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Lecture 1

Critical Phenomena and Scale
Invariance

1.1 Phase transitions

1.1.1 First- and second-order transitions

Let us start by considering a sample of material in a definite physical phase, with homoge-
neous measurable properties: density, elasticity, magnetisation, etc. Any measure of these
quantities, performed anywhere in the sample, should give the same result. Hence, if the
sample has the shape of an L×L×L cube, a portion of size L

2 ×
L
2 ×

L
2 should have the same

properties. If we iterate this procedure, we finally reach a scale where all the elementary
constituents are correlated, and the above argument is not valid anymore. This scale is
called the correlation length, and we will denote it by ξ. For example, in a crystal, ξ is
usually of the order of a few interatomic spacings. The correlation length depends on the
external parameters (pressure, temperature, magnetic field, etc.). An order parameter
is defined as a local quantity which characterises the phases of the system, i.e. whose
values are different from one phase to another. Examples : the local density of a fluid,
the (components of) local magnetisation in a magnet, etc.

When one or several external parameters are varied, the properties of the material
may change drastically: this is called a phase transition. We distinguish two types of

solid
liquid

gas

T

P

Figure 1.1: The phase diagram of water. The critical point is indicated by a black dot.
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phase transitions:

• A phase transition is of first order if the two phases remain different at the transition.
An example is the liquid-gas transition of water at 100○C. The order parameter (in
the case of water, the local density ρ) is discontinuous at the phase transition. In this
case, the two phases coexist at the transition, and an extensive amount of energy
(latent heat) must be exchanged with the environment during the transition. This
reflects the fact that, when the two phases coexist, the respective spatial domains of
each phase have a definite size: the correlation length ξ remains finite at a first-order
transition. In the example of water, ξ is the average size of liquid droplets which
coexist with the gas phase during the transition.

• A phase transition is of second order if the two phases become identical at the
transition, and hence all the order parameters are continuous. This is the case for
the critical endpoint of the liquid-gas transition of water, at temperature 374○C and
pressure 218 atm. When approaching this point along the transition line, the latent
heat vanishes. In the vicinity of the critical point, liquid droplets of various scales
appear, up to the size of the sample. The correlation length diverges at a second-
order transition. As a consequence, for a large range of spatial scales, the spatial
distribution of physical properties (e.g. the local density) is self-similar : it remains
unchanged as one “zooms” into a subregion. The system displays scale invariance
at a second-order transition.

Let us make the notion of scale invariance more precise, by discussing order parameters
and their correlation functions. Let us consider a system in dimension d, close to a
second-order phase transition, and denote the order parameter generically by S(r). From
mean-field arguments [neglecting local fluctuations of S(r)] one may show that, at short
distances, the two-point correlation function G(r) obeys a Laplace equation, and therefore
it scales as G(r) ∝ 1/rd−2. To take spatial fluctuations into account, we should assume
that G(r) depends non-trivially on the ratios r/ξ and a/ξ, where a is the microscopic
distance:

G(r) ∶= ⟨S(0)S(r)⟩ =
1

rd−2
f(r/ξ, a/ξ) . (1.1.1)

Now suppose that f vanishes as a power law in its second argument: f(u, v)∝v→0 vη, and
compute the susceptibility χ, in the regime a≪ ξ.

χ = ∫ ddrG(r) = ∫
ddr

rd−2
f(r/ξ, a/ξ) = ξ2

∫
ddu

ud−2
f(u, a/ξ)∝ ξ2−η aη . (1.1.2)

The exponent η is called the anomalous dimension.

In this course, we shall concentrate on second-order phase transitions. The central task
of the course will be to characterise the various classes of second-order phase transitions by
determining scaling exponents such as η, and multipoint correlation functions like G(r).

1.1.2 Spontaneous symmetry breaking

Consider a material whose internal interactions enjoy some (discrete or continuous) sym-
metry for any value of the external parameters. We shall illustrate this situation on the
example of a magnetic system, described by the canonical ensemble, with temperature T
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and external magnetic field H. In the canonical ensemble (also called Gibbs measure),
the probability of a spin configuration [S] = {S(r)} is given by:

PT,H[S] =
1

Z(T,H)
× exp(−

Hint[S] +H ∫ ddr S(r)

kBT
) , (1.1.3)

where Hint[S] is the classical Hamiltonian encoding the interactions between the spins.
The external magnetic field couples to the total magnetisation M = ∫ ddrS(r). Let us
consider the case when this interaction is symmetric under spin reversal:

Hint[S] = Hint[−S] (1.1.4)

We assume moreover that the interaction is ferromagnetic, i.e. it favours the configura-
tions where neighbouring spins are aligned. For any spatial dimension d > 1, one observes
experimentally or numerically the following phase diagram:

T

H

ferromagnetic

Tc

paramagnetic

paramagnetic

0

In the H > 0 (resp. H < 0) half-plane, the system is in a paramagnetic phase, and the
total magnetisation M is positive (resp. negative). For H = 0 and T > Tc, the system is
in a disordered phase, with M = 0. Along the line 0 < T < Tc at H = 0, the system is in
a ferromagnetic phase, i.e. it has a non-zero total magnetisation ±M0. The latter is a
symmetry-broken phase: although the Hamiltonian Hint is symmetric under spin reversal,
the state of the system is not symmetric. This ferromagnetic line represents a first-order
phase transition between the two paramagnetic phases, because the order parameter M
is discontinuous across the transition: it goes from +M0 to −M0 as H changes sign. Note
that M0 → 0 as T → Tc along this line. In contrast, at the critical point (T = Tc,H = 0)
the system goes through a second-order phase transition as T is varied.

We have described above the simplest example of symmetry breaking in a spin system,
where the symmetry group is Z2. Note that other discrete or continuous symmetry groups
may give rise to symmetry-broken phases.

1.1.3 Critical exponents

The above example of magnetic systems is convenient to introduce scaling exponents. We
first introduce the reduced temperature and magnetic field:

t ∶=
T − Tc
Tc

, h ∶=
H

kBTc
. (1.1.5)

Let us list the most common critical exponents, defined by the behaviour of the system
in the vicinity of the critical point:
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• The specific heat C = dF
dT ∝ ∣t∣−α.

• The spontaneous magnetisation M0 = limH→0+M ∝ ∣t∣β for t < 0.

• The zero-field susceptibility χ∝ ∣t∣−γ.

• The magnetisation at critical temperature M ∝ ∣h∣1/δ.

• The divergence of the correlation length ξ ∝ ∣t∣−ν .

• The anomalous dimension at the critical point G(r) = ⟨S(0)S(r)⟩∝ 1/∣r∣d−2+η.

1.1.4 Simple lattice models

To describe a phase transition, one considers a discrete model as simple as possible to allow
some computations (sometimes up to a complete solution), but with enough ingredients
to capture the important features of the transition. Moreover, even when the degrees
of freedom are of quantum nature (e.g. atomic spins in a crystal), in many cases one
may still capture the essential physical features by considering a classical discrete model,
i.e. by neglecting the quantum fluctuations at ordinary temperatures. Furthermore, in
the case of spin systems, one may simplify the model even more by only including the
(classical) fluctuations of one component of the spin. This gives rise to the Ising model,
with Hamiltonian:

H[S] = −∑
i,j

JijSiSj −H∑
i

Si , (1.1.6)

where [S] denotes a configuration of spins with values Si = ±1, living on the sites of some
regular lattice, representing the position of nuclei of the crystal. The set of parameters Jij
are the coupling constants, which determine the interaction between spins. A standard
choice (which is the only one we shall discuss in this course) is to set

Jij =

⎧⎪⎪
⎨
⎪⎪⎩

J if i and j are adjacent sites ,

0 otherwise.
(1.1.7)

This defines the nearest-neighbour Ising model:

HIsing[S] = −J ∑
⟨i,j⟩

SiSj −H∑
i

Si , (1.1.8)

where ⟨i, j⟩ denotes adjacent sites on the lattice. This model has an internal Z2 symmetry
(global spin reversal Si ↦ −Si). When the lattice is regular, the model also enjoys trans-
lation invariance. In the scaling limit, it exhibits the behaviour described in Sec. 1.1.2,
with a Z2 broken symmetry phase ending at a second-order critical point.

Various generalisations of the Ising model may be considered. Clock models are clas-
sical spin models where the degrees of freedom can take N values equally spaced on the
unit circle, with an interaction invariant under global spin rotation and spin reversal. The
internal symmetry group is then DN , the dihedral group. It is convenient to introduce
ω = e2iπ/N , and to use complex notations for the spins Si ∈ {1, ω, . . . , ωN−1}. A generic
nearest-neighbour interaction can be written as:

Hclock = −∑
⟨i,j⟩

N−1

∑
k=1

Jk
2
(Ski S

−k
j + S−ki S

k
j ) . (1.1.9)
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These models have a richer phase diagram than Ising: in particular, there can be more
than two ordered phases. For N = 2 one recovers the Ising model.

Another way of generalising the Ising model is to consider n-dimensional vector spin
variables Si living on the sphere S2

i = 1, with an interaction invariant under global spin
rotation. The internal symmetry group is then O(n), the group of isometric linear trans-
formations. A generic nearest-neighbour Hamiltonian will be of the form:

HO(n) = −∑
⟨i,j⟩

∞
∑
k=1

Jk (Si ⋅Sj)
k . (1.1.10)

An important difference with the Ising model is that the internal symmetry group is
continuous (and unitary). As a consequence, from the Mermin-Wagner theorem, in two
spatial dimensions there cannot be a broken-symmetry phase. The case n = 2 is of specific
importance: it is usually called the XY model. It exhibits a peculiar type of phase
transition, called the Berezinskii–Kosterlitz–Thouless transition. The XY model may be
obtained as the N →∞ limit of a ZN clock model.

1.2 The Renormalisation Group

1.2.1 Block-spin variables

The Renormalisation Group (RG), as applied to problems of Statistical Mechanics, is
considered in this course as a conceptual framework for the physical theory of critical
phase transitions. The main ideas may be exposed by considering the example of block-
spin transformations on the Ising model. We start with the Ising model with spin variables
Si = ±1 on a regular lattice of mesh size a, with an interaction defined by the Hamiltonian
H[S]. We set some rescaling factor λ > 1 (practically, λ is a positive integer), and we form
blocks of nb = λd neighbouring variables, which we replace by block-spin variables S′α = ±1,
using some definite rule. This will result in an Ising model on a lattice of mesh λa, with
a new Hamiltonian H′[S′]. Let us explain how this new Hamiltonian is defined. Let α

denote a block of nb spins, and (S
(α)
1 , . . . S

(α)
nb ) be the set of original variables included in

this block. The block-spin rule can be encoded by some function µ :

µ ∶

⎧⎪⎪
⎨
⎪⎪⎩

{+1,−1}nb → {+1,−1}

(S
(α)
1 , . . . S

(α)
nb ) ↦ S′α .

(1.2.1)

We want the Boltzmann weights on block-spin variables to be formed by the sum over
internal degrees of freedom in each block:

e−H
′[S′] ∶=∑

[S]
∏
α

δ[S′α − µ(S
(α)
1 , . . . S

(α)
nb )] e−H[S] . (1.2.2)

Note that we have absorbed the inverse temperature β = 1/kBT into the definition of H.
By construction, the partition function is invariant under this process:

Z =∑
[S]
e−H[S] = ∑

[S′]
e−H

′[S′] . (1.2.3)
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Any correlation function which depends only on block-spin variables is also left invariant:

1

Z
∑
[S]
A[µ(S

(α)
1 , . . . S

(α)
nb ), µ(S

(β)
1 , . . . S

(β)
nb ), . . . ]e−H[S] =

1

Z
∑
[S′]
A(S′α, S

′
β, . . . )e

−H′[S′] .

(1.2.4)
However, some information is lost during the process, since the internal degrees of freedom
of each block are summed over, and replaced by a single spin variable S′α : the new Hamil-
tonian is a coarse-grained version of the original one, sharing the same internal symmetry
group – Z2 in the Ising case. Even if the original Hamiltonian has only nearest-neighbour
interactions, the new Hamiltonian may include more general interactions. Generically, if
we take the original (reduced) Hamiltonian to be of the form:

H = −∑
⟨i,j⟩

K1SiSj − ∑
⟨⟨i,j⟩⟩

K2SiSj − . . . (1.2.5)

where ⟨i, j⟩ denotes a pair of nearest-neighbour sites, ⟨⟨i, j⟩⟩ a pair of next-nearest neigh-
bours, etc. and we denote by K = (K1,K2, . . . ) the set of coupling constants, then we
expect H′ to be of the same form as H, with different values of the coupling constants
K ′ = (K ′

1,K
′
2, . . . ) = R(K). The map R is called the renormalisation group (RG) trans-

formation. When the RG procedure is iterated, the vector K converges to some attractive
fixed point of R, which corresponds to a physical phase of the system. The regions of
attraction of different phases are typically separated by transition lines.

1.2.2 Qualitative RG flow for Ising with d > 1

The above 1d example is very special, because, up to a constant term in the Hamil-
tonian, the interaction remains of the same form after an RG transformation: it only
has nearest-neighbour interaction, with a single parameter K. In higher dimensions, RG
transformations typically give rise to more complicated interactions, and in most cases
they cannot be treated by an exact computation. The basic reason is that a spin Si at
the boundary of a block α may interact with several neighbouring blocks β, γ, . . . When
summing over this Si, one typically produces interactions between α and its neighbours,
but also between, say, β and γ, which may not be adjacent to one another.

In the case of the zero-field Ising model, we assume that the scaling behaviour can
still be analysed by looking only at the RG flow for the nearest-neighbour coupling K.
The RG flow consistent with the phase diagram described above for the Ising model with
dimension d > 1 is:

disordered

K = 0

ordered

K = ∞K∗

critical

The regions 0 ≤K <K∗ and K∗ <K ≤∞ correspond respectively to the disordered and
ferromagnetic phases. The repulsive fixed point is the critical point where a second-order
transition occurs. Although we do not have an exact expression for the RG transformation,
we can still analyse the divergence of the correlation length in the vicinity of the critical
point.

Let us define the RG exponent y as:

y ∶=
log ∣[ dR

dK
]
K∗ ∣

logλ
, so that ∣[

dR

dK
]
K∗

∣ = λy . (1.2.6)
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Since K∗ is a repulsive fixed point, we have ∣dR/dK ∣ > 1. By construction, the scaling
factor always satisfies λ > 1. Hence, y > 0 for a repulsive RG fixed point. When we
linearise the RG transformation for K ≃K∗, we get

K ′ =R(K) =K∗ +
dR

dK
(K −K∗) ⇒ ∣K ′ −K∗∣ = λy ∣K −K∗∣ . (1.2.7)

The correlation length is always rescaled as ξ(K ′) = ξ(K)/λ. After p iterations, starting
from some value K(0), we get

∣K(p) −K∗∣ = λpy ∣K(0) −K∗∣ , ξ(K(p)) =
K(0)

λp
. (1.2.8)

Eliminating p between these equations, for any K =K(p) we get the relation

ξ(K)∝ ∣K −K∗∣−1/y . (1.2.9)

Hence, the correlation exponent ν is simply given by the inverse of the RG exponent y:

ν =
1

y
. (1.2.10)

1.3 Scale invariance

1.3.1 Scaling variables and scaling operators

Let us now consider the general situation of an RG fixed point K∗ = (K∗
1 ,K

∗
2 , . . . ) in

the multidimensional space of parameters. In the vicinity of K∗, when we apply the RG
tranformation K ′ =R(K), we get the linear approximation:

K ′
a −K

∗
a =∑

b

∂K ′
a

∂Kb

∣
K∗

(Kb −K
∗
b ) . (1.3.1)

Let Jab = ∂K ′
a/∂Kb be the Jacobian matrix at K = K∗, and {ej} the left eigenvectors of

J , with eigenvalues {µj}:
∀j , etj J = µj e

t
j . (1.3.2)

We assume that all the eigenvalues µj are positive1. From these objects, we define the
scaling variables {uj} and the associated RG exponents {yj}:

uj ∶= e
t
j ⋅ (K −K∗) , yj ∶=

logµj
logλ

. (1.3.3)

In the vicinity of the critical point K∗, the scaling variables transform under an RG
iteration of factor λ as:

u′j = λ
yj uj . (1.3.4)

The physical properties of the critical point depend on the signs of the exponents yj:

• If yj > 0, the scaling variable uj is relevant. A small deviation of uj from the critical
value u∗j = 0 drives the system away from the fixed point.

1If some negative eigenvalues µj appear, we can apply the RG tranform twice, and redefine J →
J2, λ→ λ2, so that all eigenvalues become positive.
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K1

K2

Figure 1.2: An example of RG flow in two-parameter space, in the case of a fixed point
with one relevant eigenvalue and one irrelevant eigenvalue of the RG operator R.

• If yj < 0, the scaling variable uj is irrelevant. A small deviation of uj from zero is
destroyed under the RG, and leaves the system at its critical point.

• If yj = 0, the scaling variable uj is marginal. More detailed analysis is required
to predict the phase diagram. In typical situations, a critical line of fixed points
parameterised by uj passes through K∗.

The general structure of the RG flow in the vicinity of K∗ can be inferred simply from
the signs of the yj’s: see Fig. 1.2.

Consider the set of parameters {Ka} of the Hamiltonian, and denote {Sa} the associ-
ated operators. Let {fj} be the right eigenvectors of the matrix (Jab) defined in Sec. 1.3.1,
so that the bases {ej} and {fj} are dual to one another. We can write the coupling terms
as

∑
a

(Ka −K
∗
a )Sa =∑

j

ujŜj , where Ŝj ∶=∑
a

(fj)a Sa . (1.3.5)

The operators Ŝj are called scaling operators.

