Massless scalar field in curved space

1 The classical problem

We consider a massless real valued scalar field ϕ on an oriented two-dimensional Riemannian manifold (M, g) with action

$$
\begin{equation*}
S[\phi]=\frac{\beta}{4 \pi} \int_{M} g(d \phi, d \phi) \omega_{g} \tag{1}
\end{equation*}
$$

where ω is the canonical Riemannian volume form. In local coordinate x^{μ} this means

$$
\begin{equation*}
S[\phi]=\frac{\beta}{4 \pi} \int g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi d V(x), \quad d V(x)=\sqrt{|g(x)|} d^{2} x \tag{2}
\end{equation*}
$$

where $|g(x)|=g_{11}(x) g_{22}(x)-g_{12}^{2}(x)$ is the determinant of the matrix $g_{\mu \nu}(x)$, and $g^{\mu \nu}(x)$ its inverse matrix, namely $g^{\mu \nu}=\frac{1}{|g|}\left(\begin{array}{cc}g_{22} & -g_{12} \\ -g_{21} & g_{11}\end{array}\right)$.

1. Check that the action is Weyl invariant. What happens for a massive scalar field with action

$$
\begin{equation*}
S[\phi]=\frac{\beta}{4 \pi} \int\left(g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-m^{2} \phi^{2}\right) d V(x) ? \tag{3}
\end{equation*}
$$

2. Using Stokes theorem (see Appendix), recast the action as

$$
\begin{equation*}
S[\phi]=\frac{\beta}{4 \pi} \int \phi \Delta_{g} \phi d V \tag{4}
\end{equation*}
$$

where Δ_{g} is the laplacian as given in local coordinates by

$$
\begin{equation*}
\Delta_{g} \phi=-\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} g^{\mu \nu} \partial_{\nu} \phi\right)=-\nabla^{\mu} \nabla_{\mu} \phi \tag{5}
\end{equation*}
$$

3. Show that the equation of motion for the massless scalar field is: $\Delta_{g} \phi=0$.
4. Check $\Delta_{e^{2 \sigma} g}=e^{-2 \sigma} \Delta_{g}$, and conclude that the classical solutions are indeed Weyl invariant.
5. Compute the classical stress-energy tensor (a la Hilbert). Check that it is traceless and that $\nabla_{\mu} T^{\mu \nu}$ vanishes on-shell.
6. This theory is manifestly invariant under $\phi \rightarrow \phi+a$ for any constant a. What is the (Noether) current associated with this global $\mathrm{U}(1)$ symmetry ?

2 Gaussian QFT and zeta regularization

The path-integral formulation of the free scalar field is Gaussian : $Z=\int[D \phi] e^{-\frac{\beta}{4 \pi} \int \phi \Delta_{g} \phi d V}$. By analogy with the finite-dimensional case (see Appendix A), it is natural do postulate that the partition function of the free boson is

$$
\begin{equation*}
Z_{g}=\frac{1}{\sqrt{\operatorname{det} \frac{\beta}{(2 \pi)^{2}} \Delta_{g}}} \tag{6}
\end{equation*}
$$

But it turns out that defining the above determinant is a rather subtle affair. Before doing so, let us recall some facts about the laplacian on a Riemann manifold. The laplacian or Laplace-Beltrami
operator Δ_{g} is ubiquitous in physics, and it controls for instance: (i) heat diffusion, (ii) wave propagation, and (iii) the Schrödinger equation for a free (non-relativistic) particle of mass m evolving on M, whose Hamiltonian is $H=\frac{\hbar^{2}}{2 m} \Delta_{g}$. On a compact Riemannian manifold M without boundary, Δ_{g} has a discrete non-negative spectrum. Let $\lambda_{0} \leq \lambda_{1} \leq \cdots$ be its eigenvalues, with L^{2} normalized eigenstates ${ }^{1}$

