
Introduction to CFT TD6 26/02/2024

Massless scalar field in Hamiltonian formalism
The point of this tutorial is to illustrate the operator formalism of CFT, in

particular the notions of radial ordering, Hilbert space, (Euclidean) time evolution.
Recall the Euclidean action of the massless real valued scalar field φ

S[φ] =
β

4π ∫M
g(dφ, dφ)dVg (1)

1 Canonical quantization on the cylinder
We consider the scalar field φ on the (flat) cylinder R×S1. For clarity we go back to
real-time, i.e. Minkowski space, with the compact direction being space, while time
runs in the non-compact direction. Physically we are working on a one-dimensional
quantum system, with space coordinate x on a circle. We denote by L the perimeter,
and we identify x and x +L. The corresponding metric is

η = dt2 − dx2 (2)

In these coordinates the action reads

S[φ] = ∫
R

Ldt, L =
β

4π ∫
L

0
{(∂tφ)

2
− (∂xφ)

2
}dx (3)

Note that we could have included β in the Lagrangian if we prefer to think of β as
1/h̵. The scalar field is real and periodic, thus

φ(x, t) =∑
n

e
2πin
L

xφn(t), φ−n(t) = φn(t) (4)

and the Fourier modes decouple. Accordingly the Lagrangian splits into

L =
βL

4π ∑n∈Z
{∣φ̇n∣

2
− (

2πn
L

)
2
∣φn∣

2
} =

βL

4π
φ̇2

0 +
βL

2π ∑n>0
{∣φ̇n∣

2
− (

2πn
L

)
2
∣φn∣

2
} (5)

The zero mode term L0 =
βL
4π φ̇

2
0 can be interpreted as the Lagrangian of a one-

dimensional (non-relativistic) particle of mass m = βL/2π on the line with position
φ0 ∈ R. The conjugate momentum is

π0 =
βL

2π
φ̇0 (6)

and within canonical quantization we have [φ0, π0] = i. Thus in the Heisenberg
picture

φ0(t) = φ0 +
2πt
βL

π0, [φ0, π0] = i (7)
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Likewise the nth term

Ln =
βL

2π
{∣φ̇n∣

2
− (

2πn
L

)
2
∣φn∣

2
} (8)

describes a two-dimensional harmonic oscillator (see Appendix) with mass m = βL/π
and frequency ωn = 2πn

L , with φn begin the position of the particle in the complex
plane. The conjugate momenta are

πn =
βL

2π
˙̄φn, π̄n =

βL

2π
φ̇n (9)

and canonical quantization means

[φn, πn] = i, [φ̄n, π̄n] = i (10)

Note that φ†
n = φn = φ−n, and likewise π†

n = πn = π−n. Thus we introduce for n ≠ 0

an =
1

√
2
(

1
√
β
πn − in

√
βφ̄n) , ān =

1
√

2
(

1
√
β
π̄n − in

√
βφn) , n ∈ Z∗ (11)

1. Check that

[an, am] = nδn+m, [ān, ām] = nδn+m, [an, ām] = 0 (12)

This is (two copies of) the U(1) Kac-Moody algebra. Note that a†
n = a−n : an

is an annihilation operator for n > 0, and a creation operator for n < 0. In
terms of these operators the Hamiltonian is

H =
2π
L

(a2
0 +∑

n>0
(a−nan + ā−nān + n)) (13)

where we introduced a0 = π0/
√

2β

2. What is the energy spectrum ? Check that the energy gap is in 1/L.
Correction. The state ∣{ni},{n̄i}⟩∝∏p(a−p)

np(ā−p)n̄p ∣0⟩ has energy

E{ni},{n̄i} =
2π
L
∑
p>0
p(np + n̄p) +E0

3. What can you say about the vacuum energy ?
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Correction. Formally the GS is divergent

