One-dimensional non-interacting lattice fermions

1 Tight-binding Hamiltonian, low energy spectrum

1. We consider a system of non-interacting fermions in one space dimension, on a lattice of N sites. The lattice Hamiltonian, with parameters $\lambda>0$ and μ, is given by

$$
\begin{equation*}
H=\sum_{j=1}^{N}\left[-\lambda\left(c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}\right)-\mu c_{j}^{\dagger} c_{j}\right] \tag{1}
\end{equation*}
$$

where c_{j}^{\dagger} is the fermion creation operator on site j. We impose antiperiodic boundary conditions:

$$
\begin{equation*}
c_{N+1}:=-c_{1}, \quad c_{N+1}^{\dagger}:=-c_{1}^{\dagger} . \tag{2}
\end{equation*}
$$

- Give the physical interpretation of the parameters λ and μ.

2. Such a quadratic model is straightforward to solve. In terms of the Fourier modes

$$
\begin{equation*}
\widehat{c}_{k}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{i k j} c_{j}^{\dagger} \tag{3}
\end{equation*}
$$

the Hamiltonian is diagonal

$$
\begin{equation*}
H=\sum_{k} \varepsilon_{k} \widehat{c}_{k}^{\dagger} \widehat{c}_{k} \tag{4}
\end{equation*}
$$

- For a single-particle state, what are the possible values of the momentum k ?
- Compute the associated dispersion relation ε_{k}.

3. The ground state of H is given by the Fermi sea, i.e. the many-particle state where all modes with negative energy are occupied.

- For what values of the parameters λ and μ is the model gapped ? Gapless ?

4. We will focus on the gapless case, and we will argue that the low energy/long distance behaviour is captured by a conformal field theory.

- Argue that the low energy/long distance physics is dominated by the momenta k close to the Fermi surface, and therefore one can linearise the dispersion relation :

$$
\begin{equation*}
\varepsilon_{ \pm k_{F}+\delta k} \sim \pm v_{F} \delta k \tag{5}
\end{equation*}
$$

for small enough δk. Compute the Fermi velocity v_{F}.

For the rest of the problem we set $\mu=0$ (thus $k_{F}=\pi / 2$), and we assume that the system size is a multiple of four : $N=4 n$.
5. What is the ground state of the system ? Using the Euler-MacLaurin formula, show that the finite-size behaviour of the ground-state energy corresponds to the CFT expectation:

$$
\begin{equation*}
E_{0}(N)=N e_{0}-\frac{\pi v_{F} c}{6 N}+O\left(N^{-2}\right) \tag{6}
\end{equation*}
$$

where e_{0} is the ground-state energy density per lattice site and c is the central charge. Give e_{0} in the form of a single integral.

- What is the value of the central charge c ? Can you explain the appearance of the Fermi velocity in the above formula?

6. Consider the excited state $\left|\phi_{p}\right\rangle$ obtained from the ground state by shifting all momenta $k \rightarrow k+2 \pi p / N$, where $p \ll N$ is a finite integer. Compute the total momentum of this state. Show that its energy is of the form:

$$
\begin{equation*}
E_{p}(N)=E_{0}(N)+\frac{2 \pi v_{F} p^{2}}{N}+O\left(1 / N^{2}\right) \tag{7}
\end{equation*}
$$

From these results, determine the conformal dimensions $\left(h_{2 \pi p}, \bar{h}_{2 \pi p}\right)$ associated to the state $\left|\phi_{p}\right\rangle$ in the scaling limit. Is this state degenerate under the Virasoro algebra? Can you think of a way to change boundary conditions to allow real values of the parameter $p=\alpha /(2 \pi)$?

2 Effective low-energy Hamiltonian

We are concerned with the thermodynamic limit of this simple model of one-dimensional fermions. Before taking the thermodynamic limit, we introduce the lattice spacing a, so that sites are located at positions $x=a j$ with $j=1,2, \ldots, N$, and the total chain length is $L=N a$. The Fermi velocity now acquires the correct dimension $v_{F} \rightarrow a v_{F}$. The thermodynamic limit of a correlation function of local operators $\left\langle O_{1}\left(j_{1}\right) \ldots O_{m}\left(j_{m}\right)\right\rangle$ is obtained by taking $a \rightarrow 0$, $N \rightarrow \infty$, keeping $x_{i}=a j_{i}$ and L constant. We label the momenta close to the Fermi surface as $k= \pm \pi / 2+a q$.

In order to capture the low energy/long distance physics, we drop the fast moving degrees of freedom and only keep the low-energy terms in the Fourier expansion of the fermion operator

$$
c_{j}=\frac{1}{\sqrt{N}} \sum_{k} \widehat{c}_{k} e^{i k j} \rightarrow \sqrt{\frac{a}{L}}\left(e^{i \frac{\pi}{2} j} \sum_{q} \widehat{c}_{\frac{\pi}{2}+a q} e^{i q x}+e^{-i \frac{\pi}{2} j} \sum_{q} \widehat{c}_{-\frac{\pi}{2}+a q} e^{i q x}\right),
$$

where $x=j a$ and the sum over q should be understood as a sum over all values of q in a "small enough window" (for $\delta k=a q$) around the Fermi surface $k= \pm \pi / 2$. But as we send $a \rightarrow 0$ this "small window" contains more and more values of q, and in the thermodynamic limit this sum becomes an infinite one.

