Entanglement entropies in critical 1+1d systems

1 Entanglement entropies

Consider a quantum system in a pure (normalized) state $|\psi\rangle$. Suppose that the Hilbert space decomposes as $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Then, in the state $|\psi\rangle$, the two subsystems A and B can be entangled. In other words, measuring an observable in A may affect the observables in B.

- The Schmidt decomposition theorem asserts that there exists orthonormal states $\left\{\left|u_{j}\right\rangle\right\}$ in $\mathcal{H}_{A},\left\{\left|v_{j}\right\rangle\right\}$ in \mathcal{H}_{B}, and (strictly) positive numbers $\left\{p_{j}\right\}$ such that

$$
\begin{equation*}
|\Psi\rangle=\sum_{j=1}^{r} \sqrt{p_{j}}\left|u_{j}\right\rangle \otimes\left|v_{j}\right\rangle \tag{1}
\end{equation*}
$$

- Prove the above result. Hint: start from a generic state of the form $|\psi\rangle=\sum_{i, j} \psi_{i j}\left|e_{i}\right\rangle \otimes$ $\left|f_{j}\right\rangle$, where $\left\{\left|e_{i}\right\rangle\right\}$ and $\left\{\left|f_{j}\right\rangle\right\}$ are orthonormal bases of \mathcal{H}_{A} and \mathcal{H}_{B} respectively. Then consider the singular value decomposition of the rectangular matrix $\left(\psi_{i j}\right)$.
- Show that the Schmidt rank r and Schmidt coefficients $\left\{p_{1}, \cdots, p_{r}\right\}$ are well defined (i.e. independent of any possible choice made when performing the Schmidt decomposition).
- The Schmidt coefficients are positive numbers subject to $\sum_{j} p_{j}=1$. One way to quantify the amount of entanglement between A and B in the state $|\Psi\rangle$ is to consider the von Neumann entropy

$$
\begin{equation*}
S=-\sum_{j=1}^{r} p_{j} \log p_{j} . \tag{2}
\end{equation*}
$$

and more generally the Rényi entropies

$$
\begin{equation*}
S_{n}=\frac{1}{1-n} \log \sum_{j=1}^{r} p_{j}^{n}, \quad \operatorname{Re}(n)>1 \tag{3}
\end{equation*}
$$

- Show that $\lim _{n \rightarrow 1} S_{n}=S$.
- Example 1. For a state of the form $|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle$, show that ρ_{A} has the form of a density matrix for a pure state. Compute the Rényi and von Neumann entropies for A.
- Example 2. Consider a system of two $\frac{1}{2}$-spins, in the state

$$
\begin{equation*}
\left.\left.|\psi\rangle=\cos \lambda|\uparrow \downarrow\rangle+e^{i \alpha} \sin \lambda| | \uparrow\right\rangle\right\rangle, \tag{4}
\end{equation*}
$$

with real λ and α. Compute the reduced density matrix for the first spin.
It will be useful in the following to rewrite these entropies in terms of the reduced density matrix ρ_{A}

$$
\begin{equation*}
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|) . \tag{5}
\end{equation*}
$$

where the partial trace of \mathcal{H}_{B} is defined via

$$
\begin{equation*}
\operatorname{Tr}_{B}\left(\left(\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle\right)\left(\left\langle e_{k}\right| \otimes\left\langle f_{\ell}\right|\right)\right)=\delta_{j \ell}\left|e_{i}\right\rangle\left\langle e_{k}\right| \tag{6}
\end{equation*}
$$

where $\left\{\left|e_{i}\right\rangle\right\}$ and $\left\{\left|f_{j}\right\rangle\right\}$ are bases of \mathcal{H}_{A} and \mathcal{H}_{B} respectively.

- Show that

$$
\begin{equation*}
S=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right), \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}=\frac{1}{1-n} \log \operatorname{Tr}\left(\rho_{A}^{n}\right), \quad \operatorname{Re}(n)>1 \tag{8}
\end{equation*}
$$

Compute the corresponding Rényi and von Neumann entropies.

2 Rényi entropies in CFT

In the following, we consider a $1+1 \mathrm{~d}$ quantum system at the critical point, described by a conformal field theory \mathcal{M}. The system has size L, with periodic boundary conditions. We denote by H_{L} the Hamiltonian of this periodic system, and we suppose it has a single ground state $\left|\psi_{0}\right\rangle$ (assumed to be normalized). We want to relate the density matrix $\rho=\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$ to some partition functions on the cylinder of circumference L. We introduce some boundary states \mid in \rangle and \langle out $|$, such that the overlaps $\left\langle\psi_{0}\right|$ in \rangle and $\left\langle\right.$ out $\left.\mid \psi_{0}\right\rangle$ are nonzero.