1.3.2 Scaling of correlation functions

Let us now study how correlation functions transform under an RG iteration. We first
look at the correlation functions of spin operators in a magnetic system, on the domain
D ∩ aZd. It is convenient to introduce a non-uniform magnetic field h(r), and to assume
that the spatial variations of this field are small enough, so that it transforms locally as
a uniform field under RG:

h(r)→ h′(r′) = λyh h(r) . (1.3.6)

The n-point correlation function reads

GK,a(r1, . . . , rn) = ⟨S(r1) . . . S(rn)⟩K,D∩aZd =
∂n logZK,a[h]

∂h(r1) . . . ∂h(rn)
. (1.3.7)

The partition function
ZK,a[h] =∑

[S]
e−HK,a[S]+∑r h(r)S(r) (1.3.8)
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is preserved by the RG transformation, and thus we have

GK′,λa(r
′
1, . . . r

′
n) =

∂n logZK′,λa[h′]

∂h′(r′1) . . . ∂h
′(r′n)

=
∂n logZK,a[h]

∂h′(r′1) . . . ∂h
′(r′n)

. (1.3.9)

In each block labelled by the position r′j = rj/λ, there are λd original spins, and we assume
that they all couple equally to the local magnetic field h′(r′j). Hence, each derivative
∂/∂h′(r′j) acts as λd × λ−yh × ∂/∂h(rj) on ZK,a[h]. As a result, we obtain the identity:

GK′,λa(r1/λ, . . . rn/λ) = λ
n∆hGK,a(r1, . . . , rn) , ∆h ∶= d − yh . (1.3.10)

In particular, at the critical point K =K∗, we get GK,a ∝ an∆h . To get a finite correlation
function as a→ 0, we introduce the renormalised scaling operator for physical coordinates
r ∈ Rd:

s(r) ∶= const × lim
a→0

[a−∆hS(r/a)] , (1.3.11)

where the constant is chosen so that ⟨s(r)s(0)⟩Rd ∼ 1/r2∆h as r → ∞. From the RG
relation (1.3.10), and using the fact that the domain D ∩ λaZd is trivially equivalent to
D/λ ∩ aZd, we get the scale covariance relation:

⟨s(r1) . . . s(rn)⟩K∗,D = λ−n∆h⟨s(r1/λ) . . . s(rn/λ)⟩K∗,D/λ . (1.3.12)

From a straightforward generalisation of the above argument, the critical correlation
functions have the scale covariance property at the critical point:

⟨O1(r1) . . .On(rn)⟩K∗,D = (
n

∏
j=1

λ−∆j) ⟨O1(r1/λ) . . .On(rn/λ)⟩K∗,D/λ , (1.3.13)

where the scaling dimensions are given by

∆j = d − yj , (1.3.14)

and the renormalised scaling operators Oj(r) are given by

Oj(r) ∶= const × lim
a→0

[a−∆j Sj(r/a)] . (1.3.15)

The relation (1.3.13) can be expressed compactly by saying that the scaling operator Oj
transforms as

Oj(r)→ λ−∆j Oj(r/λ) (1.3.16)

under a scale transformation r ↦ r/λ.

As an immediate consequence, the two-point function of a rotationally invariant scaling
operator Oj on the full Euclidean space is of the form ⟨Oj(r1)Oj(r2)⟩Rd = const/∣r1−r2∣

2∆j .
By convention, the normalisation of scaling operators is chosen so that

⟨Oj(r1)Oj(r2)⟩ =
1

∣r1 − r2∣
2∆j

. (1.3.17)

We thus see that Oj has an anomalous dimension ηj = d + 2 − yj.
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Remark. In the vicinity of the critical point, if all relevant parameters are set to their
critical value except t, the identity (1.3.10) imposes a scaling form for G:

G(r1, . . . , rn∣t) = ξ
−n∆h ΨS(r1/ξ, . . . , rn/ξ) , ξ ∝ t−ν , (1.3.18)

where we have used ν = 1/yt. Similarly, if a single relevant parameter t is slightly different
from its critical value t∗ = 0, we have the scaling form:

⟨O1(r1) . . .On(rn)⟩t = (
n

∏
j=1

ξ−∆j)Ψ(r1/ξ, . . . , rn/ξ) , ξ ∝ t−ν . (1.3.19)

1.4 Conformal invariance

1.4.1 Conformal mappings

In the previous section, we have seen from RG arguments that, at the critical point,
correlation functions of scaling operators are expected to be covariant under scale trans-
formations: see (1.3.13). The basic assumption of CFT is that this property extends to
more general space transformations: the conformal maps, i.e. the diffeomorphisms which
locally preserve angles. Let us give here a heuristic description of conformal mappings –
their formal definitions and properties will be treated in detail in Chapter 2.

We start with conformal maps from the full Euclidean space Rd to itself: they are called
global conformal maps. In fact, we shall work with the compactified space Rd ∪ {∞}. For
instance, in two dimensions, the compactified plane R2 ∪ {∞} is diffeomorphic to the
sphere, through the stereographic projection. In general dimension d, one can show that
any global conformal map is a composition of:

• Translations

• Dilatations

• Rotations

• The inversion map I ∶ r ↦ r′ = r/∣r∣2.

Exercise. The goal is to show that the inversion map locally preserves angles. Consider
three points a, b = a + ε, c = a + δ, with ε and δ two independent infinitesimal vectors. We
call a′, b′, c′ the images of a, b, c, and we define ε′ = b′ − a′ and δ′ = c′ − a′. Compute ε′ and
δ′ at order one in ε and δ. Compare the quantities ε ⋅ δ/(∣ε∣ ∣δ∣) and ε′ ⋅ δ′/(∣ε′∣ ∣δ′∣).

A generic conformal transformation is defined as a diffeomorphism from one domain
D ⊂ Rd to another domain D′, which locally preserves angles. Consider an infinitesimal
volume element dr1 . . . drd located at position r. Under a conformal transformation r ↦ r′,
the volume element is subject to a translation by (r′−r), followed by a linear transforma-
tion which preserves angles, i.e. an orthogonal transformation, composed of a dilatation
and a rotation. As a result, the infinitesimal volume element transforms as

dr1 . . . drd → λ(r)d dr′1 . . . dr
′
d , (1.4.1)

12



where the dilatation factor λ(r) is related to the Jacobian as

λ(r) = [det(
∂r′µ
∂rν

)]

−1/d

. (1.4.2)

This situation can be visualised by choosing a regular lattice in D, and examining its image
under the conformal transformation. An example is given below in two dimensions, with
the conformal mapping from the upper half plane H to the unit disc D:

⎧⎪⎪
⎨
⎪⎪⎩

H → D
z ↦ w(z) = z−i

z+i .
(1.4.3)

The square lattice on H is mapped to the deformed grid in D illustrated here:

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9  10

Ð
→

-1

 0

 1

-1  0  1
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When the lattice step a tends to zero, the image of an elementary square cell located at
position z becomes a square located at position w(z), of side a × ∣dw/dz∣.

1.4.2 Primary operators

We are now in the position to present the main assumption of conformal field theory: we
expect that, at the critical point, there exists a collection of scaling operators, called the
primary operators, whose correlation functions obey a covariance equation generalising
(1.3.13) to any conformal mapping. If the domains D and D′ are related by a conformal
mapping:

⎧⎪⎪
⎨
⎪⎪⎩

D → D′

r ↦ r′ ,
(1.4.4)

and φ1, . . . φn are scalar primary operators with scaling dimensions ∆1, . . . ,∆n, then we
have the identity:

⟨φ1(r1) . . . φn(rn)⟩D =
⎛

⎝

n

∏
j=1

∣
∂r′j
∂rj

∣

∆j/d⎞

⎠
⟨φ1(r

′
1) . . . φn(r

′
n)⟩D′ , (1.4.5)

where ∣∂r′/∂r∣ denotes the determinant of the Jacobian matrix of the map (1.4.4), and
the local scaling factor is λ(r) = ∣∂r′/∂r∣−1/d. It is important to stress that, on both sides
of (1.4.5), the average values correspond to the continuum limit of the domains D and
D′ with the same lattice discretisation: if the RHS is the continuum limit of, say, the
square lattice Ising model, then the lattice model corresponding to the LHS also lives
on the square lattice, not its image by the conformal mapping. The relation (1.4.5) is
summarised by saying that each primary operator transforms as

φj(r)→ ∣
∂r′

∂r
∣

∆j/d
φj(r

′) (1.4.6)

inside a correlation function. This assumes that the φj’s are scalar under rotations. Non-
scalar operators will be described in the two-dimensional case.

Remark 1. Note that not all operators are primary. For instance, if φj is a primary
operator, then ∂µφj is not a primary in general, since

∂µφj(r)→ λ(r)−∆j∂µr
′ν ∂′νφj(r

′) −∆j ∂µλ(r)λ(r)
−∆j−1 φj(r

′) , (1.4.7)

and the second term is not a derivative of φj.

Remark 2. A larger class of operators is given by the quasi-primary operators, for which
one imposes the covariance relation (1.4.5) only for global conformal mappings, i.e. in the
case D = D′ = Rd, where the conformal map is a composition of translations, dilatations,
rotations and special conformal transformations. Of course, any primary operator is also
quasi-primary.
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Remark 3. Using the inversion map, one can easily show that, for fixed r2, . . . , rn, the
correlation function ⟨φ1(r1) . . . φn(rn)⟩ scales as ∣r1∣

−2∆1 when r1 → ∞. Hence, to define
the correlation functions on the compactified space Rd∪{∞}, we introduce the convention

⟨φ1(∞)φ2(r2) . . . φn(rn)⟩Rd ∶= lim
R→∞

[∣R∣2∆1 × ⟨φ1(R)φ2(r2) . . . φn(rn)⟩Rd] , (1.4.8)

for any primary or quasi-primary operators φ1, . . . , φn.

Two-point and three-point functions of primary operators. Let φ1, φ2 be two
primary operators. Using a translation, followed by a dilatation and a rotation, one can
write

⟨φ1(r1)φ2(r2)⟩Rd = ⟨φ1(r1 − r2)φ2(0)⟩Rd = ∣r1 − r2∣
−∆1−∆2 ⟨φ1(u)φ2(0)⟩Rd , (1.4.9)

where u is an arbitrary unit vector. If, instead, we first apply an inversion, we get

⟨φ1(r1)φ2(r2)⟩Rd = ∣r1∣
−2∆1 ∣r2∣

−2∆2 ⟨φ1(r
′
1)φ2(r

′
2)⟩Rd

= ∣r1∣
−2∆1 ∣r2∣

−2∆2 ∣r′1 − r
′
2∣
−∆1−∆2 ⟨φ1(u)φ2(0)⟩Rd

= (∣r1∣/∣r2∣)
∆1−∆2 ∣r1 − r2∣

−∆1−∆2 ⟨φ1(u)φ2(0)⟩Rd , (1.4.10)

where we have denoted r′j = rj/∣rj ∣
2, and we have used the identity

∣r′1 − r
′
2∣ =

∣r1 − r2∣

∣r1∣ ∣r2∣
. (1.4.11)

As a result, we get

⟨φ1(r1)φ2(r2)⟩Rd =

⎧⎪⎪
⎨
⎪⎪⎩

const × ∣r1 − r2∣
−2∆1 if ∆1 = ∆2 ,

0 otherwise.
(1.4.12)

By convention we choose the normalisation of primary operators so that

⟨φj(r1)φj(r2)⟩Rd =
1

∣r1 − r2∣
2∆j

. (1.4.13)

Using a similar argument, we get the three-point function of scalar primary operators:

⟨φ1(r1)φ2(r2)φ3(r3)⟩Rd =
C123

∣r1 − r2∣
∆3

12 ∣r1 − r3∣
∆2

13 ∣r2 − r3∣
∆1

23

, (1.4.14)

with the notation ∆k
ij = ∆i + ∆j − ∆k. The constant C123 cannot be set to an arbitrary

value, because the primary operators are already normalised by their two-point function.
This constant is given by

C123 = ⟨φ1(0)φ2(u)φ3(∞)⟩Rd , (1.4.15)

for any unit vector u. Higher correlation functions (four-point, five-point . . . ) of primary
operators are more complicated objects, and their spatial dependence is not immediately
determined by conformal covariance. A much deeper analysis is needed to compute them.
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1.4.3 The two-dimensional case

Throughout this course, we shall concentrate on the case d = 2. We introduce the complex
coordinates:

z = r0 + ir1 , z̄ = r0 − ir1 . (1.4.16)

The associated derivatives read:

∂ ∶=
∂

∂z
=

1

2
(
∂

∂r0
− i

∂

∂r1
) , ∂̄ ∶=

∂

∂z̄
=

1

2
(
∂

∂r0
+ i

∂

∂r1
) . (1.4.17)

In two dimensions, the global conformal maps take the form of Möbius transformations,
which read in complex coordinates

z ↦
az + b

cz + d
, (1.4.18)

where a, b, c, d are complex constants conventionnally normalised so that ad − bc = 1.
These transformations form a group, isomorphic to the special linear group SL(2,C) of
2 × 2 complex matrices with determinant one.

To emphasize the fact that (correlation functions of) a scaling operator O typically
have nonzero derivatives ⟨∂O . . . ⟩ ≠ 0 and ⟨∂̄O . . . ⟩ ≠ 0, we shall denote it by O(z, z̄). A
scaling operator is called scalar if it transforms trivially under a rotation θ, i.e. O(z, z̄)→
O(eiθz, e−iθz̄) in a correlation function. Non-scalar operators are those which transform
as

O(z, z̄)→ e−iθsO(eiθz, e−iθz̄) , (1.4.19)

where the real number s is called the conformal spin. Hence, a general scaling operator
Oj is characterised by its scaling dimension ∆j and its conformal spin sj. Alternatively,
we shall use the conformal dimensions, defined as

∆j = hj + h̄j , sj = hj − h̄j . (1.4.20)

The conformal covariance relation for general (possibly non-scalar) primary operators now
reads

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)⟩D =

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

(
∂wj
∂zj

)

hj

(
∂w̄j
∂z̄j

)

h̄j⎤⎥
⎥
⎥
⎥
⎦

⟨φ1(w1, w̄1) . . . φn(wn, w̄n)⟩D′ ,

(1.4.21)
where we have considered the conformal map:

⎧⎪⎪
⎨
⎪⎪⎩

D → D′

z ↦ w = w(z) .

In short, we denote

φj(z, z̄)→ (
∂w

∂z
)

hj

(
∂w̄

∂z̄
)

h̄j

φj(w, w̄) . (1.4.22)

Equations (1.4.5) and (1.4.21) are the fundamental relations for primary operators. As
we shall see, they encode a rich symmetry, and it will be the basis for the construction of
CFT.
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Finally, let us give the two- and three-point functions of primary operators in 2d:

⟨φ1(z1, z̄1)φ2(z2, z̄2)⟩C =

⎧⎪⎪
⎨
⎪⎪⎩

(z1 − z2)
−2h1 (z̄1 − z̄2)

−2h̄1 if (h1, h̄1) = (h2, h̄2) ,

0 otherwise.
(1.4.23)

and

⟨φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)⟩C =
C123

z
h3

12
12 z

h2
13

13 z
h1

23
23 × z̄

h̄3
12

12 z̄
h̄2

13
13 z̄

h̄1
23

23

, (1.4.24)

where we have used the notations zij = zi − zj, and hkij = hi + hj − hk, and similarly for z̄ij
and h̄kij.

1.5 Exercises

1.5.1 Decimation procedure in the 1d Ising model

Before we make the RG picture more precise, let us perfom a particular block-spin pro-
cedure, namely the spin decimation, on the one-dimensional case, and compute explicitly
its RG transformation. We start with the 1d Ising Hamiltonian:

H[S] = −∑
j

KSjSj+1 . (1.5.1)

As a first step, we write the exact expansion eKS1S2 = coshK (1+xS1S2), where x = tanhK,
so that the Boltzmann weight reads:

e−H[S] = coshN K ×∏
j

(1 + xSjSj+1) , (1.5.2)

where N is the number of sites of the system. We form blocks of three spins, and we
choose the decimation rule:

µ(S1, S2, S3) ∶= S2 . (1.5.3)

The rescaling factor is thus λ = 3. Let α,β be two adjacent spin blocks. The factors of
e−H[S] involving α and β are

cosh3K × (1 + xS′αS
(α)
3 )(1 + xS

(α)
3 S

(β)
1 )(1 + xS

(β)
1 S′β) . (1.5.4)

Expanding this product and summing over S
(α)
3 and S

(β)
1 , we get

4 cosh3K(1 + x3 S′αS
′
β) =

4 cosh3K

coshK ′ e
−K′S′αS′β , (1.5.5)

where the new coupling constant is given by:

K ′ = tanh−1
(tanh3K) . (1.5.6)

Hence the coarse-grained Hamiltonian is given by

H′[S′] = Nϕ(K) −∑
α

K ′S′αS
′
α+1 , (1.5.7)

where ϕ(K) = 1
3 log(2

√
1 + 3 cosh2 2K). This constant term only plays a role in the nor-

malisation of the partition function. In terms of the variable x = tanhK, the RG transfor-
mation (1.5.6) corresponds to the map x ↦ x′ = x3. The physical range for this variable
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is 0 ≤ x ≤ 1. Let us analyse the behaviour of the system when the RG is iterated many
times. The fixed point x = 0 is attractive, and corresponds to K = 0, i.e. to infinite
temperature. The fixed point x = 1 is repulsive, and corresponds to K = +∞, i.e. zero
temperature. This may be summarised in a diagram of RG flow:

disordered ordered

K = 0 K = ∞

The main idea of the scaling hypothesis is that the large-scale behaviour of the system
is predicted by this RG flow. In this case, the situation is very simple, and does not involve
any phase transition. For any finite value of K, the system remains in the disordered phase
governed by the fixed point K = 0. The other fixed point, K =∞, is instable under RG,
and represents the totally ordered (ferromagnetic) phase.

The correlation length transforms under an RG iteration as a geometric sequence:

ξ(K ′) =
ξ(K)

λ
, tanhK ′ = tanh3K . (1.5.8)

Hence, we may write the correlation length as a function of K along the RG flow:

ξ(K) =
const

∣ log tanhK ∣λ/3
=

const

∣ log tanhK ∣
. (1.5.9)

The correlation length decreases from ξ = ∞ to ξ = 0 along the RG flow. Close to the
repulsive fixed point K =∞, the correlation length diverges as ξ ∝ e2K .

1.5.2 Scaling functions and relations between critical exponents

Let us first discuss the transformation of the free energy density under an RG iteration.
Under the RG transformation K →K ′, the configuration energy may vary by an extensive
amount Nϕ(K), where N is the number of sites of the system:

HK[S]→ H̃K′[S′] = HK′[S′] +Nϕ(K) . (1.5.10)

From the conservation of the partition function

Z(K) =∑
[S]
e−HK[S] = ∑

[S′]
e−H̃K′ [S′] , (1.5.11)

we get the inhomogeneous relation for the free energy density f(K) = −[logZ(K)]/N :

f(K) = λ−d f(K ′) + ϕ(K) . (1.5.12)

Since ϕ(K) must be analytic around K∗, one can construct a regular solution freg

of (1.5.12), say by writing the power series expansion around K∗. Thus the physical
free energy has the form

f(K) = freg(K) + fsing(K) , with fsing(K) = λ−d fsing(K
′) . (1.5.13)
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Consider the situation where only two scaling variables are relevant, and all other
variables are irrelevant. In the case of a magnetic system, suppose we may identify, at
linear order, these variables as the reduced temperature and magnetic field:

ut ∝
T − Tc
Tc

∶= t , uh ∝
H

kbTc
∶= h . (1.5.14)

The singular free energy fsing(ut, uh) then satisfies:

fsing(t, h) = λ
−d fsing(λ

ytt, λyhh) , (1.5.15)

where λ is the scaling factor of an RG iteration. After p iterations, we get

fsing(t, h) = λ
−dp fsing(λ

pytt, λpyhh) . (1.5.16)

We suppose that, close enough to the fixed point, this sequence is interpolated by an RG
flow line (µytt, µyhh) parameterised by the real variable µ:

∀µ > 0 , fsing(t, h) = µ
−d fsing(µ

ytt, µyhh) . (1.5.17)

We want to use this relation, to infer a scaling form for fsing. First, let us fix some
arbitrary value t0. Let (t, h) be some point close to the fixed point. This point sits on
the RG flow line (µytt, µyhh). For µ = (t/t0)−1/yt , we get the point (t0, h(t/t0)−yh/yt) on
the same flow line. We then define the variable:

u(t, h) ∶= h/tyh/yt .

