Entanglement entropies in minimal models

Yacine Ikhlef
LPTHE, CNRS/Sorbonne Université

May 2018
Zürich
This talk is based on:

Thomas Dupic, Benoît Estienne and YI

Entanglement entropies in minimal models from null vectors
arXiv:1709.09270
accepted for publication in SciPost Physics
1. Introduction

2. The null-vector approach

3. Entanglement entropies in the Yang-Lee model

4. Further studies of the cyclic orbifold
1. Introduction
Entanglement entropies in quantum systems

- Density matrix of the whole system $A + B$
 - Pure state $|\psi\rangle \Rightarrow \rho = |\psi\rangle \langle \psi|$
 - Mixed state at temperature $\beta \Rightarrow \rho = \frac{1}{Z} \exp(-\beta H)$
Entanglement entropies in quantum systems

Density matrix of the whole system $A + B$

- Pure state $|\psi\rangle$ \Rightarrow $\rho = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$
- Mixed state at temperature β \Rightarrow $\rho = \frac{1}{Z} \exp(-\beta H)$

Reduced density matrix of subsystem A: $\rho_A = \text{Tr}_B(\rho)$
Entanglement entropies in quantum systems

- Density matrix of the whole system $A + B$
 - Pure state $|\psi\rangle$ \implies $\rho = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$
 - Mixed state at temperature β \implies $\rho = \frac{1}{Z} \exp(-\beta H)$

- Reduced density matrix of subsystem A: $\rho_A = \text{Tr}_B(\rho)$

- Von Neumann entropy: $S(A) = -\text{Tr}_A(\rho_A \log \rho_A)$
Entanglement entropies in quantum systems

- Density matrix of the whole system $A + B$
 - Pure state $|\psi\rangle \Rightarrow \rho = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$
 - Mixed state at temperature $\beta \Rightarrow \rho = \frac{1}{Z} \exp(-\beta H)$

- Reduced density matrix of subsystem A: $\rho_A = \text{Tr}_B(\rho)$

- Von Neumann entropy: $S(A) = -\text{Tr}_A(\rho_A \log \rho_A)$

- Rényi entropy: $S_N(A) = \frac{1}{1-N} \log \text{Tr}_A(\rho_A^N)$
Entanglement entropies in quantum systems

- Example: two $1/2$-spins A, B

\[|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle \]

\[\rho_A = |\psi_A\rangle \langle \psi_A | \Rightarrow S(A) = 0 \]

Region A is effectively in a pure state.

\[\psi = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + e^{i\phi} |\downarrow\uparrow\rangle) \]

\[\rho_A = \frac{1}{2} (|\uparrow\rangle \langle \uparrow| + |\downarrow\rangle \langle \downarrow|) \Rightarrow S(A) = \log 2 \]

Region A is effectively in a thermal state.

Area law:
For $d \geq 1 + 1$, the entropy in the groundstate of a gapped, short-range Hamiltonian scales generally as $S(A) \propto \text{Area}(\partial A)$.

̸= Gapless systems in $d = 1 + 1$: Conformal Field Theory [Holzhey-Larsen-Wilczek '94, Calabrese-Cardy '04]

\[S(A) \sim c \frac{\log \ell_A}{\ell_A} \]
Entanglement entropies in quantum systems

- Example: two 1/2-spins A, B
 - Product state: $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$
 - $\rho_A = |\psi_A\rangle\langle\psi_A| \implies S(A) = 0$
 - Region A is effectively in a pure state $|\psi_A\rangle$.
Entanglement entropies in quantum systems

- Example: two 1/2-spins A, B
 - Product state: $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$

 $\rho_A = |\psi_A\rangle \langle \psi_A| \Rightarrow S(A) = 0$

 Region A is effectively in a pure state $|\psi_A\rangle$.

 - Entangled state $\psi = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + e^{i\phi}|\downarrow\uparrow\rangle)$

 $\rho_A = \frac{1}{2}(|\uparrow\rangle \langle \uparrow| + |\downarrow\rangle \langle \downarrow|)$ \Rightarrow $S(A) = \log 2$

 Region A is effectively in a thermal state.
Entanglement entropies in quantum systems

- Example: two $1/2$-spins A, B
 - Product state: $|ψ⟩ = |ψ_A⟩ ⊗ |ψ_B⟩$
 $ρ_A = |ψ_A⟩⟨ψ_A|$ $⇒$ $S(A) = 0$
 Region A is effectively in a pure state $|ψ_A⟩$.
 - Entangled state $ψ = \frac{1}{√2} (|↑↓⟩ + e^{iφ}|↓↑⟩)$
 $ρ_A = \frac{1}{2} (|↑⟩⟨↑| + |↓⟩⟨↓|)$ $⇒$ $S(A) = \log 2$
 Region A is effectively in a thermal state.

- Area law:
 For $d \geq 1 + 1$, the entropy in the groundstate of a gapped, short-range Hamiltonian scales generally as $S(A) ∝ \text{Area}(∂A)$.

[Holzhey-Larsen-Wilczek '94, Calabrese-Cardy '04]
Entanglement entropies in quantum systems

- Example: two 1/2-spins A, B
 - Product state: $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$

 $\rho_A = |\psi_A\rangle \langle \psi_A| \Rightarrow S(A) = 0$

 Region A is effectively in a pure state $|\psi_A\rangle$.

 - Entangled state $\psi = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + e^{i\phi}|\downarrow\uparrow\rangle)$

 $\rho_A = \frac{1}{2}(|\uparrow\rangle \langle \uparrow| + |\downarrow\rangle \langle \downarrow|)$ \Rightarrow $S(A) = \log 2$

 Region A is effectively in a thermal state.

- Area law:

 For $d \geq 1 + 1$, the entropy in the groundstate of a gapped, short-range Hamiltonian scales generally as $S(A) \propto \text{Area}(\partial A)$.

- \neq Gapless systems in $d = 1 + 1$: Conformal Field Theory

 [Holzhey-Larsen-Wilczek '94, Calabrese-Cardy '04]

 $S(A) \sim \frac{c}{3} \log \ell_A$
The path-integral formalism for Rényi entropies

[Calabrese-Cardy '04]

\[\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B : \]

\[H = H_A \otimes H_B : \]

\[\text{Reduced density matrix} \]

\[\alpha(\rho_A)_{\alpha\beta} = \beta \]

\[\text{Rényi entropy} \]

\[\text{Tr}\left[(\rho_A)^N \right] = Z(R^N) \]
The path-integral formalism for Rényi entropies

[Calabrese-Cardy '04]

- \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \):

- Reduced density matrix

\[
(\rho_A)_{\alpha\beta} = \frac{\text{Tr}[\rho_A^N]}{Z_N} = \frac{\text{Tr}[\rho_B^N]}{Z_N}
\]
The path-integral formalism for Rényi entropies

[Calabrese-Cardy '04]

- $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

- Reduced density matrix

$$ (\rho_A)_{\alpha\beta} = $$

- Rényi entropy

$$ \text{Tr}[(\rho_A)^N] = = Z(\mathcal{R}_N) $$
Partition functions on Riemann surfaces

- Rényi entropy: $S_N = \frac{1}{1-N} \log \frac{Z(\mathcal{R}_N)}{Z^N}$
Partition functions on Riemann surfaces

- Rényi entropy: \(S_N = \frac{1}{1 - N} \log \frac{Z(\mathcal{R}_N)}{Z^N} \)

- One interval \([u, v]\):
 \[
 \begin{cases}
 \mathcal{R}_N & \to \mathbb{C} \cup \{\infty\} \\
 z & \mapsto w = \left(\frac{z-u}{z-v}\right)^{1/N}
 \end{cases}
 \]
Partition functions on Riemann surfaces

