Entanglement entropies in critical 1+1d systems

1 Entanglement entropies

Consider a quantum system in a pure (normalized) state $|\psi\rangle$. Suppose that the Hilbert space decomposes as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. Then, in the state $|\psi\rangle$, the two subsystems A and B can be entangled. In other words, measuring an observable in A may affect the observables in B.

▶ The Schmidt decomposition theorem asserts that there exists orthonormal states $\{|u_j\rangle\}$ in \mathcal{H}_A , $\{|v_j\rangle\}$ in \mathcal{H}_B , and (strictly) positive numbers $\{p_j\}$ such that

$$|\Psi\rangle = \sum_{j=1}^{r} \sqrt{p_j} |u_j\rangle \otimes |v_j\rangle.$$
(1)

▶ Prove the above result. Hint : start from a generic state of the form $|\psi\rangle = \sum_{i,j} \psi_{ij} |e_i\rangle \otimes |f_j\rangle$, where $\{|e_i\rangle\}$ and $\{|f_j\rangle\}$ are orthonormal bases of \mathcal{H}_A and \mathcal{H}_B respectively. Then consider the singular value decomposition of the rectangular matrix (ψ_{ij}) .

▶ Show that the Schmidt rank r and Schmidt coefficients $\{p_1, \dots, p_r\}$ are well defined (*i.e.* independent of any possible choice made when performing the Schmidt decomposition).

► The Schmidt coefficients are positive numbers subject to $\sum_j p_j = 1$. One way to quantify the amount of entanglement between A and B in the state $|\Psi\rangle$ is to consider the von Neumann entropy

$$S = -\sum_{j=1}^{r} p_j \log p_j \,. \tag{2}$$

and more generally the Rényi entropies

$$S_n = \frac{1}{1-n} \log \sum_{j=1}^r p_j^n, \qquad \text{Re}(n) > 1.$$
(3)

▶ Show that $\lim_{n\to 1} S_n = S$.

▶ Example 1. For a state of the form $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$, show that ρ_A has the form of a density matrix for a pure state. Compute the Rényi and von Neumann entropies for A.

Example 2. Consider a system of two $\frac{1}{2}$ -spins, in the state

$$|\psi\rangle = \cos\lambda |\uparrow\downarrow\rangle + e^{i\alpha} \sin\lambda |\downarrow\uparrow\rangle, \qquad (4)$$

with real λ and α . Compute the reduced density matrix for the first spin.

It will be useful in the following to rewrite these entropies in terms of the reduced density matrix ρ_A

$$\rho_A = \operatorname{Tr}_B\Big(|\psi\rangle\langle\psi|\Big)\,.\tag{5}$$

where the partial trace of \mathcal{H}_B is defined via

$$\operatorname{Tr}_B\Big((|e_i\rangle \otimes |f_j\rangle)\left(\langle e_k| \otimes \langle f_\ell|\right)\Big) = \delta_{j\ell} |e_i\rangle\langle e_k|.$$
(6)

where $\{|e_i\rangle\}$ and $\{|f_i\rangle\}$ are bases of \mathcal{H}_A and \mathcal{H}_B respectively.

► Show that

$$S = -\mathrm{Tr}(\rho_A \log \rho_A), \qquad (7)$$

and

$$S_n = \frac{1}{1-n} \log \operatorname{Tr} \left(\rho_A^n\right), \qquad \operatorname{Re}(n) > 1.$$
(8)

Compute the corresponding Rényi and von Neumann entropies.

2 Rényi entropies in CFT

In the following, we consider a 1+1d quantum system at the critical point, described by a conformal field theory \mathcal{M} . The system has size L, with periodic boundary conditions. We denote by H_L the Hamiltonian of this periodic system, and we suppose it has a single ground state $|\psi_0\rangle$ (assumed to be normalized). We want to relate the density matrix $\rho = |\psi_0\rangle\langle\psi_0|$ to some partition functions on the cylinder of circumference L. We introduce some boundary states $|\mathrm{in}\rangle$ and $\langle\mathrm{out}|$, such that the overlaps $\langle\psi_0|\mathrm{in}\rangle$ and $\langle\mathrm{out}|\psi_0\rangle$ are nonzero.