Note that this variable is invariant along the RG flow line. We introduce the scaling
function:

Φ(u) ∶= t
−d/yt
0 fsing(t0, t

yh/yt
0 u) .

From (1.5.17), we get:

fsing(t, h) = t
d/yt ×Φ(

h

tyh/yt
) . (1.5.18)

As a consequence of the scaling form (1.5.18), we can compute the specific heat expo-
nent α as follows:

C =
∂2fsing

∂t2
(t,0)∝ td/yt−2 ⇒ α = 2 − d/yt . (1.5.19)

Similar arguments yield the spontaneous magnetisation and susceptibility exponents in
terms of yt, yh:

β =
d − yh
yt

, (1.5.20)

γ =
2yh − d

yt
. (1.5.21)
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• John Cardy, Scaling and renormalization in statistical physics, Cambridge ; New
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1988.
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Lecture 2

Conformal transformations

In the previous chapter scaling operators were introduced, and it was argued using RG
arguments that (at criticality) correlation functions transform nicely under rescalings
(1.3.13). This means that scaling operators transform covariantly under scale transfor-
mations

O(x)→ λ−∆O(x/λ), for x→ x′ = x/λ a scale transformation (2.0.1)

where ∆ is the scaling dimension of the operator O. We’re going to take a leap and
assume that at criticality the emergent scale invariance is promoted to conformal in-
variance. What might seem at first glance like a very strong assumption is in practice
”always” statisfied, at least for any ”reasonable” system. In particular in two dimensions,
Zamolodchikov proved that scale invariance implies conformal invariance under broad
conditions, namely unitarity plus discrete spectrum of scaling dimension.

But what is a conformal transformation? In some sense it is a local scale transforma-
tion. In particular, for the class of primary operators, the above transformation law for
scaling operators will generalise to

φ(x)→ λ(x)−∆φ(x′), for x→ x′ = f(x) a conformal transformation (2.0.2)

in which the scalar function λ(x) = [det(∂x′µ/∂x
ν)]

−1/d
can be interpreted as a local

dilation factor.

Before moving on to the study of conformally invariant field theories, it is necessary
to discuss conformal transformations. This is the point of this chapter.

2.1 Space transformations and isometries

Unless otherwise specified we are working in the Euclidean setting : all directions are
spacelike, and there is no time. This is mostly a matter of convention, as the following
could also be formulated in the Minkoswski setting. We will use indiscriminately the
terms space and spacetime.

We will be mostly interested in the d-dimensinal Eucidean space, that is Rd equipped
with the usual notion of distance. More generally we can (and we will) consider arbitrary
Riemannian manifolds (M,g), that is smooth manifolds M endowed with a (positive-
definite) metric g.
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While we will use some terminology of differential and Riemannian geometry, we will
keep it to a minimum and try to give expressions in local coordinates as much as possible
in order not to block the reader unfamiliar with these notions.

An extremely brief appendix on Riemannian geometry containing a few definitions and
formulae is given at the end of these lecture notes, mostly to fix notations/conventions.

By a space transformation we mean a diffeomorphism f ∶ M → M , that is to say a
smooth bijection whose inverse f−1 is also smooth. Note that space transformations as
we just defined are not change of coordinates, but actual transformations of the manifold
which may be visualized as smooth deformations of a continuous medium.

2.1.1 Flow generated by a vector field, exponential map

The set of diffeomorphisms Diff(M) of a given manifold M is a huge group, and describing
all possible diffeomorphisms is a rather daunting task. There is however a very convenient
way to construct many diffeomorphisms using vector fields.

Consider the stationary flow of a fluid : any point of the fluid has a particular velocity,
and in this way there is a vector field associated to any flow. The converse is also true: it
is possible to associate a flow to a vector field having that vector field as its velocity.

The crucial point is that the time evolution of such a flow is a diffeomorphism. Let’s
see how this works in more detail.

Figure 2.1: A two-dimensional flow

Let’s start from an arbitrary vector field ξ. An integral curve t→ c(t) is a solution of

c′(t) = ξ(c(t)) . (2.1.1)

In local coordinates ξ = ξµ(x)∂µ the curve c(t) = (c1(t),⋯, cd(t)) obeys the following
system of differential equations

dcµ

dt
= ξµ(c1,⋯, cd) . (2.1.2)
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These equations simply say that the vector tangent to the curve at any point c(t) along
the curve is precisely the vector ξ(c(t)), and so the curve t→ c(t) is tangent at each point
to the vector field ξ.

For a given point x, there is a unique integral curve1 t → cx(t) with initial condition
cx(0) = x, and furthermore cx(t) depends smoothly on x. This means that the map

ft ∶ x→ cx(t) (2.1.3)

is a smooth map. Moreover it is clear that if t → c(t) is an integral curve, then so is
t → c(t + s). From the abovementioned unicity this means that cx(t + s) = ccx(s)(t), or
equivalently

ft+s = ft ○ fs = fs ○ ft . (2.1.4)

Because of the above relation, the functions ft are sometimes called the one-parameter
group associated to the vector field ξ. In particular ft is bijective, with smooth inverse
f−t. All this means that x → ft(x) is a diffeomorphism. It is the time evolution at time
t of the flow induced by the vector field ξ. One should think of the vector field ξ as the
generator of the infinitesimal transformation

ft(x) = x + tξ +O(t2) . (2.1.5)

The flow ft of the vector field ξ is also called the exponential map and is denoted exp tξ
instead of ft. The exponential notation is motivated by the above mentioned properties,
namely

• exp tξ∣t=0 is the identity map

• d
dt exp tξ(x) = ξ ⋅ (exp tξ(x))

• exp tξ ○ exp sξ = exp(t + s)ξ

▸ Example 1 : The flow induced on R by the constant vector field ξ = a∂x is the
translation by ta

ft(x) = exp(ta∂x) = x + ta (2.1.6)

Clearly ft ○ fs = ft+s.

▸ Example 2 : The flow induced on R by the vector field ξ = x∂x is the dilation by
a factor et:

ft(x) = e
tx (2.1.7)

It is easy to check that f−t is indeed the inverse of ft.

1This curve may or may not be defined at all times : it can happen that the flow blows up to infinity
in finite time (see example 2 and special conformal transformations for instance). For now we simply
ignore this fact and suppose that the flow is well defined at all times. Vector fields with this property are
called complete. For instance this is the case of any vector field with compact support, so a fortiori any
vector field on a compact manifold.
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▸ Example 3 : The flow induced on R2 by the vector field ξ = −x2∂1 + x1∂2 is the
rotation

ft (
x1

x2
) = (

cos t − sin t
sin t cos t

)(
x1

x2
) . (2.1.8)

▸ Example 4 : The flow induced on R by the vector field ξ = x2∂x is

ft(x) =
x

1 − tx
. (2.1.9)

It is only defined for xt < 1, since the flow blows up to infinity as t → 1/x. An elegant
way to cure this is to add a point at infinity. This amounts to work on the one-point
compactification of the real line R ∪ {∞}, i.e. the circle S1, as given by the inverse
stereographic projection. The stereographic projection is the following diffeomorphism
from the unit circle minus the north pole N = (0,1) to the real line (see Fig (2.2)) :

(x1, x2)→
x1

1 − x2

(2.1.10)

If we parametrize the circle by θ as in (see Fig (2.2)), this means

x = tan
θ

2
(2.1.11)

The vector field ξ now reads on the circle ξ = 2 sin2 θ
2 ∂θ, and it is perfectly well behaved

at the North pole θ = π (see Fig. (2.3)). Since it has compact support, the corresponding
flow on the circle is defined at all times.

ℝ

S1

N

(0,0) ( x1
1 − x2

,0)

(x1, x2)

ℝ

S1

N = (0,1)

θ

x

Figure 2.2: The one-point compactification of the real line is diffeomorphic to the unit
circle S1 = {(x1, x2) ∈ R2, x2

1+x
2
2 = 1}. The North pole N = (0,1) corresponds to the point

added at infinity.

▸ Exercise : compute this flow, and check that cot ft(θ)/2 = −t + cot θ/2. What is
this flow in the variable 1/x ?

▸ Exercise : compute the flows of the following vector fields in Rd

• ξ = aµ∂µ for some constant vector aµ.

• ξ = xµ∂µ
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Figure 2.3: The vector field ξ = 2 sin2 θ
2 ∂θ on the circle S1.

• ξ = Aµνxν∂µ

• ξ = (2a ⋅ xxµ − x2aµ)∂µ.

For the last one, use the one-point compactification of Rd (as given by the inverse stere-
ographic projection) to construct a flow on the d-dimensional sphere Sd.

2.1.2 Isometries in Euclidean space

Perhaps the most familar transformations of Euclidean space Rd are isometries i.e. distance-
preserving diffeomorphisms. In Euclidean space the distance between two points x and y
is of course d(x, y) = ∥x − y∥, and a map f is distance-preserving when

d(f(x), f(y)) = d(x, y) (2.1.12)

Isometries of the Euclidean space form a d(d+1)
2 -dimensional Lie group called the Eu-

clidean group2 ISO(d). Isometries are compositions of a translation and an orthogonal
transformation

f(x) = a +R ⋅ x, R ∈ O(d) (2.1.13)

where R is an orthogonal matrix, i.e. RRt = 1. The proof is left as an exercise to the
reader. The corresponding Lie algebra is spanned by the vector fields

ξµ = aµ + ωµνx
ν (2.1.14)

where ωµν = −ωνµ. From a previous exercise the reader will recognize the d generators of

translations and the d(d−1)
2 generators of rotations (there are no reflections of the infinites-

imal persuasion). All this is certainly very standard material, but we will use isometries
as an excuse to prepare the way towards conformal transformations, and to introduce a
few notions of differential geometry such as the pushforward and the pullback.

In order to make contact with isometries in the more general setting of Riemannian
manifolds, we are going to give a slightly different but equivalent formulation. An isometry

2this is the analogue of the Poincaré group for Minkowski space, which is the group of transformation
preserving spacetime intervals.
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is a diffeomorphism that preserves the length of curves, in the sense that if c ∶ [t0, t1]→ Rd

is a smooth curve, then length[c] = length[f ○ c] :

∫

t1

t0
∥c′(t)∥dt = ∫

t1

t0
∥(f ○ c)′(t)∥dt . (2.1.15)

where c′ = dc
dt is the velocity of the curve. Differentiating with respect to t1, we find that

this is equivalent to

∥c′(t)∥= ∥(f ○ c)′(t)∥ (2.1.16)

In the above expression (f ○ c)′(t) is the image of the tangent vector c′(t) by the map f

(f ○ c)′(t) = dfc(t) ⋅ c
′(t) (2.1.17)

where dfc(t) is the Jacobian of f at x = c(t)

dfx =
⎛
⎜
⎝

∂1f 1(x) ⋯ ∂df 1(s)
⋮ ⋮

∂1fd(x) ⋯ ∂dfd(x)

⎞
⎟
⎠
. (2.1.18)

So we have found that f is an isometry if and only if its Jacobian matrix is everywhere
orthogonal dfxdf tx = 1 or in coordinates

∂µf
ρ(x)δρσ∂νf

σ(x) = δµν (2.1.19)

Let us introduce some terminology that will be useful later. The differential of f at x is
the linear map v → dfx ⋅ v. Given a vector field ξ(x), its image by a diffeomorphism f is
called the pushforward f∗ξ

(f∗ξ)(x) = dfx ⋅ ξ(f(x)) (2.1.20)

Given a differential form α (say of degree p), the pullback by f is the p-form f∗α defined
by

(f∗α)x(v1,⋯, vp) = αf(x)(dfx ⋅ v1,⋯, dfx ⋅ vp) (2.1.21)

The relation (2.1.19) can be rewritten as

f∗η = η (2.1.22)

where η = δµνdxµ ⊗ dxν is the Euclidean metric.

To sum up the above discussion about Iso(d), we have three equivalent characteriza-
tions of isometries. A diffeomorphism f is an isometry of the Euclidean space Rd iff

• f is distance preserving : d(f(x), f(y)) = d(x, y)

• f preserves the length of curves : length[c] =length[f ○ c]

• f leaves the Euclidean metric invariant : f∗η = η
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2.1.3 Isometries in Riemannian geometry, Killing vector fields

This discussion can be extended straightforwardly to Riemannian geometry, as soon as
one has defined a notion of distance. The Riemannian metric allows one to define the
length ∥v∥=

√
gp(v, v) of a vector v ∈ TpM in the tangent space at p. Then one can define

the length of a curve c ∶ [t0, t1]→M as

L(c) = ∫
t1

t0
∥c′(t)∥dt (2.1.23)

Finally the distance d(x, y) between two points x and y is defined as the length of the
shortest curve joining x and y. With this setting in place, we have again several equivalent
characterizations of isometries.

Let f ∶ (M,g) → (M̃, g̃) be a diffeomorphism between two Riemannian manifolds,
then the following are equivalent

• f is an isometry

• f is distance preserving : d(f(x), f(y)) = d(x, y)

• f preserves the length of curves : length[c] =length[f ○ c]

• f∗g̃ = g i.e. in local coordinates gµν(x) = g̃ρσ(f(x))∂µfρ(x)∂νfσ(x)

The Riemannian manifolds (M,g) and (M̃, g̃) are then completely equivalent as far
as geometry is concerned. Indeed isometries leave everything metric-related (lengths,
angles, curvature, parallel transport) invariant, the image of a geodesic is a geodesic,
etc...

Before moving on to conformal transformations, let us consider infinitesimal isometries.
The diffeomorphisms ft induced by the flow of a vector field ξ on a Riemannian manifold
(M,g) are isometries iff

Lξg = 0 (2.1.24)

where Lξg is the Lie derivative of g with respect to ξ, which reads in local coordinates

Lξgµν = ξ
ρ∂ρgµν + gνρ∂µε

ρ + gµρ∂νε
ρ = ∇µεν +∇νεµ . (2.1.25)

So the condition for a vector field to be an infinitesimal isometry is that

∇µεν +∇νεµ = 0 . (2.1.26)

This is called the Killing equation, and infinitesimal generators of isometries are called
Killing vector fields or Killing vectors.

▸ Exercise : recover the flat space solutions (2.1.14) from the Killing equation.

The isometries of a Riemannian manifold (M,g) form a Lie group of dimension at

most d(d+1)
2 . In that sense the Euclidean space is maximally symmetric, while a generic
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Riemannian manifold (M,g) has no isometries (besides the trivial one x→ x). This should
not come as a surprise : isometries leave curvature invariant. For instance a space of
constant sectional curvature saturates the number d(d+1)

2 of (linearly independent) Killing
vector fields (although this does not imply the existence of global isometries, as the flow
might not be well defined). But it so happens that the infinitesimal transformations
will prove sufficient for the purpose of deriving Ward identities. This will turn out to
be a crucial point for conformal invariance in two dimensions. While the number of
globally defined conformal transformations is always finite dimensional, the infinitesimal
generators form an infinite dimensional Lie algebra in Euclidean space !

2.2 Conformal transformations

On a Riemannian manifold the metric allows one to define the angle θ between two vectors
v1 and v2 tangent to the manifold (at the same point) through

cos θ =
g(v1, v2)

∥v1∥∥v2∥
(2.2.1)

If two curves c1(t) and c2(t) intersect each other - say at t = 0 - with a non-zero velocity,
then the angle between the two curves is defined as the angle between v1 = c′1(0) and
v2 = c′2(0) (see Fig (2.4)). It is clear that isometries are angle-preserving, since we can

θ

v1

v2

c2(t)

c1(t)

Figure 2.4: Two curves c1 and c2 intersect each other.

rewrite (2.2.1) as

cos θ =
∥v1 + v2∥

2−∥v1∥
2∥v2∥

2

2∥v1∥∥v2∥
(2.2.2)

but the reverse is not true : there exists angle-preserving maps that do not preserve length.
The canonical example are scale transformations (or dilations) x→ λx in Euclidean space.
More generally a diffeomorphism that preserve angles is called a conformal transformation.
We can rephrase the above definition in terms of curve by saying that the angles as
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measured by the metrics g and f∗g̃ must agree. This means

f∗g̃ = Ω2g (2.2.3)

for some function Ω called the conformal factor. In coordinates this reads

gρσ(f(x))∂µf
ρ∂νf

σ = Ω2(x)gµν(x) . (2.2.4)

This follows from the following fact : two inner products on a vector space induce the
same notion of angle if and only if they are proportional. This is a simple exercise in
linear algebra which is left to the reader.

Let f ∶ (M,g) → (M̃, g̃) be a diffeomorphism between two Riemannian manifolds,
then the following are equivalent

• f is a conformal map

• f preserves angles between curves

• f∗g̃ = Ω2g for some smooth function Ω







                               

Conformal map

Figure 2.5: Image of a grid by a conformal map : lengths are not preserved, but angles
between curves are.

Three important examples.

• Inversion

f ∶ Rd ∖ {0}→ Rd ∖ {0}

x→
x

∥x∥2
(2.2.5)

The inversion can be continued into a conformal map on the sphere Sd. What is
the image of the south pole ?

28



• The Euclidean space with the origin removed Rd ∖ {0} is conformally equivalent
to the d-dimensional “cylinder” R × Sd−1 with the canonical metric, through the
conformal map

f(x) = (log∥x∥,
x

∥x∥
) (2.2.6)

In particular in two dimensions this yield the following map

f ∶ C∗ → C/2iπZ
z → log z (2.2.7)

• Stereographic projection
The d-dimensional sphere Sd (with a point removed) is conformally equivalent to
the Euclidean space, through the stereographic projection. To define this map, we
first consider the canonical embedding Sd = {x ∈ Rd+1, ∥x∥2= 1}, and we define

f ∶ Sd ∖ {N}→ Rd

(x1,⋯, xd+1)→
1

1 − xd+1

(x1,⋯, xd) (2.2.8)

where N is the North pole (0,⋯,0,1). This means that the sphere Sd (with the
round metric) is conformally flat : each point has a neighborhood that can be
mapped to flat space by a conformal transformation.

f∗g̃ = ∑
d
i=1 d (

xi
1−xd+1

)⊗d ( xi
1−xd+1

) = 1
(1−xd+1)2 ∑

d+1
i=1 dxi⊗dxi =

1
(1−xd+1)2 g using∑

d+1
i=1 xidxi =

0

Some remarks.

