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Massless scalar field in curved space

1 The classical problem

We consider a massless real valued scalar field ¢ on an oriented two-dimensional Riemannian manifold
(M, g) with action

S161= L [ g(ds,d), (1)

where w is the canonical Riemannian volume form. In local coordinate z* this means
5 v
S[o)= = [ ¢ 0u00,6aV (@), dV(2) = VIg@@)ld*a @

where |g(z)] = g11(2)g22(x) — g%5(x) is the determinant of the matrix g, (z), and ¢g"”(x) its inverse

matrix, namely g'” = ﬁ g22  —9g12
I\ —g21 gu

1. Check that the action is Weyl invariant. What happens for a massive scalar field with action
B v
Slol= - f (9" 0u00u¢ —m*¢?) dV () ? (3)
2. Using Stokes theorem (see Appendix), recast the action as

p
S[e1= = [ e,V (4)
T
where A, is the laplacian as given in local coordinates by

L

Vidl

3. Show that the equation of motion for the massless scalar field is:  Ag¢ = 0.

Agd) == 6,u (\/ngjauqﬁ) = —V“quﬁ (5)

4. Check A2, = e 2°A,, and conclude that the classical solutions are indeed Weyl invariant.

5. Compute the classical stress-energy tensor (a la Hilbert). Check that it is traceless and that
V. IT" vanishes on-shell.

6. This theory is manifestly invariant under ¢ - ¢ + a for any constant a. What is the (Noether)
current associated with this global U(1) symmetry ?

2 Gaussian QFT and zeta regularization

The path-integral formulation of the free scalar field is Gaussian : Z = f [ng]e_%f 92g9dV By

analogy with the finite-dimensional case (see Appendix|A)), it is natural do postulate that the partition
function of the free boson is

Zy= —— ©)

det #Ag

But it turns out that defining the above determinant is a rather subtle affair. Before doing so, let
us recall some facts about the laplacian on a Riemann manifold. The laplacian or Laplace-Beltrami



operator Ay is ubiquitous in physics, and it controls for instance: (i) heat diffusion, (ii) wave propaga-
tion, and (iii) the Schrédinger equation for a free (non-relativistic) particle of mass m evolving on M,
whose Hamiltonian is H = %Ag. On a compact Riemannian manifold M without boundary, A, has
a discrete non-negative spectrum. Let Ao < A\; < --- be its eigenvalues, with L? normalized eigenstatesﬂ

Ad)n = )\n(ﬁm )\n >0

and the kernel is made of all locally constant functions. Thus the dimension of the kernel is the number
of connected components of M. This is not a surprise, these are nothing but the classical solutions.
From now on we will assume M to be connected, in which case the kernel is one-dimensional and is
simply the subspace of all constant functions. In quantum mechanics notationsE|

1
\/ Vol(M)

where Vol(M) is the total volume of the (compact) manifold M. If we decompose

Algo) =0, do(x) = (z[do) =

o) = io anhn () (7)

in the path integral formulation @, it appears that the modes «,, are independent gaussian random

variables with a variance (%)\n)

Upon trying to define the determinant of the laplacian, we face several issues. A first issue is
the presence of a zero eigenvalue. Since we want to define a non-trivial determinant, we exclude
this vanishing eigenvalue, and we denote by det’(A) the corresponding determinant with the zero
eigenvalue omitted. A careful treatment of this zero mode requires to define the partition function as

_ | Vol(M)
Z = ‘ QU (A) (8)

A second, more dramatic issue is that the product of all non zero eigenvalues []], A, is divergent
(see eq. ([11)). So we must propose a different, regularized definition for det’(A) .

A particularly elegant way to regularize functional determinants is the so-called zeta regulariza-
tion. First defined the meromorphic function

1 1
Cals)= ) Yl Z’)\—s (9)
n;An>0 'n n n
where ¥’ stands for the sum over all non-zero eigenvalues. A straightforward (but formal) calculation
yields
/ In )\n

Ch(s) = e and therefore  ¢A(0) =Y "InX, =In ]\, (10)
This formal computation motivates the following definition : | det’(A) = e a0

The actual meaning of the above equation is as follows. The series defining (a(s) is convergent
for Re(s) > d/2. This comes from the asymptotic behavior of the eigenvalues of second order elliptic
operators on d-dimensional manifolds (as shown by Weyl):
(4m)4°T (4 +1)

volg (M)

)\d/? o~

(11)

"Here we work with the Hilbert space of maps from M to R (with L? scalar product, using the volume w = /|g|dz" A
A dz?).
#We choose position eigenstates normalized as scalars (z|y) = §, (), where the Dirac delta d,(z) is normalized such

that [, f(2)d,(2)\/]g(z)|d’*x = f(y). This means that 1 = [, [z)(z|dV ().



