

Worldsheet aspects of heterotic compactifications with torsion

Fu-Yau compactifications from GLSMs

Dan Israël

Amsterdam, April 21st 2015

★ *T-duality in gauged linear sigma-models with torsion*, D.I., arXiv:1306.6609, JHEP 1311, 093 (2013)

★ One-loop corrections to heterotic torsional compactifications, D.I. and M. Sarkis, work in progress

Introduction

Heterotic compactifications with torsion

- Compactifications with torsion, *i.e.* $H \neq 0$, difficult to deal with in supergravity
- Gauge bundle V, tangent bundle TM and H tied together by the Bianchi identity:

$$\mathrm{d} H = 2i\partial\bar{\partial} J = \frac{\alpha'}{4} \left(\mathrm{tr} \, R(\nabla_T) \wedge R(\nabla_T) - \mathrm{Tr} \, \mathcal{F} \wedge \mathcal{F} \right) + \mathcal{O}(\alpha'^2)$$

Choice of connection on $T\mathcal{M}$ in Bianchi

- In Bianchi: connection on \mathcal{TM} with torsion
 - ★ dH should be a (2,2) form \blacktriangleright choose Chern connection: $\nabla_T = \nabla_c$
 - ★ no $\mathcal{O}(\alpha')$ corrections to SUSY conditions $\blacktriangleright \nabla_T = \nabla_+ = \nabla(\omega + \frac{1}{2}H)$
 - ★ to satisfy e.o.m. at order $\mathcal{O}(\alpha')$: SUSY conditions, Bianchi and $\overline{R}(\nabla_T)$ should be an SU(3) instanton → true for ∇_+ but at $\mathcal{O}(\alpha')$ only
- <u>Bottom line</u>: nearly impossible to get *exact* SUGRA solutions
- <u>Moreover</u>: Bianchi identity is non-linear in *H* ➡ no large-volume limit

⇒ 2d worldsheet description more appropriate.

- Are compactifications with torsion consistent beyond $\mathcal{O}(\alpha')$?
- What are their quantum symmetries?
- What are their moduli spaces?
- How to compute the four-dimensional effective action?

Prototypical example: Fu-Yau geometries (N = 2 in d = 4)

Principal T^2 bundles over a K3 surface: $T^2 \hookrightarrow \mathcal{M}_6 \xrightarrow{\pi} \mathcal{S}$

History

- Duality from type IIB orientifolds with flux
- *SU*(3)-structure described by Goldstein and Prokushkin
- Fu & Yau: solution to Bianchi with Hermitian connection
- Choose $\rho_n \in H^2(\mathcal{S},\mathbb{Z}) \cap H^{1,1}(\mathcal{S})$, *i.e.* in $Pic(\mathcal{S})$, primitive $(J \land \rho_n = 0)$

★ Metric:
$$ds^2 = e^{2A} ds^2(S) + \frac{U_2}{T_2} \Theta \overline{\Theta}$$
, $\Theta = dx + T dy + \mathfrak{w}^n \alpha_n$

with $d\Theta = 2\pi \mathfrak{w}^n \pi^\star \rho_n$, complex charges \mathfrak{w}^n in lattice $\mathbb{Z} + T\mathbb{Z}$

- <u>Torsion</u>: $H = \star_{\mathcal{S}} de^{2A} \frac{U_2}{T_2} \text{Re} \left(\bar{\Theta} \wedge \star_{\mathcal{S}} d\Theta \right)$
- ★ Gauge bundle: pullback of HYM bundle on S: $F^{0,2} = F^{2,0} = 0$, $J \downarrow F = 0$

★ <u>Bianchi identity</u>: tadpole condition $\int_{\mathcal{S}} \left(\frac{U_2}{T_2} || \mathfrak{w}^n \rho_n ||^2 - \frac{1}{2} \text{tr} F \wedge F \right) = 24$

(Dasgupta et al., 1999)

(2002)

(2006)

- Flow in the IR to non-linear sigma-models on Fu-Yau geometries

In this talk: two applications

- Exact T-duality transformations in torsional backgrounds, including topology-changing dualities
- Computation of the new-supersymmetric index through localization

Outline

(0,2) Gauged linear sigma-models with torsion

- (0,2) superfields and Lagrangians
- Torsion GLSM

T-duality

- Perturbative dualities of Fu-Yau geometries
- A GLSM proof of T-duality
- Topology change

New supersymmetric index

- Index for $K3 \times T^2$ compactifications
- New index for Fu-Yau GLSMS: setting the stage
- Computation through localization
- Final result
- Geometrical formula: a conjecture

Conclusions

(0,2) Gauged linear sigma-models with torsion

(0,2) superspace and superfields

Superspace coords ($x^{\pm}, \theta^+, \bar{\theta}^+$): $D_+ = \partial_{\theta^+} - i\bar{\theta}^+ \nabla_+, \ \bar{D}_+ = -\partial_{\bar{\theta}^+} + i\theta^+ \nabla_+$

Superfields

• Chiral superfield (charged):

 $\bar{D}_+ \Phi = 0 \implies \Phi = \phi + \sqrt{2}\theta^+ \psi_+ - i\theta^+ \bar{\theta}^+ \nabla_+ \phi$