Argue that the density matrix can be obtained as the limit

$$
\begin{equation*}
\rho=\lim _{M \rightarrow \infty} \frac{\left.e^{-M H_{L} / 2} \mid \text { in }\right\rangle\langle\text { out }| e^{-M H_{L} / 2}}{\left.\langle\text { out }| e^{-M H_{L}} \mid \text { in }\right\rangle} . \tag{9}
\end{equation*}
$$

Interpret graphically this expression.

- We suppose the degrees of freedom are local. Let $A=[u, v]$ be an interval of the periodic system, and B its complement. The corresponding decomposition of the Hilbert space reads $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and we consider the reduced density matrix ρ_{A}, as defined above. For any pair of basis states $e, e^{\prime} \in \mathcal{H}_{A}$, show that $\left(\rho_{A}\right)_{e e^{\prime}}$ is given by $\lim _{M \rightarrow \infty}\left[Z_{e e^{\prime}}(M) / Z(M)\right]$, where $Z(M)$ is the partition function of the cylinder of length M, with boundary conditions \mid in \rangle and \langle out $|$ at the extremities of the cylinder, and $Z_{e e^{\prime}}(M)$ is the partition function of the same cylinder, with a cut along the interval A, and boundary conditions $|e\rangle$ and $\left\langle e^{\prime}\right|$ on the sides of the cut. Draw a picture for $Z_{e e^{\prime}}(M)$.
- In the following, we restrict to the case when n is a positive integer. Argue that $\operatorname{Tr}\left(\rho_{A}^{n}\right)$ is given by

$$
\begin{equation*}
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\lim _{M \rightarrow \infty} \frac{Z_{n}(M)}{\left[Z_{1}(M)\right]^{n}}, \tag{10}
\end{equation*}
$$

where $Z_{n}(M)$ is the partition function on $\Sigma_{n}(M)$, the n-th cover of the cylinder of length M, with branch points at u and v. This is a n-sheeted surface, where each sheet is a replica of the cylinder, and the sheets are connected cyclically along the interval $[u, v]$.

- We write $\Sigma_{n}=\lim _{M \rightarrow \infty} \Sigma_{n}(M)$. Show that the function

$$
\begin{equation*}
w \mapsto t=\left(\frac{\sin \frac{\pi(w-u)}{L}}{\sin \frac{\pi(w-v)}{L}}\right)^{1 / n} \tag{11}
\end{equation*}
$$

provides a conformal mapping from Σ_{n} to the complex plane. Deduce the genus of Σ_{n}.
One way to obtain the partition function Z_{n} is by computing it directly, but this method involves addressing the conical singularities located at the branch points u and v. Instead, an alternative approach that bypasses these difficulties can be taken. The strategy involves interpreting the branch cut that connects u and v as a defect line, which resembles the one between two disorder operators in the Ising model, introduced in tutorial 5 on the bootstrap in the Ising model. Thus, instead of working on a replicated surface, we work on the standard cylinder, but each site has N copies of the original degrees of freedom. This means that we work with the replicated CFT $\mathcal{M}_{n}=\mathcal{M}^{\otimes n}$, where \mathcal{M} is the CFT describing the original model. In the following we will refer to \mathcal{M} as the mother CFT. These N copies are uncoupled, except for the interaction across the defect line, where the interaction couples copy j to copy $j+1$ (where j is defined modulo N). In this way we have reduced the problem of computing $\operatorname{Tr}\left(\rho_{A}^{n}\right)$ to a two-point correlation function of so-called twist operators

$$
\begin{equation*}
\operatorname{Tr}\left(\rho_{A}^{n}\right)=\left\langle\left\langle\tau^{\dagger}(u) \tau(v)\right\rangle\right\rangle_{\mathrm{cyl}} \tag{12}
\end{equation*}
$$

where $\langle\langle\ldots\rangle\rangle_{\text {cyl }}$ denotes the average value in the replicated model \mathcal{M}_{n}, on the infinite cylinder.

- Prove that the above construction is indeed a two-point function, in the sense that it only depends on u and v and not on the position of the defect line (apart from the fact that it must join u and v).

Argue that within the state-operator correspondence, the twist field gets mapped to the lowest energy state of a system made of N copies of the original quantum chain with specific twisted boundary conditions (which ones ?).