$$
\Delta \phi_{n}=\lambda_{n} \phi_{n}, \quad \lambda_{n} \geq 0
$$

and the kernel is made of all locally constant functions. Thus the dimension of the kernel is the number of connected components of M. This is not a surprise, these are nothing but the classical solutions. From now on we will assume M to be connected, in which case the kernel is one-dimensional and is simply the subspace of all constant functions. In quantum mechanics notations ${ }^{2}$

$$
\Delta\left|\phi_{0}\right\rangle=0, \quad \phi_{0}(x)=\left\langle x \mid \phi_{0}\right\rangle=\frac{1}{\sqrt{\operatorname{Vol}(M)}}
$$

where $\operatorname{Vol}(M)$ is the total volume of the (compact) manifold M. If we decompose

$$
\begin{equation*}
\phi(x)=\sum_{n=0}^{\infty} \alpha_{n} \phi_{n}(x) \tag{7}
\end{equation*}
$$

in the path integral formulation (6), it appears that the modes α_{n} are independent gaussian random variables with a variance $\left(\frac{\beta}{4 \pi} \lambda_{n}\right)^{-1}$.

Upon trying to define the determinant of the laplacian, we face several issues. A first issue is the presence of a zero eigenvalue. Since we want to define a non-trivial determinant, we exclude this vanishing eigenvalue, and we denote by $\operatorname{det}^{\prime}(\Delta)$ the corresponding determinant with the zero eigenvalue omitted. A careful treatment of this zero mode requires to define the partition function as

$$
\begin{equation*}
Z=\sqrt{\frac{\operatorname{Vol}(M)}{\operatorname{det}^{\prime}(\Delta)}} \tag{8}
\end{equation*}
$$

A second, more dramatic issue is that the product of all non zero eigenvalues $\prod_{n}^{\prime} \lambda_{n}$ is divergent (see eq. (11). So we must propose a different, regularized definition for $\operatorname{det}^{\prime}(\Delta)$.

A particularly elegant way to regularize functional determinants is the so-called zeta regularization. First defined the meromorphic function

$$
\begin{equation*}
\zeta_{\Delta}(s)=\sum_{n ; \lambda_{n}>0} \frac{1}{\lambda_{n}^{s}}=\sum_{n}^{\prime} \frac{1}{\lambda_{n}^{s}} \tag{9}
\end{equation*}
$$

where \sum^{\prime} stands for the sum over all non-zero eigenvalues. A straightforward (but formal) calculation yields

$$
\begin{equation*}
\zeta_{\Delta}^{\prime}(s)=\sum_{n}^{\prime} \frac{\ln \lambda_{n}}{\lambda_{n}^{s}} \quad \text { and therefore } \quad \zeta_{\Delta}^{\prime}(0)=\sum_{n}^{\prime} \ln \lambda_{n}=\ln \prod_{n}^{\prime} \lambda_{n} \tag{10}
\end{equation*}
$$

This formal computation motivates the following definition : $\operatorname{det}^{\prime}(\Delta)=e^{-\zeta_{\Delta}^{\prime}(0)}$.
The actual meaning of the above equation is as follows. The series defining $\zeta_{\Delta}(s)$ is convergent for $\operatorname{Re}(s)>d / 2$. This comes from the asymptotic behavior of the eigenvalues of second order elliptic operators on d-dimensional manifolds (as shown by Weyl):

$$
\begin{equation*}
\lambda_{n}^{d / 2} \sim \frac{(4 \pi)^{d / 2} \Gamma\left(\frac{d}{2}+1\right)}{\operatorname{vol}_{g}(M)} n \tag{11}
\end{equation*}
$$