Furthermore (a(s) is holomorphic in the variable s, and it turns out that it can be analytically
continued to a holomorphic function in the vicinity of s = 0. Thus ¢} (0) makes sense. We will now
prove this.

7.

10.

11.

Using the identity

1 1 o0 s—1 _—tA
- ¢ dt 12
X T(s) fo ‘ (12)

show that the zeta-function (o can be expressed in terms of the Heat-kernel
K(t,2,y) = (zle|y) (13)

i.e. the solution of the Heat equation 0; K (t,z,y) = ~A,K(t,z,y) with initial condition:
limyo+ K(t,2,y) = dy(z).

Using the small time asymptotic of the Heat kernel on a Riemann surface (without boundary) :

1
K(t,x,z) = o + };f)
T s

+0(t) (15)

show that (a(s) can be analytically continued to C \ {1}, with a single pole at s = 1. What is
¢a(0) 7 And the residue at s = -1 7

We want to compute the effect of a Weyl transformation g, (x) = ¢**®) g, (z) on the functional
determinant of the laplacian A. Let us consider the effect of an infinitesimal Weyl transformation

g;w(x) e QQU(I)guu(x) ~(1+ 2‘7(33))9#1/(33) (18)

At first order the Laplacian transforms as A - (1 —20(x))A. Argue that the variation of the
n'" eigenvalue is (at first order in perturbation theory)

S = 2\ fM & ()b ()00 () AV () (19)

and deduce the variation of the zeta function

Ha(s) =257 )fomdtts_lfM(K(t@,x)—VOIEM))éa(m)dV(:z:) (20)

Show that

sa0)=2 [ (IZST VolgM))aa(x)dV(x) (21)

Deduce that the Weyl anomaly is ¢ = 1, through

J
do(x)|, o

1
Ze2"g = %R(.’I})Zg (22)

i.e.

Zerog = Zg (1 o Ju R(z)o(x)y/|g(x)| + O(c? ) (23)



3 Green’s function

Recall that we can decompose the field ¢(x) into eigenmodes ¢(x) = Yooy andn(z), and that in the

path integral formulation @, the coefficients «,, are independent gaussian random variables with a
-1

variance (%)\n) . There is a problem with the zero mode «g, which would seemingly be a uniform

random variable over R. Since this is not quite well-defined, so far we ignore this issue by removing
the zero mode

— 1
5) = 6) = gy Sy PV 0) = T nn(@) 1)
One can readily compute the two-point function
(0(x)b(y)) = Z ¢n (2)¢n(y) = —G(w y) (25)

n>0

where G is the Green’s function. It could also have been characterized as the being the unique solution

of

1

A G(z,y) = 5y(95) - Wa

[MG(:U,y)dV(x) ) (26)

After a Weyl transformation g - § = €2%g the Green’s function is of the form
G(z,y) = G(z,y) + Fy(z) + Fy(y) + C (27)

where G is the Green’s function with metric g, C' a constant, and F} is the following smooth function

F,(z)=- G(z,u)dV (u) (28)

1
VO]g(M ) ./]\/[
Proving this is not difficult and is left to the reader.

12. Show that on a generic surface (M, g), the short-distance behavior of the Green’s function is
1 :
G(z,y) =—2—logdlstg(x,y)+0(1), (x—y)
T
where disty(z,y) is the geodesic distance between z and y (hint : use convenient local coordi-
nates).
4 Vertex operators

Recall that for a real symmetric matrix A with strictly positive eigenvalues and any vector B (possibly
complex)

[ 6—%astA:cth:L‘ dx = (27[-)5 e%QtA_IQ
" Vdet A

and one would be tempted to define

(eizj qj¢(xj)> - (ef Q(ww(fﬂ)dV(x))’ Q) =i Y qio(x - ;)
J

3In the absence of an inverse for A, this is the next best thing. Indeed equation in is nothing but
AG =1-po)(wol,  Alpo) =

and this means that G is the inverse of A as long as one restricts to (kerA)*.



and therefore

; (s 1 -Z24ia.Gg(x5,x)
(6= o n):eprf@(x)a(x,y)Q(y)w(x)w(y)]:52].%,0};[6 5 0jGo (a.20)

where the neutrality condition 5Z]- ¢;,0 comes from integration over the zero-mode, formally

13.