- Using the finite size scaling of the energy for a system of size L, compute the scaling dimension of the twist field.
- Show that the twist field is scalar. Deduce its conformal dimensions.
- Compute the Rényi entropy $S_{n}([u, v])$ in the ground state of the periodic system of size L. Same question for a finite interval $[u, v]$ of an infinite system, (i) in the ground state, and (ii) in the thermal state of inverse temperature β.
- Optional question. Compute the partition function $Z_{r, s}(\tau)$ of the CFT \mathcal{M}_{n} on the torus $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ with a defect line of order r along the cycle $z \rightarrow z+1$ and a defect line of order s along the cycle $z \rightarrow z+\tau$. Here computing $Z_{r, s}(\tau)$ means expressing it in terms of the partition function of the mother theory $Z(\tau)$.

3 Orbifold Virasoro algebra

We consider the replicated CFT $\mathcal{M}_{n}=\mathcal{M}^{\otimes n}$. For any local operator \mathcal{O} of the mother CFT, we denote by \mathcal{O}_{a} the operator \mathcal{O} acting on the replica a in \mathcal{M}_{n}. We introduce the defect operators τ and τ^{\dagger} associated to the \mathbb{Z}_{n} symmetry of rotation of replicas. This means that

$$
\begin{align*}
& \mathcal{O}_{a}\left(e^{2 i \pi} z, e^{-2 i \pi} \bar{z}\right) \cdot \tau(0,0)=\mathcal{O}_{a-1}(z, \bar{z}) \cdot \tau(0,0) \tag{13}\\
& \mathcal{O}_{a}\left(e^{2 i \pi} z, e^{-2 i \pi} \bar{z}\right) \cdot \tau^{\dagger}(0,0)=\mathcal{O}_{a+1}(z, \bar{z}) \cdot \tau^{\dagger}(0,0) \tag{14}
\end{align*}
$$

where the indices $a \pm 1$ are understood modulo n.
The replicated model \mathcal{M}_{n} is often called the \mathbb{Z}_{n} orbifold of \mathcal{M}. Each replica a carries a copy of the stress-energy components $T_{a}(z)$ and $\bar{T}_{a}(\bar{z})$. The holomorphic components obey the OPEs

$$
\begin{equation*}
T_{a}(z) T_{b}(w)=\delta_{a b}\left[\frac{c / 2}{(z-w)^{4}}+\frac{2 T_{b}(w)}{(z-w)^{2}}+\frac{\partial T_{b}(w)}{z-w}\right]+\operatorname{reg}_{z \rightarrow w} \tag{15}
\end{equation*}
$$

We introduce the discrete Fourier modes

$$
\begin{equation*}
T^{(r)}(z)=\sum_{a=0}^{n-1} e^{2 i \pi a r / n} T_{a}(z), \quad r \in \mathbb{Z}_{n} \tag{16}
\end{equation*}
$$

- Compute the OPE $T^{(r)}(z) \cdot T^{(s)}(w)$. Examine the case $r=s=0$, and show that the symmetric component $T^{(0)}(z)$ satisfies the OPE of the stress-energy tensor for \mathcal{M}_{n}. Deduce the value \widehat{c} of the central charge of \mathcal{M}_{n}. Show that $T^{(s)}(z)$ is primary for $s \neq 0$, and determine its conformal dimension.
- Determine the monodromy of T_{a} around τ - in other words, the transformation of $T_{a}(z) \cdot \tau(0,0)$ as $z \mapsto e^{2 i \pi} z$. Same question for the monodromy of T_{a} around τ^{\dagger}. Deduce the monodromies of $T^{(r)}$ around τ and τ^{\dagger}. We shall write the mode decompositions as

$$
\begin{align*}
& T^{(r)}(z) \cdot \mathcal{O}_{a}(0,0)=\sum_{m} z^{-m-2}\left(L_{m}^{(r)} \cdot \mathcal{O}_{a}\right)(0,0), \tag{17}\\
& T^{(r)}(z) \cdot \tau(0,0)=\sum_{m} z^{-m-2}\left(L_{m}^{(r)} \cdot \tau\right)(0,0), \tag{18}\\
& T^{(r)}(z) \cdot \tau^{\dagger}(0,0)=\sum_{m} z^{-m-2}\left(L_{m}^{(r)} \cdot \tau^{\dagger}\right)(0,0) . \tag{19}
\end{align*}
$$

Here, \mathcal{O}_{a} denotes the insertion of the local operator \mathcal{O} at a regular point on the replica a, while τ, τ^{\dagger} are the defect operators associated to the branch points. Using the monodromies found in the previous question, determine the range of the index m in each of the three above decompositions.