▶ Argue that the density matrix can be obtained as the limit

$$\rho = \lim_{M \to \infty} \frac{e^{-MH_L/2} |\mathrm{in}\rangle \langle \mathrm{out}| e^{-MH_L/2}}{\langle \mathrm{out}| e^{-MH_L} |\mathrm{in}\rangle} \,. \tag{9}$$

Interpret graphically this expression.

▶ We suppose the degrees of freedom are local. Let A = [u, v] be an interval of the periodic system, and B its complement. The corresponding decomposition of the Hilbert space reads $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, and we consider the reduced density matrix ρ_A , as defined above. For any pair of basis states $e, e' \in \mathcal{H}_A$, show that $(\rho_A)_{ee'}$ is given by $\lim_{M\to\infty} [Z_{ee'}(M)/Z(M)]$, where Z(M) is the partition function of the cylinder of length M, with boundary conditions $|in\rangle$ and $\langle out|$ at the extremities of the cylinder, and $Z_{ee'}(M)$ is the partition function of the same cylinder, with a cut along the interval A, and boundary conditions $|e\rangle$ and $\langle e'|$ on the sides of the cut. Draw a picture for $Z_{ee'}(M)$.

▶ In the following, we restrict to the case when n is a positive integer. Argue that $Tr(\rho_A^n)$ is given by

$$\operatorname{Tr}(\rho_A^n) = \lim_{M \to \infty} \frac{Z_n(M)}{[Z_1(M)]^n}, \qquad (10)$$

where $Z_n(M)$ is the partition function on $\Sigma_n(M)$, the *n*-th cover of the cylinder of length M, with branch points at u and v. This is a *n*-sheeted surface, where each sheet is a replica of the cylinder, and the sheets are connected cyclically along the interval [u, v].

• We write $\Sigma_n = \lim_{M \to \infty} \Sigma_n(M)$. Show that the function

$$w \mapsto t = \left(\frac{\sin\frac{\pi(w-u)}{L}}{\sin\frac{\pi(w-v)}{L}}\right)^{1/n} \tag{11}$$

provides a conformal mapping from Σ_n to the complex plane. Deduce the genus of Σ_n .

One way to obtain the partition function Z_n is by computing it directly, but this method involves addressing the conical singularities located at the branch points u and v. Instead, an alternative approach that bypasses these difficulties can be taken. The strategy involves interpreting the branch cut that connects u and v as a defect line, which resembles the one between two disorder operators in the Ising model, introduced in tutorial 5 on the bootstrap in the Ising model. Thus, instead of working on a replicated surface, we work on the standard cylinder, but each site has N copies of the original degrees of freedom. This means that we work with the replicated CFT $\mathcal{M}_n = \mathcal{M}^{\otimes n}$, where \mathcal{M} is the CFT describing the original model. In the following we will refer to \mathcal{M} as the mother CFT. These N copies are uncoupled, except for the interaction across the defect line, where the interaction couples copy j to copy j + 1 (where j is defined modulo N). In this way we have reduced the problem of computing $\text{Tr}(\rho_A^n)$ to a two-point correlation function of so-called *twist operators*

$$\operatorname{Tr}(\rho_A^n) = \langle\!\langle \tau^{\dagger}(u) \tau(v) \rangle\!\rangle_{\text{cyl}} \tag{12}$$

where $\langle\!\langle \dots \rangle\!\rangle_{cyl}$ denotes the average value in the replicated model \mathcal{M}_n , on the infinite cylinder.

▶ Prove that the above construction is indeed a two-point function, in the sense that it only depends on u and v and not on the position of the defect line (apart from the fact that it must join u and v).

▶ Argue that within the state-operator correspondence, the twist field gets mapped to the lowest energy state of a system made of N copies of the original quantum chain with specific twisted boundary conditions (which ones ?).

▶ Using the finite size scaling of the energy for a system of size L, compute the scaling dimension of the twist field.

▶ Show that the twist field is scalar. Deduce its conformal dimensions.

