

One-loop corrections to heterotic flux compactifications

Dan Israël

Imperial College, May 14th 2016

★ New supersymmetric index of heterotic compactifications with torsion, D.I. and Matthieu Sarkis, JHEP 1512, 069 (2015)

★ One-loop corrections to heterotic flux compactifications, C. Angelantonj, D.I., M. Sarkis, to appear

Introduction

Heterotic compactifications with torsion

Supersymmetric heterotic compactifications

- Killing spinor eqn. : $\nabla(\omega \frac{1}{2}\mathcal{H})\epsilon = 0 + \mathcal{O}(\alpha'^2)$
- Gauge, tangent bundles and 3-form \mathcal{H} tied together by the Bianchi identity:

$$\mathrm{d}\mathcal{H} = \frac{\alpha}{4} \left(\mathrm{tr} \, R(\nabla_{\mathcal{T}}) \wedge R(\nabla_{\mathcal{T}}) - \mathrm{Tr} \, \mathcal{F} \wedge \mathcal{F} \right) + \mathcal{O}(\alpha'^2)$$

Non-Kähler geometry

★ General SUSY compactification: $\begin{cases}
\text{Complex manifold } \mathcal{M} \\
+ \text{Holomorphic vector bundle } \mathcal{V} \\
★ 3-form flux <math>\mathcal{H} \leftrightarrow \text{Non-K\"ahler manifold } \mathcal{H} = i(\bar{\partial} - \partial)J \neq 0
\end{cases}$

Supergravity limit of flux compactifications?

- In Bianchi: connection with torsion, e.g. $\nabla_T = \nabla^+ = \nabla(\omega + \frac{1}{2}\mathcal{H})$
- ★ If $H \neq 0$ at leading order \blacktriangleright no large-volume limit

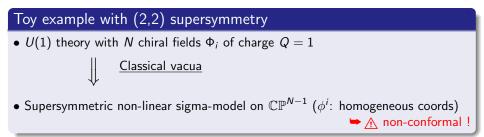
2d worldsheet description more appropriate. Fortunately, no RR fluxes!
 general framework: (0,2) superconformal theories in 2d

- Are compactifications with torsion consistent beyond $\mathcal{O}(\alpha')$?
- What are their quantum symmetries?
- What are their moduli spaces?
- How to compute the four-dimensional effective action?

Gauged linear sigma-model (GLSM) approach

★Basic idea: simple 2d QFT in the same universality class as NLSM (Witten, 96)

UV-free 2d Abelian gauge theory $\stackrel{\text{low energy}}{\Longrightarrow}$ NLSM on (non)Kähler manifold



 $\bigstar Strategy:$ find "supersymmetry protected" quantities invariant under RG flow

In this talk

★How to extend this formalism to non-Kähler geometries?
 ★RG-invariant partition function for these theories SUSY index
 ★One-loop corrections to 4d effective action

Dan Israël

One-loop corrections

Outline

Gauged linear sigma models basics GLSMs with torsion 3 Supersymmetric index Supersymmetric localization Mathematical formulation Threshold corrections

Gauged linear sigma models basics

(0,2) superspace and superfields in two dimensions

Superspace coordinates $(x^{\pm}, \theta^+, \bar{\theta}^+)$: $D_+ = \partial_{\theta^+} - i\bar{\theta}^+ \nabla_+, \ \bar{D}_+ = -\partial_{\bar{\theta}^+} + i\theta^+ \nabla_+$

Superfields

• Chiral superfield: $\bar{D}_+ \Phi = 0 \implies \Phi = \phi + \theta^+ \psi_+ + \cdots$

• <u>Fermi superfield</u>: $\bar{D}_{+}\Gamma = 0 \implies \Gamma = \gamma_{-} + \theta^{+}G + \cdots \leftarrow$ auxiliary fields

• Vector superfields \blacktriangleright Chiral field-strength: $\Upsilon = \mu_{-} - i\theta^{+}(D - iF_{01}) + \cdots$