Two Riemannian metrics g1 and g2 are called conformally equivalent if g1 = Ω2g2 for
some function Ω, i.e. when they define the same angles. An equivalence class of such
metrics is called a conformal structure or conformal class. A change of metric within a
given conformal class is called a Weyl transformation :

g1 → g2 = Ω2g1 . (2.2.9)

One can think of the Weyl transformation as a deformation of the Riemannian manifold,
or as the following conformal map

f ∶ (M,g1)→ (M,g2)

x→ x . (2.2.10)

Since conformal transformations only care about angles, not about lengths, Weyl trans-
formations are a very natural deformation to consider. If f ∶ (M,g)→ (M̃, g̃) is a confor-
mal map, then it remains a conformal map after a Weyl rescaling of g and/or g̃. In that
sense one does not need to specify a metric to talk about a conformal map, but only a
conformal structure. It follows that if ξ is a conformal Killing vector field w.r.t. some met-
ric, then it is a conformal Killing vector field w.r.t. all metrics in the same conformal class.

Equivalently, a conformal map f ∶ (M,g)→ (M, g̃) such that f∗g̃ = Ω2g can be decom-
posed into a Weyl rescaling g → Ω2g followed by an isometry. For instance the inversion
x → x/∥x∥2 is an isometry from Rd ∖ {0} with the metric gµν =

1
∥x∥4 δµν to Rd ∖ {0} with

the Euclidean metric.
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2.2.1 Conformal Killing vector fields

Let us analyse the condition f∗g = Ω2g for an infinitesimal transformation fµ(x) = xµ +
εξµ(x). Expanding the conformal factor Ω(x) = 1 + εω(x), we get

Lξg = 2ωg . (2.2.11)

This is a constraint on the vector field ξ, which in local coordinates reads

ξρ∂ρgµν + gνρ∂µε
ρ + gµρ∂νε

ρ = 2ω(x)gµν(x) , (2.2.12)

or equivalently

∇µεν +∇νεµ = 2ω(x)gµν(x) . (2.2.13)

for some a priori arbitrary function ω(x). However tracing the above equation (i.e.
contracting with gµν) yields ω(x) = 1

d∇µξµ =
1
ddiv(ξ), and we get

∇µεν +∇νεµ =
2

d
div(ξ) gµν(x) (2.2.14)

or equivalently

Lξg =
2

d
div(ξ) g . (2.2.15)

Such a vector field is called a conformal Killing vector field. We will see that for d ≥ 3
there are finitely many solutions, but in two dimensions there are infinitely many confor-
mal Killing vector fields !

In Euclidean space Rd with d ≥ 3, conformal Killing vector fields form a (d+1)(d+2)
2 -

dimensional Lie algebra. In additions to translations and rotations, it contains

• dilations ξµ(x) = xµ

• special conformal transformations ξµ(x) = 2(a ⋅ x)xµ − x2aµ

The derivation is a standard exercise (left to the reader) and can be found in any textbook
about conformal field theory.

The only new thing here are special conformal transformations, whose flow is

ft(x) =
x − bx2

1 − 2b ⋅ x + b2x2
, b = ta (2.2.16)

which is an inversion x → x/x2 followed by a translation x → x − b, followed by another
inversion. This map is not well-defined at x = b

b2 : the flow blows up. There are several
ways out of this conundrum. The first one is to work on a domain of Rd that does not
contain b/b2. The other one is to consider the one-point compactification of Rd using
the inverse stereographic projection. In this case one is really discussing the conformal
transformations of the d-dimensional sphere Sd (endowed with the round metric).
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It turns out that all the conformal maps we just mentioned, namely translations, rota-
tions, dilations and special conformations, can be continued to the sphere Sd. In that sense
the one-point compactification of Euclidean space via the stereographic projection is com-
patible with the action of conformal transformations. This is an example of a conformal
compactification, and from now one we will often identify Euclidean space with the sphere.

▸ Exercise : Check that the (round) sphere Sd is also a conformal compactification
of the (flat) cylinder R × Sd−1.

The conformal group of the d-dimensional sphere Sd turns out to be very much re-
lated to the Lorentz group O(d + 1,1). In a nutshell, the conformal group is simply a
projective version of the Lorentz group. This is the point of the exercise(s) below. But
before jumping into the derivation, let first state the result.

Concretely to some x ∈ Sd, that is a point of Rd+1 with ∥x∥2= 1, one associates the
point X = (1, x) on the light-cone of R1,d+1. Acting on X with a Lorentz transformation
yields another point Y = A ⋅X on the light-cone, thus a point of the form Y = (∥y∥, y) for
some y ∈ Rd+1. Then the map x → y/∥y∥ is conformal ! Furthermore, this construction
yields all possible conformal transformations on Sd (this part we will not prove3). At the
end of the day, conformal maps on the sphere Sd are of the form

x→

A(
1
x

)

∥A(
1
x

)∥

form some matrix A ∈ O(1, d + 1). Thus conformal transformations of the sphere can
be expressed in terms of (indefinite) orthogonal transformations in a higher-dimensional
space. This is quite remarkable, since the latter are linear !

Explaining where this identification comes from is the point of the following exercises.
Differential geometry questions are denoted with a (*), and can be ignored by the reader
unfamiliar with the notions involved.

▸ Exercise : Lorentz group and light-cone.

We start with a short reminder on the Lorentz group. Minkowski space R1,d+1 is
simply Rd+2 equipped with an inner product of signature (−,+,⋯,+). We will denote by
(X0,⋯,Xd+1) the coordinates in R1,d+1 and the inner product by

⟨X,Y ⟩ = −X0Y0 +
d+1

∑
i=1

XiYi .

The Lorentz group O(1, d+1) is the subgroup of GL(d+2,R) that leaves the above inner
product invariant, that is to say linear maps X → A ⋅X such that

⟨A ⋅X,A ⋅ Y ⟩ = ⟨X,Y ⟩, ∀X,Y ∈ Rd+2 . (2.2.17)

3In dimension d ≥ 3 this follows from Liouville’s theorem on conformal mappings (1850).
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The null-cone (a.k.a. light-cone) is the subset of vectors with vanishing spacetime interval

C = {X ∈ Rn+1, ⟨X,X⟩ = 0} (2.2.18)

• Check that C∗ = C ∖ {0} is stable under the action of the Lorentz group.

• Argue that one can identify C∗ with R∗ × Sd via the map Ψ ∶ R∗ × Sd → C∗ defined
by

Ψ(t, x) = (t, tx) (2.2.19)

What is the inverse map ?

• (*) Check that the induced induced metric on R∗ × Sd is

(Ψ∗η)(t,x) = t
2gx (2.2.20)

where η is the pseudo-Riemannian metric on R1,d+1 (namely η = −dX2
0 +∑i dX

2
i ) and

g is the round metric on Sd, that is g = ∑
d+1
i=1 dx

2
i (keeping in mind that on Sd the

dxi are not independent : they are subject to ∑i xidxi = 0 since d∥x∥2= 1).

(Ψ∗η)(x,t) = −dt
2 +∑

i

d(txi)
2 = −dt2 + ∣x∥2dt2 + 2t∑

i

xidxidt + t
2
∑
i

dx2
i

and the results follows using ∑i xidxi = 0 and ∥x∥2= 1.

▸ Exercise : projective space and the projective group.

We have seen how Lorentz transformations act on the light-cone (with the origin re-
moved) C∗, and that C∗ is nothing but R∗ × Sd. The idea is now to forget about the
R∗ factor, thus constructing transformations on the sphere Sd - transformations which
will turn out to be conformal. However this projection is not completely trivial, and the
proper setting to do so is that of projective geometry.

The (real) projective space RPd+1 is the compact manifold obtained by quotienting
the space Rd+2 ∖ {0} by the equivalence relation X ∼ Y iff X = λY for some λ ∈ R. We
denote by [X] the equivalence class of X. Alternatively, one can think of RPd+1 as the
space of all lines (going through the origin) in Rd+2.

• Argue that any invertible linear map X → A ⋅X, i.e. with A ∈ GL(d+2,R), descends
to the quotient, in the sense that it induces a well defined map on RPd+1 :

ϕA([X]) = [A ⋅X] .

Check that ϕA ○ ϕB = ϕAB. (*) Using the standard atlas of the projective space,
it is straighforward to check that the maps ϕA are smooth. Therefore there are
diffeomorphisms.

• The group of diffeomorphisms so obtained is called the projective group and is
denoted by PGL(d + 2,R). Show that this group is isomorphic to GL(d + 2)/R∗I.
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• Check that the image of the light cone in projective space, namely

S = {[X] ∈ Rd+1, ⟨X,X⟩ = 0} (2.2.21)

is diffeomorphic to the sphere Sd (via the identification/diffeomorphism x → [1, x]
for x ∈ Sd). In the following we will (abusively) identify S and Sd.

• Let PO(1, d+1) denote the subgroup of PGL(d+2,R) corresponding to the Lorentz
group O(1, d+1). Argue that the above construction yields an action of PO(1, d+1)
on the sphere Sd. Show that PO(1, d + 1) is isomorphic to O(1, d + 1)/Z2, where Z2

stands for the subgroup {I,−I} of O(1, d + 1).

▸ (*) Exercise : PO(1, d + 1) transformations are conformal.
We are now going to establish that this group acts by conformal maps.

• If g denote the round metric on Sd, and p ∶ C∗ → Sd is the map p(X0,X1,⋯,Xd+1) =

(X1/X0,⋯,Xd+1/X0), check that p∗g = 1
X2

0
η.

Correction : we can write p = p2 ○Ψ−1 where Ψ−1 ∶ C∗ → R∗ ×Sd is the inverse of the
map Ψ introduced above, namely Ψ−1(X0,X1,⋯,Xd+1) = (X0,X1/X0,⋯,Xd+1/X0),
and p2 ∶ R∗ × Sd → Sd is simply the projection p2(t, x) = x. Then p∗g = Ψ−1∗g =

∑i(d(X
i/X0))

2 = 1/X2
0(−dX

2
0 +∑i dX

2
i ) ; using X0dX0 = ∑iXidXi.

• (*) Let ι ∶ Sd ↪ C be the inclusion map ι(x) = (1, x). By construction the map ϕA
can be decomposed as

ϕA = p ○A ○ ι (2.2.22)

where A stands for the map X → A ⋅X. Deduce that

ϕ∗Ag = λ(x)
−2g, λ(x) = (A(ι(x)))0 (2.2.23)

Thus we have established that ϕA is indeed a conformal map.

▸ Exercise : recovering translations, rotations, inversion, dilations etc.

It is a fact that the above construction yields all conformal transformations of the
sphere. In dimension d ≥ 3 this follows from Liouville’s theorem on conformal mappings
(1850). We will deal with the case d = 2 (for which this fact is also true) later.

We will not prove Liouville’s theorem, but we will check that the conformal maps we
constructed above using conformal Killing vector fields are indeed in PO(1, d + 1).

First we have to go back to Euclidean space. First recall the stereographic projection
(about the pole x0 = 1) sending the sphere to the plane

x→
1

1 − x0

(x1,⋯, xd+1) (2.2.24)

The inverse map is the following conformal map

x =
1

1 + ∥x∥2
(∥x∥2−1,2x1,⋯,2xd+1) (2.2.25)
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Thus conformal maps on the Euclidean space are obtained as follow. To a given x ∈ Rd,
we associate the following point X(x) in the light-cone of R1,d+1

x→ X(x) = (∥x∥2+1, ∥x∥2−1,2x) (2.2.26)

Conformal maps act linearly on X, i.e. X → AX for some A ∈ O(1, d + 1), and we must
simply project back to Euclidean space Rd at the end. What is the matrix A corresponding
to

• a rotation xi → Rijxj ?

• inversion ?

• dilation ? x→ eµx

• a translation x→ x + a ?

2.2.2 Conformal maps on the complex plane

In two dimensions the story is quite different, and conformal geometry is very closely
related to complex analysis. This is true on any (oriented) two-dimensional Riemannian
manifold, but let us first see how this works on the Euclidean plane.

Let’s denote by η the flat Euclidean metric (ηµν = δµν), and recall that a diffeomorphism
f ∶ (R2, η)→ (R2, η) from the Euclidean plane to itself is conformal iff f∗η = Ω2η for some
smooth function Ω, i.e.

∂µf
ρδρσ∂νf

σ = Ω2(x)δµν . (2.2.27)

This can be rephrased as dfTx dfx = Ω2(x)I, and furthermore taking the determinant of this
equation we learn that Ω2(x) = ∣detdfx∣. Thus in flat two-dimensional space we have the
following alternative characterization

dfTx dfx = ∣detdfx∣1 . (2.2.28)

or equivalently

com(dfx) = ±dfx (2.2.29)

where com(dfx) stands for the comatrix of f , and the ± sign is the sign of detdfx. Note
that this sign does not depend on x (detdfx cannot vanish by virtue of f being a dif-
feomorphism), and it simply tells us whether f is orientation preserving (detdfx > 0) or
orientation reversing (detdfx < 0). Writing (2.2.29) explicitly yields

(
∂2f 2 −∂1f 2

−∂2f 1 ∂1f 1 ) = ±(
∂1f 1 ∂2f 1

∂1f 2 ∂2f 2 ) . (2.2.30)

Depending on the sign, we recognise the Cauchy-Riemann equations or the anti-analytic
version of Cauchy-Riemann

{
∂1f 1 = ±∂2f 2

∂1f 2 = ∓∂2f 1 (2.2.31)
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Thus conformal maps from the Euclidean plane to itself are

• holomorphic if they are orientation preserving,

• anti-holomorphic when they reverse orientation.

Note that an orientation reversing conformal map is nothing but an orientation-
preserving one followed by a reflection (complex conjugation). Thus it is sufficient to
discuss orientation-preserving conformal maps.

At this stage it may look like there are many conformal maps in two-dimensions. In
some sense this is true, but there is a caveat. So far we have only looked at the local
constraint of being angle-conserving, namely f∗η = Ω2η. But let’s not forget that the
function f must be a diffeomorphism4. This global constraint is very sensitive to the
domain of f .

Let’s start with conformal maps f ∶ C → C, that is automorphisms of the complex
plane C. It is a fact that the (orientation-preserving) conformal maps f ∶ C → C are of
the form

z → az + b, a ≠ 0 . (2.2.32)

that is translations, rotations and dilations. If one adds a point at infinity Ĉ = C ∪ {∞},
one gets the Möbius group

z →
az + b

cz + d
, ad − bc ≠ 0 . (2.2.33)

and this now includes special conformal transformations. Proving the above is a standard
exercise in complex analysis, and is left to the reader. We recover the full conformal group
of the previous section, and indeed at the level of globally defined conformal maps there
is no difference between the two-dimensional case and the case d ≥ 3. So in what sense
are there more conformal maps in two-dimensions ?

To understand this, let us recall the inversion function theorem : a smooth map
f ∶ Rd → Rd is invertible in a neighborhood of some point x0 as soon as detdfx0 ≠ 0. This
means that - given a holomorphic map f , and a point x0 such that f ′(x0) ≠ 0 - there
exist an open neighborhood U of x0 such that f ∶ U → f(U) is a diffeomorphism, and
therefore a conformal map. So in this sense any holomorphic map yields a conformal
map, albeit not on the whole complex plane. This is to be contrasted with the paucity of
conformal maps in higher dimensions (Liouville’s theorem): any conformal map on any
domain of Rd is an element of the conformal group PO(1, d + 1). Let us mention a strik-
ing and important result that illustrates the wealth of conformal maps in two-dimensions :

Riemann mapping theorem : any simply-connected open subset U ⊂ C (with
U ≠ ∅,C) is conformally equivalent to the unit disk

D = {z ∈ C, ∣z∣ < 1} (2.2.34)

4A holomorphic diffeomorphism is called an automorphism
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This result is remarkable and somehow counter-intuitive, as the domain U can be highly
complicated, with a non-differentiable or even fractal boundary. Moreover the result is
extremely simple. For non simply-connected domains, the story is more complicated. For
instance let’s consider the annulus Ar,R = {z ∈ C, r < ∣z∣ < R}. Schottky theorem states
that two annuli Ar1,R1 and Ar2,R2 are conformally equivalent if and only if R1/r1 = R2/r2.

▸ Exercise : show that the unit disk D and the complex plane C are not conformally
equivalent (hint : use Liouville’s theorem : every bounded entire function is constant).

The abundance of conformal maps in two-dimensions is also manifest at the level of
conformal-Killing vectors. In the Euclidean plane the conformal Killing condition reads
for a vector field ξ = ξ1∂1 + ξ2∂2

∂1ξ2 + ∂2ξ1 = 0, ∂1ξ1 = ∂2ξ2 (2.2.35)

which is equivalent to

(∂1 + i∂2) (ξ1 + iξ2) = 0 (2.2.36)

and we find

ξ = ξ(z)∂ + ξ(z)∂̄ (2.2.37)

where ξ(z) is any holomorphic function, and ∂ = 1
2 (∂1 − i∂2). Of course the flow of most

of these vector fields will not be globally defined, but this will not be an issue for quantum
field theories.

Let us already mention a point that will have some importance later. At this stage
the vector field ξ is required to be real, thus the component ξ(z) is the complex conjugate
of ξ(z). When dealing with conformal field theories it will be convenient to complexify

this algebra, which amounts to relax this reality constraint and treat ξ(z) and ξ(z) as
independent complex functions. In turns this implies that we are dealing with a complex
space-time, in the sense that z and z̄ are independent variables. This is not an obvi-
ously innocuous assumption, and such a cavalier complexification can be motivated in
QFT by doing a Wick rotation. Indeed in Lorentzian signature z = x − t and z̄ = x + t
are independent. Lurking behind Wick rotation and space-time complexification is the
idea/assumption that the quantities of interest in QFT can be analytically continued to
the case where z and z̄ are independent. This formal point of view often proves very
convenient for calculations.

2.2.3 Conformal maps between Riemann surfaces

The above discussion can be extended to arbitrary two-dimensional Riemmanian mani-
folds, and in fact the main result remains.