Through this procedure, we get a left moving fermion field around $k=-\frac{\pi}{2}$, and a right moving one around $k=\frac{\pi}{2}$. The reason they are called left (resp. right) moving will become clear in
question 9.

$$
\Psi_{R}(x)=\sqrt{\frac{1}{L}} \sum_{q} \underbrace{\widehat{c}_{\frac{\pi}{2}+a q}}_{\widehat{c}_{R}(q)} e^{i q x}, \quad \Psi_{L}(x)=\sqrt{\frac{1}{L}} \sum_{q} \underbrace{\widehat{c}_{-\frac{\pi}{2}+a q}}_{\widehat{c}_{L}(q)} e^{i q x}
$$

Thus

$$
c_{j}=\sqrt{a}\left[e^{-i \pi j / 2} \Psi_{L}(x)+e^{i \pi j / 2} \Psi_{R}(x)\right], \quad x=j a
$$

7. Check that $\Psi_{\eta}(x+L)=-\Psi_{\eta}(x)$, where η stands for L or R. In the thermodynamic limit $N \rightarrow \infty$, the sum over q becomes an infinite sum. Check that the two fermions Ψ_{L} and Ψ_{R} obey

$$
\left\{\Psi_{\eta}^{\dagger}(x), \Psi_{\eta^{\prime}}\left(x^{\prime}\right)\right\}=\delta_{\eta, \eta^{\prime}} \delta\left(x-x^{\prime}\right)
$$

that is, they become fully fledged fermionic operators in the continuum. Thus the lattice fermion operator c_{j} yields two fermion fields in the continuum! This phenomenon, which goes under the name of fermion doubling, is due to the fact that there are two momentum regions in the low-energy limit.
8. Show that in the continuum limit, the non-interacting fermionic Hamiltonian becomes

$$
\begin{align*}
H & =i v_{F} \int_{0}^{L} d x\left(\Psi_{L}^{\dagger}(x) \partial_{x} \Psi_{L}(x)-\Psi_{R}^{\dagger}(x) \partial_{x} \Psi_{R}(x)\right) \tag{8}\\
& =v_{F} \sum_{q} q\left(c_{R}^{\dagger}(q) c_{R}(q)-c_{L}^{\dagger}(q) c_{L}(q)\right) \tag{9}
\end{align*}
$$

9. In the Heisenberg picture (with Planck's constant $\hbar=1$), show that

$$
\begin{equation*}
\Psi_{R}(x, t)=\Psi_{R}\left(x-v_{F} t\right), \quad \Psi_{L}(x, t)=\Psi_{L}\left(x+v_{F} t\right), \tag{10}
\end{equation*}
$$

where t denotes time. In imaginary time $\tau=i t$ this means that the operators $\Psi=\Psi_{R}$ and $\bar{\Psi}=\Psi_{L}$ are respectively holomorphic and anti-holomorphic in the complex variable $z=x+i v_{F} \tau$.
10. This effective Hamiltonian has two $U(1)$ symmetries : both left and right fermion numbers are conserved. Is it surprising considering the initial lattice model ?

3 The complex fermion

We admit that the associated Euclidean action is given by the "complex fermion":

$$
\begin{equation*}
S=\frac{1}{4 \pi} \int d^{2} r\left(\Psi^{\dagger} \partial_{\bar{z}} \Psi+\Psi \partial_{\bar{z}} \Psi^{\dagger}+\bar{\Psi}^{\dagger} \partial_{z} \bar{\Psi}+\bar{\Psi} \partial_{z} \bar{\Psi}^{\dagger}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \Psi=\psi_{1}+i \psi_{2}, \quad \bar{\Psi}=\bar{\psi}_{1}+i \bar{\psi}_{2} \tag{12}\\
& \Psi^{\dagger}=\psi_{1}-i \psi_{2}, \quad \bar{\Psi}^{\dagger}=\bar{\psi}_{1}-i \bar{\psi}_{2} \tag{13}
\end{align*}
$$

with independent Grassmann variables $\psi_{1}, \psi_{2}, \bar{\psi}_{1}, \bar{\psi}_{2}$.
11. At the classical level, what should be the scale dimension of the fields Ψ and $\bar{\Psi}$ so that one gets a scale invariant action ?
Inside a correlation function, the ψ_{j} 's are holomorphic, and the $\bar{\psi}_{j}$'s are antiholomorphic, and so we write them as $\psi_{j}(z)$ and $\bar{\psi}_{j}(\bar{z})$, and similarly for $\Psi, \Psi^{\dagger}, \bar{\Psi}, \bar{\Psi}^{\dagger}$. From the above quadratic action, one can show (by standard integration over Grassmann variables) that the two-point functions are