E0 =∑
n>0

ωn =
2π
L
∑
n>0

n

For now let’s just observe that a naive zeta-regularization yields

E0 =
2π
L
ζ(−1) = − π

6L

This naive calculation of the Casimir energy recovers a central charge c = 1,
in agreement with the Weyl anomaly obtained in the tutorial about the scalar
field in curved space.
Details :

ζs = ∑
n>0

1
ns

=
1

Γ(s) ∫
∞

0
∑

n>0
e
−nt

t
s−1

dt =
1

Γ(s) ∫
∞

0

1
et − 1

t
s−1

dt

Now we can split

1
Γ(s) ∫

∞

0

1
et − 1

t
s−1

dt =
1

Γ(s) ∫
a

0

1
et − 1

t
s−1

dt +
1

Γ(s) ∫
∞

a

1
et − 1

t
s−1

dt

for some a > 0. Which a we choose is irrelevant, and we could choose a = 1. The curious reader is invited to check that
choosing a different a leads to the same answer for ζ(−1). The second integral ∫ ∞1 (⋯)dt is holomorphic for s ∈ C, in particular
it is regular as s→ −1. Since 1

Γ(s) ∼ −(s+1), the second term vanishes at s = −1. The first term can be computed by expanding
1

et−1
= 1

t
− 1

2 +
t
12 + g(t), with g(t) = O(t3) as t→ 0. Thus

∫
1

0

1
et − 1

t
s−1

dt =
1

s − 1
−

1
2s
+

1
12(s + 1)

+F (s)

with F (s) is holomorphic for Re(s) > −2, and in particular regular at s = −1. Thus

ζ(−1) = lim
s→−1

1
Γ(s) ∫

1

0

1
et − 1

t
s−1

dt = −
1
12

4. Show that in the Heisenberg picture
an(t) = e

−i 2πn
L
tan, ān(t) = e

−i 2πn
L
tān (14)

5. Deduce that in the Hamiltonian formalism we have

φ(x, t) = φ0 +
2πt
βL

π0 +
i

√
2β ∑n≠0

1
n
(e

2πin
L
(x−t)ān + e

− 2πin
L
(x+t)an) (15)

Observe that the operator φ(x, t) obeys the classical equation of motion (∂2
t − ∂

2
x)φ(x, t) =

0. What would be the analogue in the path-integral formalism ?
Correction. Simply note that

φn(t) =
i

n
√

2β
(ān(t) − a−n(t)) =

i

n
√

2β
(e−i

2πn
L
tān − e

i 2πn
L
ta−n)

and plug in the Fourier expansion of φ(x, t). This is the analogue of
(∂2

t − ∂
2
x)φ(x, t) ≃ 0 in the path-integral formalism.

6. We now go back to Euclidean time by replacing t → −it t = −iτ ; w = τ + ix .
This means

φ(x, y) = φ0 − i
π(w + w̄)

βL
π0 +

i
√

2β ∑n≠0
1
n
(e−

2πn
L
wan + e

− 2πn
L
w̄ān) (16)
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in terms of w = t + ix.

2 Radial quantization on the plane

Let (r, θ) denote polar coordinates on the Euclidean plane (with the origin
removed).

7. What is the metric in these coordinates ? We now introduce t = log r. Check
that (t, θ) are isothermal coordinates, and deduce that

φ(z, z̄) = φ0 −
i

2β
log(zz̄)π0 +

i
√

2β ∑n≠0
1
n
(z−nan + z̄

−nān) (17)

Correction. In polar coordinates we have

grr = 1, gθθ = r
2, grθ = 0

i.e.

g = dr ⊗ dr + r2dθ ⊗ dθ

In terms of t = log r this means

g = r2 (dt⊗ dt + dθ ⊗ dθ)

and the metric is indeed of the form Ω(x)δµν . Since the action is Weyl invari-
ant, we have

S[φ] = β ∫
R

Ldt, L =
1

4π ∫
2π

0
{(∂tφ)

2
+ (∂θφ)

2
}dθ

This is exactly the same as the action on the cylinder (of perimeter L = 2π).
Thus canonical quantization yields the same answer :

φ(t, θ) = φ0 − itπ0 +
i

√
2β ∑n≠0

1
n
(ein(θ+it)ān + e

−in(θ−it)an) (18)

Since z = et+iθ, we get the answer.