- Rényi entropy: \(S_N = \frac{1}{1 - N} \log \frac{Z(\mathcal{R}_N)}{Z^N} \)

- One interval \([u, v]\):
 \[
 \begin{align*}
 &\mathcal{R}_N \to \mathbb{C} \cup \{\infty\} \\
 &z \mapsto w = \left(\frac{z-u}{z-v}\right)^{1/N}
 \end{align*}
 \]

- Generic case:
 \[
 \begin{align*}
 &A = \text{union of} \ p \text{ intervals} \\
 &N \text{ copies}
 \end{align*}
 \]
 \[\Rightarrow \text{genus}(\mathcal{R}_N) = (N - 1)(p - 1)\]
Partition functions on Riemann surfaces

- Rényi entropy: \(S_N = \frac{1}{1 - N} \log \frac{Z(\mathcal{R}_N)}{Z^N} \)

- One interval \([u, v]\):
 \[
 \begin{align*}
 \mathcal{R}_N & \rightarrow \mathbb{C} \cup \{\infty\} \\
 z & \mapsto w = \left(\frac{z - u}{z - v} \right)^{1/N}
 \end{align*}
 \]

- Generic case:
 \[
 \begin{align*}
 A &= \text{union of } p \text{ intervals} \\
 N &= \text{copies} \\
 \Rightarrow \text{genus}(\mathcal{R}_N) = (N - 1)(p - 1)
 \end{align*}
 \]

- Example: \(p = 2, N = 4 \)

\(\mathcal{R}_N \cong \) [Diagram of a Riemann surface with four intervals]
Partition functions on Riemann surfaces

- Rényi entropy: \(S_N = \frac{1}{1 - N} \log \frac{Z(\mathcal{R}_N)}{Z^{N}} \)

- One interval \([u, v]\): \[
\begin{align*}
\mathcal{R}_N & \rightarrow \mathbb{C} \cup \{\infty\} \\
z & \mapsto w = \left(\frac{z-u}{z-v} \right)^{1/N}
\end{align*}
\]

- Generic case: \[
\begin{cases}
A = \text{union of } p \text{ intervals} \\
N \text{ copies}
\end{cases}
\Rightarrow \text{genus}(\mathcal{R}_N) = (N - 1)(p - 1)
\]

- Example: \(p = 2, N = 4 \)

- For \(c = 1 \): results available from [Zamolodchikov ’87], [Dixon, Friedan, Martinec, Shenker ’87], [Alvarez-Gaumé, Gost, Moore, Nelson, Vafa ’87], [Dijkgraaf, Verlinde, Verlinde ’88]
Overview of Entanglement Entropies in CFT

- Scaling argument $S \propto \frac{c}{3} \log \ell$ [Holzhey, Larsen, Wilczek '94]:
- Path-integral approach, EE by conformal mapping for $A = [u, v]$ [Calabrese, Cardy '04]
- Compute EE at $g > 0$ for $c = 1$ and/or Ising CFTs [Calabrese, Cardy, Tonni, Tagliacozzo, Alba, Datta, David, Misguich, Pasquier, Stéphan, Furukawa, Shiraishi, Essler, Campostrini, Nienhuis '06–'12]
- EE for excited states [Sierra, Alcaraz, Berganza, Palmai '12–'16]
- EE for integrable QFTs [Castro-Alvaredo, Doyon, Cardy, Blondeau-Fournier '07–'15]:
- EE, entanglement spectrum, fidelity using CTM [Franchini, Its, Korepin, Takhtajan, Evangelisti, Weston '11–'12]
- Entanglement after a quench [Cardy '11]
- EE for non-unitary CFTs [Castro-Alvaredo, Doyon, Ravanini, Bianchini, Levi, Couvreur, Jacobsen, Saleur '14–'17]
- Entanglement spectra in FQHE [Li, Haldane, Read, Rezayi, Dubail, Eisler, Peschel, Cardy, Tonni '08–'17]:
- . . .
2. The null-vector approach
The \mathbb{Z}_N cyclic orbifold CFT

[Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

“Replicate the degrees of freedom instead of the surface”
The \mathbb{Z}_N cyclic orbifold CFT

[Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- “Replicate the degrees of freedom instead of the surface”
- Hilbert space: $\mathcal{H}_{\text{orb}} = (\mathcal{H}_{\text{CFT}})^{\otimes N}/\mathbb{Z}_N$
The \mathbb{Z}_N cyclic orbifold CFT

[Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- “Replicate the degrees of freedom instead of the surface”
- Hilbert space: $\mathcal{H}_{\text{orb}} = (\mathcal{H}_{\text{CFT}})^\otimes N / \mathbb{Z}_N$
- Local configuration of fields: (ϕ_1, \ldots, ϕ_N)

$\langle \tau(u_1) \tilde{\tau}(v_1) \ldots \tau(u_p) \tilde{\tau}(v_p) \rangle$

$\langle \Phi(\infty) \tau(u) \tilde{\tau}(v) \Phi(0) \rangle$, $\Phi := \phi_{12} \otimes \cdots \otimes \phi_{12}$
The \mathbb{Z}_N cyclic orbifold CFT

[Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- “Replicate the degrees of freedom instead of the surface”
- Hilbert space: $\mathcal{H}_{\text{orb}} = (\mathcal{H}_{\text{CFT}})^\otimes N / \mathbb{Z}_N$
- Local configuration of fields: (ϕ_1, \ldots, ϕ_N)
- Twist operator inserting a branch point:

$$
\tau(0). (\phi_1, \ldots, \phi_{N-1}, \phi_N) (e^{2i\pi z}) = \tau(0). (\phi_2, \ldots, \phi_N, \phi_1)(z)
$$
The \mathbb{Z}_N cyclic orbifold CFT
[Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- “Replicate the degrees of freedom instead of the surface”
- Hilbert space: $\mathcal{H}_{\text{orb}} = (\mathcal{H}_{\text{CFT}})^\otimes N / \mathbb{Z}_N$
- Local configuration of fields: (ϕ_1, \ldots, ϕ_N)
- Twist operator inserting a branch point:

\[
\tau(0).(\phi_1, \ldots, \phi_{N-1}, \phi_N)(e^{2i\pi} z) = \tau(0).(\phi_2, \ldots, \phi_N, \phi_1)(z)
\]

- Examples:
 - $\langle \tau(u_1) \tilde{\tau}(v_1) \ldots \tau(u_p) \tilde{\tau}(v_p) \rangle$
 - $\langle \Phi(\infty) \tau(u) \tilde{\tau}(v) \Phi(0) \rangle$, \quad $\Phi := \phi_{12} \otimes \cdots \otimes \phi_{12}$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}(r)(z) = \sum_{j=1}^{N} e^{2i\pi rj/N} T_j(z)$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi r j/N} T_j(z)$

- $\hat{T}^{(0)}(z) = \text{energy-momentum}$, $\hat{T}^{(r \neq 0)}(z) = \text{additional currents}$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi r j/N} T_j(z)$
- $\hat{T}^{(0)}(z)$ = energy-momentum, $\hat{T}^{(r\neq 0)}(z)$ = additional currents
- Simple monodromy: $\tau(0).\hat{T}^{(r)}(e^{2i\pi r } z) = e^{-\frac{2i\pi r}{N}} \times \tau(0).\hat{T}^{(r)}(z)$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi rj/N} T_j(z)$
- $\hat{T}^{(0)}(z) =$ energy-momentum, $\hat{T}^{(r\neq 0)}(z) =$ additional currents
- Simple monodromy: $\tau(0). \hat{T}^{(r)}(e^{2i\pi} z) = e^{-\frac{2i\pi r}{N}} \times \tau(0). \hat{T}^{(r)}(z)$
- Fourier modes: $\hat{L}_m^{(r)} = \frac{1}{2i\pi} \int dz \ z^{m+1} \hat{T}^{(r)}(z) \quad m \in \mathbb{Z}/N$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi rj/N} T_j(z)$