- <u>Fermi superfield</u>: $\bar{D}_{+}\Gamma = 0 \implies \Gamma = \gamma_{-} + \sqrt{2}\theta^{+}G i\theta^{+}\bar{\theta}^{+}\nabla_{+}\gamma_{-}$
- Vector superfields (in WZ gauge):

$$\begin{array}{ll} \mathcal{A} = \theta^+ \bar{\theta}^+ A_+ \ , & \mathcal{V} = A_- - 2i\theta^+ \bar{\mu}_- - 2i\bar{\theta}^+ \mu_- + 2\theta^+ \bar{\theta}^+ D \\ & \clubsuit \ \text{Field-strength is chiral:} \ \Upsilon = \bar{D}_+ (\partial_- \mathcal{A} + i\mathcal{V}_-) \end{array}$$

Lagrangian

$$\begin{split} \mathcal{L} &= -\frac{1}{2} \int d^2 \theta^+ \, \bar{\Phi}_I (\partial_- + i Q_I \mathcal{V}) \Phi_I - \frac{1}{2} \int d^2 \theta^+ \, \bar{\Gamma}^a \Gamma^a - \frac{1}{8e^2} \int d^2 \theta^+ \, \bar{\Upsilon} \, \Upsilon \\ &- \int d\theta^+ \, \Gamma^a J_a(\Phi_I) + \frac{t}{4} \int d\theta^+ \, \Upsilon + c.c. \end{split}$$

Calabi-Yau non-linear sigma-model from the GLSM

Vacuum: CY hypersurface with holomorphic gauge bundle V

• K3 example:
$$\mathcal{L}_0 = \Gamma_0 J^0(\Phi_I) = \Gamma_0(\Phi_1^4 + \dots + \Phi_4^4)$$
 with $Q_i = 1$

★ D-term: $\sum_{I} Q_{I} |\phi_{I}|^{2} - \text{Im}(t) = 0$ ★ F-term: $J^{0}(\phi_{I}) = 0$ in \mathbb{CP}^{3} ➡ CP³ of Kähler modulus t
 ➡ Fermat quartic

• Gauge bundle: $\mathcal{L}_G = \Gamma^m PG_m(\Phi_I)$

★ In CY regime $\langle p \rangle = 0$ → Yukawa couplings $G_m(\phi_I)\gamma_-^m\psi_+^P$

 \star Massless left-moving fermions: sections of the monad bundle

$$0\longrightarrow V\longrightarrow \oplus \mathcal{O}(q_m)\stackrel{\otimes G_m}{\longrightarrow} \mathcal{O}(Q_P)\longrightarrow 0$$

Anomalies

- Gauge anomaly: $\delta_{\Xi} L_{eff} = \frac{\mathfrak{A}}{8} \int d\theta^+ \Xi \Upsilon + c.c.$, with $\mathfrak{A} = Q_i Q^i q_n q^n$
- \bullet A GLSM flowing to a (0,2) heterotic NLSM should have $\mathfrak{A}=0$ and
 - ★ Global right-moving $U(1)_R$
 - \star Global left-moving $U(1)_L$

→ IR $\mathcal{N} = 2$ superconformal algebra → GSO projection with $\mathbb{Z}_2 \subset U(1)_L$

Torsion multiplet

Gauge anomaly $\mathfrak{A} = Q_i Q^i - q_n q^n$ is a measure of $ch_2(V) - ch_2(T)$ \Rightarrow solutions with $dH \neq 0$, *i.e.* torsion?

The idea

- <u>Hint</u>: Fayet-Iliopoulos term ^t/₄ ∫ dθ⁺ Υ
 ⇒ Re(t) is a constant B-field in target space
- Field strength Υ is chiral (unlike (2,2) susy)
 - ➡ Field-dependent FI term (axial coupling):

$$-rac{ih}{4}\int\Omega\Upsilon+c.c.$$
, with $h\in\mathbb{Z}$ and $\Omega\sim\Omega+2i\pi$

- Corresponds to a non-trivial B-field
- D-term ⇒ C^{*} fibration over the 'base GLSM'
- ★ If shift-symmetry of Ω gauged \blacktriangleright classical non-gauge invariance!

 $L_{\mathcal{T}} = -\frac{i}{4} \int d^2\theta \left(\Omega + \bar{\Omega} + 2\mathfrak{w}\mathcal{A}\right) \left(\partial_{-}(\Omega - \bar{\Omega}) + 2i\mathfrak{w}\mathcal{V}\right) - \frac{i\hbar}{4} \int d\theta^+ \Omega \Upsilon + c.c.$

• Gauge transformation: $\delta \equiv \Omega = i \mathfrak{w} \Xi \implies \delta L_T = \frac{h \mathfrak{w}}{4} \int d\theta^+ \Xi \Upsilon$