[^0]Furthermore $\zeta_{\Delta}(s)$ is holomorphic in the variable s, and it turns out that it can be analytically continued to a holomorphic function in the vicinity of $s=0$. Thus $\zeta_{\Delta}^{\prime}(0)$ makes sense. We will now prove this.
7. Using the identity

$$
\begin{equation*}
\frac{1}{\lambda^{s}}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t \lambda} d t \tag{12}
\end{equation*}
$$

show that the zeta-function ζ_{Δ} can be expressed in terms of the Heat-kernel

$$
\begin{equation*}
K(t, x, y)=\langle x| e^{-\Delta t}|y\rangle \tag{13}
\end{equation*}
$$

i.e. the solution of the Heat equation $\partial_{t} K(t, x, y)=-\Delta_{x} K(t, x, y)$ with initial condition: $\lim _{t \rightarrow 0^{+}} K(t, x, y)=\delta_{y}(x)$.
8. Using the small time asymptotic of the Heat kernel on a Riemann surface (without boundary) :

$$
\begin{equation*}
K(t, x, x)=\frac{1}{4 \pi t}+\frac{R(x)}{24 \pi}+O(t) \tag{15}
\end{equation*}
$$

show that $\zeta_{\Delta}(s)$ can be analytically continued to $\mathbb{C} \backslash\{1\}$, with a single pole at $s=1$. What is $\zeta_{\Delta}(0)$? And the residue at $s=-1$?
9. We want to compute the effect of a Weyl transformation $\tilde{g}_{\mu \nu}(x)=e^{2 \sigma(x)} g_{\mu \nu}(x)$ on the functional determinant of the laplacian Δ. Let us consider the effect of an infinitesimal Weyl transformation

$$
\begin{equation*}
g_{\mu \nu}(x) \rightarrow e^{2 \sigma(x)} g_{\mu \nu}(x) \sim(1+2 \sigma(x)) g_{\mu \nu}(x) \tag{18}
\end{equation*}
$$

At first order the Laplacian transforms as $\Delta \rightarrow(1-2 \sigma(x)) \Delta$. Argue that the variation of the $\mathrm{n}^{t h}$ eigenvalue is (at first order in perturbation theory)

$$
\begin{equation*}
\delta \lambda_{n}=-2 \lambda_{n} \int_{M} \phi_{n}^{*}(x) \phi_{n}(x) \delta \sigma(x) d V(x) \tag{19}
\end{equation*}
$$

and deduce the variation of the zeta function

$$
\begin{equation*}
\delta \zeta_{\Delta}(s)=2 \frac{s}{\Gamma(s)} \int_{0}^{\infty} d t t^{s-1} \int_{M}\left(K(t, x, x)-\frac{1}{\operatorname{Vol}(M)}\right) \delta \sigma(x) d V(x) \tag{20}
\end{equation*}
$$

10. Show that

$$
\begin{equation*}
\delta \zeta_{\Delta}^{\prime}(0)=2 \int_{M}\left(\frac{R(x)}{24 \pi}-\frac{1}{\operatorname{Vol}(M)}\right) \delta \sigma(x) d V(x) \tag{21}
\end{equation*}
$$

11. Deduce that the Weyl anomaly is $c=1$, through

$$
\begin{equation*}
\left.\frac{\delta}{\delta \sigma(x)}\right|_{\sigma=0} Z_{e^{2 \sigma} g}=\frac{1}{24 \pi} R(x) Z_{g} \tag{22}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
Z_{e^{2 \sigma} g}=Z_{g}\left(1+\frac{1}{24 \pi} \int_{M} R(x) \sigma(x) \sqrt{|g(x)|}+O\left(\sigma^{2}\right)\right) \tag{23}
\end{equation*}
$$

3 Green's function

Recall that we can decompose the field $\phi(x)$ into eigenmodes $\phi(x)=\sum_{n=0}^{\infty} \alpha_{n} \phi_{n}(x)$, and that in the path integral formulation (6), the coefficients α_{n} are independent gaussian random variables with a variance $\left(\frac{\beta}{2 \pi} \lambda_{n}\right)^{-1}$. There is a problem with the zero mode α_{0}, which would seemingly be a uniform random variable over \mathbb{R}. Since this is not quite well-defined, so far we ignore this issue by removing the zero mode

$$
\begin{equation*}
\bar{\phi}(x)=\phi(x)-\frac{1}{\operatorname{vol}(M)} \int_{M} \phi(y) d V(y)=\sum_{n>0} \alpha_{n} \phi_{n}(x) \tag{24}
\end{equation*}
$$