• Compute the Rényi entropy $S_n([u, v])$ in the ground state of the periodic system of size L. Same question for a finite interval [u, v] of an infinite system, (i) in the ground state, and (ii) in the thermal state of inverse temperature β .

▶ Optional question. Compute the partition function $Z_{r,s}(\tau)$ of the CFT \mathcal{M}_n on the torus $\mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ with a defect line of order r along the cycle $z \to z + 1$ and a defect line of order s along the cycle $z \to z + \tau$. Here computing $Z_{r,s}(\tau)$ means expressing it in terms of the partition function of the mother theory $Z(\tau)$.

3 Orbifold Virasoro algebra

We consider the replicated CFT $\mathcal{M}_n = \mathcal{M}^{\otimes n}$. For any local operator \mathcal{O} of the mother CFT, we denote by \mathcal{O}_a the operator \mathcal{O} acting on the replica a in \mathcal{M}_n . We introduce the defect operators τ and τ^{\dagger} associated to the \mathbb{Z}_n symmetry of rotation of replicas. This means that

$$\mathcal{O}_{a}(e^{2i\pi}z, e^{-2i\pi}\bar{z}) \cdot \tau(0, 0) = \mathcal{O}_{a-1}(z, \bar{z}) \cdot \tau(0, 0), \qquad (13)$$

$$\mathcal{O}_{a}(e^{2i\pi}z, e^{-2i\pi}\bar{z}) \cdot \tau^{\dagger}(0, 0) = \mathcal{O}_{a+1}(z, \bar{z}) \cdot \tau^{\dagger}(0, 0), \qquad (14)$$

where the indices $a \pm 1$ are understood modulo n.

The replicated model \mathcal{M}_n is often called the \mathbb{Z}_n orbifold of \mathcal{M} . Each replica *a* carries a copy of the stress-energy components $T_a(z)$ and $\overline{T}_a(\overline{z})$. The holomorphic components obey the OPEs

$$T_{a}(z)T_{b}(w) = \delta_{ab} \left[\frac{c/2}{(z-w)^{4}} + \frac{2T_{b}(w)}{(z-w)^{2}} + \frac{\partial T_{b}(w)}{z-w} \right] + \operatorname{reg}_{z \to w}.$$
 (15)

We introduce the discrete Fourier modes

$$T^{(r)}(z) = \sum_{a=0}^{n-1} e^{2i\pi a r/n} T_a(z), \qquad r \in \mathbb{Z}_n.$$
(16)

• Compute the OPE $T^{(r)}(z) \cdot T^{(s)}(w)$. Examine the case r = s = 0, and show that the symmetric component $T^{(0)}(z)$ satisfies the OPE of the stress-energy tensor for \mathcal{M}_n . Deduce the value \hat{c} of the central charge of \mathcal{M}_n . Show that $T^{(s)}(z)$ is primary for $s \neq 0$, and determine its conformal dimension.

▶ Determine the monodromy of T_a around τ – in other words, the transformation of $T_a(z) \cdot \tau(0,0)$ as $z \mapsto e^{2i\pi}z$. Same question for the monodromy of T_a around τ^{\dagger} . Deduce the monodromies of $T^{(r)}$ around τ and τ^{\dagger} . We shall write the mode decompositions as

$$T^{(r)}(z) \cdot \mathcal{O}_a(0,0) = \sum_m z^{-m-2} (L_m^{(r)} \cdot \mathcal{O}_a)(0,0) , \qquad (17)$$

$$T^{(r)}(z) \cdot \tau(0,0) = \sum_{m} z^{-m-2} (L_m^{(r)} \cdot \tau)(0,0) , \qquad (18)$$

$$T^{(r)}(z) \cdot \tau^{\dagger}(0,0) = \sum_{m} z^{-m-2} (L_m^{(r)} \cdot \tau^{\dagger})(0,0) \,. \tag{19}$$

Here, \mathcal{O}_a denotes the insertion of the local operator \mathcal{O} at a regular point on the replica a, while τ, τ^{\dagger} are the defect operators associated to the branch points. Using the monodromies found in the previous question, determine the range of the index m in each of the three above decompositions.

