The conformal bootstrap for the Ising model

1 Kramers-Wannier duality and disorder operators

Consider the Ising model on a domain of the square lattice \mathcal{L} , where each spin $\sigma_i = \pm 1$, and with Boltzmann weights:

$$W[\sigma] = \prod_{\langle ij\rangle} e^{J\sigma_i\sigma_j} \,, \tag{1}$$

where the product is over all nearest neighbour pairs $\langle ij \rangle$, and J is the coupling constant. We will denote by V the number of vertices (or sites) of the domain, and by E the number of edges.

Using the identity

$$e^{J\sigma_i\sigma_j} = \cosh J + \sinh J\,\sigma_i\sigma_j = \sum_{k=0,1} x_k\,(\sigma_i\sigma_j)^k\,,\tag{2}$$

where $x_0 = \cosh J$ and $x_1 = \sinh J$, we can rewrite the partition as

$$Z(\mathcal{L},J) = \sum_{\{\sigma_i\}} \prod_{\langle ij \rangle} \sum_{k=0,1} x_k (\sigma_i \sigma_j)^k = \sum_{\{\sigma_i\}} \sum_{\{k_{ij}\}} \prod_{\langle ij \rangle} x_{k_e} (\sigma_i \sigma_j)^{k_{ij}}.$$
 (3)

▶ Perform the sum over the original spin variables $\{\sigma_i\}$, and show that the allowed configurations for the k_{ij} 's are those which satisfy the condition

$$\forall i, \qquad \sum_{\langle ij \rangle} k_{ij} \equiv 0 \mod 2, \tag{4}$$

where the sum runs over the nearest neighbours j of the site i. Show that, as a consequence, the partition function can be written as

$$Z(\mathcal{L},J) = 2^{V-1} A^E \sum_{\{q_\alpha\}} \prod_{\langle \alpha\beta \rangle} e^{\widehat{J}q_\alpha q_\beta}, \qquad (5)$$

where the q_{α} 's are Ising spins living at the middle of the faces of \mathcal{L} . Find the value of the constants A(J) and \widehat{J} . This transformation is called *Kramers-Wannier duality*. Argue that the critical point is such that $J = \widehat{J}$, and find the critical value of J.

Consider the disorder operator μ_{α} which inserts the extremity of a path γ at the middle of the face α , so that the Boltzmann weights are modified by $J \mapsto -J$ for all edges $\langle ij \rangle$ crossing the path γ . For instance, the two-point function of disorder operators reads

$$\langle \mu_u \mu_v \rangle = \frac{1}{Z(\mathcal{L}, J)} \sum_{\{\sigma_i\}} \prod_{\langle ij \rangle \notin \gamma^{\perp}} e^{J\sigma_i \sigma_j} \prod_{\langle ij \rangle \in \gamma^{\perp}} e^{-J\sigma_i \sigma_j} , \qquad (6)$$

where γ^{\perp} denotes the set of edges crossing the path γ .

Show that $\langle \mu_u \mu_v \rangle$ is independent of the choice of the path γ . Perform the Kramers-Wannier duality on this two-point function. Generalise to *n*-point functions of disorder operators.

▶ In the scaling limit, for a system defined on the full plane, compute the twopoint functions $\langle \sigma(r_1)\sigma(r_2) \rangle$ and $\langle \mu(r_1)\mu(r_2) \rangle$, using your knowledge on the Ising CFT. Consider a mixed correlation function

$$\langle \sigma(r_1) \dots \sigma(r_n) \cdot \mu(r'_1) \dots \mu(r'_m) \rangle$$
 (7)

What is the behaviour of this function as r_i winds around r'_j ? Consider the OPE of σ and μ : argue that it should contain a holomorphic operator ψ and an anti-holomorphic operator $\bar{\psi}$, and give the conformal dimensions of these operators.

2 Correlation functions

We want to analyse the correlation function of spin operators

$$F(z,\bar{z}) = \langle \sigma(\infty)\sigma(1)\sigma(z,\bar{z})\sigma(0) \rangle .$$
(8)

Since σ is degenerate at level 2, F satisfies a differential equation deriving from the null-state equation. We admit that the precise form of this differential equation is

$$\left[\frac{4}{3}\partial_z^2 + \frac{1-2z}{z(1-z)}\partial_z - \frac{1}{16z^2(1-z)^2}\right]F(z,\bar{z}) = 0$$
(9)

We want to find a basis of holomorphic solutions of the form

$$F(z) = z^{\lambda} \sum_{n=0}^{\infty} a_n z^n \,. \tag{10}$$

Express the differential equation in terms of the operator $\theta = z\partial_z$, find the two possible values for λ , and derive the recursion relation for the coefficients a_n .

The basis of holomorphic solutions constructed above corresponds to the conformal blocks of $\langle \sigma \sigma \sigma \sigma \rangle$ in the channel $z \to 0$. We give the explicit form of these conformal blocks (NB: they do not obey the standard normalisation)

$$I_1(z) = \frac{\sqrt{1 + \sqrt{1 - z}}}{z^{1/8} (1 - z)^{1/8}}, \qquad I_2(z) = \frac{\sqrt{1 - \sqrt{1 - z}}}{z^{1/8} (1 - z)^{1/8}}.$$
(11)

► Find the internal primary operators in these conformal blocks. Arguing on the monodromies of $I_1(z), I_2(z)$ around z = 0 and z = 1, construct the physical correlation function $F(z, \bar{z})$. Derive the OPE coefficient $C_{\sigma\sigma}^{\epsilon}$.

▶ Perform a similar study for the mixed correlation function

$$\langle \sigma(\infty)\sigma(1)\mu(z,\bar{z})\mu(0)\rangle$$

Find the conformal blocks in the channel $z \to 1$, and identify their internal dimensions. Compute the OPE coefficients $C^{\psi}_{\sigma\mu}$ and $C^{\bar{\psi}}_{\sigma\mu}$.