Lagrangian

$$L = L_{\rm KIN} - \frac{1}{8e^2} \int d^2 \theta^+ \, \bar{\Upsilon} \, \Upsilon \qquad - \qquad \underbrace{\int d\theta^+ \, \Gamma^a J_a(\Phi_I)}_{\text{Superpotential}} + \underbrace{\frac{t}{4} \int d\theta^+ \, \Upsilon}_{\text{Exact Winnequiles term}} + h.c.$$

$$= L_{\text{KIN}} + \frac{1}{2e^2} \left(2i\bar{\mu}_- \partial_+ \mu_- + D^2 + F_{01}^2 \right) + G^a J_a(\phi^i) - \gamma_-^a \psi_+^i \partial_i J_a + r D - \frac{\theta}{2\pi} F_{01} + h.c.$$

with $t = ir + \frac{\theta}{2\pi}$

Calabi-Yau NLSM from GLSM: K3 surface example

Fermat quartic

$$0 \longrightarrow \mathcal{V} \longrightarrow \oplus \mathcal{O}(q_m) \stackrel{\otimes J_m}{\longrightarrow} \mathcal{O}(-Q_0) \longrightarrow 0$$

Anomalies

- Gauge anomaly: $\delta \equiv L_{eff} = \frac{\mathfrak{A}}{8} \int d\theta^+ \equiv \Upsilon + c.c.$, with $\mathfrak{A} = Q_i Q^i q_n q^n$
- Consistent models need also 2 non-anomalous global symmetries:
 - ★ Right-moving $U(1)_R$ ★ Left-moving $U(1)_L$

→ IR $\mathcal{N} = 2$ superconformal algebra → GSO projection

Towards GLSM with torsion

- Interpretation of gauge anomaly: $\mathfrak{A}\sim\mathsf{ch}_{2}\left(\mathcal{T}_{\mathcal{M}}
 ight)-\mathsf{ch}_{2}\left(\mathcal{V}
 ight)$
- Geometry of Fayet-Iliopoulos terms $\mathfrak{L}_{\mathrm{FI}} = \sum_{a} t_{a} \underbrace{\Upsilon^{a}}_{[h^{a}] \in \mathcal{H}^{(1,1)}(\mathcal{M})}$

• Complexified Kähler class $[J] = \sum_{a} t_{a}[h^{a}]$ (Re $J \leftrightarrow B$ -field)

• Idea:
$$t_a
ightarrow t_a(\Phi_i)$$
 gives d $J
eq 0$

 \blacktriangleright non-zero torsion \mathcal{H}

GLSMs with torsion

Introducing the torsion multiplet

 \star Strategy: cancel gauge anomaly of K3 GLSM with axion fields (Adams et al. 06)

★Torsion chiral multiplet $\Theta = (\vartheta, \chi)$

★ ϑ : coordinate on T^2 with moduli (*T*, *U*) → metric $ds^2 = \frac{U_2}{T_2} |dx^1 + T dx^2|^2$

★Gauge transformation: $\Theta \stackrel{\Xi}{\longmapsto} \Theta - M\Xi$ with $M \in \mathbb{Z} + T\mathbb{Z}$

Axial coupling

★Linear field-dependent Fayet Iliopoulos term (gauge-variant)

$$L = -ar{M} rac{U_2}{2T_2} \int \mathrm{d} heta^+ \Theta \Upsilon + h.c. \ \supset \ ar{M} rac{U_2}{2T_2} \,artheta \, F_{01}$$

★ Cancels the gauge anomaly if $\mathfrak{A} + \frac{2U_2}{T_2}|M|^2 = 0$

Important consistency condition (single-valuedness of action/duality covariance): Moduli of T^2 such that the free boson ϑ defines a rational conformal field theory

(DI, 13)

