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Entanglement entropies in critical 1+1d systems

1 Entanglement entropies

Consider a quantum system in a pure (normalized) state |ψ⟩. Suppose that the Hilbert
space decomposes as H = HA ⊗ HB. Then, in the state |ψ⟩, the two subsystems A
and B can be entangled. In other words, measuring an observable in A may affect the
observables in B.

▶ The Schmidt decomposition theorem asserts that there exists orthonormal states {|uj⟩}
in HA, {|vj⟩} in HB, and (strictly) positive numbers {pj} such that

|Ψ⟩ =
r∑

j=1

√
pj |uj⟩ ⊗ |vj⟩ . (1)

▶ Prove the above result. Hint : start from a generic state of the form |ψ⟩ =
∑

i,j ψij |ei⟩⊗
|fj⟩, where {|ei⟩} and {|fj⟩} are orthonormal bases of HA and HB respectively. Then
consider the singular value decomposition of the rectangular matrix (ψij).

▶ Show that the Schmidt rank r and Schmidt coefficients {p1, · · · , pr} are well defined (i.e.
independent of any possible choice made when performing the Schmidt decomposition).

▶ The Schmidt coefficients are positive numbers subject to
∑

j pj = 1. One way to
quantify the amount of entanglement between A and B in the state |Ψ⟩ is to consider the
von Neumann entropy

S = −
r∑

j=1

pj log pj . (2)

and more generally the Rényi entropies

Sn =
1

1 − n
log

r∑
j=1

pn
j , Re(n) > 1 . (3)

▶ Show that limn→1 Sn = S.

▶ Example 1. For a state of the form |ψ⟩ = |ψA⟩ ⊗ |ψB⟩, show that ρA has the form of a
density matrix for a pure state. Compute the Rényi and von Neumann entropies for A.

▶ Example 2. Consider a system of two 1
2
-spins, in the state

|ψ⟩ = cosλ |↑↓⟩ + eiα sinλ |↓↑⟩ , (4)

with real λ and α. Compute the reduced density matrix for the first spin.

It will be useful in the following to rewrite these entropies in terms of the reduced
density matrix ρA

ρA = TrB

(
|ψ⟩⟨ψ|

)
. (5)
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where the partial trace of HB is defined via

TrB

(
(|ei⟩ ⊗ |fj⟩) (⟨ek| ⊗ ⟨fℓ|)

)
= δjℓ |ei⟩⟨ek| . (6)

where {|ei⟩} and {|fj⟩} are bases of HA and HB respectively.

▶ Show that
S = −Tr(ρA log ρA) , (7)

and

Sn =
1

1 − n
log Tr (ρn

A) , Re(n) > 1 . (8)

Compute the corresponding Rényi and von Neumann entropies.

2 Rényi entropies in CFT

In the following, we consider a 1+1d quantum system at the critical point, described by
a conformal field theory M. The system has size L, with periodic boundary conditions.
We denote by HL the Hamiltonian of this periodic system, and we suppose it has a
single ground state |ψ0⟩ (assumed to be normalized). We want to relate the density
matrix ρ = |ψ0⟩⟨ψ0| to some partition functions on the cylinder of circumference L. We
introduce some boundary states |in⟩ and ⟨out|, such that the overlaps ⟨ψ0|in⟩ and ⟨out|ψ0⟩
are nonzero.

▶ Argue that the density matrix can be obtained as the limit

ρ = lim
M→∞

e−MHL/2|in⟩⟨out|e−MHL/2

⟨out|e−MHL|in⟩
. (9)

Interpret graphically this expression.

▶We suppose the degrees of freedom are local. Let A = [u, v] be an interval of the periodic
system, and B its complement. The corresponding decomposition of the Hilbert space
reads H = HA⊗HB, and we consider the reduced density matrix ρA, as defined above. For
any pair of basis states e, e′ ∈ HA, show that (ρA)ee′ is given by limM→∞[Zee′(M)/Z(M)],
where Z(M) is the partition function of the cylinder of length M , with boundary condi-
tions |in⟩ and ⟨out| at the extremities of the cylinder, and Zee′(M) is the partition function
of the same cylinder, with a cut along the interval A, and boundary conditions |e⟩ and
⟨e′| on the sides of the cut. Draw a picture for Zee′(M).