One can readily compute the two-point function

$$
\begin{equation*}
\langle\bar{\phi}(x) \bar{\phi}(y)\rangle=\frac{2 \pi}{\beta} \sum_{n>0} \frac{1}{\lambda_{n}} \phi_{n}(x) \phi_{n}(y)=\frac{2 \pi}{\beta} G(x, y) \tag{25}
\end{equation*}
$$

where G is the Green's function. It could also have been characterized as the being the unique solution 0

$$
\begin{equation*}
\Delta_{x} G(x, y)=\delta_{y}(x)-\frac{1}{\operatorname{Vol}(M)}, \quad \int_{M} G(x, y) d V(x)=0 \tag{26}
\end{equation*}
$$

After a Weyl transformation $g \rightarrow \tilde{g}=e^{2 \sigma} g$ the Green's function is of the form

$$
\begin{equation*}
\tilde{G}(x, y)=G(x, y)+F_{\sigma}(x)+F_{\sigma}(y)+C \tag{27}
\end{equation*}
$$

where G is the Green's function with metric g, C a constant, and F_{σ} is the following smooth function

$$
\begin{equation*}
F_{\sigma}(x)=-\frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} G(x, u) d \tilde{V}(u) \tag{28}
\end{equation*}
$$

Proving this is not difficult and is left to the reader.
12. Show that on a generic surface (M, g), the short-distance behavior of the Green's function is

$$
G(x, y)=-\frac{1}{2 \pi} \log \operatorname{dist}_{g}(x, y)+O(1), \quad(x \rightarrow y)
$$

where $\operatorname{dist}_{g}(x, y)$ is the geodesic distance between x and y (hint: use convenient local coordinates).

4 Vertex operators

Recall that for a real symmetric matrix A with strictly positive eigenvalues and any vector B (possibly complex)

$$
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2} x^{t} A x} e^{Q^{t} x} d^{n} x=\frac{(2 \pi)^{\frac{n}{2}}}{\sqrt{\operatorname{det} A}} e^{\frac{1}{2} Q^{t} A^{-1} Q}
$$

and one would be tempted to define

$$
\left\langle e^{i \sum_{j} q_{j} \phi\left(x_{j}\right)}\right\rangle=\left\langle e^{\int Q(x) \phi(x) d V(x)}\right\rangle, \quad Q(x)=i \sum_{j} q_{j} \delta\left(x-x_{j}\right)
$$

[^1]and therefore
$$
\left\langle e^{i \sum_{j} q_{j} \phi\left(x_{j}\right)}\right\rangle=\exp \left[\frac{1}{2} \int Q(x) G(x, y) Q(y) \omega(x) \omega(y)\right]=\delta_{\sum_{j} q_{j}, 0} \prod_{j, k} e^{-\frac{\pi}{\beta} q_{j} q_{k} G_{g}\left(x_{j}, x_{k}\right)}
$$
where the neutrality condition $\delta_{\sum_{j} q_{j}, 0}$ comes from integration over the zero-mode, formally
$$
\frac{\int_{\mathbb{R}} e^{i \phi_{0} \sum_{j} q_{j}} d \phi_{0}}{\int_{\mathbb{R}} d \phi_{0}}=\delta_{\Sigma_{j} q_{j}, 0}
$$
13. Check that with this naive definition, the correlation function would formally be invariant under $g \rightarrow e^{2 \sigma} g$.
This is consistent with the expectation that vertex operators, at the classical level, are simply functions on the manifold, and therefore they have a vanishing scaling dimension. However in the double product $\Pi_{j, k} e^{-\frac{\pi}{\beta} q_{j} q_{k} G_{g}\left(x_{j}, x_{k}\right)}$ the terms $j=k$ are divergent since
$$
G_{g}(x, y) \sim-\frac{1}{2 \pi} \log \operatorname{dist}_{g}(x, y)
$$