Non-Kähler Geometry: Fu-Yau manifolds

- ★ At low energies: flows to a NLSM on a class of non-Kähler manifolds
- ★ Principal T^2 bundles over a K3 surface S: (Dasgupta et al., 99, Fu and Yau 2006)

$$T^2 \hookrightarrow \mathcal{M}_6 \xrightarrow{\pi} \mathcal{S}$$

★ Metric:
$$ds^2 = e^{2A(y)} ds^2(S) + \frac{U_2}{T_2} |dx_1 + T dx_2 + \pi^* \alpha|^2$$

• $d\alpha = \omega$ anti-self dual (1,1) form, $\omega = \omega_1 + T\omega_2$ with $\frac{1}{2\pi}\omega_i \in H^2(\mathcal{S},\mathbb{Z})$

\star Gauge bundle \mathcal{V} : Hermitian-Yang-Mills connection over \mathcal{S} :

$$F^{0,2} = F^{2,0} = 0$$
, $J \wedge F = 0$

★ Bianchi identity: topological condition

$$\int_{\mathcal{S}} \left(\frac{U_2}{T_2} \omega \wedge \star \bar{\omega} - \mathsf{ch}_2\left(\mathcal{V} \right) + \mathsf{ch}_2\left(\mathcal{T}_{\mathcal{M}} \right) \right) = 0 \;\; \leftrightarrow \;\; \mathsf{anomaly condition in \; GLSM} \; \star$$

- Class of GLSMs with torsion
- Most generic compactifications of heterotic strings with N = 2 SUSY in 4d
 ► A subset of those are the well-studied K3 × T² compactifications
- Many far-reaching insights made for $K3 \times T^2$ compactifications including:
 - ★ Duality: Heterotic on $K3 \times T^2 \leftrightarrow$ IIA on elliptically fibered Calabi-Yau 3-fold
 - ★ Mathieu moonshine: hidden symmetry (Mathieu group M_{24}) of NLSMs on K3

 \blacktriangleright due to $\mathcal{N} = 2$ SUSY constraints, many *exact* statements possible.

• General understanding should include Fu-Yau manifolds (generic case)

Supersymmetric index

Supersymmetric partition function

★Partition function of (2,2) superconformal NLSM on Calabi-Yau: *elliptic genus*

$$Z_{\scriptscriptstyle ext{\tiny E}}(q,y) = ext{Tr}_{\scriptscriptstyle ext{\tiny P}}\left(q^{\Delta}ar{q}^{ar{\Delta}}(-1)^{F}e^{2i\pi y J_{0}^{R}}
ight)\,,$$

with J_0^R zero-mode of the left-moving R-current in superconformal algebra \rightarrow vanishes for $K3 \times T^2$ because of T^2 fermionic zero-modes

★(0,2) NLSM on Fu-Yau \blacktriangleright zero-modes ($\chi_0, \bar{\chi}_0$) from torsion multiplet

★Assuming there exists a left current J^L (and right-moving \overline{J}^R), define (DI & Sarkis, 15)

$$Z_{ ext{FY}}(q,ar{q},y) = ext{Tr}_{ ext{P}}\left(q^{\Delta}ar{q}^{ar{\Delta}}(-1)^{F}e^{2i\pi y J_{0}^{L}}ar{J}_{0}^{R}
ight)\,,$$

★We have $\bar{J}^R = \bar{\chi}\chi + \underbrace{\cdots}_{\text{terms with no }\chi \text{ zero-modes}}$

As we will argue, can be computed exactly in the GLSM thanks to SUSY !

 \star On a two-torus of complex structure τ ($q = \exp 2i\pi\tau$) we have:

$$\begin{split} Z_{\rm FY}(\tau,\bar{\tau},y) &= \int \mathscr{D} a_z \mathscr{D} a_{\bar{z}} \mathscr{D} \mu \mathscr{D} \bar{\mu} \mathscr{D} D \; e^{-\frac{1}{e^2} S_{\rm vector}[a,\mu,D]-t \; S_{\rm FI}(a,D)} \; \times \\ & \times \; \int \mathscr{D} \phi_i \mathscr{D} \bar{\phi}_i \mathscr{D} \psi_i \mathscr{D} \bar{\psi}_i \; e^{-\frac{1}{e^2} S_{\rm chiral}[\phi_i,\psi_i,a,D,a_{\rm L}]} \; \times \\ & \times \; \int \mathscr{D} \gamma_a \mathscr{D} \bar{\gamma}_a \mathscr{D} G_a \mathscr{D} \bar{G}_a \; e^{-\frac{1}{f^2} S_{\rm fermi}[\gamma_a,G_a,a,a_{\rm L}]-S_J[\gamma_a,G_a,\phi_i,\psi_i]} \; \times \\ & \times \; \int \mathscr{D} \vartheta \mathscr{D} \bar{\vartheta} \mathscr{D} \chi \mathscr{D} \bar{\chi} \; e^{-S_{\rm torsion}[\vartheta,\chi,a,a_{\rm L}]} \int \frac{d^2 z}{2\tau_2} \; \bar{\chi} \chi \,, \end{split}$$

with background gauge field for the $U(1)_{
m L}$ global symmetry

$$a_{\mathrm{L}} = rac{\pi y}{2i au_2} (\mathrm{d}z - \mathrm{d}ar{z})$$

★Interacting theory with coupling constants $1/e^2$, t, $1/f^2$, $1/g^2$

Supersymmetric localization

Supersymmetric localization I: the idea

 $\bullet\,$ Choose a supercharge ${\cal Q}$ of a supersymmetric QFT

 $rightarrow \mathcal{Q} S[\Phi] = 0$ and \mathcal{Q} -invariant measure

- \bullet Aim : compute $\langle \mathcal{O} \rangle$ with $\mathcal{QO}=0$
- Find functional $P[\Phi]$ such that $QP|_{bos}$ positive definite
- Deformed path integral

$$\langle \mathcal{O} \rangle_{\ell} = \int \mathcal{D}\Phi \, \mathcal{O}(\Phi) \, e^{-S[\phi] - \ell \mathcal{Q}P}$$

★ As
$$\frac{\partial}{\partial_{\ell}} \langle \mathcal{O} \rangle_{\ell} = -\int \mathcal{Q} \left(\mathcal{D} \Phi \, \mathcal{O}(\Phi) \, e^{-S[\phi] - \ell \mathcal{Q} P} P \right) = 0$$

• compute in the $\ell \to \infty$ limit

• Exact result: one-loop fluctuations around the saddle points $QP(\Phi_0) = 0$

$$Z = \int_{\Phi_0, \mathcal{Q}P(\Phi_0)=0} \mathrm{d}\Phi_0 \, e^{-S[\Phi_0]} \, \mathcal{O}_{class}[\Phi_0] \, Z_{one-loop}$$

Supersymmetric localization II: why we can

★In the (0,2) GLSM → natural choice of supercharge $Q = Q_+ + \bar{Q}_+$

Good news

- \bullet Whole vector, chiral and fermi multiplets actions are $\mathcal{Q}\text{-exact}$
- $1/e^2 \to \infty$ limit for the gauge fields \blacktriangleright keep only gauge holonomies $(a_{z\bar{z}}=0)$
- $1/f^2, \, 1/g^2
 ightarrow \infty$ limit \blacktriangleright superpotential vanishes

Bad news ?

- $\mathcal{O} = \int \frac{d^2 z}{2\tau_2} \bar{\chi} \chi$ not \mathcal{Q} -invariant
- ❷ Torsion multiplet action not gauge-invariant ➡ not Q-invariant
- **③** Gauge anomaly **→** measure $\mathscr{D} Φ_i \mathscr{D} Γ_a$ not Q-invariant
- $\begin{array}{c} \bullet & \mathcal{QO} \text{ doesn't contain enough zero-modes } (\chi_0, \bar{\chi}_0) \text{ to contribute} \\ \\ \bullet & \\ \bullet &$