▶ In the following, we restrict to the case when n is a positive integer. Argue that Tr(ρn
A)

is given by

Tr(ρn
A) = lim

M→∞

Zn(M)

[Z1(M)]n
, (10)

where Zn(M) is the partition function on Σn(M), the n-th cover of the cylinder of length
M , with branch points at u and v. This is a n-sheeted surface, where each sheet is a
replica of the cylinder, and the sheets are connected cyclically along the interval [u, v].

▶ We write Σn = limM→∞ Σn(M). Show that the function

w 7→ t =

(
sin π(w−u)

L

sin π(w−v)
L

)1/n

(11)

2



provides a conformal mapping from Σn to the complex plane. Deduce the genus of Σn.

One way to obtain the partition function Zn is by computing it directly, but this
method involves addressing the conical singularities located at the branch points u and
v. Instead, an alternative approach that bypasses these difficulties can be taken. The
strategy involves interpreting the branch cut that connects u and v as a defect line, which
resembles the one between two disorder operators in the Ising model, introduced in tutorial
5 on the bootstrap in the Ising model. Thus, instead of working on a replicated surface,
we work on the standard cylinder, but each site has N copies of the original degrees of
freedom. This means that we work with the replicated CFT Mn = M⊗n, where M is
the CFT describing the original model. In the following we will refer to M as the mother
CFT. These N copies are uncoupled, except for the interaction across the defect line,
where the interaction couples copy j to copy j + 1 (where j is defined modulo N). In
this way we have reduced the problem of computing Tr(ρn

A) to a two-point correlation
function of so-called twist operators

Tr(ρn
A) = ⟨⟨τ †(u)τ(v)⟩⟩cyl (12)

where ⟨⟨. . . ⟩⟩cyl denotes the average value in the replicated model Mn, on the infinite
cylinder.

▶ Prove that the above construction is indeed a two-point function, in the sense that it
only depends on u and v and not on the position of the defect line (apart from the fact
that it must join u and v).

▶ Argue that within the state-operator correspondence, the twist field gets mapped to
the lowest energy state of a system made of N copies of the original quantum chain with
specific twisted boundary conditions (which ones ?).

▶ Using the finite size scaling of the energy for a system of size L, compute the scaling
dimension of the twist field.

▶ Show that the twist field is scalar. Deduce its conformal dimensions.

▶ Compute the Rényi entropy Sn([u, v]) in the ground state of the periodic system of size
L. Same question for a finite interval [u, v] of an infinite system, (i) in the ground state,
and (ii) in the thermal state of inverse temperature β.

▶ Optional question. Compute the partition function Zr,s(τ) of the CFT Mn on the torus
C/(Z + τZ) with a defect line of order r along the cycle z → z + 1 and a defect line of
order s along the cycle z → z + τ . Here computing Zr,s(τ) means expressing it in terms
of the partition function of the mother theory Z(τ).

3 Orbifold Virasoro algebra

We consider the replicated CFT Mn = M⊗n. For any local operator O of the mother
CFT, we denote by Oa the operator O acting on the replica a in Mn. We introduce the
defect operators τ and τ † associated to the Zn symmetry of rotation of replicas. This
means that

Oa(e
2iπz, e−2iπz̄) · τ(0, 0) = Oa−1(z, z̄) · τ(0, 0) , (13)

Oa(e
2iπz, e−2iπz̄) · τ †(0, 0) = Oa+1(z, z̄) · τ †(0, 0) , (14)
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where the indices a± 1 are understood modulo n.

The replicated model Mn is often called the Zn orbifold of M. Each replica a carries
a copy of the stress-energy components Ta(z) and T̄a(z̄). The holomorphic components
obey the OPEs

Ta(z)Tb(w) = δab

[
c/2

(z − w)4
+

2Tb(w)

(z − w)2
+
∂Tb(w)

z − w

]
+ regz→w . (15)

We introduce the discrete Fourier modes

T (r)(z) =
n−1∑
a=0

e2iπar/n Ta(z) , r ∈ Zn . (16)

▶ Compute the OPE T (r)(z) · T (s)(w). Examine the case r = s = 0, and show that
the symmetric component T (0)(z) satisfies the OPE of the stress-energy tensor for Mn.
Deduce the value ĉ of the central charge of Mn. Show that T (s)(z) is primary for s ̸= 0,
and determine its conformal dimension.

