 2015 16 / 37



Integrating out A = original theory as T = 0 is enforced
Integrating out (A, V) = T-dual model with A as dual coordinate

@ Dual model is a torsion GLSM for a Fu-Yau geometry

(U sU=T Re() = %Re(w),
°%d“m“{r H?—U+S'{%«U+ﬂw—%%«U+ﬂ@
@ Duality along €5:

7. { U —0=-1T q Re() = #Re(Tw),
' T »T=U Re (Utd) = —%Re ((TUw)
@ Go, G1 and 7 generate the full duality group (see next slide)
@ Not corrected by worldsheet instantons unlike Hori-Vafa mirror
symmetry as we gauge a shift charge: instead of susy QED with

massless flavor, admitting vortex solutions, massive U(1) gauge
theory = dualities are exact
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Perturbative toroidal dualities

Duality group

0(2,2,Z) = PSL(2; Z)7 x PSL(2, Z)y x  Zo  x o
—

aT+b

T—2ltb U—s aU+B T-duality along x parity

~U+S

o (11, 2) transforms as a doublet of PSL(2;Z)7.
@ Under a U — —1/U duality, o — —Uro
e Elliptic curve Ey = C/(Z + TZ) should admit a non-trivial

endomorphism (complex multiplication) b : {ET - ETD
z — —Uz

Moduli quantization

T and U valued in an imaginary quadratic number field Q(+/D):
TeQ+vDQ with D=b —dac<0 , abceZ.

@ Precisely the conditions for a ¢ = 2 CFT in 2d with a T2 target space
to be rational (Gukov & Vafa 2002)
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Heterotic dualities

@ Heterotic compactifications on T2 have a larger O(2,2,7) duality
group = in the present context, mixing of torus and gauge bundles

o Difficulity: mixing of quantum anomalies and gauge-variant terms

o Free Fermi multiplet ' of charge g = section of O(q) over S

@ Bosonize the left-moving fermion ~_
= |eft chiral boson

@ Embbed into chiral superfield B with gauged shift symmetry, of
shift-charge g (at fermionic radius R = 1/1/2)
= anomaly becomes classical £ =2 [df* BT + c.c.

o Consider 'auxiliary’ 2-torus with B and e.g. 3
= auxiliary torsion multiplet © of moduli (u, t)
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Topology change

Torus/gauge bundles duality

@ u — —1/u duality exchanges shift charge 1 and Fermi multiplet
charge g
= Duality between compactifications with different topologies:

K3 x S with an Abelian gauge bundle and S! < M5 — K3

@ Non-orthogonal torii: duality if U = 2T originally
= T; = 0 gives after duality a line bundle over the total space Ms:

_i' T1(Q2 + Q2 + 2w2.4) 0_ (B — B) (generalized Wilson line)

e Warning: did not take into account the spin structures (left GSO)
= communicated through duality as large gauge tranformations

% Should study carefully the global charges of the model
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New supersymmetric index ]
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New supersymmetric index for K3 x T2 compactifications

o Defined as Zpen (7) = #TrR J,%(—1)FRqL°_C/24c‘7[0_E/24]
= trace over Hilbert space of (c,¢) = (22,9) CFT for K3 x T2
e Counts the BPS states of K3 x T2 compactifications  (Harvey, Moore 1995)

i _ A=A AZA
5Znew = Y, 4G~ — > q4°q
BPS vectors BPS hypers

@ Building block of threshold corrections to gauge/grav. couplings

New susy index and K3 elliptic genus

o K3 elliptic genus: Zs(r,y) = Trug [ 2™ (—1)F glo=/24gla—/24]
o Consider a bundle V C SO(2n) C Eg and a T2 lattice ' :

2 /9 T”YT+5 8—n -
o (M2 g, (75

1
Znew(T) = ﬁf r2,2 E4(7-7 0) Z
,0=0

~

% Fixed by modular properties = universality of thresholds (kiitis et a1, 1997)

% In particular, Matthieu moonshine for any gauge bundle (chenget a1 2013)
v
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New index for Fu-Yau GLSMS: setting the stage

@ Right fermions v, 1 in the torus factor free
o We split JS = JK3 + ._/5"[? with JE ~ ahipy + - -
e We have Try [J 3(—1)Frglo—c/24gL0~ C/zﬂ =0, since:

% Pair of fermionic zero modes of opposite Fr in T2 factor
% The K3 SCFT has N = (0, 4) superconformal symmetry

Left GSO projection
Assume the existence of a Zy C U(1), left symmetry. Then

1 . - =
A E42(T]Tl,00) 3 0 Tren [emJOL('y'eré)Jé’or(_1)FRqLofc/24aLofc/24:|
7,6=0

where the trace is over the Hilbert space of K3 x T2 with the free
fermions from the first Eg factor
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Supersymmetric localization |: the idea