Supersymmetric localization III: one-loop determinants

Localisation locus

- $e \to 0$ limit \blacktriangleright flat connections on worldsheet torus : $a = \frac{\pi \bar{u}}{2i\tau_2} dz \frac{\pi u}{2i\tau_2} d\bar{z}$
- $f, g \rightarrow 0$ limit \blacktriangleright free chiral and Fermi multiplets
- Zero modes (generically) : aux. field D_0 , gaugino zero-modes λ_0 , $\bar{\lambda}_0$

One-loop determinants

- Chiral : $Z_{\Phi} = e^{-\frac{\pi}{\tau_2}(v^2 v\bar{v})} \frac{i\eta(\tau)}{\vartheta_1(\tau|v)}, v = Q_i u + q_i^{\mathrm{L}} y$
- Fermi : $Z_{\Gamma} = e^{\frac{\pi}{\tau_2}(v^2 v\bar{v})} \frac{\vartheta_1(\tau|v)}{i\eta(\tau)}$
- U(1) vector : $Z_A(\tau, y) = -2i\pi\eta(\tau)^2 \mathrm{d} u$

Supersymmetric localization IV: the short story

- Torsion multiplet action not Q-exact $\blacktriangleright Z_{FY}$ depends on torus moduli T, U
- Torsion multiplet maps to a "rational" two-torus by two isomorphic rank two even lattices

$$\Gamma_{\scriptscriptstyle \mathrm{L}} = \Gamma^{2,2}(\mathcal{T},\mathcal{U}) \cap \mathbb{R}^{2,0} \;, \quad \Gamma_{\scriptscriptstyle \mathrm{R}} = \Gamma^{2,2}(\mathcal{T},\mathcal{U}) \cap \mathbb{R}^{0,2}$$

- Integral over gauge holonomies u_ℓ ∈ C/(Z + τZ) → poles in Z_{one-loop} due to "accidental" bosonic zero modes
- Turn $\int d^2 u_\ell$ into contour integral around the poles • Jeffrey-Kirwan residues (Benini et al. 2013)
- ★ $Z_{\text{FY}}(\tau, \bar{\tau}, y)$ has an intrinsic mathematical definition, as an non-holomorphic elliptic genus that I will use to present the result

Mathematical formulation

 \star (0,2) Non-linear sigma-model on Fu-Yau manifold characterized by

- Holomorphic tangent bundle T_S over the base, with c₁(T_S) = 0
 ⇒ splitting principle c(T_S) = ∏²_{i=1}(1 + ν_i)
- A rank r holomorphic vector bundle V over S, with c₁(V) = 0
 ⇒ splitting principle c(V) = ∏^r_{a=1}(1 + ξ_a)
- A "rational" Narain lattice in $\mathbb{R}^{2,2}$ defined by a pair of isomorphic rank two lattices Γ_L , Γ_R and a gluing map $\varphi : \Gamma_L^*/\Gamma_L \to \Gamma_R^*/\Gamma_R$
- A pair of anti-self-dual (1,1)-forms ω_1 and ω_2 in $H^2(\mathcal{S},\mathbb{Z})$ characterizing the torus bundle

$$\underline{\wedge} \text{ Constraint } \underline{U_2}{T_2} \omega \wedge \star \bar{\omega} - \operatorname{ch}_2(\mathcal{V}) + \operatorname{ch}_2(\mathcal{T}_{\mathcal{M}}) = 0 \text{ in cohomology}$$

Non-holomorphic elliptic genus

$$Z_{\rm FY}(\mathcal{M},\mathcal{V},\omega|\tau,\bar{\tau},y) = \frac{1}{\eta(\tau)^2} \int_{\mathcal{S}} \prod_{a=1}^r \frac{i\theta_1(\tau \left| \frac{\xi_a}{2i\pi} - y \right)}{\eta(\tau)} \prod_{i=1}^2 \frac{\eta(\tau)\nu_i}{i\theta_1(\tau \left| \frac{\nu_i}{2i\pi} \right)} \times \\ \times \sum_{\mu \in \Gamma_L^* / \Gamma_L} \Theta_{\mu}^{\Gamma_L} \left(\tau \left| \frac{p_\omega}{2i\pi} \right) \Theta_{\varphi(\mu)}^{\Gamma_R} \left(-\bar{\tau} \right| \mathbf{0} \right)$$