8. Recall that the two-components of the current associated to translations of
the field φ(x, t)→ φ(x, t) + a are given by

J = i∂zφ, J̄ = −i∂z̄φ (19)

They are primary fields of conformal dimension (1,0) and (0,1), respectively.
Check that

J(z) =
1

√
2β ∑n∈Z

z−n−1an (20)

where a0 = ā0 = π0/
√

2β enjoys [φ0, a0] =
1√
2β .
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9. Recall that on the plane the scalar field Green’s function is given by ⟨φ(z, z̄)φ(w, w̄)⟩ =

− 1
2β log ∣z −w∣2. Argue (using Wick theorem, see Appendix) that the OPE of

J with itself reads

J(z)J(w) =
1

2β
1

(z −w)2 + reg (21)

Correction. Wick theorem tells us

J(z)J(w) = J(z)J(w)+ ∶ J(z)J(w) ∶ (22)

Then J(z)J(w) = ⟨J(z)J(w)⟩ = 1
2β∂z∂w log ∣z −w∣2, so

J(z)J(w) =
1

2β
1

(z −w)2+ ∶ J(z)J(w) ∶ (23)

Finally ∶ J(z)J(w) ∶=∶ J2(w) ∶ +O(z −w) is regular as z → w.

10. Recover the commutation relation [an, am] = nδn+m,0 using the above OPE and
writing the commutator as a contour integral.
Correction.

an =

√
2β

2πi ∮
znJ(z)dz

thus

[an, am] =
2β
2πi ∮

wm {
1

2πi ∮Cw
znJ(z)J(w)dz}dw

=
1

2πi ∮
wm {

1
2πi ∮Cw

zn
1

(z −w)2dz}dw

=
1

2πi ∮
wm {nwn−1}dw

= nδn+m,0

3 Stress-energy tensor on the plane

At the classical level we have already seen that

Tµν = −β (∂µφ∂νφ −
1
2
gµν∂

ρφ∂ρφ) (24)

which in complex coordinates reads

T = −β (∂zφ)
2
, T̄ = −β (∂z̄φ)

2
. (25)

At the quantum level such products are ill-defined, and in flat space a common
cure is normal ordering. Thus on the flat plane we declare

T = −β ∶ (∂zφ)
2
∶, T̄ = −β ∶ (∂z̄φ)

2
∶ . (26)
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The attentive reader will object that this construction of the stress-energy
tensor is rather dishonest. Indeed the stress-energy tensor as defined in the
lecture is obtained via functional derivation of the partition function with
respect to the metric. In a previous tutorial the partition function was defined
for an arbitrary background metric via zeta regularization, so in principle this
functional derivation can be computed. Normal ordering is a different type
of regularization, to which we already resorted to define vertex operators.
However in the presence of curvature normal ordering yields a stress-energy
tensor which is not covariantly conserved. This deficiency can be corrected by
adding a term proportional to Rgµν (which is nothing but the Weyl anomaly
!). We will simply admit that on the plane normal order gives the correct
stress-energy tensor.