Torsion GLSMs

Generic case $\blacktriangleright T^2$ of moduli (T, U) & charge $\mathfrak{w} = \mathfrak{w}_1 + T\mathfrak{w}_2$ (D.I. 2013)

$$\begin{split} \mathcal{L}_{\mathcal{T}} &= -\frac{i\mathcal{U}_2}{8\,\mathcal{T}_2}\int \mathsf{d}^2\theta\left(\Omega_1 + \bar{\Omega}_1 + \mathcal{T}_1(\Omega_2 + \bar{\Omega}_2) + 2(\mathfrak{w}_1 + \mathcal{T}_1\mathfrak{w}_2)\mathcal{A}\right)\left(\partial_-(\Omega_1 - \bar{\Omega}_1 + \mathcal{T}_1(\Omega_2 - \bar{\Omega}_2)) + 2i(\mathfrak{w}_1 + \mathcal{T}_1\mathfrak{w}_2)\mathcal{V}\right) \\ &- \frac{i}{8}\,\mathcal{U}_2\,\mathcal{T}_2\int \mathsf{d}^2\theta\left(\Omega_2 + \bar{\Omega}_2 + 2\mathfrak{w}_2\mathcal{A}\right)\left(\partial_-(\Omega_2 - \bar{\Omega}_2) + 2i\mathfrak{w}_2\mathcal{V}\right) - \frac{i\hbar^\ell}{4}\int \mathsf{d}\theta^+\,\Upsilon\,\Omega_\ell + c.c. \\ &+ \frac{i}{8}\,\mathcal{U}_1\int \mathsf{d}^2\theta\Big[(\Omega_1 + \bar{\Omega}_1 + 2\mathfrak{w}_1\mathcal{A})\left(\partial_-(\Omega_2 - \bar{\Omega}_2) + 2i\mathfrak{w}_2\mathcal{V}\right) - (\Omega_2 + \bar{\Omega}_2 + 2\mathfrak{w}_2\mathcal{A})\left(\partial_-(\Omega_1 - \bar{\Omega}_1) + 2i\mathfrak{w}_1\mathcal{V}\right)\Big] \end{split}$$

Compact models

- So far $(\mathbb{C}^*)^2$ fibrations over a K3 base
- Decoupling of Re(ω_ℓ)? → both kinetic and FI Lagrangians contain 'dangerous' terms in D Re (ω_ℓ) + ⁱ/_{√2}μ₋ψ_{+,ℓ} + cc
- If the coefficient in front vanishes be decoupled radial multiplet and torsion multiplet

Coupling to gauge superfields becomes chiral:

$$\frac{U_2}{T_2}\int \mathsf{d}^2\theta^+ \left[|\mathfrak{m}|^2\mathcal{AV} - \frac{i}{2}\mathcal{A}\underbrace{\left(\frac{\mathsf{Re}(\mathfrak{m})\partial_-(\Omega_1 - \bar{\Omega}_1) + \mathsf{Re}(\mathcal{T}^\star\mathfrak{m})\partial_-(\Omega_2 - \bar{\Omega}_2)\right)}_{\text{left current}}\right] + t.d.$$

Torus moduli stabilization and tadpole conditions

Moduli quantization

• Decoupling of radial multiplet if:

$$\frac{U_2}{T_2} \operatorname{Re}(\mathfrak{w}) - U_1 \mathfrak{w}_2 + h^1 = 0, \frac{U_2}{T_2} \operatorname{Re}(T^* \mathfrak{w}) + U_1 \mathfrak{w}_1 + h^2 = 0.$$

Quantization conditions from gauge instantons: h^ℓ ∈ Z.
 → one-dimensional subspace of T² moduli space

Next section: T-dualities give further moduli quantization conditions.

Anomaly cancellation and tadpole condition

- Using quantization conds, the gauge anomaly is canceled by the torsion multiplet if $Q_i Q^i q_n q^n = \frac{2U_2}{T_2} |\mathfrak{w}|^2$,
- With the relevant choice of charges for chiral and Fermi multiplets:
 integrated Bianchi identity of Fu-Yau compactifications

T-duality

Perturbative dualities of Fu-Yau geometries

- T-dualities: exact symmetries of toroidal compactifications
- Generalization to non-trivial backgrounds ?
 - ★ Exchanging metric and *B*-field components
 - ★ Mixing of gauge bundle and metric for heterotic solutions

T-dualities of Fu-Yau solutions in supergravity

• T-dualities of T^2 fibrations with H-flux

(Bouwknegt, Evslin, Mathai 2004)

- Topology changing dualities (gauge \leftrightarrow torus bundles) (Evslin & Minasian, 2009)
- As Fu-Yau solutions have no large (torus) volume limit, are these statements reliable?
- Are there global obstructions?
- Corrections by worldsheet instantons?

A GLSM proof of T-duality

T-dualities proven *exactly* starting from a torsion GLSM (D.I. 2013)
 Adapt Rocek & Verlinde quotient method (1992)

Extra ingredients

- An extra pair of vector superfields $(\hat{\mathcal{A}},\hat{\mathcal{V}})$, with no kinetic terms
- \bullet A Lagrange multiplier chiral superfield Δ to enforce $\hat{\Upsilon}=0$
- $\bullet\,$ Minimal couplings of Ω_ℓ shift-symmetry and/or axial couplings