- Find the commutator $\left[L_{m}^{(r)}, \mathcal{O}_{a}(z, \bar{z})\right]$.
- Find the commutation relation $\left[L_{m}^{(r)}, L_{k}^{(s)}\right]$. This defines the orbifold Virasoro algebra $\operatorname{Vir}_{n}(\widehat{c})$. Show that $\operatorname{Vir}_{n}(\widehat{c})$ possesses a subalgebra isomorphic to $\operatorname{Vir}(\widehat{c})$.
Consider the linear map $\varphi: \operatorname{Vir}_{n}(\widehat{c}) \rightarrow \operatorname{Vir}(c)$ defined as

$$
\varphi\left(L_{m / n}^{(r)}\right)= \begin{cases}\frac{1}{n} L_{m}+A(c, n) \delta_{m, 0} \mathbf{1} & \text { if } r \equiv-m \quad \bmod n \tag{20}\\ 0 & \text { otherwise }\end{cases}
$$

where $A(c, n)$ is a constant. Find the expression of $A(c, n)$ for which φ satisfies, for all $L_{m / n}^{(r)}$ and $L_{p / n}^{(s)}$,

$$
\begin{equation*}
\left[\varphi\left(L_{m / n}^{(r)}\right), \varphi\left(L_{p / n}^{(s)}\right)\right]=\varphi\left(\left[L_{m / n}^{(r)}, L_{p / n}^{(s)}\right]\right), \tag{21}
\end{equation*}
$$

and thus it defines a morphism of algebras. Consider a Virasoro module V, and the corresponding homomorphism $\rho: \operatorname{Vir}(c) \rightarrow$ End V. Let \widehat{V} be a vector space isomorphic to V, and $\theta: V \rightarrow \widehat{V}$ the associated linear isomorphism. Show that the map

$$
\begin{equation*}
\widehat{\rho}: \quad \mu \mapsto \theta \cdot \rho(\varphi(\mu)) \cdot \theta^{-1} \tag{22}
\end{equation*}
$$

is a homomorphism from $\operatorname{Vir}_{n}(\widehat{c})$ to End \widehat{V}. As a result, \widehat{V} is a $\operatorname{Vir}_{n}(\widehat{c})$ module.

- The character of \widehat{V} reads

$$
\begin{equation*}
\widehat{\chi}_{\widehat{V}}(q)=\operatorname{Tr}_{\widehat{V}}\left(q^{L_{0}^{(0)}-\widehat{c} / 24}\right) . \tag{23}
\end{equation*}
$$

Relate $\widehat{\chi}_{\widehat{V}}(q)$ to the character $\chi_{V}(q)$ from the mother CFT.

- Consider a lowest weight Virasoro module V_{h}, with lowest weight state $|h\rangle$. We denote by $\widehat{V}_{\widehat{h}}$ the corresponding $\operatorname{Vir}_{n}(\widehat{c})$ module, with lowest weight state $\left.|\widehat{h}\rangle\right\rangle$. Compute the conformal dimension \widehat{h}. If h is a degenerate dimension for the Virasoro algebra, then show that $|\widehat{h}\rangle\rangle$ admits a null state. Compute this null state in the cases $h=h_{11}$ and $h=h_{12}$.
- Argue that $|\tau\rangle=|\widehat{0}\rangle\rangle$, and write the null vector condition for $|\tau\rangle$. Given a primary operator ϕ from the mother CFT, use the null vector condition on $|\tau\rangle$ to derive a differential equation for the correlation function $\left\langle\left\langle\tau(\infty) \phi_{a}(z, \bar{z}) \phi_{b}(w, \bar{w}) \tau(0)\right\rangle_{\mathbb{C}}\right.$. Find the solution which is covariant under global conformal maps.
- Independently of the previous question, find the surface R_{n} such that

$$
\left\langle\left\langle\tau(\infty) \phi_{a}(z, \bar{z}) \phi_{b}(w, \bar{w}) \tau(0)\right\rangle\right\rangle_{\mathbb{C}}=\langle\phi(x, \bar{x}) \phi(y, \bar{y})\rangle_{R_{n}},
$$

and relate the positions x and y to z and w. Compute the above correlation function in the mother CFT, using a conformal mapping $R_{n} \rightarrow \mathbb{C}$.

- Using the above results, compute the correlation function on the infinite cylinder

$$
\left\langle\left\langle\tau(u, \bar{u}) \phi_{a}\left(u^{\prime}, \bar{u}^{\prime}\right) \phi_{b}\left(v^{\prime}, \bar{v}^{\prime}\right) \tau(v, \bar{v})\right\rangle\right\rangle_{\mathrm{cyl}} .
$$

Compute the form of this function as $u^{\prime} \rightarrow u$ and $v^{\prime} \rightarrow v$. What is the physical interpretation of this limit?