Conformal maps from a surface (M,g) to another (M, g̃) are exactly the
(anti-)holomorphic maps.
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But for such a claim to make sense one first need to define what is meant by a
holomorphic map on a generic surface. To do so, the relevant mathematical notion is
that of a complex structure. Let us first briefly recall how one defines coordinates on a
surface M . This is done through an atlas, which is a collection of charts. A chart is a
homeomorphism ϕ from an open subset U ⊂ M to an open subset of Euclidean space
R2 ≃ C. An atlas is a collection {(Uα, ϕα)} of charts which covers M . In order to define
the manifold through an atlas, one needs to know how to piece together the different
charts. This is encoded in the transition functions. Whenever Uα and Uβ overlaps, the
transition function is simply

ϕβ ○ ϕ
−1
α ∶ ϕα (Uα ∩Uβ)→ ϕβ (Uα ∩Uβ) (2.2.38)

On a generic (topological) manifold transition functions are homeomorphisms5. Morally

ℂ

U1
U2

φ2(U2)

φ1(U1)

φ2
φ1

φ2 ∘ φ−11

Figure 2.6: Transition function for a two-dimensional manifold.

this fixes the topology of the surface, thus the notion of a continuous function f ∶M → R
makes sense. But what does it mean for f to be smooth ? Since the surface is locally
like R2, it would seem reasonable to declare f to be smooth on a chart U1 as long as
f ○ ϕ−1

1 is smooth (notice that f ○ ϕ−1
1 is map defined on a subset of R2, for which the

notion of smoothness makes sense). However if U2 is another chart overlapping U1, it is
not necessarily true that f ○ ϕ−1

2 is also smooth, unless the transition function ϕ1 ○ ϕ−1
2 is

smooth. Thus in order to talk about smooth functions on a manifold, a smooth structure
is required, that is an atlas whose transition functions are smooth.

The very same line of reasoning applies to holomorphic functions. A complex structure
is an atlas whose transition functions are holomorphic. Note that a manifold endowed
with such an atlas is necessarily orientable (exercice : why ?).

But so far we are working on a smooth surface endowed with a metric. So where
is the complex structure ? It turns out that - as long as the surface is oriented - the

5A homeomorphism is a continuous bijection whose inverse is also continuous.
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metric induces a complex structure. This is based on the fact that two-dimensional
Riemannian manifolds are conformally flat, i.e. there exists around any point a coordinate
system (i.e. a chart) in which the metric is of the form gµν(x) = e2σ(x)δµν . These are
called isothermal coordinates, since each coordinate xµ is harmonic (exercice : check
that ∆(xµ) = 0 using Appendix 8.5.1), thus a steady-state solution of the heat equation.
For a proof of the existence of these isothermal coordinates (also known as ”conformal
gauge” in Lorentzian signature), the reader is invited to have a look at Donaldson’s
Riemann surfaces, or Schottenloher’s A Mathematical Introduction to Conformal Field
Theory for the Lorentzian case. So on a Riemannian surface there exists an atlas in which
all charts are made of isothermal coordinates. But notice that transition functions between
isothermal coordinate systems are conformal by construction. Indeed an isothermal chart
(U,ϕ) is nothing but a conformal map ϕ from U to Euclidean space. Since the composition
of conformal maps is conformal, clearly transition functions are also conformal. If the
above explanation is not clear, the computationally inclined reader can also check that
the pullback of the metric e2σ2δµν by the transition function ϕ2 ○ ϕ−1

1 is e2σ1δµν :

(ϕ2 ○ ϕ
−1
1 )

∗
e2σ2δµν = e

2σ1δµν (2.2.39)

According to the analysis done in the previous section, this implies that transition func-
tions between isothermal coordinates are either holomorphic or anti-holomorphic. Pro-
vided the surface is oriented, we can always choose our charts to be compatible with the
orientation, in which case all transition functions are also orientation preserving, thus
holomorphic functions. This provides a complex structure, which is canonical in the sense
that it does not depend on the choice of isothermal coordinates. It depends only on the
Riemannian metric g. This complex structure is said to be compatible with the Rieman-
nian metric g.

A simple and explicit illustration of this construction is given by the two-sphere S2

endowed with the round metric. Consider the canonical embedding S2 = {x ∈ R3, ∥x∥2= 1},
and denote by N = (0,0,1) and S = (0,0,−1) the North and South pole, respectively. The
standard atlas is made of two charts U1 = S2 ∖ {N}, and U2 = S2 ∖ {S}, with coordinates
ϕi ∶ Ui → C given by the stereographic projections, namely :

ϕ1(x) =
1

1 − x3

(x1 + ix2) ϕ2(x) =
1

1 + x3

(x1 + ix2) (2.2.40)

We have already seen in a previous exercise that these are isothermal coordinates (to be
precise we have seen that stereographic projections are conformal maps from the round
sphere to Euclidean space, which is the same thing). Is the transition function holomorphic
? A direct calculation6 show that it is fact anti-holomorphic

ϕ2 ○ ϕ
−1
1 ∶ C ∖ {0}→ C ∖ {0}

z →
1

z̄
(2.2.41)

This stems from the fact that the atlas we chose was not oriented : the two charts
have opposite orientations. This is easily fixed, we simply change the orientation of say
ϕ2, while not spoiling the isothermal condition. To do so one simply composes ϕ2 with
any orientation-reversing conformal map of the plane. For instance (x, y) → (x,−y), i.e.

6One can first check that ϕ−11 (x + iy) = 1
1+x2+y2 (2x,2y, x

2 + y2 − 1)
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complex conjugation. Thus we replace the chart (U2, ϕ2) by (U2, ϕ2), and the transition
function is now holomorphic :

ϕ2 ○ ϕ
−1
1 ∶ C ∖ {0}→ C ∖ {0}

z →
1

z
(2.2.42)

We have ourselves a complex structure on the sphere.

So we have seen how a Riemannian metric g on an oriented surface induces a natural
complex structure, via isothermal coordinates. But of course two metrics in the same
conformal class induce the same complex structure since they have the same isothermal
coordinates. So what we have is that a conformal structure induces a unique complex
structure on a two-dimensional oriented manifold. In fact this also goes the other way.
Given a complex structure, i.e. an atlas whose transition functions are holomorphic, there
is a unique compatible conformal structure. So we have the following

On a two-dimensional oriented manifold a choice of conformal structure is equivalent
to a choice of complex structure.

A two-dimensional manifold equipped with a complex structure is called a Riemann
surface. Now remember that conformal maps are insensitive to Weyl rescaling, we can
work locally with the flat metric dzdz̄, and the analysis done in the Euclidean case applies,
thus :

A map between oriented Riemannian surfaces is conformal if and only if it is
holomorphic or anti-holomorphic.

Some references for this chapter :

• Chapter 2 of A Mathematical Introduction to Conformal Field Theory, Martin Schot-
tenloher

• Riemann surfaces, Simon Donaldson

• The exercise on the projective light-cone is inspired from exercise 16 in chapter 2 of
An Introduction to Differential Manifolds, Jaques Lafontaine
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Lecture 3

Conformal invariance in field
theories

3.1 Conformal invariance in classical field theories

After this rather lengthy discussion about space transformations, let us get back to the
subject of field theories and conformal invariance. We first describe the response of
a classical field theory to infinitesimal space transformations, for which an important
protagonist is the stress-energy tensor T µν . We then move on to quantum field theories
and discuss Ward identities.

3.1.1 The stress-energy tensor

For pedagogical purposes we will initially restrict ourselves to field theories defined on flat
space, where traditionally the stress-energy tensor is presented as the conserved Noether
current associated with spacetime translations, see Appendix 3.4.1. However this leads
to ambiguities in defining the stress-energy tensor, and a more modern and powerful def-
inition of the stress-energy tensor involves working in curved space, see Appendix 3.4.2.

We consider a field theory in flat Euclidean space Rd, as characterized by a Lagrangian
density L

S[Φ] = ∫ L(Φ(x), ∂µΦ(x))dnx (3.1.1)

which we assume depends only on the fields at x and their first derivatives. Here Φ stands
for a collection of fields φ1, φ2, . . . which can be of different type (scalar, vector, spinor,
etc). In these lecture notes we will only consider translation invariant theories.

The stress-energy tensor T µν encodes the response of the action to an arbitrary in-
finitesimal spacetime transformation (i.e. an infinitesimal diffeomorphism) regarded as
an active transformation, that is, a displacement of the fields/configurations. Consider
an arbitrary (smooth) vector field ξµ(x) and its corresponding flow x → ft(x) as defined
by

dft(x)

dt
= ξ(ft(x)) . (3.1.2)
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Imagine now that this flows carries the local degrees of freedom for some time t. If the
initial configuration is Φ, we will denote by Φ′ = f∗t Φ the new configuration. Infinitesimally
(at time t = ε≪ 1) the flow is given by

xµ → xµ + εµ(x) +O(ε2) (3.1.3)

where εµ(x) stands for the infinitesimal vector field εξµ(x). For a scalar field φ, the above
transformation means φ′(x) = φ(x + ε(x))) ≡ φ(x) + εµ∂µφ(x) :

δεφ(x) = ε
µ∂µφ(x) +O(ε2) ,

but more generally fields transform covariantly. A gauge field for instance (such as the
electromagnetic field) is a field which is locally represented by a differential 1-form A(x) =
Aµ(x)dxµ, for which (f∗t A)(x) = Aµ(ft(x))df

µ
t , thus yielding1

δεAµ = ε
ρ∂ρAµ + (∂µε

ρ)Aρ +O(ε2) , (3.1.5)

while the associated field strength F = dA is a two-form, so

δεFµν = ε
ρ∂ρFµν + (∂µε

ρ)Fρν + (∂νε
ρ)Fµρ +O(ε2) . (3.1.6)

More generally the change of a vector field along the flow of a vector field is called the Lie
derivative. The Lie derivative is sometimes called fisherman’s derivative: the flow carries
all fields past the fisherman, and the fisherman sits there and differentiates them.

In a more geometric language, fields are sections of some fiber bundles, and prescribing
how they transform under a given diffeomorphism amounts to lifting this diffeomorphism
into the corresponding bundle. For tensor fields there is a natural way to do this, called
the pullback, and the infinitesimal variation is given by the Lie derivative. For spinors
the story is a bit more subtle since diffeomorphisms cannot be lifted globally (for instance
spinors transform with a minus sign under a full rotation), but infinitesimal diffeomor-
phisms can be lifted by introducing a connection on the spinor bundle, called a spin
connection.

In practice however we will not have to worry about how the fields appearing in the
action transform under diffeomorphisms2 since we will not even have an action to begin
with ! All we will care about is that the transformation is local, in the sense that

δεφ(x) =ε
ρ(x)∂ρφ(x) + finite number of terms involving (3.1.7)

derivatives of εµ(x) and φ(x)

and that there exists an object called the stress-energy tensor T µν that describes the
infinitesimal variation of the action δS = S[Φ′] − S[Φ] at first order in the vector field ε :

δS = −
1

2π ∫
T µν∂µε

ν dnx . (3.1.8)

1Here we ignore gauge invariance, which in principle adds some freedom in defining the action of
infinitesimal diffeomorphisms. Indeed there is no reason not to couple space transformations to a gauge
transformations, such as

δεAµ = ερ∂ρAµ + (∂µερ)Aρ − ∂µ(ερAρ) +O(ε2) . (3.1.4)

2All we will need is how they transform under conformal transformations.
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The prefactor is conventional, and has been chosen for future convenience.

▸ Exercise : Compute the stress-energy tensor for

• the free scalar field

S =
1

4π ∫
(∂µφ∂

µφ −m2φ2)dnx .

• electromagnetism

S = −
1

8π ∫
FµνF

µν dnx .

• Chern-Simons theory

S =
1

2π ∫
εµνρAµFνρ d

nx .

The stress-energy tensor is conserved on-shell (i.e. as long as the equation of motions
are satisfied) by construction3

∂µT
µν = 0 on-shell. (3.1.9)

▸ Exercise : Prove the above statement.

Physically the components of the stress-energy tensor describe the density and flux
of energy and momentum in spacetime (strictly speaking this interpretation requires a
Lorentzian metric), and the associated conserved charges are energy and momentum

E = ∫ T 00(t, x)dn−1x, P i = ∫ T 0i(t, x)dn−1x (3.1.10)

Usually this interpretation is At the classical level this interpretation follows from Noether’s
theorem (see Appendix 3.4.1). For a quantum field theory these charges will become the
generators of spacetime translations. We will come back to this interpretation once we
have derived the Ward identity (3.2.25)).

It must be stressed that the stress-energy tensor is a particularly subtle notion of field
theory, with several more or less equivalent definitions available (see Appendices 3.4.1
and 3.4.2). Consider for instance the field theory of electromagnetism. The setup is 3+ 1
dimensional Minkowski space with metric ηµν , and we choose the signature (−+++). The
Lagrangian density is

L[Aµ] = −
1

8π
FµνF

µν , Fµν = ∂µAν − ∂νAµ (3.1.11)

3Indeed as long as the action is extremal, δS = 0 for all δΦ, so in particular for δΦ = δεΦ.
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where the components of the field strength are related to the electric and magnetic fields
through F0i = Ei and and Fij = εijkBk.

The correct stress-energy tensor is well known from Maxwell’s equations. The energy
density of the electromagnetic field is T 00 = 1

2(E
2 +B2), while the density of momentum

is given by the Poynting vector T 0i = (E ×B)i. Finally T ij = 1
2(E

2 +B2)δij −EiEj −BiBj

is (minus the) Maxwell stress-tensor. More compactly

T µν = F µσF ν
σ −

1

4
ηµνFαβF

αβ (3.1.12)

▸ Exercise : Compare the above stress-energy tensor with the various definitions of
the stress-energy tensor, namely

• the canonical SET as defined through Noether’s theorem (see eq. (3.4.8) in appendix
3.4.1)

• the definition used in this section, as in Eq.(3.1.8)

• the Hilbert SET (see eq. (3.4.30) in appendix 3.4.2)

Tµν = −4π
δS

δgµν
= −4π (

∂L

∂gµν
−

1

2
gµνL) (3.1.13)

Exercise : Same question for the abelian Chern-Simons theory in 2+1 dimensions as
defined by L[Aµ] =

1
2π ε

µνρAµFνρ.

3.1.2 Ambiguities, symmetries and improvements

With equation (3.1.8) we have postulated the existence of the stress-energy tensor, but
we have not commented on its unicity. In fact (3.1.8) does not define a unique stress-
energy tensor but rather a class of stress-energy tensors that differ from each other by a
divergence-free piece. Indeed one can always add to T µν any tensor Θµ

ν such that

∫ Θµ
ν∂µε

ν dnx = 0 (3.1.14)

for all vector fields εµ(x). Integrating by parts, the above condition boils down to Θµ
ν

being identically conserved (i.e. conserved off-shell)

∂µΘµ
ν = 0 (3.1.15)

For instance,

Θµ
ν = ∂ρΣ

ρµ
ν , Σρµ

ν = −Σµρ
ν (3.1.16)

for an arbitrary Σρµ
ν . Adding such terms goes under the general name of improving the

stress-energy tensor.

Such an ambiguity is not surprising. Think for instance of a one-dimensional such as
the Heisenberg chain, with Hamiltonian

H =∑
n

hn, hn = σ⃗n ⋅ σ⃗n+1 (3.1.17)
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While the notion of total energy is clear (it is nothing but the Hamiltonian H), the notion
of energy density is not. One could declare it to be hn = σ⃗n ⋅ σ⃗n+1. It is indeed local, her-
mitian, and their sum yield the total energy. But one could just as well add local terms
of the form Xn+1 −Xn to hn without spoiling any of these properties.

In fact defining a notion of energy density amounts to define how this theory couples
to gravity ! More on this later.

Rotational invariance

It is possible to exploit this ambiguity to choose a “nice” form of the stress-energy tensor.
We are now going to show that rotational invariance4 is equivalent to the existence of a
symmetric stress-energy tensor

T µν = T νµ (3.1.18)

A space transformation Φ → Φ + δεΦ is a symmetry when the variation of the action δεS
vanishes, i.e. when the vector field εµ is such that

∫ T µν∂µε
ν dnx = 0 (3.1.19)

Since we want the above identity to be valid for all field configurations, this boils down
to

T µν∂µε
ν = ∂ρJ

ρ (3.1.20)

for some Jρ. For the generators of rotations

εµ = ωµνx
ν (3.1.21)

this means

T µν − T νµ = ∂ρY
ρµν (3.1.22)

for some tensor Y ρµν = −Y ρνµ. If we now add an improvement term a la (3.1.16) where

Σρµν =
1

2
(Y ρµν − Y µρν − Y νρµ) (3.1.23)

then the new stress-energy tensor is symmetric.

Conformal invariance

Let us now consider a rotational invariant field theory, and choose a stress-energy ten-
sor representative that is symmetric. Infinitesimal conformal invariance in flat space is
tantamount to

ω(x)T µµ = ∂µK
µ (3.1.24)

for all functions ω(x) susceptible to appear in the r.h.s. of the conformal Killing constraint

∂µεν + ∂νεµ = 2ω(x)δµν . (3.1.25)

4We have already implicitly assumed and exploited translation invariance in (3.1.8).
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In dimension d ≥ 3, the function ω(x) can be any linear function ω(x) = a + bµxµ, in
which the a term comes from pure dilations, and the bµxµ term from special conformal
transformations. So we must have

T µµ = ∂µA
µ and xνT µµ = ∂µB

µν (3.1.26)

And therefore xν∂µAµ = ∂µBµν , yielding

Aµ = ∂ρC
ρµ, Cµν = Bµν − xνAµ (3.1.27)

So infinitesimal conformal invariance in flat space with d ≥ 3 is tantamount to

T µµ = ∂µ∂νC
µν (3.1.28)

In two-dimensions the above relation is necessary but by no means sufficient since ω(x) can
now be any harmonic5 function. Therefore for any harmonic function h(x) the quantity

h(x)T µµ (3.1.29)

must be a total derivative. Following a similar line of reasoning as in the case d ≥ 3, we
reach the conclusion that T µµ must be of the form ∆C for some C and ∆ is the Laplacian.

A two-dimensional, rotational invariant field theory in flat Euclidean space (for
which a symmetric stress-energy tensor has been chosen) is invariant under conformal
transformations if and only iff there exist a functional C = C(Φ, ∂µΦ,⋯) of the fields
such that

T νν = ∆C (3.1.30)

In both cases it is possible to improve the stress-energy tensor in order to make it
traceless. A way to improve the stress-energy tensor without spoiling T µν = T νµ is to add
terms of the form

Θµν = ∂ρ∂σΩρµσν (3.1.31)

for some tensor Ωρµσν such that

Ωρµσν = −Ωµρσν , Ωρµσν = −Ωρµνσ, Ωρµσν = Ωσνρµ . (3.1.32)

Note that these are the same symmetries as the Riemann curvature tensor (see (8.5.15)
in the Appendix). This is not an accident.

5A real function f of two real variables is harmonic (i.e its laplacian ∆ω = ∂21ω+∂22ω = 4∂∂̄ω vanishes)
iff it is the real part of a holomorphic function : ω = g + ḡ for some g such that ∂̄g = 0. This equivalence
holds on any simply connected domain of C.
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In d ≥ 3

Ωρµσν =
1

d − 2
(−ηµνCρσ − ηρσCµν + ηρνCµσ + ηµσCρν) (3.1.33)

+
1

(d − 1)(d − 2)
(ηµνηρσ − ηρνηµσ)Cλ

λ (3.1.34)

does the trick, while for d = 2 we can use

Ωρµσν = (ηρνηµσ − ηµνηρσ)C (3.1.35)

A (classical) field theory in flat Euclidean space is invariant under conformal trans-
formations if and only if it admits a symmetric and traceless stress-energy tensor.