- $\hat{T}^{(0)}(z) =$ energy-momentum, $\hat{T}^{(r\neq 0)}(z) =$ additional currents

- Simple monodromy: $\tau(0) \cdot \hat{T}^{(r)}(e^{2i\pi z}) = e^{-\frac{2i\pi r}{N}} \times \tau(0) \cdot \hat{T}^{(r)}(z)$

- Fourier modes: $\hat{L}^{(r)}_m = \frac{1}{2i\pi} \oint dz \, z^{m+1} \hat{T}^{(r)}(z)$ [\(m \in \mathbb{Z}/N\)]

- Orbifold Virasoro algebra:

$$\left[\hat{L}^{(r)}_m, \hat{L}^{(s)}_n \right] = (m - n)\hat{L}^{(r+s)}_{m+n} + \frac{Nc}{12} m(m^2 - 1) \delta_{m+n,0} \delta_{r+s,0}$$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi r j/N} T_j(z)$
- $\hat{T}^{(0)}(z) =$ energy-momentum, $\hat{T}^{(r \neq 0)}(z) =$ additional currents
- Simple monodromy: $\tau(0). \hat{T}^{(r)}(e^{2i\pi} z) = e^{-\frac{2i\pi r}{N}} \times \tau(0). \hat{T}^{(r)}(z)$
- Fourier modes: $\hat{L}^{(r)}_m = \frac{1}{2i\pi} \int dz \, z^{m+1} \hat{T}^{(r)}(z) \quad [m \in \mathbb{Z}/N]$
- Orbifold Virasoro algebra:

$$\left[\hat{L}^{(r)}_m, \hat{L}^{(s)}_n \right] = (m - n) \hat{L}^{(r+s)}_{m+n} + \frac{N c}{12} \, m(m^2 - 1) \, \delta_{m+n,0} \, \delta_{r+s,0}$$

- Operator content
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi r j/N} T_j(z)$
- $\hat{T}^{(0)}(z)$ = energy-momentum, $\hat{T}^{(r\neq 0)}(z)$ = additional currents

- Simple monodromy: $\tau(0). \hat{T}^{(r)}(e^{2i\pi z}) = e^{-\frac{2i\pi r}{N}} \times \tau(0). \hat{T}^{(r)}(z)$

- Fourier modes: $\hat{L}^{(r)}_m = \frac{1}{2i\pi} \int dz \ z^{m+1} \hat{T}^{(r)}(z)$
 \[m \in \mathbb{Z}/N \]

- Orbifold Virasoro algebra:
 \[\left[\hat{L}^{(r)}_m, \hat{L}^{(s)}_n \right] = (m - n) \hat{L}^{(r+s)}_{m+n} + \frac{Nc}{12} m(m^2 - 1) \delta_{m+n,0} \delta_{r+s,0} \]

- Operator content
 - Untwisted primary fields: $\phi_1 \otimes \cdots \otimes \phi_N$, $h = h_1 + \cdots + h_N$
The \mathbb{Z}_N cyclic orbifold CFT

Generating algebra [Crnković-Sotkov-Stanishkov '89, Klemm-Schmidt '90, Borisov-Halpern-Schweigert '98]

- Family of currents $\hat{T}^{(r)}(z) = \sum_{j=1}^{N} e^{2i\pi r j/N} T_j(z)$
- $\hat{T}^{(0)}(z) =$ energy-momentum, $\hat{T}^{(r\neq0)}(z) =$ additional currents
- Simple monodromy: $\tau(0) . \hat{T}^{(r)}(e^{2i\pi} z) = e^{-\frac{2i\pi r}{N}} \times \tau(0) . \hat{T}^{(r)}(z)$
- Fourier modes: $\hat{L}_m^{(r)} = \frac{1}{2i\pi} \int dz \, z^{m+1} \hat{T}^{(r)}(z)$, $m \in \mathbb{Z}/N$
- Orbifold Virasoro algebra:

$$\left[\hat{L}_m^{(r)}, \hat{L}_n^{(s)} \right] = (m - n) \hat{L}_{m+n}^{(r+s)} + \frac{Nc}{12} m(m^2 - 1) \delta_{m+n,0} \delta_{r+s,0}$$

- Operator content
 - Untwisted primary fields: $\phi_1 \otimes \cdots \otimes \phi_N$, $h = h_1 + \cdots + h_N$
 - Twisted primary fields: $\tau_\phi = :\tau\phi:$
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

- Consider (radial) quantisation around a branch point
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

- Consider (radial) quantisation around a branch point
- Conformal mapping $z \mapsto w = z^{1/N}$ in the vicinity of $z = 0$:

\[
\hat{T}(r)(z) \mapsto w^2 - 2N \sum_{j=1}^{N} e^{2i\pi(j+2)N} T(e^{2i\pi jN}w) + c24 z^2(N-1)N \delta r, 0
\]

\[
\hat{L}(r)m \mapsto \frac{1}{N} L Nm + c24 (N-1)N \delta r, 0 \delta m, 0
\]

- Applications:
 1. $\tau_{\phi}(z) \mapsto w(1-N)h_{\phi}(w)$
 2. If ϕ degenerate at level ℓ then τ_{ϕ} degenerate at level ℓ/N

- Basic example: $L - 1 = 0 \implies \hat{L}(-1)^{-1/N} \tau_{\phi} = 0$
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

- Consider (radial) quantisation around a branch point
- Conformal mapping $z \mapsto w = z^{1/N}$ in the vicinity of $z = 0$:
 - $\hat{T}^{(r)}(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{\frac{2i\pi(j+2)}{N}} T(e^{\frac{2i\pi j}{N}} w) + \frac{c}{24z^2} \left(N - \frac{1}{N}\right) \delta_{r,0}$
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

- Consider (radial) quantisation around a branch point
- Conformal mapping $z \mapsto w = z^{1/N}$ in the vicinity of $z = 0$:
 - $\hat{T}^{(r)}(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{\frac{2i\pi(j+2)}{N}} T(e^{\frac{2i\pi j}{N}} w) + \frac{c}{24z^2} \left(N - \frac{1}{N} \right) \delta_{r,0}$
 - $\hat{L}_{m} \mapsto \frac{1}{N} L_{Nm} + \frac{c}{24} \left(N - \frac{1}{N} \right) \delta_{r,0} \delta_{m,0}$

- Applications:
 1. $\tau \phi$ has dimension $\hat{h} \phi = c_{24} \left(N - \frac{1}{N} \right)$
 2. If ϕ degenerate at level ℓ then $\tau \phi$ degenerate at level ℓ/N
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

- Consider (radial) quantisation around a branch point
- Conformal mapping $z \mapsto w = z^{1/N}$ in the vicinity of $z = 0$:
 - $\widehat{T}^{(r)}(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{\frac{2i\pi(j+2)}{N}} T(e^{\frac{2i\pi j}{N}} w) + \frac{c}{24z^2} \left(N - \frac{1}{N} \right) \delta_{r,0}$
 - $\widehat{L}_m \mapsto \frac{1}{N} L_{Nm} + \frac{c}{24} \left(N - \frac{1}{N} \right) \delta_{r,0} \delta_{m,0}$
 - $\tau_\phi(z) \mapsto w^{(1-N)h_\phi} \phi(w)$
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

▪ Consider (radial) quantisation around a branch point

▪ Conformal mapping \(z \mapsto w = z^{1/N} \) in the vicinity of \(z = 0 \):

 ▪ \(\hat{T}^{(r)}(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{\frac{2i\pi(j+2)}{N}} T(e^{\frac{2i\pi j}{N}} w) + \frac{c}{24z^2} \left(N - \frac{1}{N} \right) \delta_{r,0} \)