Notations

- $\eta(\tau)$: Dedekind eta-function
- $\theta_1(\tau|y)$: Jacobi theta-function
- Θ_{μ}^{Γ} : theta-function on lattice $\Gamma \blacktriangleright \Theta_{\mu}^{\Gamma}(\tau|\lambda) = \sum_{\gamma \in \Gamma + \mu} q^{\frac{1}{2}\langle \gamma, \gamma \rangle_{\Gamma}} e^{2i\pi \langle \gamma, \lambda \rangle_{\Gamma}}$
- *p*_ω : two-dimensional vector of two-forms with ⟨*p*_ω, *p*_ω⟩_{Γ_L} = -^{2U₂}/_{T₂} ω ∧ *x* ω
 belongs to formal extension of Γ_L over H²(S, Z) ⊕ H²(S, Z)

★ Coincides with path integral computation (checked in simple examples)

Properties

In physics

- Exact path-integral computation > valid for the superconformal non-linear sigma-model emerging in the IR
- Seed for computing the one-loop corrections to the 4d effective action
- Allows for quantitative tests of non-perturbative Heterotic/type II duality

In mathematics: generalized elliptic genus when $ch_2(V) \neq ch_2(T_S)$

• $\bar{\eta}^{-2}Z_{\rm FY}(au,ar{ au},y)$ transforms as weak Jacobi form of weight 0 and index $rac{r}{2}$

$$\bar{\eta}\left(\frac{a\bar{\tau}+b}{c\bar{\tau}+d}\right)^{-2}Z_{\mathrm{FY}}\left(\frac{a\tau+b}{c\tau+d},\frac{a\bar{\tau}+b}{c\bar{\tau}+d},\frac{y}{c\tau+d}\right) = e^{\frac{i\pi\,r\,cy^2}{c\tau+d}}\bar{\eta}(\bar{\tau})^{-2}Z_{\mathrm{FY}}(\tau,\bar{\tau},y) \left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) \right|$$

Terms with p_L = 0 → generating function for indices of Dirac operators in representations given by the formal power series
 𝔅 = 1 - e^{-2iπy}V^{*} + q(𝔅 + 𝔅^{*}_𝔅 - e^{2iπy}V - e^{-2iπy}V^{*}) +···

• In general: Dirac operator with non-zero 'KK momentum' along T^2 fiber?

Adding line bundles

General SUSY gauge bundles in FY compactifications

 \bullet Pullback of an HYM gauge bundle over the base ${\cal S}$:

 $F^{(2,0)} = F^{(0,2)} = 0$ and $J \wedge F = 0$

• Abelian bundles over the total space (would be Wilson lines for $K3 \times T^2$) $A = \mathfrak{T}^a \operatorname{Re}(\bar{V}_{a\iota})$ with $\iota = dx_1 + T dx_2 + \pi^* \alpha$, globally defined on \mathcal{M}_6

Abelian bundles in the GLSM

- Neutral Fermi multiplets (γ_{-,a}, G_a) → bosonize into chiral multiplets B_a = (b_a, ψ_{-,a}, ψ_{+,a}) with Im (b_a) at fermionic radius
- Consider a larger torus \mathcal{T}^{2+n} with $V_a \leftrightarrow$ off-diagonal terms in the metric
- No single-valuedness constr. \blacktriangleright vector moduli space (S, V_a) in $\mathcal{N} = 2$ SUGRA

Contribution to the index

- Kill superfluous fermionic zero-modes $\rightarrowtail (J_0)^{16}$ insertion in the path integral
- SUSY localization argument still holds
- Factor out non-compact & right-moving compact bosons in B_a

