The conformal bootstrap for the Ising model

1 Kramers-Wannier duality and disorder operators

Consider the Ising model on a domain of the square lattice \mathcal{L}, where each spin $\sigma_{i}= \pm 1$, and with Boltzmann weights:

$$
\begin{equation*}
W[\sigma]=\prod_{\langle i j\rangle} e^{J \sigma_{i} \sigma_{j}} \tag{1}
\end{equation*}
$$

where the product is over all nearest neighbour pairs $\langle i j\rangle$, and J is the coupling constant. We will denote by V the number of vertices (or sites) of the domain, and by E the number of edges.

Using the identity

$$
\begin{equation*}
e^{J \sigma_{i} \sigma_{j}}=\cosh J+\sinh J \sigma_{i} \sigma_{j}=\sum_{k=0,1} x_{k}\left(\sigma_{i} \sigma_{j}\right)^{k}, \tag{2}
\end{equation*}
$$

where $x_{0}=\cosh J$ and $x_{1}=\sinh J$, we can rewrite the partition as

$$
\begin{equation*}
Z(\mathcal{L}, J)=\sum_{\left\{\sigma_{i}\right\}} \prod_{\langle i j\rangle} \sum_{k=0,1} x_{k}\left(\sigma_{i} \sigma_{j}\right)^{k}=\sum_{\left\{\sigma_{i}\right\}} \sum_{\left\{k_{i j}\right\}} \prod_{\langle i j\rangle} x_{k_{e}}\left(\sigma_{i} \sigma_{j}\right)^{k_{i j}} . \tag{3}
\end{equation*}
$$

- Perform the sum over the original spin variables $\left\{\sigma_{i}\right\}$, and show that the allowed configurations for the $k_{i j}$'s are those which satisfy the condition

$$
\begin{equation*}
\forall i, \quad \sum_{\langle i j\rangle} k_{i j} \equiv 0 \quad \bmod 2, \tag{4}
\end{equation*}
$$

where the sum runs over the nearest neighbours j of the site i. Show that, as a consequence, the partition function can be written as

$$
\begin{equation*}
Z(\mathcal{L}, J)=2^{V-1} A^{E} \sum_{\left\{q_{\alpha}\right\}} \prod_{\langle\alpha \beta\rangle} e^{\widehat{J} q_{\alpha} q_{\beta}}, \tag{5}
\end{equation*}
$$

where the q_{α} 's are Ising spins living at the middle of the faces of \mathcal{L}. Find the value of the constants $A(J)$ and \widehat{J}. This transformation is called Kramers-Wannier duality. Argue that the critical point is such that $J=\widehat{J}$, and find the critical value of J.

Consider the disorder operator μ_{α} which inserts the extremity of a path γ at the middle of the face α, so that the Boltzmann weights are modified by $J \mapsto-J$ for all edges $\langle i j\rangle$ crossing the path γ. For instance, the two-point function of disorder operators reads

$$
\begin{equation*}
\left\langle\mu_{u} \mu_{v}\right\rangle=\frac{1}{Z(\mathcal{L}, J)} \sum_{\left\{\sigma_{i}\right\}} \prod_{\langle i j\rangle \notin \gamma^{\perp}} e^{J \sigma_{i} \sigma_{j}} \prod_{\langle i j\rangle \in \gamma^{\perp}} e^{-J \sigma_{i} \sigma_{j}}, \tag{6}
\end{equation*}
$$

where γ^{\perp} denotes the set of edges crossing the path γ.

- Show that $\left\langle\mu_{u} \mu_{v}\right\rangle$ is independent of the choice of the path γ. Perform the Kramers-Wannier duality on this two-point function. Generalise to n-point functions of disorder operators.
- In the scaling limit, for a system defined on the full plane, compute the twopoint functions $\left\langle\sigma\left(r_{1}\right) \sigma\left(r_{2}\right)\right\rangle$ and $\left\langle\mu\left(r_{1}\right) \mu\left(r_{2}\right)\right\rangle$, using your knowledge on the Ising CFT. Consider a mixed correlation function

$$
\begin{equation*}
\left\langle\sigma\left(r_{1}\right) \ldots \sigma\left(r_{n}\right) \cdot \mu\left(r_{1}^{\prime}\right) \ldots \mu\left(r_{m}^{\prime}\right)\right\rangle \tag{7}
\end{equation*}
$$

What is the behaviour of this function as r_{i} winds around r_{j}^{\prime} ? Consider the OPE of σ and μ : argue that it should contain a holomorphic operator ψ and an antiholomorphic operator $\bar{\psi}$, and give the conformal dimensions of these operators.

2 Correlation functions

We want to analyse the correlation function of spin operators

$$
\begin{equation*}
F(z, \bar{z})=\langle\sigma(\infty) \sigma(1) \sigma(z, \bar{z}) \sigma(0)\rangle . \tag{8}
\end{equation*}
$$

Since σ is degenerate at level $2, F$ satisfies a differential equation deriving from the null-state equation. We admit that the precise form of this differential equation is

$$
\begin{equation*}
\left[\frac{4}{3} \partial_{z}^{2}+\frac{1-2 z}{z(1-z)} \partial_{z}-\frac{1}{16 z^{2}(1-z)^{2}}\right] F(z, \bar{z})=0 \tag{9}
\end{equation*}
$$

We want to find a basis of holomorphic solutions of the form

$$
\begin{equation*}
F(z)=z^{\lambda} \sum_{n=0}^{\infty} a_{n} z^{n} . \tag{10}
\end{equation*}
$$

- Express the differential equation in terms of the operator $\theta=z \partial_{z}$, find the two possible values for λ, and derive the recursion relation for the coefficients a_{n}.

The basis of holomorphic solutions constructed above corresponds to the conformal blocks of $\langle\sigma \sigma \sigma \sigma\rangle$ in the channel $z \rightarrow 0$. We give the explicit form of these conformal blocks (NB: they do not obey the standard normalisation)

$$
\begin{equation*}
I_{1}(z)=\frac{\sqrt{1+\sqrt{1-z}}}{z^{1 / 8}(1-z)^{1 / 8}}, \quad I_{2}(z)=\frac{\sqrt{1-\sqrt{1-z}}}{z^{1 / 8}(1-z)^{1 / 8}} \tag{11}
\end{equation*}
$$

- Find the internal primary operators in these conformal blocks. Arguing on the monodromies of $I_{1}(z), I_{2}(z)$ around $z=0$ and $z=1$, construct the physical correlation function $F(z, \bar{z})$. Derive the OPE coefficient $C_{\sigma \sigma}^{\epsilon}$.
- Perform a similar study for the mixed correlation function

$$
\langle\sigma(\infty) \sigma(1) \mu(z, \bar{z}) \mu(0)\rangle .
$$

Find the conformal blocks in the channel $z \rightarrow 1$, and identify their internal dimensions. Compute the OPE coefficients $C_{\sigma \mu}^{\psi}$ and $C_{\sigma \mu}^{\bar{\psi}}$.