$$\underbrace{\underline{\mathsf{Example:}}}_{\mathcal{L}} \quad \mathcal{G}_{s} \text{ duality } (s \in \mathbb{Z}) \\
\frac{\mathcal{L}}{\mathcal{L}} = -\frac{iR^{2}}{8} \left(\Omega_{1} + \bar{\Omega}_{1} + 2\mathfrak{w}_{1}\mathcal{A} + 2\hat{\mathcal{A}} \right) \left(\partial_{-}(\Omega_{1} - \bar{\Omega}_{1}) + 2i\mathfrak{w}_{1}\mathcal{V} + 2i\hat{\mathcal{V}} \right) \\
+ \cdots + \frac{h_{1}}{4} \left[\mathcal{V}(\Omega_{1} + \bar{\Omega}_{1} + 2\hat{\mathcal{A}}) + i\mathcal{A} \left(\partial_{-}(\Omega_{1} - \bar{\Omega}_{1}) + 2i\hat{\mathcal{V}} \right) \right] \\
+ \frac{1}{4} \left(\hat{\mathcal{V}}(\Delta + \bar{\Delta}) + i\hat{\mathcal{A}}\partial_{-}(\Delta - \bar{\Delta}) \right) + \frac{s}{4} \left(\hat{\mathcal{V}}(\Omega_{2} + \bar{\Omega}_{2}) + i\hat{\mathcal{A}}\partial_{-}(\Omega_{2} - \bar{\Omega}_{2}) \right)$$

Gauge variation w.r.t. 'unhatted' gauge sym.: ¹/₄(h¹ + sw₂) ∫ dθ⁺ΞŶ
 → Δ should have a non-zero shift-charge

Duality

- Integrating out $\Delta \rightarrowtail$ original theory as $\hat{\Upsilon} = 0$ is enforced
- Integrating out $(\hat{A}, \hat{V}) \models T$ -dual model with Δ as dual coordinate
- Dual model is a torsion GLSM for a Fu-Yau geometry

•
$$\mathcal{G}_s$$
 duality:
$$\begin{cases} U & \mapsto \tilde{U} = T \\ T & \mapsto \tilde{T} = U + s \end{cases}, \begin{cases} \operatorname{Re}(\tilde{\mathfrak{w}}) = \frac{U_2}{T_2} \operatorname{Re}(\mathfrak{w}), \\ \operatorname{Re}\left((\overline{U} + s)\tilde{\mathfrak{w}}\right) = \frac{U_2}{T_2} \operatorname{Re}\left((\overline{U} + s)\mathfrak{w}\right) \end{cases}$$

• Duality along
$$\Omega_2$$
:
 $\mathcal{I} : \begin{cases} U \mapsto \tilde{U} = -1/T \\ T \mapsto \tilde{T} = U \end{cases} \text{ and } \begin{cases} \operatorname{Re}(\tilde{\mathfrak{w}}) = \frac{U_2}{T_2} \operatorname{Re}(\tilde{T}\mathfrak{w}), \\ \operatorname{Re}(\overline{U}\tilde{\mathfrak{w}}) = -\frac{U_2}{T_2} \operatorname{Re}\left((\overline{TU}\mathfrak{w})\right) \end{cases}$

- $\mathcal{G}_0,\,\mathcal{G}_1$ and $\mathcal I$ generate the full duality group (see next slide)
- Not corrected by worldsheet instantons unlike Hori-Vafa mirror symmetry as we gauge a *shift charge*: instead of susy QED with massless flavor, admitting vortex solutions, massive U(1) gauge theory builties are exact

Perturbative toroidal dualities

Duality group

- $(\mathfrak{w}_1, \mathfrak{w}_2)$ transforms as a doublet of $PSL(2; \mathbb{Z})_T$.
- Under a U
 ightarrow -1/U duality, $\mathfrak{w} \mapsto -ar{U}\mathfrak{w}$
- Elliptic curve $E_T = \mathbb{C}/(\mathbb{Z} + T\mathbb{Z})$ should admit a non-trivial endomorphism (complex multiplication) $\phi : \begin{cases} E_T \rightarrow E_T \\ z \rightarrow U_T \end{cases}$

Moduli quantization

T and U valued in an imaginary quadratic number field $\mathbb{Q}(\sqrt{D})$:

$$T\in \mathbb{Q}+\sqrt{D}\,\mathbb{Q} \quad ext{with} \qquad D=b^2-4ac<0 \quad, \qquad a,b,c\in \mathbb{Z}\,.$$

 Precisely the conditions for a c = 2 CFT in 2d with a T² target space to be rational (Gukov & Vafa 2002)

Dan Israël

Heterotic dualities

- Heterotic compactifications on T² have a larger O(2,2,ℤ) duality group → in the present context, mixing of torus and gauge bundles
- Difficulity: mixing of quantum anomalies and gauge-variant terms

Recipe

- Free Fermi multiplet Γ of charge $q \Rightarrow$ section of $\mathcal{O}(q)$ over \mathcal{S}
- Bosonize the left-moving fermion γ_−
 ⇒ left chiral boson
- Embbed into chiral superfield B with gauged shift symmetry, of shift-charge q (at fermionic radius R = 1/√2)
 ⇒ anomaly becomes classical L = ^{iq}/₈ ∫ dθ⁺ BΥ + c.c.
- Consider 'auxiliary' 2-torus with B and e.g. Ω₁
 ⇒ auxiliary torsion multiplet Θ of moduli (u, t)

Torus/gauge bundles duality

- $u \rightarrow -1/u$ duality exchanges shift charge \mathfrak{w}_1 and Fermi multiplet charge q
 - Duality between compactifications with different topologies:

 $K3 imes S^1$ with an Abelian gauge bundle and $S^1 \hookrightarrow \mathcal{M}_5 o K3$