$$
\begin{equation*}
\left\langle\psi_{1}(z) \psi_{1}(w)\right\rangle=\left\langle\psi_{2}(z) \psi_{2}(w)\right\rangle=\frac{1}{z-w}, \quad\left\langle\psi_{1}(z) \psi_{2}(w)\right\rangle=0 \tag{14}
\end{equation*}
$$

and similarly for $\bar{\psi}_{1}, \bar{\psi}_{2}$. Compute $\langle\Psi(z) \Psi(w)\rangle,\left\langle\Psi^{\dagger}(z) \Psi^{\dagger}(w)\right\rangle$ and $\left\langle\Psi(z)^{\dagger} \Psi(w)\right\rangle$. What are the left and right conformal dimensions of Ψ and Ψ^{\dagger} ?
12. The corresponding stress-energy tensor is

$$
\begin{equation*}
T(z)=-\frac{1}{4}\left[: \Psi^{\dagger}(z) \partial_{z} \Psi(z):+: \Psi(z) \partial_{z} \Psi^{\dagger}(z):\right] \tag{15}
\end{equation*}
$$

Using Wick's theorem, compute explicitly (i) the OPEs $T(z) \cdot \Psi(w)$ and $T(z) \cdot \Psi^{\dagger}(w)$, and (ii) the OPE $T(z) \cdot T(w)$. Show that Ψ and Ψ^{\dagger} are primary, and that the results are consistent with the value of the central charge $c=1$.
13. Show that this action has a $U(1)$ symmetry. What is the physical meaning of this symmetry? Check that the associated current is

$$
\begin{equation*}
J(z)=: \Psi^{\dagger}(z) \Psi(z):, \quad \bar{J}(\bar{z})=: \bar{\Psi}^{\dagger}(\bar{z}) \bar{\Psi}(\bar{z}): \tag{16}
\end{equation*}
$$

What is its conformal dimension? Is it surprising ?

4 Charge fluctuation

14. We consider the periodic system defined in the first question, with system size $L=N a$, where a is the lattice step. We are interested in the "full-counting statistics", i.e. the quantum statistics of the number of fermions in a given interval. If $m \leq m^{\prime}$ are two points on midedges of the lattice ($m, m^{\prime} \in\{1 / 2,3 / 2, \ldots, N-1 / 2\}$), we introduce

$$
\begin{equation*}
n_{f}\left(m, m^{\prime}\right)=\sum_{j=m+1 / 2}^{m^{\prime}-1 / 2}\left(c_{j}^{\dagger} c_{j}-1 / 2\right) \tag{17}
\end{equation*}
$$

We consider the scaling regime, where both N and $\left|m^{\prime}-m\right|$ tend to infinity, $a \rightarrow 0$, with both physical lengths $L=N a$ and $\ell=\left(m^{\prime}-m\right) a$ staying fixed and finite. We admit that, for any $\alpha \in[-\pi, \pi]$, the quantity $\exp \left[i \alpha n_{f}\left(m, m^{\prime}\right)\right]$ is given by a product of scaling operators $V_{\alpha}(m) V_{-\alpha}\left(m^{\prime}\right)$, where $V_{ \pm \alpha}(m)$ scales to a primary operator $v_{ \pm \alpha}$, with conformal dimensions $h_{\alpha}=\bar{h}_{\alpha}=(\alpha / \pi)^{2} / 8$. Relate the probability distribution of $n_{f}\left(m, m^{\prime}\right)$ in the ground-state, to the CFT two-point correlation function $\left\langle v_{\alpha} v_{-\alpha}\right\rangle$ on an infinite cylinder. Compute this function explicitly, and deduce that this probability distribution tends to a Gaussian. What is the variance ?
15. Let $|\Phi\rangle$ be an excited state of the periodic system. We assume $|\Phi\rangle$ scales to a scalar primary state $\left|\phi_{h}\right\rangle$ in the CFT limit. Express the expectation value $\langle\Phi| V_{\alpha}(m) V_{-\alpha}\left(m^{\prime}\right)|\Phi\rangle$ as a CFT correlation function on an infinite cylinder, and relate it to the four-point correlation function on the complex plane:

$$
\begin{equation*}
\left\langle\phi_{h}(\infty) v_{\alpha}(1) v_{-\alpha}(z, \bar{z}) \phi_{h}(0)\right\rangle, \tag{18}
\end{equation*}
$$

and express the variable z in terms of the physical lengths ℓ and L. If ϕ_{h} is degenerate under the Virasoro algebra, express this correlation function in terms of conformal blocks.
16. Using a similar argument, compute explicitly the expectation value $\langle T| V_{\alpha}(m) V_{-\alpha}\left(m^{\prime}\right)|T\rangle$, where $|T\rangle$ is the excited state corresponding to $L_{-2}|0\rangle$ in the scaling limit.