11. Check the following OPE using Wick theorem

T (z)T (w) =
1
2

1
(z −w)4 +

2T (w)

(z −w)2 +
∂T (w)

z −w
+ reg (27)

Correction. Wick theorem tells us

β−2T (z)T (w) = J(z)J(z)J(w)J(w) + J(z)J(z)J(w)J(w)

+ ∶ J(z)J(z)J(w)J(w) ∶ + ∶ J(z)J(z)J(w)J(w) ∶

+ ∶ J(z)J(z)J(w)J(w) ∶ + ∶ J(z)J(z)J(w)J(w) ∶

+ ∶ J2(z)J2(w) ∶

The first two terms yield

2(J(z)J(w))
2
=

1
2β2

1
(z −w)4

The next four terms are

4J(z)J(w) ∶ J(z)J(w) ∶ =
2
β

1
(z −w)2 ∶ J(z)J(w) ∶

=
2
β

1
(z −w)2 (∶ J2(w) ∶ +(z −w) ∶ ∂J(w)J(w) ∶)

=
1
β2

2T (w)

(z −w)2 +
1
β

∂w ∶ J2(w) ∶

(z −w)2

=
1
β2

2T (w)

(z −w)2 +
1
β

∂T (w)

(z −w)2

The last term is regular as z → w.

12. Compute Ln in terms of an, namely show that

Ln =
1
2∑p

∶ apan−p ∶ (28)
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In particular

L0 =
1
2
a2

0 +∑
p>0
a−pap (29)

13. As a sanity check, recover the Virasoro algebra with c = 1.

14. Compute the stress-energy tensor on the cylinder using the usual conformal
mapping. Recall that the Hamiltonian is given in term of the stress-energy
tensor as

H =
1

2π ∫
L

0
(T (0, x) + T (0, x))dx

Compare with the Hamiltonian obtained in the first section using canonical
quantization (in particular the ground-state energy). Notice how on the cylin-
der normal ordering does not yield the correct SET (the term responsible for
the Casimir effect, i.e. the one coming from the Schwarzian derivative when
mapping the plane to the cylinder, is missing).
Correction. We could directly use the transformation law of T under the
conformal map z = e

2π
L
w. But it is perhaps more enlightening to decompose

this transformation into two steps : a Weyl rescaling (involving the Weyl
anomaly), followed by a change of coordinate. This illustrates in which sense
a conformal map differs from a mere change of coordinate.

In isothermal coordinates (t, θ) on the plane the metric is

g = e2t (dt⊗ dt + dθ ⊗ dθ)

The cylinder (with L = 2π) on the other hand corresponds to

g̃ = (dt⊗ dt + dθ ⊗ dθ)

Thus the two metrics differ by a Weyl transformation (g̃ = e−2tg). Let w = t+iθ.
Then

T̃ww = Tww +
1
6
((∂σ)2 − ∂2σ), σ = −t, ∂ =

1
2
(∂t − i∂θ)

thus

T cyl
ww = T plane

ww −
1
24

Then we want to express this in terms of T (z) = T plane
zz = ∑n z

−n−2Ln, where
z = x + iy. This is just a change of coordinate, and T is a tensor, thus

T plane
ww = (

∂z

∂w
)

2
T (z) = z2T (z) =∑

n

z−nLn

Finally a global scale transformation w → 2π
L w, under which Tww → (2π

L
)

2
Tww,

reinstates a perimeter length of L.
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Correction. Putting all this together yields

T cyl(t, x) = (
2π
L

)
2
∑
n

(e−
2πn
L
te−

2iπn
L

xLn − δn,0
1
24

)

In particular the Hamiltonian on the cylinder is

H =
2π
L

(L0 + L̄0 −
1
12

)

We know that

L0 =
1
2
a2

0 +∑
p>0
a−pap

and we recover Eq. 13, albeit with the GS energy ambiguity resolved (note
that the naive zeta regularization yields the correct answer).
Finally notice that if we had simply defined the SET on the cylinder via normal
ordering, then we would have found

T cyl(t, x) =∶ J2(t, x) ∶

with

J(t, x) =
2π
L

1
√

2β∑n
e−

2πn
L
wan

and we would find T cyl(t, x) = (2π
L
)

2
∑n (e

− 2πn
L
te−

2iπn
L

xLn) and

H =
2π
L

(L0 + L̄0)

thus missing the central charge. Long story short, normal order simply sets
the vacuum energy to zero, which is incorrect for a system of finite size L.