 ▪ \(\hat{L}_{m}^{(r)} \mapsto \frac{1}{N} L_{Nm} + \frac{c}{24} \left(N - \frac{1}{N} \right) \delta_{r,0}\delta_{m,0} \)

 ▪ \(\tau_{\phi}(z) \mapsto w^{(1-N)h_{\phi}} \phi(w) \)

▪ Applications:
Consider (radial) quantisation around a branch point

Conformal mapping $z \mapsto w = z^{1/N}$ in the vicinity of $z = 0$:

- $\widehat{T}^{(r)}(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{\frac{2i\pi(j+2)}{N}} T(e^{\frac{2i\pi j}{N}} w) + \frac{c}{24z^2} \left(N - \frac{1}{N}\right) \delta_{r,0}$

- $\widehat{L}^{(r)} \mapsto \frac{1}{N} L_{Nm} + \frac{c}{24} \left(N - \frac{1}{N}\right) \delta_{r,0}\delta_{m,0}$

- $\tau_\phi(z) \mapsto w^{(1-N)h_\phi} \phi(w)$

Applications:

1. τ_ϕ has dimension $\widehat{h}_\phi = \frac{c}{24} (N - \frac{1}{N}) + \frac{h}{N}$
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

- Consider (radial) quantisation around a branch point
- Conformal mapping \(z \mapsto w = z^{1/N} \) in the vicinity of \(z = 0 \):
 - \(\hat{T}(r)(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{2i\pi(j+2)/N} T(e^{2i\pi j/N} w) + \frac{c}{24z^2} \left(N - \frac{1}{N} \right) \delta_{r,0} \)
 - \(\hat{L}_m(r) \mapsto \frac{1}{N} L_{Nm} + \frac{c}{24} \left(N - \frac{1}{N} \right) \delta_{r,0} \delta_{m,0} \)
 - \(\tau_\phi(z) \mapsto w^{(1-N)h_\phi} \phi(w) \)
- Applications:
 1. \(\tau_\phi \) has dimension \(\hat{h}_\phi = \frac{c}{24} \left(N - \frac{1}{N} \right) + \frac{h}{N} \)
 2. **If** \(\phi \) degenerate at level \(\ell \) **then** \(\tau_\phi \) degenerate at level \(\ell/N \)
Induction procedure

[Crnković-Sotkov-Stanishkov '89, Borisov-Halpern-Schweigert '98]

▶ Consider (radial) quantisation around a branch point

▶ Conformal mapping $z \mapsto w = z^{1/N}$ in the vicinity of $z = 0$:

\[
\hat{T}^{(r)}(z) \mapsto w^{2-2N} \sum_{j=1}^{N} e^{\frac{2i\pi(j+2)}{N}} T(e^{\frac{2i\pi j}{N}} w) + \frac{c}{24z^2} \left(N - \frac{1}{N}\right) \delta_{r,0}
\]

\[
\hat{L}^{(r)} \mapsto \frac{1}{N} L_{Nm} + \frac{c}{24} \left(N - \frac{1}{N}\right) \delta_{r,0} \delta_{m,0}
\]

▶ $\tau_{\phi}(z) \mapsto w^{(1-N)} h_{\phi} \phi(w)$

▶ Applications:

1. τ_{ϕ} has dimension $\hat{h}_{\phi} = \frac{c}{24} \left(N - \frac{1}{N}\right) + \frac{h}{N}$

2. **If ϕ degenerate at level ℓ then τ_{ϕ} degenerate at level ℓ/N**

▶ Basic example: $L_{-1} \mathbf{1} = 0 \Rightarrow \hat{L}^{(-1)}_{-1/N} \tau = 0$
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
- Degenerate operators: Kac table \[h_{rs} = \frac{(pr-qs)^2-(p-q)^2}{4pq} \]
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
- Degenerate operators: Kac table $h_{rs} = \frac{(pr - qs)^2 - (p-q)^2}{4pq}$
- Symmetry $\phi_{rs} \equiv \phi_{q-r, p-s} \Rightarrow$ two null vectors for ϕ_{rs}
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
- Degenerate operators: Kac table $h_{rs} = \frac{(pr-qs)^2-(p-q)^2}{4pq}$
- Symmetry $\phi_{rs} \equiv \phi_{q-r,p-s}$ \Rightarrow two null vectors for ϕ_{rs}
- Translate into two null vectors for $\tau_{\phi_{rs}}$
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
- Degenerate operators: Kac table $h_{rs} = \frac{(pr - qs)^2 - (p-q)^2}{4pq}$
- Symmetry $\phi_{rs} \equiv \phi_{q-r, p-s}$ \Rightarrow two null vectors for ϕ_{rs}
- Translate into two null vectors for $\tau_{\phi_{rs}}$
- Example: Ising $= \mathcal{M}(3, 4) =$

<table>
<thead>
<tr>
<th></th>
<th>ϵ</th>
<th>σ</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>σ</td>
<td>ϵ</td>
<td></td>
</tr>
</tbody>
</table>
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
- Degenerate operators: Kac table $h_{rs} = \frac{(pr-qs)^2-(p-q)^2}{4pq}$
- Symmetry $\phi_{rs} \equiv \phi_{q-r, p-s} \Rightarrow$ two null vectors for ϕ_{rs}
- Translate into two null vectors for ϕ_{rs}
- Example: Ising = $\mathcal{M}(3, 4) = \begin{pmatrix} \epsilon & \sigma & 1 \\ 1 & \sigma & \epsilon \end{pmatrix}$

\[
\begin{cases}
L_{-1}1 = 0 \\
(L_{-6} + aL_{-4}L_{-2} + bL_{-3}^2 + cL_{-2}^3)1 = 0
\end{cases}
\]
The \mathbb{Z}_N orbifold of a minimal model

- EE in minimal model $\mathcal{M}(p, q)$ with $c = 1 - \frac{6(p-q)^2}{pq}$
- Degenerate operators: Kac table $h_{rs} = \frac{(pr-qs)^2 - (p-q)^2}{4pq}$
- Symmetry $\phi_{rs} \equiv \phi_{q-r, p-s} \Rightarrow$ two null vectors for ϕ_{rs}
- Translate into two null vectors for $\tau \phi_{rs}$
- Example: Ising $= \mathcal{M}(3, 4)$
 - \[
 \begin{array}{ccc}
 \epsilon & \sigma & 1 \\
 1 & \sigma & \epsilon \\
 \end{array}
 \]
- \[
 \begin{cases}
 L_{-1} 1 = 0 \\
 (L_{-6} + aL_{-4}L_{-2} + bL_{-3}^2 + cL_{-2}^3) 1 = 0
 \end{cases}
 \]
- \Rightarrow \[
 \begin{cases}
 \hat{L}_{-1/N} \tau = 0 \\
 \left[NL_{-6/N} + aN^2 \hat{L}_{-4/N} \hat{L}_{-2/N} + bN^2 \hat{L}_{-3/N}^2 + cN^3 \hat{L}_{-2/N}^3 \right] \tau = 0
 \end{cases}
 \]
From null vectors to differential equations

- Four-point functions in terms of \(x = \frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_3)(z_2-z_4)} \):

\[
\langle \mathcal{O}_1(z_1, \bar{z}_1) \ldots \mathcal{O}_4(z_4, \bar{z}_4) \rangle = (\ldots) \langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})\mathcal{O}_4(0) \rangle
\]

In standard CFT, action of \(L^{-m} \) for \(m \in \mathbb{N} \): [BPZ '84]

\[
\langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})\mathcal{O}_4(0) \rangle = L^{-m} \langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})\mathcal{O}_4(0) \rangle
\]

In orbifold Virasoro algebra: action of \(\hat{L}^{-m} \) for \(m \in \mathbb{Z}^+ \)?

