Correlation functions of primary operators

In these exercises, we shall find the simple form of one-, two- and three-point functions of primary operators in a conformally invariant QFT, in various geometries. We shall denote by $\left(e_{1}, \ldots, e_{d}\right)$ an orthonormal basis of \mathbb{R}^{d}.

1 Generic space dimension d

1. Let r be a point in \mathbb{R}^{d}. Find two conformal transformations of $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with different scaling factors at r, which both map r to e_{1}. Deduce that, for any primary operator ϕ, one has $\langle\phi(r)\rangle_{\mathbb{R}^{d}}=0$.
2. We consider the half-space $\mathbb{H}_{d}=\left\{r \in \mathbb{R}^{d}, \quad r . e_{1}>0\right\}$. Using a properly chosen conformal transformation of $\mathbb{H}_{d} \rightarrow \mathbb{H}_{d}$, show that, for any primary operator ϕ, the one-point function $\langle\phi(r)\rangle_{\mathbb{H}_{d}}$ is a function of the distance to the boundary, namely $r_{\perp}=r . e_{1}$. Determine this function, up to a multiplicative constant, in terms of r_{\perp} and x, the scaling dimension of ϕ.
3. Consider the inversion transformation $r \mapsto r^{\prime}=r /|r|^{2}$. Show that it is an involution. Using the associated transformation of the Euclidean metrics, show that the inversion is conformal, with a scaling factor $\lambda(r)=|r|^{2}$. If we have two points x, y and their images x^{\prime}, y^{\prime}, show that

$$
\left|x^{\prime}-y^{\prime}\right|=\frac{|x-y|}{|x||y|} .
$$

4. Let r_{1} and r_{2} be two points in \mathbb{R}^{d}. Using translations, rotations and scaling transformations, find a conformal map of $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which maps $\left(r_{1}, r_{2}\right)$ onto ($0, e_{1}$). Deduce that for any two primary operators ϕ_{1}, ϕ_{2}, the function $\left\langle\phi_{1}\left(r_{1}\right) \phi_{2}\left(r_{2}\right)\right\rangle_{\mathbb{R}^{d}}$ must be of the form $\left\langle\phi_{1}\left(r_{1}\right) \phi_{2}\left(r_{2}\right)\right\rangle_{\mathbb{R}^{d}}=$ const $\times\left|r_{1}-r_{2}\right|^{-x_{1}-x_{2}}$, where x_{j} is the scaling dimension of ϕ_{j}. Relate $\left\langle\phi_{1}\left(r_{1}\right) \phi_{2}\left(r_{2}\right)\right\rangle_{\mathbb{R}^{d}}$ to $\left\langle\phi_{1}\left(r_{1}^{\prime}\right) \phi_{2}\left(r_{2}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}}$, where $r_{j}^{\prime}=r_{j} /\left|r_{j}\right|^{2}$. By considering the behaviour of this function as $r_{1} \rightarrow \infty$, show that the multiplicative constant is zero, unless $x_{1}=x_{2}$.
5. Let $r_{1}, \ldots, r_{n-1}, r_{n}=R$ be n points in \mathbb{R}^{d}, all distinct from the origin. Let $\phi_{1}, \ldots, \phi_{n}$ be some primary operators. Using the inversion, show that the correlation function $\left\langle\phi_{1}\left(r_{1}\right) \ldots \phi_{n-1}\left(r_{n-1}\right) \phi_{n}(R)\right\rangle_{\mathbb{R}^{d}}$ is of the form:

$$
\left\langle\phi_{1}\left(r_{1}\right) \ldots \phi_{n-1}\left(r_{n-1}\right) \phi_{n}(R)\right\rangle_{\mathbb{R}^{d}} \underset{R \rightarrow \infty}{\sim}|R|^{-2 x_{n}} f\left(r_{1}, \ldots, r_{n-1}\right)
$$

Thus, we shall denote

$$
\left\langle\phi_{1}\left(r_{1}\right) \ldots \phi_{n-1}\left(r_{n-1}\right) \phi_{n}(\infty)\right\rangle_{\mathbb{R}^{d}}=\lim _{R \rightarrow \infty}\left[|R|^{2 x_{n}}\left\langle\phi_{1}\left(r_{1}\right) \ldots \phi_{n-1}\left(r_{n-1}\right) \phi_{n}(R)\right\rangle_{\mathbb{R}^{d}}\right] .
$$