In terms of Wick's theorem, these divergences come from the self-contractions. So one has to regularize the above expression. One possibility is to modify the Green's function at coincident points as follows

$$
\tilde{G}_{g}(x, x)=\lim _{y \rightarrow x}\left(G_{g}(x, y)+\frac{1}{4 \pi} \log _{\operatorname{dist}}^{g}{ }_{g}^{2}(x, y)\right)
$$

Note that this prescription is local and covariant : it depends only on the spacetime geometry in an arbitrarily small neighborhood of x. On the Euclidean plane $\tilde{G}_{g}(x, x)=0$, and this regularization amounts to completely remove self-contractions, so it is equivalent to normal ordering. In curved space self-contractions are not removed but merely made finite.
Within this regularization scheme one thus defines the correlation function of Vertex operators as

$$
\left\langle: e^{i q_{1} \phi\left(x_{1}\right)}: \cdots: e^{i q_{p} \phi\left(x_{p}\right)}:\right\rangle_{g}=\delta_{\sum_{j} q_{j}, 0} \prod_{j<k} e^{-\frac{2 \pi}{\beta} q_{j} q_{k} G_{g}\left(x_{j}, x_{k}\right)} \prod_{j} e^{-\frac{\pi}{\beta} q_{j}^{2} \tilde{G}_{g}\left(x_{j}, x_{j}\right)}
$$

in which the colons : $e^{i q \phi}$: are a reminder of the above regularization. Morally

$$
: e^{i q \phi(x)}:=" \frac{e^{i q \phi(x)}}{\left(\operatorname{dist}_{g}(x, x)\right)^{\frac{q^{2}}{2 \beta}}} "
$$

In particular on the Euclidean plane we recover

$$
\left\langle: e^{i q_{1} \phi\left(x_{1}\right)}: \cdots: e^{i q_{p} \phi\left(x_{p}\right)}:\right\rangle=\delta_{\sum_{j} q_{j}, 0} \prod_{i<j}\left|z_{i}-z_{j}\right|^{\frac{q_{i} q_{j}}{\beta}} .
$$

14. Check that (up to an irrelevant additive constant ; why is it irrelevant ?)

$$
\tilde{G}_{e^{2 \sigma} g}(x, x)=\tilde{G}_{g}(x, x)+2 F_{\sigma}(x)+\frac{1}{2 \pi} \sigma(x)
$$

and deduce that

$$
\left\langle e^{i \sum_{j} q_{j} \phi\left(x_{j}\right)}\right\rangle_{e^{2 \sigma} g}=\prod_{j} e^{-\Delta_{j} \sigma\left(x_{j}\right)}\left\langle e^{i \sum_{j} q_{j} \phi\left(x_{j}\right)}\right\rangle_{g}, \quad \Delta_{j}=\frac{q_{j}^{2}}{2 \beta}
$$

This means that the vertex operator : $e^{i q \phi}$: is a primary field, and that its scaling dimension is $\Delta(q)=\frac{q^{2}}{2 \beta}$. Note that these anomalous dimensions are proportional to $\hbar=1 / \beta$, as befits quantum corrections.

The above regularization is a good illustration of the fact that the regularization of a field induces an anomalous behavior under a particular symmetry, here rescaling.

$5 \mathrm{U}(1)$ current

The charge neutrality $\sum_{j} q_{j}=0$ in the correlation function of vertex operators can also be understood as the invariance of the theory under $\phi(x) \rightarrow \phi(x)+a$ for any constant $a \in \mathbb{R}$. At the level of the classical field theory the corresponding Noether current is

$$
\begin{equation*}
\nabla_{\mu} J^{\mu}=0 \text { on-shell, } \quad J^{\mu}=\beta g^{\mu \nu} \partial_{\nu} \phi \tag{42}
\end{equation*}
$$

