Fractal dimension of critical polygons

1 Preliminary example: the Koch snowflake

Let us start with a simple example of a deterministic fractal: the Koch snowflake, defined by the following sequence of polygons:

We consider the limit of this curve after an infinite number of iterations. The fractal dimension of a curve is defined as follows. For any $\epsilon>0$, let $N(\epsilon)$ be the minimum number of disks of radius ϵ needed to cover the curve. If there exists a constant $A>0$ and an exponent $d_{f}>0$ such that $N(\epsilon) \sim A \epsilon^{-d_{f}}$, then we say that the curve is a fractal of dimension d_{f}.

- Show that the Koch snowflake is a fractal, and compute its fractal dimension.

2 Ising domain walls

We consider the critical Ising model on a square lattice of mesh size a, in a box of size $R \times R$. For any even integer k, let $\psi_{k}(r)$ be the operator which generates k "legs" of domain walls in the vicinity of r. More precisely, ψ_{k} inserts k marked paths which are not allowed to connect with each other, except in the vicinity of another operator ψ_{ℓ}. For instance, the two-point function $\left\langle\psi_{2}(r) \psi_{2}\left(r^{\prime}\right)\right\rangle$ gives the probability that r and r^{\prime} sit on the same domain wall. We call x_{k} the scaling dimension of ψ_{k}.

Let r_{1} and r_{2} be two given boundary points, and fixed boundary conditions $\sigma=+1$ on the left boundary, and $\sigma=-1$ on the right boundary. These boundary conditions force the existence of an open domain wall γ joining the points r_{1} and r_{2}.

- Show that the length of γ scales as $N \propto(R / a)^{d_{f}}$, and express d_{f} in terms of the scaling dimensions of the ψ_{k} 's. The exponent d_{f} is the fractal dimension of critical Ising domain walls.

We admit that, for critical Ising domain walls, the scaling exponent of ψ_{k} is $\Delta_{k}=$ $k^{2} / 6-1 / 24$.

- Using this result, compute the fractal dimension of critical Ising domain walls.

3 The $\mathrm{O}(n)$ model and self-intersecting dense polygons

Consider the $\mathrm{O}(n)$ vector model on the square lattice. The variables are classical spins s_{j} living on the edges of the lattice, each spin $s=\left(s^{1}, \ldots, s^{n}\right)$ satisfies $s \cdot s=1$, and we use an integration measure $d \mu(s)$ such that $\int d \mu(s)\left(s^{\alpha}\right)^{k}=0$ for any integer $k \notin\{0,2\}$, and any index α. The energy of four spins $s_{1}, s_{2}, s_{3}, s_{4}$ around a vertex v is

$$
E_{v}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=-J_{1}\left(s_{1} \cdot s_{2}+s_{3} \cdot s_{4}\right)-J_{2}\left(s_{1} \cdot s_{4}+s_{2} \cdot s_{3}\right)-J_{3}\left(s_{1} \cdot s_{3}+s_{2} \cdot s_{4}\right) .
$$

Here J_{1}, J_{2}, J_{3} are positive coupling constants.
Consider a square lattice of size $M \times N$, with periodic boundary conditions. The partition function at invese temperature β reads

$$
Z=\int \prod_{j} d \mu\left(s_{j}\right) \exp \left[-\beta \sum_{v} E_{v}\left(\left\{s_{j}\right\}\right)\right] .
$$

- Write an exact high-temperature expansion of the partition function, and show that each term in the expansion is represented by a configuration of polygons, with the possible configurations around a vertex:

- Compute the local Boltzmann weights associated to the vertex configurations, and the weight associated to a closed polygon.
- Give the interpretation of the two-point function $\left\langle s_{i} \cdot s_{j}\right\rangle$ in terms of the polygon model.

In the following, we consider the dense version of the polygon model, with $a_{1}=\cdots=$ $a_{7}=0$, and we denote the nonzero weights as $a_{8}=x, a_{9}=y, a_{10}=z$. This model is known as the Brauer model. Moreover, we specialise to the case $\mathrm{O}(n=2)$.

- Show that the dense polygon model is equivalent to the six-vertex model, with vertex weights

a

a

b

b

c

c
and relate (x, y, z) to (a, b, c).
The six-vertex model is characterised by the anisotropy parameter

$$
\Delta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

and it is critical for $-1 \leq \Delta \leq 1$. Along this critical line, the scaling limit is governed by the free compact boson action

$$
A[\phi]=\frac{g}{4 \pi} \int d^{2} r \partial_{\mu} \phi \partial^{\mu} \phi, \quad \phi \equiv \phi+2 \pi,
$$

where $\pi g=\operatorname{Arccos}(\Delta)$.

- Determine the critical line of the dense polygon model, and compute the coupling constant g in terms of the Boltzmann weights x, y, z.
- For any integer $m \in \mathbb{Z}$, let $Z_{m}(\epsilon, R)$ be the partition function of the free compact boson on the ring $\epsilon \leq|r| \leq R$, with Neumann boundary conditions $n_{\mu} \partial^{\mu} \phi=0$ (here n_{μ} is the unit normal vector across the boundary), and with the condition that $\phi \rightarrow \phi+2 \pi m$ under a rotation of angle 2π. Compute the ratio $Z_{m}(\epsilon, R) / Z_{0}(\epsilon, R)$. Deduce the scaling exponent of the operator which inserts a line defect associated to the jump $\phi \rightarrow \phi+2 \pi m$. Finally, deduce the fractal dimension of a polygon.