Strategy: obtain linear relation between \(\langle \mathcal{O}_1(\hat{L}^{-r_1}m_1)\mathcal{O}_2\mathcal{O}_3\mathcal{O}_4 \rangle \), \(\langle \mathcal{O}_1(\hat{L}^{-r_2}m_2)\mathcal{O}_2\mathcal{O}_3\mathcal{O}_4 \rangle \), \(\langle \mathcal{O}_1\mathcal{O}_2(\hat{L}^{-r_3}m_3)\mathcal{O}_3\mathcal{O}_4 \rangle \), \(\langle \mathcal{O}_1\mathcal{O}_2\mathcal{O}_3(\hat{L}^{-r_4}m_4)\mathcal{O}_4 \rangle \) using orbifold Ward identities.

Closed-contour relations:

\[
\oint dz \left(z - 1 \right)^{m_2+1} \left(z - x \right)^{m_3+1} z^{m_4+1} \langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})\mathcal{O}_4(0) \rangle = 0
\]
From null vectors to differential equations

- Four-point functions in terms of \(x = \frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_3)(z_2-z_4)} \):
 \[
 \langle \mathcal{O}_1(z_1, \bar{z}_1) \ldots \mathcal{O}_4(z_4, \bar{z}_4) \rangle = (\ldots) \langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})\mathcal{O}_4(0) \rangle
 \]

- In standard CFT, action of \(L_{-m} \) for \(m \in \mathbb{N} \): \[\text{[BPZ '84]}\]
 \[
 \langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})(L_{-m}\mathcal{O}_4)(0) \rangle = L_{-m}\langle \mathcal{O}_1(\infty)\mathcal{O}_2(1)\mathcal{O}_3(x, \bar{x})\mathcal{O}_4(0) \rangle
 \]
From null vectors to differential equations

- Four-point functions in terms of $x = \frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_3)(z_2-z_4)}$:

$$\langle O_1(z_1, \bar{z}_1) \ldots O_4(z_4, \bar{z}_4) \rangle = (\ldots) \langle O_1(\infty)O_2(1)O_3(x, \bar{x})O_4(0) \rangle$$

- In standard CFT, action of L_{-m} for $m \in \mathbb{N}$: [BPZ '84]

$$\langle O_1(\infty)O_2(1)O_3(x, \bar{x})(L_{-m}O_4)(0) \rangle = L_{-m}\langle O_1(\infty)O_2(1)O_3(x, \bar{x})O_4(0) \rangle$$

- In orbifold Virasoro algebra: action of $\hat{L}_{-m}^{(r)}$?
From null vectors to differential equations

- Four-point functions in terms of \(x = \frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_3)(z_2-z_4)} \):

\[
\langle O_1(z_1, \bar{z}_1) \ldots O_4(z_4, \bar{z}_4) \rangle = (\ldots) \langle O_1(\infty) O_2(1) O_3(x, \bar{x}) O_4(0) \rangle
\]

- In standard CFT, action of \(L_{-m} \) for \(m \in \mathbb{N} \): [BPZ '84]

\[
\langle O_1(\infty) O_2(1) O_3(x, \bar{x})(L_{-m} O_4)(0) \rangle = L_{-m} \langle O_1(\infty) O_2(1) O_3(x, \bar{x}) O_4(0) \rangle
\]

- In orbifold Virasoro algebra: action of \(\hat{L}^{(r)}_{-m} \)?

- Strategy: obtain linear relation between

\[
\langle (\hat{L}^{(r_1)}_{m_1} O_1) O_2 O_3 O_4 \rangle , \langle O_1 (\hat{\hat{L}}^{(r_2)}_{m_2} O_2) O_3 O_4 \rangle , \\
\langle O_1 O_2 (\hat{L}^{(r_3)}_{m_3} O_3) O_4 \rangle , \langle O_1 O_2 O_3 (\hat{L}^{(r_4)}_{m_4} O_4) \rangle
\]

using orbifold Ward identities = Closed-contour relations:

\[
\int_C dz \ (z - 1)^{m_2+1} (z - x)^{m_3+1} z^{m_4+1} \\
\times \langle O_1(\infty) O_2(1) O_3(x, \bar{x}) \hat{T}^{(r)}(z) O_4(0) \rangle = 0
\]

where \(O_j \in [k_j] \Rightarrow m_j \in \mathbb{Z} + r k_j / N \)
Summary of the null-vector approach

1. Consider eigenstate $|\psi\rangle$ of $H_{M(p,q)}$
 - Write Rényi EE $S_N(A) = \frac{1}{1-N} \log G(x, \bar{x})$
 - Example: $G(x, \bar{x}) = \langle \Psi(\infty) \tau(1) \bar{\tau}(x, \bar{x}) \Psi(0) \rangle_{\text{orb}}$
Summary of the null-vector approach

1. Consider eigenstate $|\psi\rangle$ of $H_{\mathcal{M}(p,q)}$
 - Write Rényi EE $S_N(A) = \frac{1}{1-N} \log G(x, \bar{x})$
 - Example: $G(x, \bar{x}) = \langle \Psi(\infty)\tau(1)\tilde{\tau}(x, \bar{x})\Psi(0)\rangle_{\text{orb}}$

2. Induction: null vectors for 1 \Rightarrow null vectors for τ
Summary of the null-vector approach

1. Consider eigenstate $|\psi\rangle$ of $H_{M(p,q)}$
 - Write Rényi EE $S_N(A) = \frac{1}{1-N} \log G(x, \bar{x})$
 - Example: $G(x, \bar{x}) = \left\langle \Psi(\infty)\tau(1)\tilde{\tau}(x, \bar{x})\Psi(0) \right\rangle_{\text{orb}}$

2. Induction: null vectors for 1 \Rightarrow null vectors for τ

3. $\begin{cases} \text{Null-vector conditions for } \tau \Rightarrow \text{diff. equation for } G(x, \bar{x}) \\ \text{Orbifold Ward id.} \end{cases}$
Summary of the null-vector approach

1. Consider eigenstate $|\psi\rangle$ of $H_{\mathcal{M}(p,q)}$
 - Write Rényi EE $S_N(A) = \frac{1}{1-N} \log G(x, \bar{x})$
 - Example: $G(x, \bar{x}) = \langle \Psi(\infty)_{\tau(1)}\bar{\tau}(x, \bar{x})\Psi(0)\rangle_{\text{orb}}$

2. Induction: null vectors for $1 \Rightarrow$ null vectors for τ

3. \begin{align*}
 \text{Null-vector conditions for } \tau & \Rightarrow \text{diff. equation for } G(x, \bar{x}) \\
 \text{Orbifold Ward id.} & \end{align*}

4. Construct power series for holomorphic solutions:
 \begin{align*}
 \{I_i(x)\} & \text{ for } |x| < 1, \\
 \{J_j(x)\} & \text{ for } |1 - x| < 1
 \end{align*}
Summary of the null-vector approach

1. Consider eigenstate $|\psi\rangle$ of $H_{M(p,q)}$
 - Write Rényi EE
 \[S_N(A) = \frac{1}{1-N} \log G(x, \bar{x}) \]
 - Example: $G(x, \bar{x}) = \langle \Psi(\infty)^{\tau}(1)^{\bar{x}}(x, \bar{x})\Psi(0) \rangle_{\text{orb}}$

2. Induction: null vectors for $1 \Rightarrow$ null vectors for τ

3. \[
\begin{align*}
\text{Null-vector conditions for } \tau & \Rightarrow \text{diff. equation for } G(x, \bar{x}) \\
\text{Orbifold Ward id.}
\end{align*}
\]

4. Construct power series for holomorphic solutions:
 \[
 \{I_i(x)\} \text{ for } |x| < 1, \quad \{J_j(x)\} \text{ for } |1 - x| < 1
 \]