4 Vertex operators

Vertex operators are defined as

Vq(z, z̄) =∶ e
iqφ(z,z̄) ∶=∑

n

(iq)n

n!
∶ φ(z, z̄)n ∶

15. Compare with the definition used in the tutorial about the scalar field in curved
space.
Correction. The regularization used in curved space was to remove a certain
divergent term from the self-contractions. But when applied to Euclidean
plane this prescription amounts to set self-contractions to zero, thus forbidding
them. Therefore on the plane these two prescriptions are equivalent.
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16. Compute the OPE T (z)Vq(w), and recover the fact that Vq is a primary field
with conformal dimension hq =

q2

4β .

Correction. Recall that ⟨φ(z, z̄)φ(w, w̄)⟩ = − 1
2β log ∣z −w∣2 and

∶ A2 ∶ ∶ Bm ∶ =∶ A2Bm ∶ +2mAB ∶ ABm−1 ∶ +m(m − 1) (AB)
2
∶ Bm−2 ∶

Thus

T (z)Vq(w, w̄) = −β∑
m

(iq)m

m!
∶ ∂φ(z)2 ∶ ∶ φ(w, w̄)m ∶

= −β (∂φ(z)φ(w, w̄))
2
∑
m

(iq)m

(m − 2)!
∶ φ(w, w̄)m−2 ∶

− 2β∂φ(z)φ(w, w̄)∑
m

(iq)m

(m − 1)!
∶ ∂φ(w)φ(w, w̄)m−1 ∶ +reg

=
q2

4β
1

(z −w)2Vq(w, w̄) +
1

z −w
∑
m

(iq)m

(m − 1)!
∶ ∂φ(w)φ(w, w̄)m−1 ∶ +reg

=
q2

4β
1

(z −w)2Vq(w, w̄) +
1

z −w
∂Vq(w, w̄) + reg

17. Compute the OPE J(z)Vq(w), and show that Vq is annihilated by all positive
modes an, n > 0. Vq is said to be primary w.r.t. the Kac-Moody algebra
generated by the an’s. Argue that any Kac-Moody primary is automatically
a Virasoro primary. Are there fields that are Virasoro primary but not Kac-
Moody primary ?
Correction.

A ∶ Bm ∶ =∶ ABm ∶ +mAB ∶ Bm−1 ∶

Thus

J(z)Vq(w, w̄) = i∂φ(z)φ(w, w̄)∑
m

(iq)m

(m − 1)!
∶ φ(w, w̄)m−1 ∶ +reg

=
q

2β
1

z −w
Vq(w, w̄) + reg

To be compared with

J(z)Vq(w, w̄) =
1

√
2β∑n

(z −w)n−1 (a−nVq) (w, w̄)

So we see that (anVq) = 0 for n > 0 while (a0Vq) =
q√
2β . Note that we recover

this way that Vq is a Virasoro primary with conformal dimension hq =
q2

4β ,
simply using Eqs 28 and 29.

18. Let ∣q⟩ denote the state corresponding to the operator Vq. How is ∣q⟩ charac-
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terized ?
Correction. an∣q⟩ = 0 for n > 0, and a0∣q⟩ =

q√
2β ∣q⟩.

19. Using Wick theorem, argue that for A and B linear combinations of creation
and annihilation operators

∶ eA ∶∶ eB ∶= eAB ∶ eA+B ∶ (30)

From this conclude that

⟨∶ eiq1φ(x1) ∶ ⋯ ∶ eiqpφ(xp) ∶⟩ = δ∑j qj ,0∏
i<j

∣zi − zj ∣
qiqj
β . (31)

Correction.

∶ An ∶ ∶ Bm ∶ =∶ AnBm ∶ +nmAB ∶ An−1Bm−1 ∶

+ ⋯ + p!(n
p
)(
m

p
)(AB)

p

∶ An−pBm−p ∶ +⋯

Thus

∶ eA ∶∶ eB ∶ = ∑
n,m

1
n!