- Non-orthogonal torii: duality if U = 2T originally
 T₁ ≠ 0 gives after duality a line bundle over the total space M₆: -ⁱ/₄T₁(Ω₂ + Ω
 ²/₂ + 2w₂A) ∂₋(B - B̄) (generalized Wilson line)
- Warning: did not take into account the spin structures (left GSO)
 communicated through duality as large gauge tranformations
- \star Should study carefully the global charges of the model

New supersymmetric index

New supersymmetric index for $K3 \times T^2$ compactifications

• Defined as
$$Z_{new}(\tau) = \frac{1}{\eta^2} \operatorname{Tr}_{R} \left[J_{R}^{0}(-1)^{F_{R}} q^{L_0 - c/24} \bar{q}^{\bar{L}_0 - \bar{c}/24} \right]$$

→ trace over Hilbert space of $(c, \bar{c}) = (22, 9)$ CFT for $K3 \times T^2$

• Counts the BPS states of $K3 \times T^2$ compactifications (Harvey, Moore 1995)

$$rac{i}{2}Z_{new} = \sum\limits_{ ext{BPS vectors}} q^{\Delta}ar{q}^{ar{\Delta}} - \sum\limits_{ ext{BPS hypers}} q^{\Delta}ar{q}^{ar{\Delta}}$$

Building block of threshold corrections to gauge/grav. couplings

New susy index and K3 elliptic genus

- K3 elliptic genus: $Z_{K3}(\tau, y) = \operatorname{Tr}_{RR} \left[e^{2i\pi y J_L^0} (-1)^F q^{L_0 c/24} \bar{q}^{\bar{L}_0 \bar{c}/24} \right]$
- Consider a bundle $V \subset SO(2n) \subset E_8$ and a T^2 lattice $\Gamma_{2,2}$:

$$Z_{new}(\tau) = \frac{1}{2i\eta^{12}} \, \Gamma_{2,2} \, E_4(\tau, 0) \, \sum_{\gamma, \delta=0}^{1} q^{\gamma^2} \left(\frac{\theta_1(\tau, \frac{\gamma\tau+\delta}{2})}{\eta} \right)^{8-n} Z_{K3}\left(\tau, \frac{\gamma\tau+\delta}{2}\right)$$

★ Fixed by modular properties → universality of thresholds (Kiritis et al., 1997)
 ★ In particular, Matthieu moonshine for any gauge bundle (Cheng et al. 2013)

New index for Fu-Yau GLSMS: setting the stage

- Right fermions $\psi_+\text{,}~\bar\psi_+$ in the torus factor free
- We split $J^0_R = \bar{J}^{\rm K3}_{0,R} + \bar{J}^{tor}_{0,R}$ with $\bar{J}^{tor}_R \sim \bar{\psi}_+ \psi_+ + \cdots$
- We have ${\sf Tr}_{
 m R}\left[ar{J}_{0,R}^{
 m K3}(-1)^{F_R}q^{L_0-c/24}ar{q}^{ar{L}_0-ar{c}/24}
 ight]=0$, since:
 - ★ Pair of fermionic zero modes of opposite F_R in T^2 factor ★ The K3 SCFT has $\mathcal{N} = (0, 4)$ superconformal symmetry

Left GSO projection

Assume the existence of a $\mathbb{Z}_2 \subset U(1)_L$ left symmetry. Then

$$Z_{new} = \frac{E_4(\tau,0)}{2\eta^{10}} \sum_{\gamma,\delta=0}^{1} q^{\gamma^2} \mathsf{Tr}_{\mathrm{RR}} \left[e^{i\pi J_0^L(\gamma\tau+\delta)} \bar{J}_0^{tor} (-1)^{F_R} q^{L_0-c/24} \bar{q}^{\bar{L}_0-\bar{c}/24} \right]$$

where the trace is over the Hilbert space of $K3 \times T^2$ with the free fermions from the first E_8 factor

Supersymmetric localization I: the idea

- Choose a supercharge ${\mathcal Q}$ of your favorite SUSY QFT
- Aim : compute $\langle \mathcal{O} \rangle$ with $\mathcal{QO} = 0$
- Find V such that (i) $Q^2 V = 0$ and (ii) $QV|_{bos}$ positive definite
- Deformed path integral

$$\langle \mathcal{O} \rangle_t = \int \mathcal{D}\Phi \, \mathcal{O}(\Phi) \, e^{-S[\phi] - t \mathcal{Q}V}$$

 \bigstar As $\partial_t \langle \mathcal{O}
angle_t = 0) \bigstar$ compute in the $t o \infty$ limit

(Pestun, 2012)

• Exact result: one-loop fluctuations around the saddle points $\mathcal{QV}(\Phi_0)=0$

$$Z = \int_{\Phi_0, \mathcal{Q}V(\Phi_0)=0} \mathrm{d}\Phi_0 \ e^{-S[\Phi_0]} \mathcal{O}_{class}[\Phi_0] \ Z_{one-loop}$$

with $\Phi = \Phi_0 + \frac{1}{\sqrt{t}} \delta \Phi \rightarrow$ quadratic fluctuations only