(it is a good exercice to check this).
15. Consider now an infinitesimal transformation $\phi(x) \rightarrow \tilde{\phi}(x)=\phi(x)+\epsilon(x)$. Assuming that the path-integral measure $D[\Phi]$ is invariant under such rigid translations $(D[\tilde{\Phi}]=D[\Phi])$ argue that there are no quantum corrections to the classical expression of the current J^{μ}. Show that $\nabla_{\mu} J^{\mu}$ vanishes in correlation functions away from field insertions.
16. In isothermal coordinates $d^{2} s=e^{2 \sigma} d z d \bar{z}$, let $J=J_{z}=\beta \partial_{z} \phi$ and $\bar{J}=J_{\bar{z}}=\beta \partial_{\bar{z}} \phi$. Argue that the field $\phi(x)$ can be decomposed (locally ${ }^{4}$) as $\phi(x)=\varphi(z)+\bar{\varphi}(\bar{z})$ for some holomorphic field $\varphi(z)$ and deduce that $\partial_{\bar{z}} J \simeq 0, \quad \partial_{z} \bar{J} \simeq 0$.
17. What is the classical behavior of $J_{\mu}=\beta \partial_{\mu} \phi$ under an infinitesimal diffeomorphism $x^{\mu} \rightarrow x^{\mu}+\epsilon^{\mu}(x)$? In particular, what is its scaling dimension ?
18. We are going to argue that J_{μ} has no anomalous dimension. To see this, consider for instance the two-point function of J_{μ} is given by

$$
\begin{equation*}
\left\langle J_{\mu}(x) J_{\nu}\left(x^{\prime}\right)\right\rangle_{g}=-\beta^{2} \partial_{\mu} \partial_{\nu}^{\prime} G_{g}\left(x, x^{\prime}\right) \tag{46}
\end{equation*}
$$

where ∂_{μ} stands for $\partial / \partial x^{\mu}$ and ∂_{ν}^{\prime} stands for $\partial / \partial x^{\prime}$. Check that

$$
\begin{equation*}
\left\langle J_{\mu}(x) J_{\nu}\left(x^{\prime}\right)\right\rangle_{e^{2 \sigma} g}=\left\langle J_{\mu}(x) J_{\nu}\left(x^{\prime}\right)\right\rangle_{g} \tag{47}
\end{equation*}
$$

It follows from Wick's theorem that the above Weyl invariance also holds for k-point functions $\left\langle J_{\mu_{1}}\left(y_{1}\right) \cdots J_{\mu_{k}}\left(y_{k}\right)\right\rangle$ as well. Homework : check that

$$
\begin{align*}
& \left\langle J_{\mu_{1}}\left(y_{1}\right) \cdots J_{\mu_{k}}\left(y_{k}\right): e^{i q_{1} \phi\left(x_{1}\right)}: \cdots: e^{i q_{p} \phi\left(x_{p}\right)}:\right\rangle_{e^{2 \sigma} g} \\
& \quad=\prod_{j=1}^{p} e^{-\frac{q_{j}^{2}}{2 \beta} \sigma\left(x_{j}\right)}\left\langle J_{\mu_{1}}\left(y_{1}\right) \cdots J_{\mu_{k}}\left(y_{k}\right): e^{i q_{1} \phi\left(x_{1}\right)}: \cdots: e^{i q_{p} \phi\left(x_{p}\right)}:\right\rangle_{g} \tag{48}
\end{align*}
$$

The above behavior tells us two things. First J_{μ} transforms as a primary field under Weyl rescaling, second it has vanishing anomalous dimension. Therefore its scaling dimension is $\Delta=1$ (and what is its spin ?). Note that the absence of anomalous dimension is a generic feature of conserved currents. The stress-energy tensor is another example.