@ Choose a supercharge Q of your favorite SUSY QFT

e Aim : compute (O) with QO =0

e Find V such that (i) Q?V = 0 and (ii) QV/|pes positive definite
@ Deformed path integral

(0); = / Do O(d) eItV
* As 0:(O)s = 0 = compute in the t — oo limit (Pestun, 2012)
@ Exact result: one-loop fluctuations around the saddle points
QV(dg) =0

/ = / dog eis[tpol Oc/ass[¢0] Zone—loop
®o,QV(P0)=0

with ® = ¢g + %6@ = quadratic fluctuations only
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GLSM elliptic genus through localization
@ Supercharge Q = QT + @t = whole GLSM action is Q-exact
e For instance Sc.m. = [ d’x Q2 — ¢V iby — ipypud) + t.d. ;== Q Ve

Z(e,f,g) = /D[A,,u7 D]e_e%QVV-’" /D[qﬁ’.,w"]e_g%gv“’”' /D[’ym]e_fizgvf»m
@ Path integral independent of e, f, g = take e, f, g — 0 limit

@ Integral localizes on BPS configurations, i.e. annihilated by Q: saddle
points of the Euclidean (free) action

Localization locus

Ldw — L dw

o Flat gauge connection on the worldsheet torus Ag = 3 32

@ Gaugino zero-modes i, fip and constant D-term Dy

*In addition, background gauge field for U(1);: A, = »dw — »=dw

Do
— lim / du / dDye 3 / 4110 dfio ZE1000(Do, o fl0, U, ¥)

e—0
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Localization for the torsion GLSM

e Fermions v, 1, in torsion multiplet have a pair of R zero modes
= as for K3 x T2, Zpew ~ Tr [J5 -]

@ Remark: NLSMs for Fu-Yau have (0,2) @ (0,4) (Melnikov, Minasian 2012)

@ Hence we consider a path integral:
T
Z = /D[A:tuu, D]eie%gvv'"" /D[qﬁ',w’]e 2 < Vem.

v /D[,ym]e—fng Vi m. /D[w,¢](de @Z+¢+)e_s[w’w’Ai]

* The operator [ dx .1, is not invariant under Q
= why should localization work?
@ Moreover we DO expect that the index depends on the T2 lattice sum

@ Hint: At the fermionic radius, related by T-duality to a case where it
does work (Abelian gauge bundle over K3)
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SUSY localization and torsion multiplet

@ Torsion multiplet:
% no couplings to D and py, fiy (gauginos),
% right-moving fermions ¥, 1, gauge neutral
Integral over torsion multiplet can be done exactly = gaussian
As ¢4, ¥4 gauge-neutral, e"WIAl = fD[w,w]e_s[w’w’A] does not
depend on [ dx ;1) insertion, up to a constant

Supersymmetric (but gauge-variant) functional in A and V?

@ Then the remaining path integral could be done using supersymmetric
localization, i.e. in the free-field limit e, f,g — 0

Slightly more complicated:
@ Decoupling of fermions v, 1, of the torsion multiplet obtained in
the Wess-Zumino gauge
e In this gauge, SUSY variation 0. W[A] ~ A;(efi— + €u—)
@ Going back to the WZ gauge by a supergauge transformation:
= SUSY variation of W precisely cancelled by the anomalous gauge
variation of the 'base’ GLSM measure
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Localization Il: one-loop fluctuations

Chiral multiplet

m+n+74+Qu+Ly

o Determinant: Z(u,,y, Do) = [, , T+ Qut Ly 2--1QDs
@ In the limit Dy — 0, it gives
_ _ Z(Im(QutLly))?  in(r)
Zc(u,t,y,0) = e nmQurDy)
@ To saturate the gaugino zero-modes: correlator

(J &x pQy¢ [ &x aQvs),.,

Final result:

—7 ek 1970
rch ;1 (Im+n+7+Qu+Ly|?+iQDo)(m+n7+Qu+Ly) ~ Do BEZC(”v u,y, DO)

= Poles in the Dy — 0 limit whenever
u€ Msing ={u,Qu+Liy=0 mod Z+ 772} := 9ﬁ;§ng U Sﬁ;ng
~—— =

all Q>0 all Q<0
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Fermi multiplets

Determinant of a Weyl fermion with twisted boundary conditions:

— _ T 2 .
Zro = det (8 i QL;TLzLy) _ o 75 (Im(Qu+Ly)) ’91(7;70:4'“’)

Abelian vector multiplet

|

=

—
§

Setting aside the zero modes g, fig and Dy one gets simply:
Z, =1(r)°

.

= Remark: taking into account gauge-fixing and the ghost sector does not
bring modifications to the results
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Torsion multiplet
@ Crucial: no couplings to Dy and gaugino zero-modes g, [io

. = . 0 —7 2imw6 ; _
Path integral over 1, ¥ gives ﬁ %‘9:0 % = —in(g)?