GLSM elliptic genus through localization

- Supercharge $\mathcal{Q} = Q^+ + \bar{Q}^+ \Rightarrow$ whole GLSM action is \mathcal{Q} -exact
- For instance $S_{c.m.} = \int d^2 x \, Q(2 \phi \nabla_w \psi_+ i \bar{\phi}_+ \mu \phi) + t.d. := Q V_{c.m.}$

$$\mathcal{Z}(e,f,g) = \int \mathcal{D}[A,\mu,D] e^{-\frac{1}{e^2}\mathcal{Q} V_{v.m.}} \int \mathcal{D}[\phi^i,\psi^i] e^{-\frac{1}{g^2}\mathcal{Q} V_{c.m.}} \int \mathcal{D}[\gamma^m] e^{-\frac{1}{f^2}\mathcal{Q} V_{f.m.}}$$

- Path integral independent of $e, f, g > take e, f, g \rightarrow 0$ limit
- Integral localizes on BPS configurations, *i.e.* annihilated by Q: saddle points of the Euclidean (free) action

Localization locus

- Flat gauge connection on the worldsheet torus $A_G = \frac{\bar{u}}{2i\tau_2} dw \frac{u}{2i\tau_2} d\bar{w}$
- ullet Gaugino zero-modes $\mu_0,\ \bar{\mu}_0$ and constant D-term D_0

★In addition, background gauge field for $U(1)_L$: $A_L = \frac{\bar{y}}{2i\tau_2} dw - \frac{y}{2i\tau_2} d\bar{w}$

$$Z = \lim_{e \to 0} \int d^2 u \int_{\mathbb{R}} dD_0 \ e^{-\frac{D_0^2}{2e^2}} \int d\mu_0 \ d\bar{\mu}_0 \ Z_{\text{one-loop}}^{free}(D_0, \mu_0, \bar{\mu}_0, u, y)$$

Localization for the torsion GLSM

- Fermions ψ₊, ψ
 ₊ in torsion multiplet have a pair of R zero modes
 ⇒ as for K3 × T², Z_{new} ~ Tr [J₀^{tor} · · ·]
- Remark: NLSMs for Fu-Yau have $(0,2)\oplus(0,4)$ (Melnikov, Minasian 2012)
- Hence we consider a path integral:

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}[A_{\pm}, \mu_{-}, D] e^{-\frac{1}{e^2} \mathcal{Q} \cdot V_{v.m.}} \int \mathcal{D}[\phi^i, \psi^i] e^{-\frac{1}{g^2} \mathcal{Q} \cdot V_{c.m.}} \\ &\times \int \mathcal{D}[\gamma^m] e^{-\frac{1}{f^2} \mathcal{Q} \cdot V_{f.m.}} \int \mathcal{D}[\omega, \psi] \big(\int \mathrm{d}x \; \bar{\psi}_{+} \psi_{+} \big) e^{-S[\omega, \psi, A_{\pm}]} \end{split}$$

 \star The operator $\int \mathrm{d}x\, ar{\psi}_+\psi_+$ is <u>not</u> invariant under $\mathcal Q$

why should localization work?

- Moreover we DO expect that the index depends on the T^2 lattice sum
- Hint: At the fermionic radius, related by T-duality to a case where it <u>does</u> work (Abelian gauge bundle over *K*3)

SUSY localization and torsion multiplet

- Torsion multiplet:
 - ★ no couplings to D and μ_+ , $\bar{\mu}_+$ (gauginos),
 - \star right-moving fermions ψ_+ , $ar{\psi}_+$ gauge neutral
- Integral over torsion multiplet can be done exactly by gaussian
- As ψ_+ , $\bar{\psi}_+$ gauge-neutral, $e^{-W[A]} = \int \mathcal{D}[\omega, \psi] e^{-S[\omega, \psi, A]}$ does not depend on $\int dx \, \bar{\psi}_+ \psi_+$ insertion, up to a constant
- Supersymmetric (but gauge-variant) functional in $\mathcal A$ and $\mathcal V?$
- Then the remaining path integral could be done using supersymmetric localization, *i.e.* in the free-field limit $e, f, g \rightarrow 0$

Slightly more complicated:

- \bullet Decoupling of fermions $\psi_+\text{,}\ \bar\psi_+$ of the torsion multiplet obtained in the Wess-Zumino gauge
- In this gauge, SUSY variation $\delta_\epsilon W[A] \sim A_+(\epsilon ar\mu_- + ar\epsilon \mu_-)$
- Going back to the WZ gauge by a supergauge transformation:

 \blacktriangleright SUSY variation of W precisely cancelled by the anomalous gauge variation of the 'base' GLSM measure

Dan Israël

27 / 37

Localization II: one-loop fluctuations

Chiral multiplet

- Determinant: $Z_c(u, \bar{u}, y, D_0) = \prod_{m,n} \frac{m+n+\bar{\tau}+Q\bar{u}+L\bar{y}}{|m+n+\tau+Qu+Ly|^2+iQD_0}$
- In the limit $D_0 \rightarrow 0$, it gives $Z_c(u, \bar{u}, y, 0) = e^{\frac{\pi}{\tau_2} (\ln (Qu+Ly))^2} \frac{i\eta(\tau)}{\theta_1(\tau, Qu+Ly)}$
- To saturate the gaugino zero-modes: correlator $\left\langle \int d^2 x \ \mu Q \bar{\psi} \phi \int d^2 x \ \bar{\mu} Q \psi \bar{\phi} \right\rangle_{free}$