▸ Exercise : Check that the massless scalar field is conformal invariant. What about
electromagnetism ?

3.2 Ward identities

After having considered conformal invariance in classical field theories in the previous
sections, we can now delve into quantum field theories. We are going to restrict our at-
tention to two-dimensional theories, although large parts of the discussion in this section
can be readily generalized to any dimension.

For the sake of argument let us assume that the theory is described by a Lagrangian
density L. Even though in practice we will rarely rely on an explicit action, and in fact it
might not even exist, it can be useful at a formal and heuristic level to consider the path
integral formulation of quantum field theories. Generically the partition function is given
in terms of an action S[Φ] by

Z = ∫ e−S[Φ]D[Φ] . (3.2.1)

whereas in the previous section Φ stands for a collection of fields φ1, φ2, . . . . From a
statistical physics perspective Φ describes (a coarse-grained version of) the lattice degrees
of freedom, and e−S[Φ] corresponds to the Boltzmann weight of a given configuration Φ.
Correlation functions are given by

⟨O1(x1)⋯Op(xp)⟩ =
1

Z ∫
O1(x1)⋯Op(xp)e

−S[Φ] [DΦ] . (3.2.2)

The truly new ingredient as compared to a classical field theory is the functional measure
D[Φ], which typically is not mathematically sound and physically requires subtle regu-
larisation schemes (see the tutorial on zeta regularization for instance). We will work on
a formal level and ignore this issue, all the while assuming a few reasonable properties of
the functional measure. Indeed we will merely use the path-integral approach as an intu-
itive and heuristic way to derive the Ward identities. These Ward identities are relations
between correlation functions that follow from the continuous symmetries of the QFT.
This is the quantum version of the classical current conservation of Noether’s theorem. As
such Ward identities are very generic, and they can be formulated independently from any
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Lagrangian or functional measure. Later on we will bypass the path-integral formalism
and simply postulate that the Ward identities hold (this amounts to assume that con-
formal invariance is not broken at the quantum level), and in this way we will construct
two-dimensional CFTs without resorting to path-integrals or assuming the existence of a
Lagrangian.

3.2.1 Schwinger-Dyson equation, redundant operators

In the classical field theory the equations of motion are obtained by demanding that the
action S[Φ] is extremal, i.e. δS

δΦ = 0. Under a small variation Φ+ δΦ (recall that Φ stands
for a collection of fields ϕ1, ϕ2, . . . ) the variation of the action is

δS = ∫ (
δL

δϕa
δϕa(x) +

δL

δ(∂µϕa)
∂µδϕa(x))d

2x (3.2.3)

= ∫ (
δL

δϕa
− ∂µ

δL

δ(∂µϕa)
) δϕa(x)d

2x (3.2.4)

The equations of motion are precisely

δL

δϕa
− ∂µ

δL

δ(∂µϕa)
= 0 (3.2.5)

Let’s denote by Ra(x) the l.h.s. of the above equation. In the quantum theory these
equations of motion also have a meaning. Consider the path-integral formulation of a
correlation function

⟨O1(x1)⋯Op(xp)⟩ =
1

Z ∫
O1(x1)⋯Op(xp)e

−S[Φ]D[Φ] . (3.2.6)

and let us perform a change of variable Φ→ Φ̃ = Φ + δΦ. The function δΦ(x) is arbitrary
but independent of Φ(x) (the change of variable we consider is the analogue of a rigid
translation in functional space : all configurations Φ are shifted by the same function δΦ).
In the quantum theory it is quite reasonable and natural to assume that the measure D[Φ]

is invariant under such rigid translations :

D[Φ + δΦ] =D[Φ] (3.2.7)

while the variation of the action is

δS = ∫ Ra(x)δϕa(x)d
2x . (3.2.8)

This leads to the Schwinger-Dyson equation

p

∑
i=1

⟨O1(x1)⋯δOi(xi)⋯Op(xp)⟩ =∑
a
∫ δϕa(x)⟨Ra(x)X⟩d2x (3.2.9)

where X stands for the product of fields O1(x1)⋯Op(xp), and δOi(x) is the variation of
the composite field Oi(x) under the infinitesimal shift ϕa → ϕa + δϕa. By composite field
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we mean any local functional of the field ϕa, such as ∂µϕa, ϕ2
a or eiαϕa for instance. For

a generic functional we would have

δOi(x) = ∫
δOi(x)

δϕa(y)
δϕa(y)d

dy + ∫
δOi(x)

δ∂µϕa(y)
∂µδϕa(y)d

dy +⋯ (3.2.10)

but since we consider local fields, the above expression may only involve the functions
δϕa and their derivatives taken at the point x. Therefore we find that

⟨Ra(x)O1(x1)⋯Op(xp)⟩ = 0 as long as x ≠ x1,⋯, xp (3.2.11)

At coincident points – when x = xi – there are contact terms (typically δ function and
possibly their derivatives), but apart from these points the above expression vanishes.
A field that vanishes in any correlation function away from coincident points is called a
redundant field, and we write

Ra(x) ≡ 0 (3.2.12)

3.2.2 Quantum stress-energy tensor and Ward identities

Let us now repeat the above discussion for an infinitesimal spacetime transformation

Φ̃ = f∗ε Φ = Φ + δεΦ +O(ε2) (3.2.13)

as generated by an arbitrary infinitesimal vector field (with compact support) εµ = εξµ.
In this case the measure D[Φ] has no reason to be invariant. Assuming translation
invariance the variation must vanish if εν is constant, so we expect that the measure
changes according to the following local form

D[Φ̃] = (1 + ∫ ∂µε
ν(y)τµν(y)d

2y +O(ε2))D[Φ] (3.2.14)

We can absorb such a term in a redefinition of the stress-energy tensor, and in a QFT the
stress-energy tensor T µν is defined as

e−S[Φ̃]D[Φ̃] = (1 +
1

2π ∫
∂µε

ν(y)T µν(y)d
2y +O(ε2)) e−S[Φ]D[Φ] (3.2.15)

It contains, in addition to the classical part, quantum corrections coming from the varia-
tion of the measure. From now on, unless otherwise specified, whenever we mention the
stress-energy tensor we will mean the quantum one.

It is not always possible to preserve all classical symmetries at the quantum level.
When a classical symmetry is violated by quantum corrections the symmetry is said to be
anomalous. Implicitly we have already assumed that the quantum theory remains trans-
lation invariant when writing (3.2.14). We will further assume that rotational invariance
is also preserved, thus T µν = T νµ (up to possible improvements).

Upon performing the change of variable Φ→ Φ̃ = Φ + δεΦ, we get

⟨X⟩ =
1

Z ∫
Xe−S[Φ]D[Φ] =

1

Z ∫
X̃e−S[Φ̃]D[Φ̃] (3.2.16)

=
1

Z ∫
(X + δεX) (1 +

1

2π ∫
∂µε

ν(y)T µν(y)d
2y) e−S[Φ]D[Φ] , (3.2.17)
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yielding

p

∑
i=1

⟨O1(x1)⋯δεOi(xi)⋯Op(xp)⟩ = −
1

2π ∫R2
∂µε

ν(y)⟨T µν(y)X⟩d2y (3.2.18)

or equivalently

p

∑
i=1

⟨O1(x1)⋯δεOi(xi)⋯Op(xp)⟩ =
1

2π ∫R2
εν(y)⟨(∂µT

µ
ν) (y)X⟩d2y (3.2.19)

This equation contains a lot of extremely interesting informations. First remember
that fields transform in a local way, thus δεOi(xi) may only involve the vector field εµ(x)
and finitely many of its derivatives taken at the point xi. This implies

∂µT
µν ≡ 0 , (3.2.20)

which means that T µν is conserved in a QFT up to contact terms. Thus we can rewrite
eq. (3.2.19) as

p

∑
j=1

⟨O1(x1)⋯δεOj(xj)⋯Op(xp)⟩ =
p

∑
j=1

1

2π ∫Bj
εν(y)⟨(∂µT

µ
ν) (y)X⟩d2y (3.2.21)

where B1,⋯,Bp are non-overlapping neighborhoods of x1,⋯, xp as in Fig. 3.1. We will

xp−1

xp

x3

x2

x1

. . . .

Figure 3.1: Non-overlapping neighborhoods of x1,⋯, xp.

write

δεOj(xj) ≡
1

2π ∫Bj
εν(y) (∂µT

µ
ν) (y)Oj(xj)d

2y (3.2.22)
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as a short-hand notation for (3.2.21). The symbol ≡ is here as a reminder that the above
identity is valid in correlation functions away from coincident points, and with the domain
Bj containing no insertion other than Oj(xj). Note that the above identity is insensitive
to improvements of the stress-energy tensor.

Integrating by parts, we can also rewrite (3.2.22) as

δεOj(xj) ≡ −
1

2π ∫Bj
∂µε

ν(y)T µν(y)Oj(xj)d
2y

+
1

2π ∮∂Bj
εµρ ε

ν(y)T µν(y)Oj(xj)dy
ρ (3.2.23)

in which the boundaries ∂Bj are oriented in the counterclockwise direction and εµρ is the
completely antisymmetric tensor (ε12 = −ε12 = 1, ε11 = ε22 = 0).

While the above relation is valid for an arbitrary infinitesimal diffeomorphism, a par-
ticular role is played by symmetries and in particular by isometries. Consider the case in
which the vector field εµ satisfies the Killing constraint inside all the Bj (and is arbitrary
outside, while being smooth and compactly supported to avoid unpleasant issues). Then
the integral over Bj in (3.2.23) vanishes (remember we have assumed that isometries are
not anomalous, and that the stress-tensor is symmetric) and we get the Ward identity

δεOj(xj) ≡
1

2π ∮∂Bj
εµρ ε

ν(y)T µν(y)Oj(xj)dy
ρ (3.2.24)

for translations and rotations. In particular for translations δεOj = εν∂νOj, and we find

∂νOj(xj) ≡
1

2π ∮∂Bj
εµρT

µ
ν(y)Oj(xj)dy

ρ (3.2.25)

3.3 Conformal Ward identities and anomalous be-

havior

Following the discussion in section 2.2.1, an infinitesimal conformal transformation corre-
sponds to a conformal Killing vector field εµ, i.e. such that

∂µεν + ∂νεµ = δµν∂ρε
ρ . (3.3.1)

For such a vector field Eq.(3.2.23) yields

δεOj(x) ≡ −
1

4π ∫Bj
∂ρε

ρ(y)T µµ(y)Oj(xj)d
2y

+
1

2π ∮∂Bj
εµρ ε

ν(y)T µν(y)Oj(xj)dy
ρ (3.3.2)

Naively we would expect the first integral to vanish, as was the case for isometries. Indeed
for a conformal invariant field theory, the classical stress-energy tensor can be chosen
traceless, and we could expect the quantum stress-energy tensor to also be traceless. In
flat space this turns out to be almost true, in the sense that T µµ is redundant :

T µµ ≡ 0 . (3.3.3)

50



However there are contact terms. These are extremely important, as they encode the
quantum corrections to the behavior of fields under conformal transformations, and in
particular their anomalous dimension. We interpret the term

−
1

4π ∫Bj
∂ρε

ρ(y)T µµ(y)Oj(xj)d
2y (3.3.4)

as a quantum correction to δεOj(x). What we are saying is that fields in a QFT might
not transform as their classical counterpart. Technically these anomalous terms come
from the need to introduce a length scale when regulating a QFT (see for instance the
regularization of vertex operators in the tutorials). Following the same philosophy as for
the stress-energy tensor (3.2.15), we absorb these quantum corrections in a redefinition
of δεOj(x) :

δ̃εOj(x) = δεOj(x) +
1

4π ∫B
∂ρε

ρ(y)T µµ(y)Oj(x)d
2y (3.3.5)

where B is a small neighborhood of x that does not contain any other field insertion.
Notice that these quantum corrections do not spoil the local nature of the transformation
law (3.1.7).

Consider for instance the behavior of fields under an infinitesimal dilatation εµ =

εxµ. At the classical level the behavior of a field is completely fixed (for instance for
scalar/vector/tensor field it is given by the Lie derivative) and is of the form

δεO = ε (xρ∂ρ +∆0)O (3.3.6)

where ∆0 is the naive/canonical scaling dimension. Suppose the contact terms of T µµ
with the field O are of the form

T µµ(y)O(x) = 2πηδ(y − x)O(x) + higher derivatives of δ(y − x) (3.3.7)

we find at the quantum level

δ̃εO = ε (xρ∂ρ +∆)O, ∆ = ∆0 + η (3.3.8)

This violation of the naive scaling dimension is our first encounter with quantum anoma-
lies, and the extra term η is called the anomalous dimension. These scaling dimensions
are of tremendous importance in physics and are often directly accessible in experiments,
but they are notoriously difficult to compute exactly. In statistical physics they corre-
spond to critical exponents. One of the main achievements of two-dimensional CFT is to
provide exact results for these scaling dimensions.

We can now rewrite the conformal Ward identity (3.2.23) in the following compact
form

δ̃εOj(x) ≡
1

2π ∮∂B
εµρ ε

ν(y)T µν(y)Oj(xj)dy
ρ . (3.3.9)

Of course the vector field εµ must satisfy the conformal Killing equation inside B, and the
sign ≡ is there to recall that the above equation is only valid when inserted in a correlation
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Cartesian coordinates Complex coordinates
x = x1 = 1

2(z + z̄), y = x
2 = 1

2i(z − z̄) z = x + iy, z̄ = x − iy
∂x = ∂z + ∂z̄, ∂y = i(∂z − ∂z̄) ∂z =

1
2 (∂x − i∂y), ∂z̄ =

1
2 (∂x + i∂y)

gµν = gµν = δµν gzz̄ =
1
2 , gzz̄ = 2

ε12 = ε12 = 1 εzz̄ =
i
2 , εzz̄ = −2i

T11 = Tzz + Tzz̄ + Tz̄z + Tz̄z̄
T22 = −Tzz + Tzz̄ + Tz̄z − Tz̄z̄ Tzz = Tz̄z̄ =

1
4 (T11 − T22 − iT12 − iT21)

T12 = i(Tzz − Tzz̄ + Tz̄z − Tz̄z̄) Tzz̄ = Tz̄z =
1
4 (T11 + T22 + i(T12 − T21))

T21 = i(Tzz + Tzz̄ − Tz̄z − Tz̄z̄)

Table 3.1: From Cartesian to complex coordinates

function with no other insertion inside B (nor inside its closure : we do not want any
contact terms with the stress-energy tensor). Equivalently

p

∑
i=1

⟨O1(x1)⋯δ̃εOi(xi)⋯Op(xp)⟩

=

p

∑
i=1

1

2π ∮∂Bi
εµρ εν(y)⟨T

µν(y)O1(x1)⋯Op(xp)⟩dy
ρ (3.3.10)

From now on we will drop the tilde on δ̃εOj(x).

3.3.1 Conformal Ward identities in complex coordinates

Needless to say the whole thing looks simpler in complex coordinates, see Table (3.1).
For starters the vector field εz∂z + εz̄∂z̄ is conformal Killing iff εz = ε(z) is holomorphic
(it follows that εz̄ = ε̄ is anti-holomorphic). Then consider the stress-energy tensor. In
complex coordinates it has components

Tzz = Tz̄z̄ =
1

4
(T11 − T22 − iT12 − iT21) (3.3.11)

Tzz̄ = Tz̄z =
1

4
(T11 + T22 + i(T12 − T21)) (3.3.12)

but since T is symmetric

Tzz̄ = Tz̄z =
1

4
T µµ ≡ 0 . (3.3.13)

Furthermore ∂µT µν ≡ 0, therefore

∂z̄Tzz ≡ 0, ∂zTz̄z̄ ≡ 0 (3.3.14)

Note that in the r.h.s. of eq. (3.3.10) the position y of the SET never coincides with
a field insertion, thus we can effectively forget about contact terms (they have already
played their part). So as far as the conformal Ward identities are concerned the SET has
only two components T (z) and T (z̄) :

T (z) = Tzz, T (z̄) = Tz̄z̄, Tzz̄ = Tz̄z = 0 (3.3.15)
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The conformal Ward identity (3.3.10) becomes

p

∑
i=1

⟨O1(z1, z̄1) . . . δεOi(zi, z̄i) . . .Op(zp, z̄p)⟩

=
1

2πi

p

∑
i=1
∮
∂Bi

[⟨. . . T (z)Oi(zi, z̄i) . . . ⟩ε(z)dz − ⟨. . . T (z̄)Oi(zi, z̄i)⟩ε̄(z̄)dz̄] , (3.3.16)

where the integration over ∂Bi is performed in the counter-clockwise direction. We can
rewrite the above Ward identity as

δεO(z, z̄) ≡
1

2πi ∮⤿
ε(ξ)T (ξ)O(z, z̄)dξ +

1

2πi ∮⟳
ε̄(ξ̄)T (ξ̄)O(z, z̄)dξ̄ , (3.3.17)

in which the integration contour circles around z. As usual the above relation is valid in
correlation functions away from coincident points, and with the domain B containing no
other insertion than O(z, z̄).

3.3.2 From Ward identities to OPEs

Recall that a field φ is called a primary field if it transforms as follows under a conformal
transformation z → f(z)

φ′(z, z̄) = (∂f)h(∂̄f)h̄φ(f(z), f(z)) (3.3.18)

The numbers (h, h̄) are the conformal dimensions of φ. Primary fields play a central role
in CFTs. The reason will become clear when studying the representation theory of the
conformal algebra (a.k.a. the Virasoro algebra).

Infinitesimally, for f(z) = z + ε(z), a primary field behaves as

δεφ(z, z̄) = (ε∂z + h∂zε)φ(z, z̄) + (ε̄∂z̄ + h̄∂z̄ ε̄)φ(z, z̄) (3.3.19)

Comparison with the Ward identity (3.3.17) yields the following Operator Product Ex-
pansion

T (z)φ(w, w̄) =
h

(z −w)2
φ(w, w̄) +

1

z −w
∂wφ(w, w̄) +⋯

T (z̄)φ(w, w̄) =
h̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄) +⋯

(3.3.20)

Note that in deriving the above we heedlessly treated the functions ε(z) and ε̄(z̄) as if
they were independent, which in principle is not correct. This is what we alluded to earlier
when we mentioned the complexification of the algebra of conformal Killing vectors. This
point, namely the factorization of CFT correlation functions into left and right degrees of
freedom, which amounts to treat z and z̄ as being independent, will be commented more
and to some extent justified in the next chapter.