▶ Find the commutator $[L_m^{(r)}, \mathcal{O}_a(z, \bar{z})].$

▶ Find the commutation relation $[L_m^{(r)}, L_k^{(s)}]$. This defines the orbifold Virasoro algebra $\operatorname{Vir}_n(\widehat{c})$. Show that $\operatorname{Vir}_n(\widehat{c})$ possesses a subalgebra isomorphic to $\operatorname{Vir}(\widehat{c})$.

• Consider the linear map $\varphi : \operatorname{Vir}_n(\widehat{c}) \to \operatorname{Vir}(c)$ defined as

$$\varphi(L_{m/n}^{(r)}) = \begin{cases} \frac{1}{n} L_m + A(c, n) \,\delta_{m,0} \,\mathbf{1} & \text{if } r \equiv -m \mod n \\ 0 & \text{otherwise,} \end{cases}$$
(20)

where A(c, n) is a constant. Find the expression of A(c, n) for which φ satisfies, for all $L_{m/n}^{(r)}$ and $L_{p/n}^{(s)}$,

$$[\varphi(L_{m/n}^{(r)}), \varphi(L_{p/n}^{(s)})] = \varphi([L_{m/n}^{(r)}, L_{p/n}^{(s)}]), \qquad (21)$$

and thus it defines a morphism of algebras. Consider a Virasoro module V, and the corresponding homomorphism $\rho : \operatorname{Vir}(c) \to \operatorname{End} V$. Let \widehat{V} be a vector space isomorphic to V, and $\theta : V \to \widehat{V}$ the associated linear isomorphism. Show that the map

$$\widehat{\rho}: \quad \mu \mapsto \theta \cdot \rho(\varphi(\mu)) \cdot \theta^{-1} \tag{22}$$

is a homomorphism from $\operatorname{Vir}_n(\widehat{c})$ to $\operatorname{End} \widehat{V}$. As a result, \widehat{V} is a $\operatorname{Vir}_n(\widehat{c})$ module.

▶ The character of \widehat{V} reads

$$\widehat{\chi}_{\widehat{V}}(q) = \operatorname{Tr}_{\widehat{V}}\left(q^{L_0^{(0)} - \widehat{c}/24}\right) \,. \tag{23}$$

Relate $\widehat{\chi}_{\widehat{V}}(q)$ to the character $\chi_V(q)$ from the mother CFT.

• Consider a lowest weight Virasoro module V_h , with lowest weight state $|h\rangle$. We denote by $\hat{V}_{\hat{h}}$ the corresponding $\operatorname{Vir}_n(\hat{c})$ module, with lowest weight state $|\hat{h}\rangle\rangle$. Compute the conformal dimension \hat{h} . If h is a degenerate dimension for the Virasoro algebra, then show that $|\hat{h}\rangle\rangle$ admits a null state. Compute this null state in the cases $h = h_{11}$ and $h = h_{12}$.

• Argue that $|\tau\rangle = |\hat{0}\rangle$, and write the null vector condition for $|\tau\rangle$. Given a primary operator ϕ from the mother CFT, use the null vector condition on $|\tau\rangle$ to derive a differential equation for the correlation function $\langle\!\langle \tau(\infty)\phi_a(z,\bar{z})\phi_b(w,\bar{w})\tau(0)\rangle\!\rangle_{\mathbb{C}}$. Find the solution which is covariant under global conformal maps.

▶ Independently of the previous question, find the surface R_n such that

$$\langle\!\langle \tau(\infty)\phi_a(z,\bar{z})\phi_b(w,\bar{w})\tau(0)\rangle\!\rangle_{\mathbb{C}} = \langle \phi(x,\bar{x})\phi(y,\bar{y})\rangle_{R_n},$$

and relate the positions x and y to z and w. Compute the above correlation function in the mother CFT, using a conformal mapping $R_n \to \mathbb{C}$.

▶ Using the above results, compute the correlation function on the infinite cylinder

$$\langle\!\langle \tau(u,\bar{u})\phi_a(u',\bar{u}')\phi_b(v',\bar{v}')\tau(v,\bar{v})\rangle\!\rangle_{\text{cyl}}$$
.

Compute the form of this function as $u' \to u$ and $v' \to v$. What is the physical interpretation of this limit ?