[^2]19. Derive the Ward identity associated to this $\mathrm{U}(1)$ symmetry. Namely show that under $\tilde{\phi}(x)=$ $\phi(x)+\epsilon(x)$ we have
\[

$$
\begin{equation*}
\delta_{\epsilon} O(x)=\frac{1}{2 \pi} \int_{B} \epsilon(y)\left(\nabla_{\mu} J^{\mu}\right)(y) O(x) d V(y) \tag{49}
\end{equation*}
$$

\]

where B is an arbitrary neighborhood of x. What is the contact term of $\nabla_{\mu} J^{\mu}$ with a vertex operator : $e^{i q \phi}:$? With the current J_{μ} ?
20. Upon integrating by parts the above Ward identity can be rewritten as

$$
\begin{align*}
& \delta_{\epsilon} O(x)=-\frac{1}{2 \pi} \int_{B} \partial_{\mu} \epsilon(y) J^{\mu}(y) O(x) d V(y) \\
&+\frac{1}{2 \pi} \oint_{\partial B} \epsilon_{\mu \rho} \epsilon(y) J^{\mu}(y) O(x) \sqrt{|g(y)|} d y^{\rho} \tag{50}
\end{align*}
$$

where B is an arbitrary neighborhood of x and the boundary ∂B is oriented clockwise. Show that for $\epsilon(x)=\epsilon$ this can means

$$
\begin{equation*}
\delta_{\epsilon} O(x)=\frac{\epsilon}{2 \pi i} \oint_{\mathrm{G}} J(z) O(x) d z+\frac{\epsilon}{2 \pi i} \oint_{\bigcirc} \bar{J}(\bar{z}) O(x) d \bar{z} \tag{51}
\end{equation*}
$$

in which the integration contour circles around x. Deduce the OPE of $J(z)$ with a vertex operator.

A Gaussian integration

In this section A denote a real $n \times n$ symmetric matrix A with strictly positive eigenvalues, and $\phi=\left(\phi_{1}, \cdots, \phi_{n}\right)$ a vector in \mathbb{R}^{n}.

- Show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \phi^{t} A \phi} d^{n} \phi=\frac{(2 \pi)^{\frac{n}{2}}}{\sqrt{\operatorname{det} A}} \tag{52}
\end{equation*}
$$

Let's denote by Z the above quantity.

- Check that the two-point function $\left\langle\phi_{i} \phi_{j}\right\rangle$ is given by

$$
\begin{equation*}
\left\langle\phi_{i} \phi_{j}\right\rangle=\frac{1}{Z} \int_{\mathbb{R}^{n}} \phi_{i} \phi_{j} e^{-\frac{1}{2} \phi^{t} A \phi} d^{n} \phi=\left(A^{-1}\right)_{i j} \tag{53}
\end{equation*}
$$

One can then compute higher-point correlation functions using Wick's theorem

$$
\begin{equation*}
\left\langle\phi_{i_{1}} \cdots \phi_{i_{2 p-1}}\right\rangle=0, \quad\left\langle\phi_{i_{1}} \cdots \phi_{i_{2 p}}\right\rangle \quad \sum_{\text {pairings } P}\left\langle\phi_{i_{P(1)}} \phi_{i_{P(2)}}\right\rangle \cdots\left\langle\phi_{i_{P(2 p-1)}} \phi_{i_{P(2 p)}}\right\rangle \tag{54}
\end{equation*}
$$

A proof of Wick's theorem can be obtained by taking derivatives w.r.t. the b_{j} 's of the next identity.

- Show that for any vector $b=\left(b_{1}, \cdots, b_{n}\right)$, possibly complex, one has

$$
\begin{equation*}
\left\langle e^{\sum_{j} b_{j} \phi_{j}}\right\rangle=\frac{1}{Z} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \phi^{t} A \phi} e^{b^{t} \phi} d^{n} \phi=e^{\frac{1}{2} b^{t} A^{-1} b} \tag{55}
\end{equation*}
$$

B Stokes theorem in Riemannian geometry

On a n-dimensional compact manifold M (without boundary) Stokes theorem ensures that

$$
\int_{M} d \alpha=0
$$

for any $n-1$ form α. In particular this implies that for any vector field X

$$
\int_{M} \mathcal{L}_{X} \omega_{g}=0
$$

where \mathcal{L}_{X} is the Lie derivative along X and ω_{g} is the Riemnannian volume form. This follows form the Cartan formula $\mathcal{L}_{X}=d \iota_{X}+\iota_{X} d$ where ι_{X} is the interior product, and the fact that $d \omega_{g}=0$. In fact $\mathcal{L}_{X} \omega_{g}$ is nothing but $\operatorname{div}_{g}(X) \omega_{g}$, so we have

$$
\int_{M} \operatorname{div}_{g}(X) \omega_{g}=0
$$

In local coordinates this reads

$$
\int_{M} \frac{1}{\sqrt{|g|}} \partial_{\rho}\left(\sqrt{|g|} X^{\rho}\right) d V=0
$$