Result for the index with most general gauge bundle

$$Z_{\rm FY}(X,\mathcal{V},\omega|\tau,\bar{\tau},z) = \int_{\mathcal{S}} \prod_{a=1}^{r} \frac{i\theta_1\left(\tau \left|\frac{\xi_a}{2i\pi} - z\right)}{\eta(\tau)} \prod_{i=1}^{2} \frac{\eta(\tau)\nu_i}{i\theta_1(\tau \left|\frac{\nu_i}{2i\pi}\right.)} \\ \sum_{(\rho_{\rm L},\rho_{\rm R})\in\Gamma_{10,2}} \exp\left(-\langle \rho_{\omega},\rho_{\rm L}\rangle\big|_{V_a=0}\right) \times \frac{q^{\frac{1}{4}|\rho_{\rm L}|^2}}{\eta(\tau)^{18}} \frac{\bar{q}^{\frac{1}{4}|\rho_{\rm R}|^2}}{\bar{\eta}(\bar{\tau})^2}$$

With standard expressions for (10, 2) lattice (however T, U quantized here):

$$\begin{split} &\frac{1}{4}|p_{\rm R}|^2 = \frac{1}{4\left(T_2U_2 - \sum_a(V_2^a)^2\right)} \left| -n_1T + n_2 + w_1U + w_2\left(TU - \sum_a(V^a)^2\right) + N_aV^a \right|^2 \,, \\ &\frac{1}{4}|p_{\rm L}|^2 = \frac{1}{4}|p_{\rm R}|^2 + n_1w_1 + n_2w_2 + \frac{1}{4}N_aN^a \end{split}$$

Threshold corrections

Threshold corrections: generalities

One-loop corrections to the gauge couplings : $G = \prod_a G_a$

$$\frac{4\pi^2}{g_a^2(\mu^2)^2}\Big|_{\text{one-loop}} = k_a \text{Im}(S) + \underbrace{\frac{b_a}{4} \log M_s^2/\mu^2}_{\text{one-loop }\beta\text{-fct}} + \underbrace{\frac{1}{4} \Delta_a(M, \bar{M})}_{\text{moduli dependence}} + universal term$$

$$\bigstar \mathcal{N} = 2, \ d = 4 \text{ heterotic compactification:}$$

$$\frac{b_a}{4} \log \frac{M_s^2}{\mu^2} + \frac{1}{4} \Delta_a(M, \bar{M}) = \frac{i}{4} \int_{\mathscr{F}} \frac{d^2\tau}{\tau_2} \frac{1}{\eta^2} \text{Tr}_{\bar{R}} \left[\left(Q_a^2 - \frac{k_a}{2\pi\tau_2} \right) q^{L_0 - \frac{c}{24}} \bar{q}^{L_0 - \frac{c}{24}} e^{i\pi \bar{J}_0^R} \bar{J}_0^R \right]$$

• modified SUSY index with insertion of Casimir Q_a^2 for G_a factor

Heterotic/type II duality

• Heterotic threshold corrections >> one-loop prepotential for vector multiplets

$$F_{\scriptscriptstyle \mathrm{H}} = -\gamma_{ij}SV^{i}V^{j} + F_{\scriptscriptstyle \mathrm{H}}^{1\text{-loop}}(V^{i}) + \cdots$$

• <u>CY₃ Type IIA dual</u>: K3 fibration with a compatible T^2 fibration • perturbative het. limit \leftrightarrow large \mathbb{P}^1 limit in IIA

• Expansion of CY_3 vector multiplet prepotential \rightarrow qualitative duality check

Threshold corrections for FY compactifications

★Simplify geometric formulation of the index using Gritsenko's formula

$$\theta_1(\tau|z+\xi) = \exp\left\{-\frac{\pi^2}{6}E_2(\tau)\xi^2 + \frac{\theta_1'(\tau|z)}{\theta_1(\tau|z)}\xi - \sum_{\ell \geqslant 2}\wp^{(\ell-2)}(\tau,z)\frac{\xi^\ell}{\ell!}\right\}\theta_1(\tau|z), \ \wp^{(\ell)} := \frac{\partial^\ell}{\partial z^\ell}\wp^{(\ell-2)}(\tau,z)\frac{\xi^\ell}{\ell!}$$