For a generic scaling field, the OPEs Tφ and Tφ are quite similar to (3.3.20) : the
very same terms appear, but in general there are poles of higher degrees. For instance

T (z)∂wφ(w, w̄) =
2h

(z −w)3
φ(w, w̄) +

(h + 1)

(z −w)2
∂wφ(w, w̄) +

1

z −w
∂2
wφ(w, w̄) +⋯ (3.3.21)
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While primary fields are quite special, recall the larger class of quasi-primary fields, for
which one imposes the covariance relation (3.3.18) only under global conformal mappings
of the sphere, namely

f(z) =
az + b

cz + d
(3.3.22)

Exercise : show that a field φ is quasi-primary if and only if the OPEs T (z)φ(w, w̄) (and
T (z̄)φ(w, w̄)) has no pole of order 3.

Let’s now consider the behavior of the SET itself under conformal maps. At the
classical level

δεTµν = ε
ρ∂ρTµν + ∂µε

ρTρν + ∂νε
ρTµρ (3.3.23)

which in complex coordinates (recall that T is traceless) reads

δεT = ε∂zT + 2∂zεT, (3.3.24)

δεT = ε̄∂z̄T + 2∂z̄ ε̄ T (3.3.25)

The naive dimension of the SET is ∆ = 2. Because it remains conserved in the quantum
theory, its dimension cannot be modified (this is in fact a generic properties of conserved
current : they cannot acquire anomalous dimensions). However in the quantum theory
the above transformation law under infinitesimal conformal transformations generically
gets a quantum correction of the form

δεT = ε∂zT + 2∂zεT+
c

12
∂3
z ε, (3.3.26)

δεT = ε̄∂z̄T + 2∂z̄ ε̄ T+
c

12
∂3
z̄ ε̄ . (3.3.27)

where the number c is called the central charge. Note that the extra term does not spoil
the scaling dimension of the SET. The origin of this anomalous term will be made clear
in the next section. Comparison with (3.3.17) yields the following Operator Product
Expansion

T (z)T (w) =
c/2

(z −w)4
+

2T (w)

(z −w)2
+
∂T (w)

z −w
+⋯ (3.3.28)

and likewise for T (z̄)T (w̄). Notice that T and T are not primary fields (unless c = 0), but
they are quasi-primary. In fact the transformation (3.3.26) is the infinitesimal version of

T (z)→ (
∂w

∂z
)

2

T (w) +
c

12
{w, z} , (3.3.29)

where {w, z} is the Schwarzian derivative of the conformal transformation z ↦ w(z),
namely

{w, z} = ∂z (
∂2
zw

∂zw
) −

1

2
(
∂2
zw

∂zw
)

2

=
∂3
zw

∂zw
−

3

2
(
∂2
zw

∂zw
)

2

. (3.3.30)

54



Exercise : Check that (3.3.29) is indeed the integrated version of the infinitesimal
transformation (3.3.26). Let S(f) = {f, z}. Show that S(f ○ g) = g′2S(f) ○ g + S(g).
Check that S(f) vanishes iff f is a Möbius transformation z → az+b

cz+d .

Some references for this chapter :

• Lectures on Liouville Theory and Matrix Models , Alexei Zamolodchikov and Alexan-
der Zamolodchikov
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3.4 Appendix

3.4.1 Canonical stress-energy tensor

Noether’s theorem

Consider a classical field theory on flat Euclidean d-dimensional spacetime with metric
ηµν = δµν . The dynamics of the various fields (φ1, φ2,⋯) which we will denote collectively
by Φ is described by a Lagrangian density L. For simplicity we will assume that L =

L(Φ, ∂µΦ) depends only on the fields at x and their first derivatives. The equations of
motion (a.k.a. the Euler-Lagrange equations) are obtained as usual from extremizing the
action

S[Φ] = ∫ L(Φ(x), ∂µΦ(x))dnx (3.4.1)

Fields are called ”on-shell” when they obey the equation of motions

∂L

∂ϕa
= ∂µ (

∂L

∂(∂µϕa)
) (3.4.2)

An infinitesimal transformation Φ → Φ + δΦ is said to be a symmetry if the infinitesimal
variation of the Lagrangian is a pure divergence

δL = L[Φ + δΦ] −L[Φ] = ∂µK
µ (3.4.3)

for all configurations φ(x) (not just on-shell6)

Exercise Compute the equation of motion for

• the complex scalar field L = ∂µφ∂µφ∗ − V (∣φ∣2)

• the Proca action L = −1
4FµνF

µν +m2AµAµ with Fµν = ∂µAν − ∂νAµ

• the Abelian 2 + 1 Chern-Simons theory L = εµνρAµ∂νAρ.

and list their symmetries.
The corresponding Noether current is derived as follows. Assume the fields are on-

shell, and consider an arbitrary variation δφ. At first order the variation of the action
is

δL = ∂µ (δϕa
∂L

∂(∂µϕa)
) + δϕa (

∂L

∂ϕa
− ∂µ

∂L

∂(∂µϕa)
) = ∂µ (δϕa

∂L

∂(∂µϕa)
) (3.4.4)

where we have used the fact that the second term vanishes when φ satisfies Euler-Lagrange.
If Φ→ Φ + δΦ is also a symmetry, comparing with (3.4.3), we find that

∂µj
µ = 0, jµ = δϕa

∂L

∂(∂µϕa)
−Kµ (3.4.5)

6While this definition of symmetry is perfectly sensible for a quantum field theory, it is not very
natural for a classical one. Indeed a classical theory is fully characterized by its equations of motion, and
it does not require a Lagrangian. It could happen that the equations of motion enjoy a symmetry that
the Lagrangian does not. More importantly off-shell quantities are simply undefined/meaningless for a
classical system : many Lagrangians can share the same equations of motion. This caveat will not be an
issue in this lecture since we are just preparing the grounds for the quantum case.

56



provided the fields are on shell. The corresponding conserved charge is

Q = ∫ j0(t, x)dn−1x

Indeed

Q̇ = ∫ ∂0j
0(t, x)dn−1x = −∫ ∂ij

i(t, x)dn−1x = 0

by Stokes theorem, provided the current ji vanishes sufficiently rapidly at infinity (or if
space is compact, e.g. a torus).

Noether theorem associates a conservation law to each continuous symmetry of the
system. Let us however note a potential pitfall. While the identification of the global
charge Q is quite clear, there is an intrinsic ambiguity in defining the corresponding local
current jµ by simply demanding ∂µjµ = 0. Indeed if jµ is conserved, then so is jµ + ∂νbµν

for any antisymmetric tensor bµν . In particular the charge density j0 is ambiguous, as
one can add a divergent-free term j0 → j0 + ∂ib0i. On the other hand the total charge Q
is well-defined, since

∫ ∂ib
0i dn−1x = 0

provided b0i vanishes at spatial infinity.

Spacetime translations

Under an infinitesimal translation of spacetime (most) fields transform as Φ(x)→ Φ(xµ +
εµ) = Φ(x) + εµ∂µΦ(x). It is a symmetry as soon as L does not depend explicitly on xµ.
Indeed the variation of the Lagrangian density L is a total derivative

δL = (εµ∂µϕa
∂L

∂ϕa
+ εµ∂µ∂νϕa

∂L

∂(∂νϕa)
) = ∂µ(ε

µL) (3.4.6)

where we used the chain rule ∂µL(Φ, ∂νΦ) = ∂µϕa
∂L
∂ϕa

+ ∂µ(∂νϕa)
∂L

∂(∂νϕa) .

According to Noether’s theorem, the associated current is

jµ = εν (∂νϕa
∂L

∂(∂µϕa)
− δµνL) = −

1

2π
ενT µν (3.4.7)

so the canonical energy-momentum tensor is

T µν = 2π (−∂νϕa
∂L

∂(∂µϕa)
+ ηµνL) (3.4.8)

The prefactor 2π is conventional, but the overall sign is not. It must be chosen so that the
energy density T 00 is positive in Minkowski space with signature (−,+,+,+). In signature
(+,−,−,−) one must change the sign of T µν .
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The conserved charges associated to spacetime translations are energy and momentum

E = ∫ T 00(t, x)dn−1x, P i = ∫ T 0i(t, x)dn−1x (3.4.9)

In the quantum setting these will become the generators of spacetime translations. For
instance it is straightforward to check that E is (proportional to) the Hamiltonian

H = ∫ (πaφ̇a −L)d
n−1x, πa =

∂L

∂φ̇a
(3.4.10)

However the naive canonical stress-energy tensor as defined above suffers from a num-
ber of severe issues and is in general unphysical :

• For gauge theories, it is in general not gauge invariant, as can be checked with
electrodynamics

• It is not symmetric in general7

• It can fail to be traceless for scale invariant theories (more on this later)

All these issues are illustrated with free electrodymanics

L[Aµ] = −
1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ (3.4.11)

for which the canonical stress-energy tensor is

T µν = F µρ∂νAρ −
1

4
ηµνFρσF

ρσ (3.4.12)

It is manifestly not gauge invariant, nor symmetric, nor is it traceless in four-dimensions
(in 4d this theory is scale invariant). An even more serious matter in 3 + 1 dimensions
is that T 00 and T 0i fail to reproduce the well-known, experimentally tested expressions
for the electromagnetic energy density 1

2(E
2 +B2) and energy flux density (the Poynting

vector) E × B. In this particular case these issues can be traced back to the gauge
symmetry of the action.

Improved stress-energy tensor

The canonical SET suffers from the same ambiguity as one described in section 3.1.2.
This can be exploited to improve the canonical SET and yield a partial cure to the above-
mentioned issues. Indeed for electrodymanics choosing Σρµν = F ρµAν leads to the correct
stress-energy tensor

T µν = F µρF ν
ρ +A

ν∂ρF
ρµ −

1

4
ηµνFρσF

ρσ

≡ F µρF ν
ρ −

1

4
ηµνFρσF

ρσ on-shell (3.4.13)

7This is required in a Lorentz invariant theory for which the angular momentum current Tµνxρ−Tµρxν
should be conserved and it is also required to couple to curvature in general relativity (more on this to
come).
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where we have used the on-shell relation ∂µF µν = 0. This tensor is now symmetric, gauge-
invariant, and traceless in four dimensions, as long as we are on-shell. In fact it is
the correct one (up to a possible global sign depending on the choice of signature of ηµν),
since T 00 = 1

2(E
2 +B2) and T 0i = (E ×B)i.

There it however a better way to obtain the correct SET from Noether’s theorem.
Instead of δAµ = εα∂αAµ, consider a transformation that combines a naive translation to
a specific gauge transformation as follows :

δAµ = ε
α∂αAµ − ∂µ(ε

αAα) = ε
αFαµ (3.4.14)

The variation of the Lagrangian density L is the same as for δAµ = εα∂αAµ since L is
gauge invariant. So Kµ = εµL. Noether’s theorem now yields a different conserved SET,
which turns out to be the correct one (and not just on-shell).

In general curing the canonical SE tensor by adding such an improvement term has to
be done on a case by case basis, and is a rather ad hoc procedure. It should be stressed that
improving the stress-energy tensor is not merely a formal manipulation. Improvements
amount to a relocalization of the energy and momentum densities, which are observable
quantities, and as such they must agree with experiments. Generically the canonical SE
tensor is an unphysical object coming form a formal and rather ambiguous construction.

Exercise : Compute the canonical SET for the 2+1 dimensional Chern-Simons theory
L = 1

2π ε
µνρAµ∂νAρ. Show that it can be improved to achieve T µν = 0 on-shell (which is

what we expect since for a topological field theory). Compare with the SET obtained
using the ”improved translation” (3.4.14).

3.4.2 Hilbert stress-energy tensor

Given a global symmetry, Noether theorem yields a well defined total charge, but the
local distribution remains ambiguous. What is missing is a physically sound prescription
of the notion of local charge and local currents. An elegant way to address this is to define
how this charge couples to external fields.

Electric current as the source of the electromagnetic field

This is best illustrated for the electric charge. Consider for instance a complex scalar field
with Lagrangian density

L = ηµν∂µφ∂νφ
∗ − V (∣φ∣2)

The global U(1) symmetry φ(x) → eiθφ(x) yields the conservation of the total (electric)
charge through the canonical Noether current

jµ = i (φ∂µφ∗ − φ∗∂µφ) (3.4.15)

but this current is only defined up to possible improvements. A way to circumvent this
ambiguity is to couple this theory to an arbitrary external (electromagnetic) gauge field
Aµ, for instance

L = ηµνDµφ(Dνφ)
∗ − V (∣φ∣2), Dµ = ∂µ − iAµ (3.4.16)
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By prescribing how the complex scalar field couples to the background U(1) gauge field, we
are promoting the global U(1) symmetry to a local one φ(x)→ eiθ(x)φ(x), Aµ → Aµ+∂µθ.
From the Lagrangian density (3.4.16) we can define unambiguously the local current as
the response of the system to a variation of the external gauge field8 :

δS = −∫ jµδAµ d
nx, or equivalently jµ = −

δS

δAµ
(3.4.19)

and we recover the expression (3.4.15) when Aµ = 0. That this current is conserved on-shell
is a consequence of gauge invariance. Indeed the action is invariant under a simultaneous
change δφ(x) = iθ(x)φ(x) and δAµ(x) = ∂µθ(x), therefore

0 = δS = ∫ (
δS

δφ
δφ +

δS

δφ∗
δφ∗) dnx − ∫ jµ∂µθ d

nx (3.4.20)

Since δS
δφ = δS

δφ∗ = 0 on-shell, we get for an arbitrary function θ(x)

∫ jµ∂µθ d
nx = 0 on-shell (3.4.21)

which is equivalent to ∂µjµ = 0 on-shell. Furthermore from

∫ (
δS

δφ
δφ +

δS

δφ∗
δφ∗) dnx = ∫ jµ∂µθ d

nx (3.4.22)

we find

δS = ∫ jµ(x)∂µθ(x)d
nx, under δφ(x) = iθ(x)φ(x) (3.4.23)

which is also valid for the original problem of the theory that is not coupled to the gauge
field (i.e. the case Aµ = 0).

Linear response to spacetime deformations

The same approach can be used to define the stress-energy tensor. What plays the
role of the external field is now the background metric : we are coupling the theory
to gravity. Indeed in general relativity, the stress-energy tensor acts as the source of
spacetime curvature.

One must prescribe how to extend the theory from flat space to an arbitrary curved
space. Once our theory is defined on arbitrary curved background, we can define the stress

8Equivalently, upon considering a dynamical gauge field, the current jµ can be seen as the source of
the electromagnetic field. Indeed from

L = Lm +LA, Lm = ηµν∂µφ∂νφ∗ − V (∣φ∣2), LA = −1

4
FµνF

µν (3.4.17)

the equation of motion of the electromagnetic field reads

∂µF
µν = jν , jµ = − δS

δAµ
(3.4.18)
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tensor as the susceptibility of the system with respect to the variations of the background
metric :

δS =
1

4π ∫
T µνδgµν

√
∣g∣dnx = −

1

4π ∫
Tµνδg

µν
√

∣g∣dnx (3.4.24)

where the minus sign arises because δgµν = −gµσδgστgτν . This is equivalent to9

Tµν = −4π
δS

δgµν
(3.4.25)

This defines the so-called Hilbert stress-energy tensor. It suffers none of the unpleasant
properties of the canonical one. To start with, it is well defined ! Moreover it is by
construction gauge-invariant and symmetric.

In order to define the electric charge density, we promoted the U(1) symmetry to local
gauge invariance. We now have defined the stress-energy tensor by promoting translation
invariance to general (or diffeomorphism) covariance. What is left is to derive the analogue
of (3.4.23), which will turn out to be nothing but the characterisation of the stress-
energy tensor used in the main text, namely (3.1.8). To see this, consider once again an
infinitesimal diffeomorphism xµ → xµ + εµ(x), acting this time both on the fields and the
metric (that is to say an infinitesimal isometry) :

δgµν(x) = ε
ρ∂ρgµν(x) + gµρ(x)∂νε

ρ(x) + gσν(x)∂µε
σ(x) = ∇µεν +∇νεµ (3.4.26)

where ∇ is the Levi-Civita connection and ∇µεν stands for (∇µε)ν , namely

(∇µε)ν = gνλ(∇µε)
λ = gνλ (∂µε

λ + Γλρµε
ρ) = gνλ∂µε

λ + ερΓνρµ (3.4.27)

where Γνρµ is the Christoffel symbol

Γνρµ =
1

2
(∂µgνρ + ∂ρgνµ − ∂νgµρ) (3.4.28)

In particular in flat space (and in flat coordinates, i.e. such that gµν = ηµν)

δgµν(x) = ∂µεν + ∂νεµ (3.4.29)

But general covariance tells us that the theory remains unchanged under arbitrary dif-
feomorphisms (note that such diffeomorphisms correspond to symmetries only when they
leave the metric unchanged, which infinitesimally means Killing vector fields). Therefore
we have

0 = δS = S[Φ +LεΦ, g +Lεg] − S[Φ, g]

= S[Φ +LεΦ, g] − S[Φ, g] + ∫
δS

δgµν
∣
g=η

δgµν
√

∣g∣dnx

9We recall our convention for functional derivatives : δS = ∫ δS
δgµν(x)δg

µν(x)
√
∣g∣dnx and not

∫ δS
δgµν(x)δg

µν(x)dnx.
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and we get

S[Φ +LεΦ, g] − S[Φ, g] = −∫
δS

δgµν
δgµν

√
∣g∣dnx

= −
1

2π ∫
T µν∇µεν

√
∣g∣dnx

In flat space and in flat coordinates we recover (3.1.8)

S[Φ +LεΦ] − S[Φ] = ∫ T µν∂µεν d
nx, T µν = − 4π

δS

δgµν
∣
g=η

(3.4.30)

Matter tells spacetime how to curve

Alternatively one can couple the theory (referred to as matter in this context, with action
Sm) to a dynamical metric with the Einstein-Hilbert action

Sg =
1

2 ∫
R
√

∣g∣dnx

where R is the Ricci scalar (see Appendix (8.5.1)). The total action is now

S = Sm + Sg

and the equation of motion of the metric is

0 =
δSg
δgµν

+
δSm
δgµν

(3.4.31)

In (8.5.1) we compute

δSg
δgµν

= −
1

2
(Rµν −

1

2
Rgµν) (3.4.32)

while by definition

δSm
δgµν

= −
1

2
T µν (3.4.33)

and we obtain the Einstein field equations

Rµν −
1

2
Rgµν = Tµν (3.4.34)

which is the analogue of ∂µF µν = jν for gravitation : the stress-energy tensor acts as the
source of the gravitational field.
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Lecture 4

Radial quantisation and the Virasoro
algebra

In the previous lecture, we have worked in the Lagrangian formalism: implicitly or ex-
plicitly, we have assumed that the theory is governed by some action A[Φ] defined on the
local degrees of freedom {Φ(r)}, so that the correlation functions are given by:

⟨. . . ⟩ =
1

Z ∫
[DΦ] e−A[Φ](. . . ) , Z = ∫ [DΦ] e−A[Φ] , (4.0.1)

where the dots denote any functional of Φ(r). In the present lecture, we will show how
to construct an equivalent viewpoint based on a Hilbert space. It is instructive to begin
with the lattice analogs of these two viewpoints.