5. Assume conformal-block decomposition
 \[
 G(x, \bar{x}) = \sum_{i=1}^{M} X_i |I_i(x)|^2 = \sum_{j=1}^{M} Y_j |J_j(x)|^2
 \]
Summary of the null-vector approach

1. Consider eigenstate $|\psi\rangle$ of $H_{\mathcal{M}(p,q)}$
 - Write Rényi EE $S_N(A) = \frac{1}{1-N} \log G(x, \bar{x})$
 - Example: $G(x, \bar{x}) = \langle \Psi(\infty) \tau(1) \tilde{\tau}(x, \bar{x}) \Psi(0) \rangle_{\text{orb}}$

2. Induction: null vectors for 1 \Rightarrow null vectors for τ

3. \begin{align*}
\text{Null-vector conditions for } \tau & \Rightarrow \text{diff. equation for } G(x, \bar{x}) \\
\text{Orbifold Ward id.} & \end{align*}

4. Construct power series for holomorphic solutions:
 - $\{I_i(x)\}$ for $|x| < 1$,
 - $\{J_j(x)\}$ for $|1 - x| < 1$

5. Assume conformal-block decomposition
 \[G(x, \bar{x}) = \sum_{i=1}^{M} X_i |I_i(x)|^2 = \sum_{j=1}^{M} Y_j |J_j(x)|^2 \]

6. Solve consistency for $\{X_i\} \leftrightarrow \{Y_j\}$ (“conformal bootstrap”)
3. Entanglement entropies in the Yang-Lee model
The Yang-Lee edge singularity

[Yang-Lee '52]

- Classical Ising model in magnetic field:

\[
Z(J, H) = \sum_{\{\sigma\}} \exp \left(J \sum_{\langle i, j \rangle} \sigma_i \sigma_j + H \sum_j \sigma_j \right)
\]
The Yang-Lee edge singularity
[Yang-Lee '52]

- Classical Ising model in magnetic field:

\[Z(J, H) = \sum_{\{\sigma\}} \exp \left(J \sum_{\langle i,j \rangle} \sigma_i \sigma_j + H \sum_j \sigma_j \right) \]

- Analytic behaviour of \(Z(J, H) \) w.r.t. complex variable \(H \)?
The Yang-Lee edge singularity

[Yang-Lee '52]

- Classical Ising model in magnetic field:

\[Z(J, H) = \sum_{\{\sigma\}} \exp \left(J \sum_{\langle i,j \rangle} \sigma_i \sigma_j + H \sum_j \sigma_j \right) \]

- Analytic behaviour of \(Z(J, H) \) w.r.t. complex variable \(H \)?

- Distribution of zeros of \(Z(J, H) \) for \(T > T_c \):

\[\text{Im } H \uparrow \]

\[\text{Re } H \]

\[ih_c \]

\[-ih_c \]
The Yang-Lee model as a minimal model of CFT
[Cardy ’85]

- **Scaling limit:** fixed \(T > T_c \) and \(H = i h \rightarrow i h_c \) [Fisher ’78]
 - Density of zeros \(\rho(h, T) \sim (h - h_c)^\sigma \)
 - Free energy \(F(h, T) = \int dx \rho(x, T) \log(h - ix) \)
 - Magnetisation \(M(h, T) = -i \partial_h F(h, T) \sim (h - h_c)^\sigma \)
The Yang-Lee model as a minimal model of CFT
[Cardy ’85]

- Scaling limit: fixed $T > T_c$ and $H = ih \rightarrow ih_c$ [Fisher ’78]
 - Density of zeros $\rho(h, T) \sim (h - h_c)^\sigma$
 - Free energy $F(h, T) = \int dx \rho(x, T) \log(h - ix)$
 - Magnetisation $M(h, T) = -i \partial_h F(h, T) \sim (h - h_c)^\sigma$

- Scaling features
 - No internal symm, only one non-trivial primary field ϕ
 - OPE: $\phi \times \phi \rightarrow 1 + \phi$ Scaling law: $\sigma = \frac{h_{\phi}}{1 - h_{\phi}}$
 - high-T exp. $\rightarrow \sigma \simeq -0.163 \rightarrow h_{\phi} \simeq -0.195$

Corresponds to minimal model $\mathcal{M}(5, 2) = 1\phi\phi^1$

Central charge $c = -\frac{22}{5}$, dimensions $h_1 = 0, h_{\phi} = -\frac{1}{5}$

Exactly solved RSOS model in same universality class [Andrews-Baxter-Forrester ’84]
The Yang-Lee model as a minimal model of CFT
[Cardy '85]

- Scaling limit: fixed $T > T_c$ and $H = ih \rightarrow ih_c$ [Fisher '78]
 - Density of zeros $\rho(h, T) \sim (h - h_c)^\sigma$
 - Free energy $F(h, T) = \int dx \rho(x, T) \log(h - ix)$
 - Magnetisation $M(h, T) = -i \partial_h F(h, T) \sim (h - h_c)^\sigma$

- Scaling features
 - No internal symm, only one non-trivial primary field ϕ
 - OPE: $\phi \times \phi \rightarrow 1 + \phi$ Scaling law: $\sigma = \frac{h_\phi}{1 - h_\phi}$
 - high-T exp. $\rightarrow \sigma \simeq -0.163 \rightarrow h_\phi \simeq -0.195$

- Corresponds to minimal model $\mathcal{M}(5, 2) = \begin{array}{|c|c|c|c|} \hline 1 & \phi & \phi & 1 \hline \end{array}$
 - Central charge $c = -\frac{22}{5}$, dimensions $h_1 = 0, h_\phi = -\frac{1}{5}$
The Yang-Lee model as a minimal model of CFT

[Cardy '85]

- Scaling limit: fixed $T > T_c$ and $H = i h \rightarrow i h_c$ [Fisher '78]
 - Density of zeros \(\rho(h, T) \sim (h - h_c)^\sigma \)
 - Free energy \(F(h, T) = \int dx \rho(x, T) \log(h - ix) \)
 - Magnetisation \(M(h, T) = -i \partial_h F(h, T) \sim (h - h_c)^\sigma \)

- Scaling features
 - No internal symm, only one non-trivial primary field ϕ
 - OPE: $\phi \times \phi \rightarrow 1 + \phi$ Scaling law: $\sigma = \frac{h_\phi}{1 - h_\phi}$
 - high-T exp. $\rightarrow \sigma \simeq -0.163 \rightarrow h_\phi \simeq -0.195$

- Corresponds to minimal model $\mathcal{M}(5, 2) = \begin{bmatrix} 1 & \phi & \phi & 1 \end{bmatrix}$
 - Central charge $c = -\frac{22}{5}$, dimensions $h_1 = 0, h_\phi = -\frac{1}{5}$

- Exactly solved RSOS model in same universality class [Andrews-Baxter-Forrester '84]
The RSOS quantum chain

- Basis states: \(|a_1, a_2, \ldots a_L \rangle \) with \(\left\{ a_i \in \{1, \ldots, p - 1\} \right\} \) and \(|a_i - a_{i+1}| = 1 \)
The RSOS quantum chain

- Basis states: \(|a_1, a_2, \ldots a_L \rangle \) with \(a_i \in \{1, \ldots, p-1\} \) and \(|a_i - a_{i+1}| = 1 \)

- Hamiltonian: \(H = - \sum_{i=1}^{L} e_i \) with PBC

\(\lambda = \pi \left(\frac{p-q}{p} \right) \) with \(p > q \) coprime → scaling limit = \(M(p, q) \)

\(\text{The YL case: } p = 5, \lambda = \frac{3}{5} \pi \)
The RSOS quantum chain

- **Basis states:** \(|a_1, a_2, \ldots a_L\rangle\) with \[a_i \in \{1, \ldots, p - 1\}
|a_i - a_{i+1}| = 1\]