Since $\Gamma^{\mu}{ }_{\mu \rho}=\frac{1}{\sqrt{|g|}} \partial_{\rho} \sqrt{|g|}$, we can rewrite this as

$$
\int_{M} \nabla_{\rho} X^{\rho} d V=0
$$

In the presence of a boundary ∂M, Stokes theorem becomes

$$
\int_{M} d \alpha=\int_{\partial_{M}} \alpha
$$

Note that the boundary ∂M of an oriented Riemannian manifold (M, g) is itself naturally an oriented Riemannian manifold, as the boundary inherits the metric and orientation of M. The natural integration form on ∂M is simply $\iota_{N} \omega_{g}$, where N is the unit outward normal field along ∂M. Within this framework one can rewrite Stokes theorem as

$$
\int_{M} \operatorname{div}_{g}(X) \omega_{g}=\int_{\partial M} \iota_{X} \omega_{g}=\int_{\partial M} g(N, X) \iota_{N} \omega_{g}
$$

Indeed the two forms $\iota_{X} \omega_{g}$ and $g(N, X) \iota_{N} \omega_{g}$ are equal once restricted to ∂M. To see this, notice the decomposition $X=g(X, N) N+Y$, where $g(Y, N)=0$, yielding $\iota_{X} \omega_{g}=g(N, X) \iota_{N} \omega_{g}+\iota_{Y} \omega_{g}$. Finally $\iota_{Y} \omega_{g}$ vanishes once restricted to ∂M. Often in physics textbook, the above equality is written in coordinates :

$$
\int_{M} \nabla_{\rho} X^{\rho} d V_{M}=\int_{\partial M} N_{\rho} X^{\rho} d V_{\partial M}
$$

In two dimensions we will prefer the following alternative version

$$
\int_{M} \operatorname{div}_{g}(X) \omega_{g}=\int_{\partial M} \iota_{X} \omega_{g}
$$

or in coordinates, writing $\omega_{g}=\sqrt{|g|} d x^{1} \wedge d x^{2}$

$$
\int_{M} \nabla_{\rho} X^{\rho} \sqrt{|g|} d^{2} x=\int_{\partial M} \epsilon_{\rho \mu} X^{\rho} \sqrt{|g|} d x^{\mu}
$$

[^0]: ${ }^{1}$ Here we work with the Hilbert space of maps from M to \mathbb{R} (with L^{2} scalar product, using the volume $\omega=\sqrt{|g|} d x^{1} \wedge$ $\left.\cdots \wedge d x^{d}\right)$.
 ${ }^{2}$ We choose position eigenstates normalized as scalars $\langle x \mid y\rangle=\delta_{y}(x)$, where the Dirac delta $\delta_{y}(x)$ is normalized such that $\int_{M} f(x) \delta_{y}(x) \sqrt{|g(x)|} d^{2} x=f(y)$. This means that $1=\int_{M}|x\rangle\langle x| d V(x)$.

[^1]: ${ }^{3}$ In the absence of an inverse for Δ, this is the next best thing. Indeed equation in (26) is nothing but

 $$
 \Delta G=1-\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|, \quad \Delta\left|\varphi_{0}\right\rangle=0
 $$

 and this means that G is the inverse of Δ as long as one restricts to (ker $\Delta)^{\perp}$.

[^2]: ${ }^{4}$ On any simply connected domain a harmonic function can be described as the real part of a holomorphic function. But this may not be true globally, as the harmonic function $\log |z|^{2}=\log z+\log \bar{z}$ on \mathbb{C}^{*} shows.