1
m!

∶ An ∶ ∶ Bm ∶

= ∑
n,m
∑

p≤n,m

1
n!

1
m!
p!(n

p
)(
m

p
)(AB)

p

∶ An−pBm−p ∶

=∑
p
∑

n,m≥p

1
p!(n − p)!(m − p)!

(AB)
p

∶ An−pBm−p ∶

=∑
p
∑

n,m≥0

1
p!n!m!

(AB)
p

∶ AnBm ∶

= eAB ∶ eAeB ∶= eAB ∶ eA+B ∶

A Two-dimensional harmonic oscillator in com-
plex coordinates

L =
1
2
m (ẋ2 + ẏ2) −

1
2
mω2 (x2 + y2) (32)

Instead of working with x and y, we can use z = x + iy and z̄ as variables.

L =
1
2
mż ˙̄z − 1

2
mω2zz̄ (33)

The canonical momenta are

p =
∂L
∂ż

=
m

2
ż =

1
2
(p1 − ip2) (34)

p̄ =
m

2
˙̄z (35)
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and the Hamiltonian is

H = pż + p̄ ˙̄z −L =
2
m
pp̄ +

mω2

2
zz̄ (36)

Canonical quantization is obtained through [z, p] = ih̵ and [z̄, p̄] = ih̵. In position
representation

p = −ih̵
∂

∂z
, p̄ = −ih̵

∂

∂z̄
(37)

Note that z̄ = z† and p̄ = p†. The problem is essentially solved upon introducing
creation and annihilation operators

a =

√
mω

h̵
(
z

2
+

i

mω
p̄) , a† =

√
mω

h̵
(
z̄

2
−

i

mω
p) (38)

ā =

√
mω

h̵
(
z̄

2
+

i

mω
p) , ā† =

√
mω

h̵
(
z

2
−

i

mω
p̄) (39)

These are subject to the commutation relation [a, a†] = 1 and [ā, ā†] = 1 (with mixed
commutators vanishing) and the Hamiltonian is

H = h̵ω (a†a + ā†ā + 1) (40)

Moreover in Heisenberg picture X(t) = ei
t
h̵
HXe−i

t
h̵
H twe have

a(t) = e−iωta, a†(t) = eiωta† (41)
ā(t) = e−iωtā, ā†(t) = eiωtā† (42)

B Wick theorem (for boson)
Let Ai be arbitrary linear combinations of (bosonic) creation and annihilation oper-
ators (in particular all commutators [Ai,Aj] are numbers). Given a reference state
∣0⟩, we can decompose Ai as Ai = A+

i +A
−
i , such that A−

i ∣0⟩ = 0 and ⟨0∣A+
i = 0. Nor-

mal ordering of a product A1⋯An is then defined as first expanding the product
∏i(A

+
i +A

−
i ), and then in each term moving all creation operators A+

i to the left (in
whichever order since they all commute). Then Wick theorem asserts that

A1⋯An =∶ A1⋯An ∶ +∑
(ij)

∶ A1⋯Ai⋯Aj⋯An ∶ (43)

+ ∑
(ij)(rs)

∶ A1⋯Ai⋯Ar⋯Aj⋯As⋯An ∶ +⋯ (44)

where the first sum runs on single pair contractions, the second sum runs on double
contractions etc. A contraction AiAj is simply

AiAj = AiAj− ∶ AiAj ∶= ⟨0∣AiAj ∣0⟩ (45)
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We will also use the following slight generalization:

∶ A1⋯Ap ∶ Ap+1⋯An =∶ A1⋯An ∶ +∑
(ij)

∶ A1⋯Ai⋯Aj⋯An ∶ (46)

+ ∑
(ij)(rs)

∶ A1⋯Ai⋯Ar⋯Aj⋯As⋯An ∶ +⋯ (47)

in which in the left hand side pair contractions between the first p operators are not
allowed.
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