 \star Assume rank two bundle V over K3 in E_8 with $\int_{\mathcal{S}} \operatorname{ch}_2(V) = -n$

Correction to "hidden" E_8 gauge coupling

$$\Delta_{E_8} = \int_{\mathscr{F}} \frac{d^2 \tau}{\tau_2} \frac{\hat{E}_2 E_4 - E_6}{24\Delta} \sum_{p_{\rm L}, p_{\rm R}} q^{\frac{1}{2}p_{\rm L}^2} \bar{q}^{\frac{1}{2}p_{\rm R}^2} \left\{ -\frac{n}{12} E_6 + \frac{n-24}{12} \hat{E}_2 E_6 - f(p_I|\omega) E_4 \right\}$$

with

$$f(\pmb{p}_{ ext{ iny L}}|\omega):=\int_{\mathcal{S}}\langle\pmb{p}_{ ext{ iny L}},\pmb{p}_{\omega}
angle_{\Gamma_{ ext{ iny L}}}^2-rac{1}{4\pi au_2}\langle\pmb{p}_{\omega},\pmb{p}_{\omega}
angle_{\Gamma_{ ext{ iny L}}}$$

Each term separately modular invariant

 \bigstar Likewise, one-loop corrections for other gauge factors and gravitational thresholds

Computation of the modular integral over *F*?

Dan Israël

Modular integral and final result

Modular integral

• Expand (weakly almost holomorphic) modular forms in Δ_{E_8} into Niebur-Poincaré series (Angelantonj, Florakis, Pioline 12)

$$\mathcal{F}(s,w,z) = rac{1}{2} \sum_{\gamma \in \Gamma_\infty \setminus \Gamma} \mathcal{M}_s(-\Im z) e^{-2i\pi \Re z} \Big|_w \gamma$$

- Unfold the modular integral against the $\mathcal{F}(s, w, z)$ (rather than unfolding against the Narain lattice)
- ullet appropriate here because momentum-dependent insertion $f(p_l|\omega)$

Final result for E_8 threshold

$$\begin{split} \Delta_{\rm Eg} &= \sum_{\rm BPS} \left\{ 1 + \frac{n-24}{6\rho_{\rm L}^2} + \left(p_{\rm L}^2/2 - 1\right) \log(1 - 2/\rho_{\rm L}^2) \right. \\ &+ \frac{1}{4} \left(1 - \frac{1}{3\rho_{\rm L}^2} - \frac{1}{\rho_{\rm L}^2} + \left(p_{\rm L}^2/2 - 1\right) \log(1 - 2/\rho_{\rm L}^2) \right) \int_{\mathcal{S}} \langle p_{\rm L}, p_{\omega} \rangle^2 \\ &+ 2(n+12) \log 4\pi e^{-\gamma} T_2 U_2 |\eta(U)\eta(T)|^4 \right\} \end{split}$$

Conclusions

What has been understood

- $\bullet \ \, \text{Non-K\"ahler manifolds} \leftrightarrow \texttt{gauge-variant couplings}$
- GLSMs for Fu-Yau manifolds \leftrightarrow generic $\mathcal{N}=2$ heterotic vacua
- Supersymmetric localization >> exact supersymmetric partition function
- Defines a modified non-holomorphic elliptic genus, interesting on its own right
- Computation of threshold corrections for these flux compactifications

Ongoing work and directions for future studies

- Heterotic/type II duality beyond $K3 \times T^2$ (Melnikov, Minasian, Theisen 14)
- Thresholds: instanton corrections from Fourier expansion (*T*² fiber is not a 2-cycle in Fu-Yau geometries!)
- Generalization of $K3 \times T^2$ Mathieu moonshine to FY?
- More general non-Kähler compactifications