▶ Determine the monodromy of Ta around τ – in other words, the transformation of
Ta(z) · τ(0, 0) as z 7→ e2iπz. Same question for the monodromy of Ta around τ †. Deduce
the monodromies of T (r) around τ and τ †. We shall write the mode decompositions as

T (r)(z) · Oa(0, 0) =
∑

m

z−m−2(L(r)
m · Oa)(0, 0) , (17)

T (r)(z) · τ(0, 0) =
∑

m

z−m−2(L(r)
m · τ)(0, 0) , (18)

T (r)(z) · τ †(0, 0) =
∑

m

z−m−2(L(r)
m · τ †)(0, 0) . (19)

Here, Oa denotes the insertion of the local operator O at a regular point on the replica
a, while τ, τ † are the defect operators associated to the branch points. Using the mon-
odromies found in the previous question, determine the range of the index m in each of
the three above decompositions.

▶ Find the commutator [L
(r)
m ,Oa(z, z̄)].

▶ Find the commutation relation [L
(r)
m , L

(s)
k ]. This defines the orbifold Virasoro algebra

Virn(ĉ). Show that Virn(ĉ) possesses a subalgebra isomorphic to Vir(ĉ).

▶ Consider the linear map φ : Virn(ĉ) → Vir(c) defined as

φ(L
(r)
m/n) =

{
1
n
Lm + A(c, n) δm,0 1 if r ≡ −m mod n

0 otherwise,
(20)

where A(c, n) is a constant. Find the expression of A(c, n) for which φ satisfies, for all

L
(r)
m/n and L

(s)
p/n,

[φ(L
(r)
m/n), φ(L

(s)
p/n)] = φ([L

(r)
m/n, L

(s)
p/n]) , (21)

and thus it defines a morphism of algebras. Consider a Virasoro module V , and the
corresponding homomorphism ρ : Vir(c) → EndV . Let V̂ be a vector space isomorphic

to V , and θ : V → V̂ the associated linear isomorphism. Show that the map

ρ̂ : µ 7→ θ · ρ(φ(µ)) · θ−1 (22)
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is a homomorphism from Virn(ĉ) to End V̂ . As a result, V̂ is a Virn(ĉ) module.

▶ The character of V̂ reads

χ̂V̂ (q) = TrV̂

(
qL

(0)
0 −ĉ/24

)
. (23)

Relate χ̂V̂ (q) to the character χV (q) from the mother CFT.

▶ Consider a lowest weight Virasoro module Vh, with lowest weight state |h⟩. We denote

by V̂ĥ the corresponding Virn(ĉ) module, with lowest weight state |ĥ⟩⟩. Compute the

conformal dimension ĥ. If h is a degenerate dimension for the Virasoro algebra, then
show that |ĥ⟩⟩ admits a null state. Compute this null state in the cases h = h11 and
h = h12.

▶ Argue that |τ⟩ = |0̂⟩⟩, and write the null vector condition for |τ⟩. Given a primary
operator ϕ from the mother CFT, use the null vector condition on |τ⟩ to derive a differen-
tial equation for the correlation function ⟨⟨τ(∞)ϕa(z, z̄)ϕb(w, w̄)τ(0)⟩⟩C. Find the solution
which is covariant under global conformal maps.

▶ Independently of the previous question, find the surface Rn such that

⟨⟨τ(∞)ϕa(z, z̄)ϕb(w, w̄)τ(0)⟩⟩C = ⟨ϕ(x, x̄)ϕ(y, ȳ)⟩Rn ,

and relate the positions x and y to z and w. Compute the above correlation function in
the mother CFT, using a conformal mapping Rn → C.

▶ Using the above results, compute the correlation function on the infinite cylinder

⟨⟨τ(u, ū)ϕa(u
′, ū′)ϕb(v

′, v̄′)τ(v, v̄)⟩⟩cyl .

Compute the form of this function as u′ → u and v′ → v. What is the physical interpre-
tation of this limit ?
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