- **Hamiltonian:** \[H = -\sum_{i=1}^{L} e_i\] with PBC

- **Action on states:**

\[e_i|\ldots a_{i-1}, a_i, a_{i+1} \ldots\rangle = \delta_{a_{i-1}, a_{i+1}} \sum_{a_i'} \frac{\sin \lambda a_i'}{\sin \lambda a_i} |\ldots a_{i-1}, a'_i, a_{i+1} \ldots\rangle\]
The RSOS quantum chain

Basis states: \(|a_1, a_2, \ldots, a_L\rangle\) with \(a_i \in \{1, \ldots, p - 1\}\) and \(|a_i - a_{i+1}| = 1\)

Hamiltonian: \(H = -\sum_{i=1}^{L} e_i\) with PBC

Action on states:

\[e_i | \ldots a_{i-1}, a_i, a_{i+1} \ldots \rangle = \delta_{a_{i-1}, a_{i+1}} \sum_{a'_i} \frac{\sin \lambda a'_i}{\sin \lambda a_i} | \ldots a_{i-1}, a'_i, a_{i+1} \ldots \rangle \]

\(\lambda = \frac{\pi(p-q)}{p}\) with \(p > q\) coprime \(\rightarrow\) scaling limit \(= \mathcal{M}(p, q)\)
The RSOS quantum chain

> Basis states: \(|a_1, a_2, \ldots, a_L \rangle \) with \(\left\{ \begin{align*} a_i &\in \{1, \ldots, p-1\} \\ |a_i - a_{i+1}| &= 1 \end{align*} \right. \)

> Hamiltonian: \(H = -\sum_{i=1}^{L} e_i \) with PBC

> Action on states:

\[
e_i |\ldots a_{i-1}, a_i, a_{i+1} \ldots \rangle = \delta_{a_{i-1}, a_{i+1}} \sum_{a_i'} \frac{\sin \lambda a_i'}{\sin \lambda a_i} |\ldots a_{i-1}, a_i', a_{i+1} \ldots \rangle
\]

> \(\lambda = \frac{\pi(p-q)}{p} \) with \(p > q \) coprime \(\rightarrow \) scaling limit \(\mathcal{M}(p, q) \)

> The YL case: \(p = 5, \quad \lambda = \frac{3\pi}{5} \)
EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini '14]

- $h_1 = 0$: the conformally invariant state is $|1\rangle$.

EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini '14]

- $h_1 = 0$: the conformally invariant state is $|1\rangle$.
- $h_\phi = -1/5 < 0$: the ground state is $|\phi\rangle$.
EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini '14]

- \(h_1 = 0 \) : the conformally invariant state is \(|1\rangle \).
- \(h_\phi = -1/5 < 0 \) : the ground state is \(|\phi\rangle \).
- Dimension of twisted operator \(\tau_\phi \):
 \[
 \hat{h}_\phi = \frac{c}{24} (N - 1/N) + \frac{h_\phi}{N}
 \]
EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini '14]

- \(h_1 = 0 \): the conformally invariant state is \(|1\rangle\).
- \(h_{\phi} = -1/5 < 0 \): the ground state is \(|\phi\rangle\).
- Dimension of twisted operator \(\tau_{\phi} \):
 \[
 \hat{h}_\phi = \frac{c}{24} (N - 1/N) + \frac{h_\phi}{N}
 \]
- \(\tau_\phi \) is more relevant than \(\tau_1 \)
EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini ’14]

- \(h_1 = 0 \): the conformally invariant state is \(\left| 1 \right\rangle \).
- \(h_\phi = -1/5 < 0 \): the ground state is \(\left| \phi \right\rangle \).
- Dimension of twisted operator \(\tau_\phi \):
 \[
 \hat{h}_\phi = \frac{c}{24} \left(N - 1/N \right) + \frac{h_\phi}{N}
 \]
 \(\tau_\phi \) is more relevant than \(\tau_1 \)

- Consider \(T = 0 \), one-interval EE with PBC.
 \[
 \Rightarrow \text{Conformal map: } x = \exp(2i\pi\ell/L)
 \]
EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini '14]

- $h_1 = 0$: the conformally invariant state is $|1\rangle$.
- $h_\phi = -1/5 < 0$: the ground state is $|\phi\rangle$.
- Dimension of twisted operator τ_ϕ: $\hat{h}_\phi = \frac{c}{24}(N - 1/N) + \frac{h_\phi}{N}$
- τ_ϕ is more relevant than τ_1
- Consider $T = 0$, one-interval EE with PBC.
 \Rightarrow Conformal map: $x = \exp(2i\pi \ell/L)$
- EE in state $|1\rangle$:

$$\langle \tau_\phi(1)\tilde{\tau}_\phi(x, \bar{x}) \rangle = |x - 1|^{-4\hat{h}_\phi} = \left(2 \sin \frac{\pi \ell}{L}\right)^{-4\hat{h}_\phi}$$
EEs of a non-unitary model

see also [Bianchini, Castro-Alvaredo, Doyon, Levi, Ravanini '14]

- $h_1 = 0$: the conformally invariant state is $|1\rangle$.
- $h_\phi = -1/5 < 0$: the ground state is $|\phi\rangle$.
- Dimension of twisted operator τ_ϕ: $\hat{h}_\phi = \frac{c}{24}(N - 1/N) + \frac{h_\phi}{N}$
- τ_ϕ is more relevant than τ_1
- Consider $T = 0$, one-interval EE with PBC.
 \Rightarrow Conformal map: $x = \exp(2i\pi\ell/L)$

EE in state $|1\rangle$:

$$\langle \tau_\phi(1)\tilde{\tau}_\phi(x, \bar{x}) \rangle = |x - 1|^{-4\hat{h}_\phi} = \left(2 \sin \frac{\pi\ell}{L}\right)^{-4\hat{h}_\phi}$$

EE in ground state $|\phi\rangle$:

$$\langle \Phi(\infty)\tau_\phi(1)\tilde{\tau}_\phi(x, \bar{x})\Phi(0) \rangle = G(x, \bar{x}) \quad \text{with } \Phi = \phi \otimes^N$$
$N = 3$ Rényi entropy in state $|1\rangle$
$N = 3$ Rényi entropy in the ground state $|\phi\rangle$
4. Further studies of the cyclic orbifold
Coulomb Gas approach

- Dictionary between minimal CFTs and “imaginary Liouville” action [Dotsenko-Fateev '84]:

$$A(\phi) = \int d^2x \left[(\nabla \phi)^2 + 2iQR\phi + \# e^{ib\phi} + \# e^{-i\phi/b} \right]$$

with $2Q = b - 1/b$
Coulomb Gas approach

- Dictionary between minimal CFTs and “imaginary Liouville” action [Dotsenko-Fateev ’84]:

\[
A(\phi) = \int d^2x \left[(\nabla \phi)^2 + 2iQ \mathcal{R}\phi + \#e^{ib\phi} + \#e^{-i\phi/b} \right]
\]

with \(2Q = b - 1/b\)

- Central charge \(c = 1 - 24Q^2\)

Vertex operators \(V_\alpha = e^{i\alpha\phi}\), \(h_\alpha = h_{2Q-\alpha} = \alpha^2 - 2Q\alpha\)

Kac table \(\Phi_{rs} \leftrightarrow \alpha_{rs} = \frac{(1-r)b}{2} - \frac{(1-s)}{2b}\)
Coulomb Gas approach

- Dictionary between minimal CFTs and “imaginary Liouville” action [Dotsenko-Fateev ’84]:

\[A(\phi) = \int d^2 x \left[(\nabla \phi)^2 + 2iQ \mathcal{R}\phi + \# e^{ib\phi} + \# e^{-i\phi/b} \right] \]

with \(2Q = b - 1/b \)