14.

Jr €% %% dgy =5

Check that with this naive definition, the correlation function would formally be invariant under
20

g—>e“’yg.

This is consistent with the expectation that vertex operators, at the classical level, are simply

functions on the manifold, and therefore they have a vanishing scaling dimension. However in

the double product [, ;e #% 4 Ga(®Th) the terms j =k are divergent since

1 .
<?g(x,y)'V-5;10g<hstg(x,y)

In terms of Wick’s theorem, these divergences come from the self-contractions. So one has to
regularize the above expression. One possibility is to modify the Green’s function at coincident
points as follows

~ 1
Gy(z,x) = 3111_1)1316 (Gg(ac,y) gy logdistg(m,y))

Note that this prescription is local and covariant : it depends only on the spacetime geometry
in an arbitrarily small neighborhood of #. On the Euclidean plane G,(x,z) = 0, and this
regularization amounts to completely remove self-contractions, so it is equivalent to normal
ordering. In curved space self-contractions are not removed but merely made finite.

Within this regularization scheme one thus defines the correlation function of Vertex operators
as

<: plnd(@1) . . piapd(zp) :> H e—%”q,y'qug(fﬂjwk) H e—%tzfég(ﬂﬁjwj)

.- 05, 45,0 |
j<k J

in which the colons : €%? : are a reminder of the above regularization. Morally

a9z . « g1 (x) )

2
(disty(z,2))2

In particular on the Euclidean plane we recover

. . q;95
RO B § R 5

i<j

Check that (up to an irrelevant additive constant ; why is it irrelevant ?)
~ ~ 1
Geog(z,7) = Gy(z,7) + 2F5(T) + 2—0(m)
™

and deduce that

(ermimoen) | < [Ledeln ((Dwse) A ;f_ﬂﬁ
J




This means that the vertex operator : €/ : is a primary field, and that its scaling dimension is

2
A(q) = ‘21—5. Note that these anomalous dimensions are proportional to A = 1/4, as befits quantum
corrections.

The above regularization is a good illustration of the fact that the regularization of a field induces
an anomalous behavior under a particular symmetry, here rescaling.

5 U(1) current

The charge neutrality }; g; = 0 in the correlation function of vertex operators can also be understood
as the invariance of the theory under ¢(z) — ¢(x) + a for any constant a € R. At the level of the
classical field theory the corresponding Noether current is

VuJ* =0 on-shell, JH = Bg"" o, ¢ (42)

(it is a good exercice to check this).

15.

16.

17.

18.

Consider now an infinitesimal transformation ¢(z) - @(x) = ¢(x) + e(x). Assuming that the
path-integral measure D[®] is invariant under such rigid translations (D[®] = D[®]) argue that
there are no quantum corrections to the classical expression of the current J#. Show that v,J#*
vanishes in correlation functions away from field insertions.

In isothermal coordinates d?s = €2°dzdz, let J = J, = 0,¢ and J = J; = 0z¢. Argue that the
field ¢(x) can be decomposed (1ocallyE|) as ¢(x) = p(z) +p(z) for some holomorphic field ¢(z)
and deduce that 9;J ~0, 9.J ~0.

What is the classical behavior of J,, = 80,,¢ under an infinitesimal diffeomorphism z# — x#+€*(x)
?7 In particular, what is its scaling dimension ?

We are going to argue that J, has no anomalous dimension. To see this, consider for instance
the two-point function of .J, is given by

(Ju(@)Ju(2))g = _528uaz,ng(337~’C,) (46)
where 0, stands for 9/0z* and 9], stands for d/8z'". Check that
(Ju(2)Ju(2"))e2og = (Ju(@) o (2"))g (47)

It follows from Wick’s theorem that the above Weyl invariance also holds for k-point functions
(Ju1 (y1)-Jp, (yx)) as well. Homework : check that

(T (Y1) =Ty (yk) i) L L plapd(ap) Year,y

He QBO'(iUJ) Ju (yl)"'Juk(yk) et (@) L. piapd(zp) ;)g (48)

The above behavior tells us two things. First J, transforms as a primary field under Weyl
rescaling, second it has vanishing anomalous dimension. Therefore its scaling dimension is A =1
(and what is its spin 7). Note that the absence of anomalous dimension is a generic feature of
conserved currents. The stress-energy tensor is another example.