Final result:

$$-\frac{i}{\pi}Z_{c}\sum_{m,n}\frac{Q^{2}}{(|m+n+\tau+Qu+Ly|^{2}+iQD_{0})(m+n\bar{\tau}+Q\bar{u}+L\bar{y})}=-\frac{1}{\pi D_{0}}\frac{\partial}{\partial\bar{u}}Z_{c}(u,\bar{u},y,D_{0})$$

▶ <u>Poles</u> in the $D_0 \rightarrow 0$ limit whenever

$$u \in \mathfrak{M}_{sing} = \{u, Q_i u + L_i y = 0 \mod \mathbb{Z} + \tau \mathbb{Z}\} := \underbrace{\mathfrak{M}^+_{sing}}_{\text{all } Q_i > 0} \cup \underbrace{\mathfrak{M}^-_{sing}}_{\text{all } Q_i < 0}$$

Fermi multiplets

Determinant of a Weyl fermion with twisted boundary conditions:

$$Z_{f,Q,L} = \det\left(\bar{\partial} + \frac{Qu+Ly}{2\tau_2}\right) = e^{-\frac{\pi}{\tau_2}(\operatorname{Im}(Qu+Ly))^2} \frac{i\theta_1(\tau,Qu+Ly)}{\eta(\tau)}$$

Abelian vector multiplet

Setting aside the zero modes μ_0 , $\bar{\mu}_0$ and D_0 one gets simply:

 $Z'_v = \eta(\tau)^2$

<u>Remark</u>: taking into account gauge-fixing and the ghost sector does not bring modifications to the results

Torsion multiplet

- Crucial: no couplings to D_0 and gaugino zero-modes μ_0 , $\bar{\mu}_0$
- Path integral over ψ_+ , $\bar{\psi}_+$ gives $\frac{1}{2i\pi} \frac{\partial}{\partial \theta}\Big|_{\theta=0} \frac{\theta_1(\bar{q}, e^{2i\pi\theta})}{\eta(\bar{q})} = -i\eta(\bar{q})^2$
- For simplicity: orthogonal torus without *B*-field $(U_1 = T_1 = 0)$
- Bosonic fields: two terms like

$$S = \frac{R^2}{4\pi} \int d^2 w \left(\partial \theta \bar{\partial} \theta - 2A_w \bar{\partial} \theta + A_w A_{\bar{w}} \right)$$

with flat connection $A = \mathfrak{w}A_G + \lambda A_L$.

- For $R = R_f$: bosonization of the chiral Schwinger model (Dirac fermion with chiral gauge coupling) (Jackiw, Rajaraman 1984)
 - \blacktriangleright Coeff. of $A_w A_{\bar{w}}$ regularization-dependent (bosonization ambiguities)
- Appears also in the context of holomorphic factorization (Witten 1991)
- Determinant for a chiral boson: holomorphic square root of a non-chiral determinant (as with Dirac operator)

★ <u>At fermionic radius</u>: sum over spin structures

$$Z = \frac{1}{\eta \bar{\eta}} e^{-\frac{\pi}{\tau_2} (\operatorname{Im}(\mathfrak{w} u + \mathfrak{l} y))^2} \frac{1}{2} \sum_{\gamma, \delta = 0}^{1} \vartheta \begin{bmatrix} \gamma \\ \delta \end{bmatrix} (\tau, \mathfrak{w} u + \mathfrak{l} y) \vartheta \begin{bmatrix} \gamma \\ \delta \end{bmatrix} (\bar{\tau}, 0)$$

In terms of theta-functions at level two beasier to generalize:

$$Z = \frac{1}{\eta \bar{\eta}} e^{-\frac{\pi}{\tau_2} (\operatorname{Im} (\mathfrak{w} u + \mathfrak{l} y))^2} \sum_{m \in \mathbb{Z}_4} \Theta_{m,2}(\tau, \mathfrak{w} u + \mathfrak{l} y) \Theta_{m,2}(\bar{\tau}, 0)$$

★ At rational (radius)²: $R = \sqrt{r/s}$ with r, s coprime

★Zero-modes path integral followed by Poisson resummation ★Holomorphic square root gives

$$Z = \frac{1}{\eta \bar{\eta}} e^{-\frac{2\pi R^2}{\tau_2} (\operatorname{Im}(\mathfrak{w} u + \mathfrak{l} y))^2} \sum_{\substack{m + \bar{m} \equiv 0 \\ m - \bar{m} \equiv 0 \mod r}} \Theta_{m, rs} (\tau, \frac{2}{s}(\mathfrak{w} u + \mathfrak{l} y)) \Theta_{\bar{m}, rs}(\bar{\tau}, 0)$$

\square <u>Remark</u>: invariant under T-duality: $R \mapsto 1/R$, $\mathfrak{w} \mapsto R^2\mathfrak{w}$