- Central charge \(c = 1 - 24Q^2 \)
- Vertex operators \(V_\alpha = e^{i\alpha \phi} \), \(h_\alpha = h_{2Q-\alpha} = \alpha^2 - 2Q\alpha \)
- Kac table \(\Phi_{rs} \leftrightarrow \alpha_{rs} = \frac{(1-r)b}{2} - \frac{(1-s)}{2b} \)

- Neutrality condition for \(\langle V_{\alpha_1} \ldots V_{\alpha_n} \rangle \neq 0 \):
 \[\sum_j \alpha_j + 2(g - 1)Q = 0 \]
Coulomb Gas approach

- Dictionary between minimal CFTs and “imaginary Liouville” action [Dotsenko-Fateev ’84]:

\[A(\phi) = \int d^2x \left[(\nabla \phi)^2 + 2iQ R\phi + \#e^{ib\phi} + \#e^{-i\phi/b} \right] \]

with \(2Q = b - 1/b \)

- Central charge \(c = 1 - 24Q^2 \)

 Vertex operators \(V_\alpha = e^{i\alpha\phi}, \quad h_\alpha = h_{2Q-\alpha} = \alpha^2 - 2Q\alpha \)

 Kac table \(\Phi_{rs} \leftrightarrow \alpha_{rs} = \frac{(1-r)b}{2} - \frac{(1-s)}{2b} \)

- Neutrality condition for \(\langle V_{\alpha_1} \ldots V_{\alpha_n} \rangle \neq 0 : \sum_j \alpha_j + 2(g-1)Q = 0 \)

- Screening charges : \(Q_+ = \oint dz V_b(z), \quad Q_- = \oint dz V_{-1/b}(z) \)
Coulomb Gas approach

- Dictionary between minimal CFTs and “imaginary Liouville” action [Dotsenko-Fateev ’84]:

\[
A(\phi) = \int d^2 x \left[(\nabla \phi)^2 + 2iQ \mathcal{R}\phi + \#e^{ib\phi} + \#e^{-i\phi/b} \right]
\]

with \(2Q = b - 1/b\)

- Central charge \(c = 1 - 24Q^2\)

 - Vertex operators \(V_\alpha = e^{i\alpha\phi}\), \(h_\alpha = h_{2Q-\alpha} = \alpha^2 - 2Q\alpha\)
 - Kac table \(\Phi_{rs} \leftrightarrow \alpha_{rs} = \frac{(1-r)b}{2} - \frac{(1-s)b}{2}\)

- Neutrality condition for \(\langle V_{\alpha_1} \ldots V_{\alpha_n} \rangle \neq 0\):
 \[\sum_j \alpha_j + 2(g - 1)Q = 0\]

- Screening charges: \(Q_+ = \oint dz V_b(z)\), \(Q_- = \oint dz V_{-1/b}(z)\)

- Correlation functions: \(\langle \Phi_1 \ldots \Phi_n \rangle \leftrightarrow \langle V_{\alpha_1} \ldots V_{\alpha_n} Q^k Q^\ell \rangle\)
 - Neutrality: \(\sum_j \alpha_j + 2(g - 1)Q + kb - \ell/b = 0\)
Some working examples with the CG

- One-interval, generic N entropy in the state ϕ_{21}
 - Recall $\alpha_{21} = -b/2$
 - $\langle \Phi(0)\tau_h(z, \bar{z})\tilde{\tau}_h(1)\Phi(\infty) \rangle$ with $\Phi = \phi_{21}^N$
 - Insert $Q_+^N = (\oint dz V_b)^N$
 - Neutrality: $2N\alpha_{21} + \alpha + (2Q - \alpha) - 2Q + Nb = 0$
 - For $N = 2$: we obtain full action of monodromy group on conformal blocks
Some working examples with the CG

- One-interval, generic N entropy in the state ϕ_{21}
 - Recall $\alpha_{21} = -b/2$
 - $\langle \Phi(0)\tau_h(z, \bar{z})\tilde{\tau}_h(1)\Phi(\infty) \rangle$ with $\Phi = \phi_{21}^N$
 - Insert $Q_+^N = (\oint dz V_b)^N$
 - Neutrality: $2N\alpha_{21} + \alpha + (2Q - \alpha) - 2Q + Nb = 0$
 - For $N = 2$: we obtain full action of monodromy group on conformal blocks

- Two-interval $N = 2$ entropy in the vacuum state
 - Minimal model $\mathcal{M}(p, q)$: CG parameter $b = \sqrt{q/p}$
 - Four-point function $\langle \tau(u_1, \bar{u}_1)\tilde{\tau}(v_1, \bar{v}_1)\tau(u_2, \bar{u}_2)\tilde{\tau}(v_2, \bar{v}_2) \rangle$
 - Associate vertex charges $(0, 2Q)$ to $(\tau, \tilde{\tau})$
 - Neutrality: $4Q + (p - 2)b - (q - 2)/b = 0$
 - $(p - 1)(q - 1)$ choices of contours?
Modular invariance for \mathbb{Z}_N orbifolds

- In any rational CFT:
 - Torus partition function: $Z(\tau, \bar{\tau}) = \sum_j |\chi_j(\tau)|^2$
 - Modular S-matrix: $\chi_j(-1/\tau) = \sum_k S_{jk} \chi_k(\tau)$
 - Verlinde formula: $N_{ij}^k = \sum_m \frac{S_{im} S_{jm} S_{km}^*}{S_{1,m}}$
Modular invariance for \mathbb{Z}_N orbifolds

- In any rational CFT:
 - Torus partition function: $Z(\tau, \bar{\tau}) = \sum_j |\chi_j(\tau)|^2$
 - Modular S-matrix: $\chi_j(-1/\tau) = \sum_k S_{jk} \chi_k(\tau)$
 - Verlinde formula: $N_{ij}^k = \sum_m \frac{S_{im} S_{jm} S_{km}^*}{S_{1,m}}$

- Apply to \mathbb{Z}_N orbifold of $\mathcal{M}(p, q)$ (for prime N):
 - Describe set of characters
 - Explicit S-matrix: (non-trivial even for $N = 2$)
 - Obtain fusion rules for twisted and untwisted operators
Conclusions and perspectives

- Current results
 - “Standard” computations of EE: only $g = 0$ or $c \in \{\frac{1}{2}, 1\}$
 - New approach based on \mathbb{Z}_N-orbifold of Virasoro algebra
 - Works for minimal models (twist has two null vectors)
 - Applied at $g = 0$ for YL: gives non-trivial $\langle \ldots \tau \tilde{\tau} \tau \ldots \rangle$
 - Tested at $g = 1$ for YL+Ising: recover $\{\chi_j\}$

- Future work
 - Find systematic derivation of differential equations?
 - Use mod. invariance to get fusion rules in \mathbb{Z}_N-orbifold?
 - Construct Coulomb-Gas formalism for conformal blocks in \mathbb{Z}_N-orbifold? [joint with O. Blondeau-Fournier (Laval)]
Conclusions and perspectives

- Current results
 - “Standard” computations of EE: only $g = 0$ or $c \in \{\frac{1}{2}, 1\}$
 - New approach based on \mathbb{Z}_N-orbifold of Virasoro algebra
 - Works for minimal models (twist has two null vectors)
 - Applied at $g = 0$ for YL: gives non-trivial $\langle \ldots \tau_\phi \tilde{\tau}_\phi \ldots \rangle$
 - Tested at $g = 1$ for YL+Ising: recover $\{\chi_j\}$

- Future work
 - Find systematic derivation of differential equations?
 - Use mod. invariance to get fusion rules in \mathbb{Z}_N-orbifold?
 - Construct Coulomb-Gas formalism for conformal blocks in \mathbb{Z}_N-orbifold? [joint with O. Blondeau-Fournier (Laval)]
Thank you!