Show how to adapt the above argument to the case when one of the r_{j} 's is at the origin.
6. We consider the three-point function of primary operators $\left\langle\phi_{1}\left(r_{1}\right) \phi_{2}\left(r_{2}\right) \phi_{3}\left(r_{3}\right)\right\rangle_{\mathbb{R}^{d}}$. We denote $r_{i j}=r_{i}-r_{j}$. Let ε be a small vector. Find a conformal map of $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which maps $\left(r_{1}, r_{2}, r_{3}\right)$ onto $\left(\widetilde{r}_{13} /\left|\widetilde{r}_{13}\right|^{2}, \widetilde{r}_{23} /\left|\widetilde{r}_{23}\right|^{2}, R\right)$, where $\widetilde{r}_{i j}=r_{i j}+\varepsilon$ and $R=$ $\varepsilon /|\varepsilon|^{2}$. Perform the corresponding transformation on the correlation function. Using only translations, dilatations and rotations, find a conformal map of $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which maps $\left(\widetilde{r}_{13} /\left|\widetilde{r}_{13}\right|^{2}, \widetilde{r}_{23} /\left|\widetilde{r}_{23}\right|^{2}, R\right)$ onto $\left(0, e_{1}, \widetilde{R}\right)$, where $\widetilde{R} \rightarrow \infty$ when $\varepsilon \rightarrow 0$. Perform the corresponding transformation on the correlation function, and show that

$$
\left\langle\phi_{1}\left(r_{1}\right) \phi_{2}\left(r_{2}\right) \phi_{3}\left(r_{3}\right)\right\rangle_{\mathbb{R}^{d}}=\frac{\left\langle\phi_{1}(0) \phi_{2}\left(e_{1}\right) \phi_{3}(\infty)\right\rangle_{\mathbb{R}^{d}}}{\left|r_{12}\right|^{x_{1}+x_{2}-x_{3}}\left|r_{13}\right|^{x_{1}+x_{3}-x_{2}}\left|r_{23}\right|^{x_{2}+x_{3}-x_{1}}} .
$$

2 The case of two dimensions

1. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four complex numbers. Find a Moebius transformation [i.e. a map of the form $z \mapsto w(z)=\frac{a z+b}{c z+d}$, where a, b, c, d are complex constants], such that the images of z_{1}, z_{3}, z_{4} are $0,1, \infty$, respectively. Compute $\eta=w\left(z_{2}\right)$, the image of the fourth point under the Moebius transformation. If $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ are primary operators, find a relation between

$$
\left\langle\phi_{1}\left(z_{1}, \bar{z}_{1}\right) \phi_{2}\left(z_{2}, \bar{z}_{2}\right) \phi_{3}\left(z_{3}, \bar{z}_{3}\right) \phi_{4}\left(z_{4}+\varepsilon, \bar{z}_{4}+\bar{\varepsilon}\right)\right\rangle_{\mathbb{C}}
$$

and

$$
\left\langle\phi_{1}(0) \phi_{2}(\eta, \bar{\eta}) \phi_{3}(1) \phi_{4}(R, \bar{R})\right\rangle_{\mathbb{C}}
$$

where ε is a small complex number, and $R=w\left(z_{4}+\varepsilon\right)$. Let $\varepsilon \rightarrow 0$ in the end of the calculation, to obtain an expression of $\left\langle\phi_{1}\left(z_{1}, \bar{z}_{1}\right) \phi_{2}\left(z_{2}, \bar{z}_{2}\right) \phi_{3}\left(z_{3}, \bar{z}_{3}\right) \phi_{4}\left(z_{4}, \bar{z}_{4}\right)\right\rangle_{\mathbb{C}}$ in terms of the positions z_{j}, \bar{z}_{j}, the conformal dimensions the ϕ_{j} 's, and the function $\left\langle\phi_{1}(0) \phi_{2}(\eta, \bar{\eta}) \phi_{3}(1) \phi_{4}(\infty)\right\rangle_{\mathbb{C}}$. To simplify the calculations, you can restrict to the case when $\phi_{1}=\phi_{2}=\phi_{3}=\phi_{4}=\phi$, with conformal dimensions h, \bar{h}.
2. Let \mathcal{M}_{L} be the infinite cylinder of circumference L, defined as $\mathcal{M}_{L}=\mathbb{C} / i L \mathbb{Z}$. This means that points in \mathcal{M}_{L} are identified modulo $i L$. Show that the map

$$
\begin{cases}\mathcal{M}_{L} & \rightarrow \mathbb{C} \\ z & \mapsto w(z)=\exp (2 \pi z / L)\end{cases}
$$

is conformal. Using the knowledge of the two-point function on the plane for a primary operator ϕ, find the expression of the two-point function on the cylinder, namely $\left\langle\phi\left(z_{1}, \bar{z}_{1}\right) \phi\left(z_{2}, \bar{z}_{2}\right)\right\rangle_{\mathcal{M}_{L}}$.
3. Using the same ideas as above, compute the one-point function of a primary operator on the infinite strip:

$$
\mathcal{S}_{L}:=\{z \in \mathbb{C}, 0<\operatorname{Im}(z)<L\} .
$$

4. Show that the Moebius transformation $z \mapsto i(1+z) /(1-z)$ maps the unit disc to the upper half-plane. Deduce the one-point function of a primary operator on the unit disc. Discuss the behaviour of this function close to the boundary of the disc.