Dan Israël

Localization III: putting everything together

Last steps as for a standard GLSM

(Benini et al., 2013)

assume no gauge/global anomalies

- Poles at $D_0 = \frac{i}{Q_i} |m + n\tau + Q_i u + L_i y|^2$ approach real axis as $u \to u_\star \in \mathfrak{M}_{sing}$
- Step 1: excise singularities \blacktriangleright cut disks Δ_{ϵ} around $u_{\star} \in \mathfrak{M}_{sing}$
- Step 2: move D_0 contour upwards (without hitting poles)
- <u>Step 3</u>: path integral gives $\frac{\partial}{\partial \overline{u}} Z_{c.m.}(u, \overline{u}, D_0) \times (holomorphic)$ • $\int d^2 u \longrightarrow \text{contour integral over the boundaries } \oint_{\partial \Delta_{\epsilon}} du$ $Z = \lim_{e,\epsilon \to 0} \int_{\Gamma} \frac{dD_0}{2i\pi D_0} e^{-\frac{D_0^2}{2e^2} - itD_0} \oint_{\Omega_{\Delta}} du f(u, D_0)$
- Step 4: No poles from the lower half-plane in $\epsilon \rightarrow 0$ limit
- Step 5: Each $u_{\star} \in \mathfrak{M}^+_{sing}$ gives a residue in the $e, \epsilon \to 0$ limit

$$Z = -\sum_{u_j \in \mathfrak{M}^+_{sing}} \oint_{u=u_j} \mathrm{d} u \ f(u,0)$$

Final result

One gets finally for the path integral:

$$Z(\tau,\bar{\tau},y) = \operatorname{Tr}_{\operatorname{RR}} \left[\overline{J}_{0}^{tor}(-1)^{F_{R}} e^{2i\pi y J_{0}^{L}} q^{L_{0}-\bar{c}/24} \overline{q}^{\overline{L}_{0}-\bar{c}/24} \right]$$

$$= \sum_{u_{j}\in\mathfrak{M}_{sing}^{+}} i \oint_{u_{j}} du \prod_{i} \frac{i\eta(\tau)}{\theta_{1}(\tau,Q_{i}u+L_{i}y)} \prod_{n} \frac{i\theta_{1}(\tau,q_{n}u+L_{n}y)}{\eta(\tau)} \times$$

$$\times \prod_{\ell=1}^{2} \sum_{m_{\ell},\bar{m}_{\ell}} \Theta_{m_{\ell},r_{\ell}s_{\ell}} \left(\tau,\frac{2}{s_{\ell}}(\mathfrak{w}_{\ell}u+\mathfrak{l}_{\ell}y)\right) \Theta_{\bar{m}_{\ell},r_{\ell}s_{\ell}}(\bar{\tau},0)$$

In terms of which the new supersymmetric index reads

$$Z_{{\it new}}(au,ar{ au}) = rac{E_4(au,0)}{2\eta^{10}}\sum_{\gamma,\delta=0}^1 q^{\gamma^2}Z\left(au,ar{ au},rac{\gamma au+\delta}{2}
ight)\,.$$

Geometrical formula: a conjecture

• Geometrical formulation of the (0,2) elliptic genus

(Kawai,Mohri 1994)

- Generalization to Fu-Yau:
- ★ Using the splitting principle, factorize the total Chern classes of the gauge and tangent bundles

$$c(V) = \prod_{k=1}^{r} (1 + v_k)$$
 and $c(T) = \prod_{j=1}^{D} (1 + \xi_j)$

★ Principal T² bundle ➡ set of a.s.d. (1,1)-forms ω_a on the base S

$$Z_{new} = \frac{E_4(\tau,0)}{2\eta^{10}} \sum_{\gamma,\delta=0}^{1} q^{\gamma^2} \left(\frac{\theta_1(\tau,\frac{\gamma\tau+\delta}{2})}{\eta}\right)^{8-n} \times \int_{\mathcal{S}} \left(\prod_{k=1}^{n} \frac{\theta_1(\tau,v_k+\frac{\gamma\tau+\delta}{2})}{\eta} \prod_{j=1}^{2} \frac{\eta}{\theta_1(\tau,-\xi_j)} \xi_j \prod_{\ell} \sum_{m_\ell,\bar{m}_\ell} \Theta_{m_\ell,r_\ell s_\ell} \left(\tau, \frac{2}{s_\ell} (\mathfrak{w}_\ell^a \omega_a + \frac{\gamma\tau+\delta}{2})\right) \Theta_{\bar{m}_\ell,r_\ell s_\ell}(\bar{\tau},0)\right)$$

▶ <u>Remark</u>: in Fu-Yau geometries $c(TM_6) = \pi^* c(TS)$

Conclusions

- GLSMs provide useful tools to probe compactifications with torsion
- Applications to a broad class of $\mathcal{N}=2$ heterotic compactifications \blacktriangleright Fu-Yau geometries
- Exact statements about T-duality along torus bundles
 no instanton corrections
- Topology changing dualities between torsional and non-torsional models
- Computation of the new supersymmetric index using supersymmetric localization
 - unlike $K3 \times T^2$, seemingly non-universal result

- Generalization to non-orthogonal torii with B-field (rational c = 2 theory → hol. factorization)
- Consider explicit examples of index computations
 SUSY vs. non-SUSY ? (self- vs. anti-self-dual two forms ω_n)
- Invariance of the new SUSY index under (topology changing) dualities
- Is the moonshine phenomenon visible?
 interesting case of study, as non-universal
- Generalization to higher rank worldsheet gauge groups
 Jeffrey-Kirwan residues
- Explicit computation of threshold corrections
 Modular integrals using Niebur-Poincaré series (unfolding unappropriate) (Angelantonj, Florakis, Pioline 2011)

(Benini et al. II, 2013)