For simplicity: orthogonal torus without B-field (U; = T; = 0)
Bosonic fields: two terms like

S =R [ d?w (9000 — 2A,00 + AuAw)

with flat connection A = tvA¢ + M\A;.

For R = R¢: bosonization of the chiral Schwinger model (Dirac
fermion with chiral gauge coupling) (Jackiw, Rajaraman 1984)

= Coeff. of A, Ay regularization-dependent (bosonization ambiguities)
@ Appears also in the context of holomorphic factorization (Witten 1991)

@ Determinant for a chiral boson: holomorphic square root of a
non-chiral determinant (as with Dirac operator)
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Contribution of S? fibers

% At fermionic radius: sum over spin structures

— 2 (Im (rou 2 1 _
7= Le nmuriry ;oﬁ[g}(T,mtuw[g}(T,O)
’y, =

@ In terms of theta-functions at level two = easier to generalize:

Z=Le n(m 5 0, wou + 1y)@ma(7, 0)
mEZy

% At rational (radius)?: R = +/r/s with r, s coprime

% Zero-modes path integral followed by Poisson resummation
*Holomorphic square root gives

- 2
S %e_%? (Im (rou-+ly))? > @mJS(T,%(mu—i— y)) ©.rs(7, 0)

m+m=0 mods
m—m=0 mod r

= Remark: invariant under T-duality: R — 1/R, to — R2to
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Localization Ill: putting everything together

@ Last steps as for a standard GLSM (Benini et al., 2013)
= assume no gauge/global anomalies

@ Poles at Dy = Q#,\m + n7 + Q;u + L;y|? approach real axis as
u— Uy, € Ming

@ Step 1: excise singularities = cut disks A, around u, € Msing

@ Step 2: move Dy contour upwards (without hitting poles)

@ Step 3: path integral gives %Zam.(u, u, Do) x (holomorphic)
= [ d?u — contour integral over the boundaries $on, du

Z= lim / 9o e_zié_"tD”f du f(u, Do)
e,e=0 Jr, 2imDy 9A.,
@ Step 4: No poles from the lower half-plane in € — 0 limit

o Step 5: Each u, € Dﬁgng gives a residue in the e, e — 0 limit

Z=- ) fil:u‘du f(u,0)

UJ'GE):RJr

sing
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Final result

One gets finally for the path integral:
Z(r,7,y) = Tran |:Jtor( )FR S2imyJs qLo—c/24(—7[0—E/24:|

i01(7, gou + L,,y)
f{d”Hel (7, o,u+ L,y)H n(r)

uEM,, K

X H Z @mg,rgSg ( 7 (meu + [ZY)> eﬁ)z,rzsz(%vo)

=1 mg,my

In terms of which the new supersymmetric index reads

Zoew(7,7) = E4TO)Z ”Z( -WM)
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Geometrical formula: a conjecture

o Geometrical formulation of the (0,2) elliptic genus (Kawai, Mohri 1994)
@ Generalization to Fu-Yau:
% Using the splitting principle, factorize the total Chern classes of the

gauge and tangent bundles
r D

c(V) = TT1(1+wv)and ¢(T) = [T(1 +¢))

k=1 j=1
% Principal T2 bundle = set of a.s.d. (1,1)-forms w, on the base S

1 T+8 8—n
E4(7,0 2 [ 60:(7,75)
Znew = ;%10) Z q’ ( p 2 X
7,6=0

n 01(T,V/<+Wg+5) 2 n ¢
/S (H o Har= &

[T Y Omes (7 2(wfw, + 25)) emg,res@(f,0)>

£ mg,my

= Remark: in Fu-Yau geometries c(T M) = n*c(TS)
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Conclusions )
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@ GLSMs provide useful tools to probe compactifications with torsion

@ Applications to a broad class of A/ = 2 heterotic compactifications
= Fu-Yau geometries

@ Exact statements about T-duality along torus bundles
= no instanton corrections

@ Topology changing dualities between torsional and non-torsional
models

o Computation of the new supersymmetric index using supersymmetric
localization
w unlike K3 x T2, seemingly non-universal result
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@ Generalization to non-orthogonal torii with B-field (rational ¢ = 2
theory = hol. factorization)

@ Consider explicit examples of index computations
w SUSY vs. non-SUSY 7 (self- vs. anti-self-dual two forms w,)
@ Invariance of the new SUSY index under (topology changing) dualities
@ |Is the moonshine phenomenon visible?
= interesting case of study, as non-universal
@ Generalization to higher rank worldsheet gauge groups
= Jeffrey-Kirwan residues (Benini et al. 1l, 2013)

@ Explicit computation of threshold corrections
= Modular integrals using Niebur-Poincaré series (unfolding
una ppropriate) (Angelantonj, Florakis, Pioline 2011)
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