4On any simply connected domain a harmonic function can be described as the real part of a holomorphic function.
But this may not be true globally, as the harmonic function log|z|* = log z + log Z on C* shows.



19. Derive the Ward identity associated to this U(1) symmetry. Namely show that under ¢(z) =
o(x) + e(x) we have

5.0(@) = - [ () (9,7) (1)O() AV (y) (49)

where B is an arbitrary neighborhood of . What is the contact term of Vv, J" with a vertex
operator : €' : ? With the current Ju?

20. Upon integrating by parts the above Ward identity can be rewritten as

5.0() =5 [ Due() " (1)O) AV ()
b= 6 ) )0 VigWldy? (50)

2 JoB

where B is an arbitrary neighborhood of z and the boundary 9B is oriented clockwise. Show
that for e(x) = e this can means

5.0(zx) = —— ¢ J(2)0(x)dz + — ¢ J(2)O(x)dz (51)
2t Ja 2mt J o

in which the integration contour circles around x. Deduce the OPE of J(z) with a vertex
operator.

A Gaussian integration

In this section A denote a real n x n symmetric matrix A with strictly positive eigenvalues, and
¢ = (¢1,, ¢n) a vector in R".

e Show that

Let’s denote by Z the above quantity.

e Check that the two-point function (¢;¢;) is given by

1 ~1otAdp m -
<¢z¢]) = E [;W ¢i¢je 29 ¢d ¢ = (A 1)ij (53)
One can then compute higher-point correlation functions using Wick’s theorem
<¢i1'”¢i2p—1> = 07 (¢i1”'¢i2p> = Z <¢iP(1)¢iP(2))"'<¢ip(2p_l)¢ip(2p)> (54)

pairings P

A proof of Wick’s theorem can be obtained by taking derivatives w.r.t. the b;’s of the next
identity.

e Show that for any vector b= (by,--,by), possibly complex, one has

1 1t ¢ 13t A-1
¥, bid; :_/ ~361 A b1 g _ 3UATTD 55
(e ) 7 Rne e p=e (55)



B Stokes theorem in Riemannian geometry

On a n-dimensional compact manifold M (without boundary) Stokes theorem ensures that

f da=0
M

for any n — 1 form «. In particular this implies that for any vector field X

A4£Xwg=0

where Lx is the Lie derivative along X and w, is the Riemnannian volume form. This follows form
the Cartan formula Lx = dux + txd where ¢x is the interior product, and the fact that dwy = 0. In
fact £Lxwy is nothing but divy(X)wy, so we have

div (X =0
'[M ivg(X)wy

In local coordinates this reads

f\/_ (Viglx?) av =0

Since T'*,,, = map\/|g|, we can rewrite this as
9

M

In the presence of a boundary OM, Stokes theorem becomes

fdozzf «
M onmr

Note that the boundary OM of an oriented Riemannian manifold (M, g) is itself naturally an oriented
Riemannian manifold, as the boundary inherits the metric and orientation of M. The natural inte-
gration form on dM is simply ¢ywgy, where N is the unit outward normal field along M. Within this
framework one can rewrite Stokes theorem as

_[Mdivg(X)wg:LMLXwg:faMg(N,X)Lng

Indeed the two forms txwy and g(N, X )tyw, are equal once restricted to dM. To see this, notice the
decomposition X = g(X,N)N +Y, where g(Y,N) =0, yielding txwy = g(N, X)itnwg + tywg. Finally
tywy vanishes once restricted to dM. Often in physics textbook, the above equality is written in
coordinates :

[ v Xravi= [N, XPdVo
M oM
In two dimensions we will prefer the following alternative version

A/Idivg(X)wg:faMLXwg

. . oy _ 1 2
or in coordinates, writing wy = \/|gldz" A dz

XP\/Jgld? =f x7\/[gldz*
[ voxVidda= [ 6 xiglde
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