4.1 Critical model on the cylinder

We will now focus on conformal field theories defined on the cylinder, as depicted in Fig.
4.1

τ

σ

Figure 4.1: Cylinder of perimeter L. We denote by σ the compact coordinate (with σ and
σ +L identified) and by τ ∈ R the non-compact direction.

This spacetime geometry is relevant for a variety of situations, critical or not, such as

• one-dimensional quantum systems on a circle (i.e. periodic boundary conditions)
at zero temperature
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• one-dimensional quantum systems on a an infinite line, at finite temperature

• transfer matrix approach to statistical physics

But for conformal field theories something special happens : the cylinder is conformally
equivalent to the (punctured) flat plane, thus solving a CFT on the plane is equivalent to
solving it on the cylinder. This will yield two important consequences, to be discussed in
this chapter : radial quantisation and the state-operator correspondence.

4.1.1 Hamiltonian formalism

Consider a Euclidean CFT on a cylinder of circumference L and length K, with the space
direction x along the circumference (so that x ≡ x +L), and the imaginary time direction
τ along the axis of the cylinder. By convention, the origin of time is set to the middle
of the cylinder. The quantum degrees of freedom are defined on a circle of circumference
L, and we denote by H the Hamiltonian. The corresponding Hilbert space is called V .
Given a local observable Ô(x), one defines in the usual way the time-dependent operator

Ô(x, τ) = eτHÔ(x)e−τH , (4.1.1)

where we used the fact that exp(−τH) is the evolution operator for a time gap τ .

Remark: Beware that the Hamiltonian H, describing a quantum 1d system, should
not be confused with the classical Hamiltonian H[S] of the 2d classical lattice model
described in Chapter 1.

The generator of rotations around the cylinder is denoted P , so that a cyclic translation
by x is performed by the operator exp(−ixP ).

The boundary conditions on the edges of the cylinder are encoded into an in-state ∣in⟩
and an out-state ∣out⟩. With these notations, the partition function is

Z = ⟨out∣e−KH ∣in⟩ . (4.1.2)

We can express a two-point function ⟨O(x1, τ1)O(x2, τ2)⟩ as

⟨O(x1, τ1)O(x2, τ2)⟩cyl =
1

Z
⟨out∣e(−K/2+τ1)HÔ(x1)e

(τ2−τ1)HÔ(x2)e
(−K/2−τ2)H ∣in⟩

=
1

Z
⟨out∣e−KH/2Ô(x1, τ1)Ô(x2, τ2)e

−KH/2∣in⟩ , (4.1.3)

provided that τ1 ≥ τ2. Assume that H admits a non-degenerate ground state ∣0⟩, with
energy E0, and that the overlaps ⟨out∣0⟩ and ⟨0∣in⟩ are nonzero. Then, as K →∞ with L
fixed, we have

⟨out∣e−KH/2 ∼ ⟨out∣0⟩⟨0∣ e−KE0/2 , e−KH/2∣in⟩ ∼ e−KE0/2 ∣0⟩⟨0∣in⟩ , (4.1.4)

where we have assumed that the ground state is normalised:

⟨0∣0⟩ = 1 . (4.1.5)
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Hence, we get

Z ∝ exp(−KE0) , ⟨O(x1, τ1)O(x2, τ2)⟩cyl → ⟨0∣Ô(x1, τ1)Ô(x2, τ2)∣0⟩ (4.1.6)

This easily generalises to

⟨O1(x1, τ1) . . .O1(xn, τn)⟩cyl = ⟨0∣Ô1(x1, τ1) . . . Ôn(xn, τn)∣0⟩ , (4.1.7)

on the infinite cylinder, provided the operators are time-ordered, i.e. τ1 ≥ ⋅ ⋅ ⋅ ≥ τn.

4.1.2 Radial quantisation

Consider the conformal transformation from the plane to the cylinder:

z ↦ w =
L

2π
log z (4.1.8)

If the point at infinity is included, we get a mapping from the compactified complex plane,
also called the Riemann sphere, to the infinite cylinder. The points at z = 0 and z = ∞
are mapped to w = −∞ and w = +∞, respectively. Under the mapping z ↦ w, a primary
operator φh,h̄ transforms as

φh,h̄(z, z̄)→ (2πz/L)−h (2πz̄/L)−h̄ φh,h̄(w, w̄) . (4.1.9)

Accordingly, we define the operator φ̂h,h̄(z, z̄) acting on the Hilbert space V , as

φ̂h,h̄(z, z̄) ∶= (2πz/L)−h (2πz̄/L)−h̄ φ̂h,h̄(w, w̄) . (4.1.10)

A correlation function of primary operators on the plane is then given by

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)⟩C = ⟨0∣φ̂1(z1, z̄1) . . . φ̂n(zn, z̄n)∣0⟩ , (4.1.11)

if ∣z1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣zn∣.

We also know how the stress-energy tensor transforms under the map w ↦ z:

T (z)→ z−2 [(
L

2π
)

2

T (w) +
c

24
] , T̄ (z̄)→ z̄−2 [(

L

2π
)

2

T̄ (w̄) +
c

24
] , (4.1.12)

which allows us to promote T (z) and T̄ (z) to linear operators acting on V , like we have
done with primary operators:

T̂ (z) ∶= z−2 [(
L

2π
)

2

T̂ (w) +
c

24
1] , ̂̄T (z̄) ∶= z̄−2 [(

L

2π
)

2
̂̄T (w̄) +

c

24
1] . (4.1.13)

As a result, we have, for instance,

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)T (z)⟩C = ⟨0∣φ̂1(z1, z̄1) . . . φ̂n(zn, z̄n)T̂ (z)∣0⟩ , (4.1.14)

if ∣z1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣zn∣ ≥ ∣z∣. More generally, the above relations can be extended to any set
of scaling operators Oj(zj, z̄j), whenever we know how they transform under conformal
maps.
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Figure 4.2: Square lattice on the cylinder, with N = 6 sites on the circumference, and
M = 10 sites along the axis. The transfer matrix TN acts in the horizontal direction.

4.1.3 The transfer matrix

What guarantees the existence of a non-degenerate ground state for the quantum Hamil-
tonian H ? For a CFT describing the scaling limit of a classical 2d model with local
interaction, the justification comes from a simple analysis of the transfer matrix, i.e. the
discrete imaginary-time evolution operator.

To illustrate the notion of transfer matrix, let us consider a spin model on a square
lattice with periodic boundary conditions in the vertical direction. Each vertex carries a
spin variable Si, and the energy of a spin configuration is given by

H[S] =∑
⟨ij⟩
ε(Si, Sj) , (4.1.15)

where ⟨ij⟩ denotes a pair of adjacent sites. Let N be the number of sites in the vertical
direction, and a the lattice spacing, so that the circumference of the cylinder is L = aN .
For any pair of column spin configurations S = (S1, . . . , SN) and S = (S′1, . . . , S

′
N), we

define the matrix element

(TN)S′S =
N

∏
n=1

exp [−
1

2
ε(Sn, Sn+1) −

1

2
ε(S′n, S

′
n+1) − ε(Sn, S

′
n)] , (4.1.16)

where SN+1 ∶= S1 and S′N+1 ∶= S
′
1. As a linear operator, the matrix TN acts on configuration

vectors. The linear space for these vectors is called the quantum space VN . If each
individual spin Sj can take q values, then dimVN = qN .

The operator TN plays the role of a discrete evolution operator. For instance, for any
pair of column configurations α,β, the quantity

Zαβ = ⟨α∣(TN)M ∣β⟩ (4.1.17)

gives the partition function of the lattice model on a cylinder of size M ×N , with fixed
boundary conditions given by α,β. Similarly, one may define time-dependent lattice
operators acting on VN through the relation

Ô(n,m) = T−m
N Ô(n)TmN (4.1.18)

The rotation operator by one lattice step is denoted ΩN .

The physics of the model on the infinite cylinder is governed by the dominant eigen-
values of TN , i.e. those with maximal modulus. From (4.1.16), we see that TN is a real
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symmetric matrix with positive elements. Hence, the Perron-Froebenius theorem states
that the dominant eigenvalue Λ0 of TN is positive and non-degenerate, and that the
corresponding eigenvector ∣v0⟩ can be written with positive components.

Assume that the Boltzmann weights are invariant under a given transformation of
the spin variables (for instance, the spin flip Sj → −Sj in the Ising model). Let G be
the corresponding symmetry group. When acting on the quantum space, this group is
represented by permutation matrices, which commute with the transfer matrix

∀g ∈ G, [g,TN] = 0 . (4.1.19)

Since the dominant eigenvalue Λ0 is non-degenerate, we see that g∣v0⟩ must be a multiple
of ∣v0⟩, and hence ∣v0⟩ is an eigenvector of g. Since g is unitary, the eigenvalue is of the
form eiλ with real λ. The eigenvalue equation then reads

dimVN

∑
k=1

gjk v0,k = e
iλ v0,j , (4.1.20)

where the matrix elements gjk ∈ {0,1}, and the vector components v0,j > 0. Hence, both
sides of the eigenvalue equation are real and positive, and so the eigenvalue must be
one. As a result, we obtain that the Perron-Froebenius vector is invariant under the full
symmetry group:

∀g ∈ G, g∣v0⟩ = ∣v0⟩ . (4.1.21)

Using a similar argument, we can show that the Perron-Froebenius vector is also invariant
under a rotation around the cylinder:

Ω∣v0⟩ = ∣v0⟩ . (4.1.22)

In the scaling limit, when N →∞ and a→ 0 with L = Na fixed, the quantity

f0 = lim
N→∞

(−
1

N
log Λ0) (4.1.23)

is assumed to be finite, and gives the density of free energy per lattice site. Indeed, the
free energy on a cylinder of size K ×N is

F ∼ − log(ΛK
0 ) ∼ NKf0 . (4.1.24)

We assume that the transfer matrix and the rotation operator take the form

TN ∼ exp(−aH) , Ω ∼ exp(−iaP ) . (4.1.25)

The dominant eigenvalues of TN thus correspond to the low-lying energies of H. The
quantum space VN becomes infinite-dimensional in the scaling limit. We consider the
Hilbert space of the CFT as generated by the Perron-Froebenius vector ∣v0⟩, together
with the subset of eigenstates of TN whose eigenvalues scale as

− log
Λj

Λ0

∼
µj
N
, (4.1.26)
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where the µj’s are positive constants. This can be quickly justified in the following way.
The free energy on the K ×N torus is given by

Ftorus = − log Tr(TN)K = − log(∑
j

ΛK
j )

= − log(ΛK
0 ) − log [∑

j

(Λj/Λ0)
K]

∼ NKf0 − log [∑
j

exp(−µjK/N)] , (4.1.27)

Hence (4.1.26) is the only scaling consistent with the expected form of the free energy of
a scale-invariant system, namely the sum of an extensive term and a term depending only
on the aspect ratio K/N of the torus.

The direct consequence of the above results are:

• CFTs describing the scaling limit of a critical 2d model possess a non-degenerate
ground state ∣0⟩, which can be viewed as the “limit” of the Perron-Froebenius vec-
tor ∣v0⟩. The corresponding left eigenvector ⟨0∣ has an analogous relation to the
conjugate Perron-Froebenius vector ⟨v0∣, because the transfer matrix is real and
symmetric.

• The ground state ∣0⟩ has energy E0, and momentum zero: P ∣0⟩ = 0.

• When the discrete model admits a symmetry under reparameterisation of spin vari-
ables (like Sj → −Sj in Ising), then ∣0⟩ is invariant under this symmetry.

• All excited states of the CFT Hamiltonian H on a periodic system of size L have
an energy gap (E −E0)∝ 1/L.

4.1.4 Conserved charges associated to the stress-energy tensor

We will now argue that the Hamiltonian is related to the stress-energy tensor via

H =
1

2π ∫
L

0
(Tcyl(x, τ) + T cyl(x, τ))dx , (4.1.28)

where Tcyl is the stress-energy tensor on the cylinder. This means that Tττ = T + T is
the energy density. This identification follows from the Ward identity associated to time
translations. We have for any scaling operator Ô

∂τ Ô(x, τ) = [H, Ô(x, τ)] (4.1.29)

Meanwhile the conformal Ward identity under an infinitesimal conformal transformation
w → w + ε(w) reads

δεO(x, τ) =
1

2iπ ∮
ε(w)Tcyl(w)O(x, τ)dw +

1

2iπ ∮
ε̄(w̄)T cyl(w̄)O(x, τ)dw̄ , (4.1.30)

where the contour integrals wind around the position u = τ + ix. These integrals can be
written as the difference of two integrals over the circumference of the cylinder, as in Fig.
4.3

1

2iπ ∮
ε(w)Tcyl(w)O(u, ū)dw =

1

2iπ
(∮

C+
−∮

C−
) ε(w)Tcyl(w)O(u, ū)dw , (4.1.31)
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u = τ + ix

τ

u u

C+ C−

Figure 4.3: From Ward identities to commutators on the cylinder.

where C+ (resp. C−) is a circumference placed on the right (resp. left) of O(u, ū). There-
fore the interpretation of the Ward identity Eq. 4.1.30 in Hamiltonian formalism is really
that of a commutator :

δεÔ(u, ū) = [Qε, Ô(u, ū)] (4.1.32)

where

Qε =
1

2iπ ∮
ε(w)Tcyl(w)dw +

1

2iπ ∮
ε̄(w̄)T̄cyl(w̄)dw̄ , (4.1.33)

=
1

2π ∫
L

0
(ε(x, τ)Tcyl(x, τ) + ε̄(x, τ)T cyl(x, τ))dx . (4.1.34)

Observe that the charge Qε(τ) = Qε is a conserved charge, in the sense that it does not
depend on time. This follows from the fact that the integration contour can be shifted
around freely, and ultimately boils down to the fact that both T and ε are holomorphic
in w = τ + ix.

A particular but important case of this construction is for ε real and constant, for
which δO = ∂τO, thus

∂τ Ô = [H, Ô] (4.1.35)

with H given by Eq. 4.1.28. Strictly speaking the argument above only allows to deter-
mine the Hamiltonian up to an additive constant. This is perhaps not too surprising, as
in quantum mechanics energy is a priori only defined up to an arbitrary additive shift.
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▸ Exercise : Show that the total momentum P , as characterized by ∂xÔ = i[P, Ô],
is given by

P =
1

2π ∫
L

0
(Tcyl(x, t) − T cyl(x, t))dx . (4.1.36)

4.2 The Virasoro algebra

4.2.1 Laurent expansion of the stress-energy tensor

Let us first describe the Fourier modes of the stress energy tensor on the cyliner. We use
the coordinates on the cylinder

w = τ + ix , w̄ = τ − ix . (4.2.1)

By invariance under translations around the cylinder, we have the periodicity

Tcyl(x, τ) = Tcyl(x +L, τ) , T̄cyl(x, τ) = T̄cyl(x +L, τ) . (4.2.2)

Moreover, we have
∂w̄Tcyl = 0 , ∂wT̄cyl = 0 . (4.2.3)

Hence, one easily shows that Tcyl and T̄cyl admit the decomposition

Tcyl(w) =∑
n∈Z

e−2πnw/L qn , T̄cyl(w̄) =∑
n∈Z

e−2πnw̄/L q̄n , (4.2.4)

where the Fourier coefficients are given by

qn =
1

L ∫
L

0
dxe2iπnx/L Tcyl(x,0) , q̄n =

1

L ∫
L

0
dxe−2iπnx/L T̄cyl(x,0) . (4.2.5)

We can now map the cylinder to the plane, through the conformal transformation

w ↦ z = exp(2πw/L) . (4.2.6)

Under this mapping, the stress-energy tensor becomes

T (z) = z−2 [(
L

2π
)

2

Tcyl(w) +
c

24
] , T̄ (z̄) = z̄−2 [(

L

2π
)

2

T̄cyl(w̄) +
c

24
] . (4.2.7)

We can define

Ln = (
L

2π
)

2

qn +
c

24
δn,0 , L̄n = (

L

2π
)

2

q̄n +
c

24
δn,0 , (4.2.8)

so that the Fourier expansions of Tcyl and T̄cyl become Laurent expansions for T and T̄ :

T (z) =∑
n∈Z

z−n−2Ln , T̄ (z̄) =∑
n∈Z

z̄−n−2 L̄n . (4.2.9)

Conversely, the Laurent modes can be recovered as

Ln =
1

2iπ ∮
dz zn+1 T (z) , L̄n =

1

2iπ ∮
dz̄ z̄n+1 T̄ (z̄) , (4.2.10)
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where the contours encircle the origin. Like for the primary operators, the currents T, T̄
and the modes Ln, L̄n can be promoted to operators acting on the quantum space V . For
instance, one defines

L̂n = (
L

2π
)

2

q̂n +
c

24
δn,01 ,

̂̄Ln = (
L

2π
)

2

̂̄qn +
c

24
δn,01 . (4.2.11)

In the following, we shall omit the symbol ,̂ in order to lighten the notation.
An important property, deduced directly from the above relations, is the expression

of the Hermitian conjugates:

L†
n = L−n , L̄†

n = L̄−n . (4.2.12)

4.2.2 Commutation relations

Let us now show that the OPEs T.T , T̄ .T̄ and T.T̄ determine the commutation relations:

[Lm, Ln] = (m − n)Lm+n +
c

12
(m2 − 1)mδm+n,0 ,

[L̄m, L̄n] = (m − n)L̄m+n +
c

12
(m2 − 1)mδm+n,0 ,

[Lm, L̄n] = 0 .

(4.2.13)

The modes Ln and L̄n generate two independent Virasoro algebras Vir and Vir.
We recall the OPE

T (y)T (z) =
c/2

(y − z)4
+

2T (z)

(y − z)2
+
∂T (z)

y − z
+ regy→z . (4.2.14)

Consider first the commutator

[Lm, T (z)] =
1

2iπ
(∮

C0,z

−∮
C0

)dy ym+1 T (y)T (z)

=
1

2iπ ∮Cz
dy ym+1 T (y)T (z) (4.2.15)

=
1

2iπ ∮Cz
dy ym+1 [

c/2

(y − z)4
+

2T (z)

(y − z)2
+
∂T (z)

y − z
]

=
c

2 × 3!
(m + 1)m(m − 1)zm−2 + 2(m + 1)zm T (z) + zm+1 ∂T (z) . (4.2.16)

The crucial point is that only the singular terms of the OPE contribute in the contour
integral. Integrating over z, we get

[Lm, Ln] =
1

2iπ ∮C0

dz [
c

12
(m2 − 1)mzn+m−1 + 2mzm+n+1 T (z) + zm+n+2 ∂T (z)]

=
c

12
(m2 − 1)mδm+n,0 + 2(m + 1)Lm+n − (m + n + 2)Lm+n

= (m − n)Lm+n +
c

12
(m2 − 1)mδm+n,0 , (4.2.17)

where we have performed an integration by parts on the last term.
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The OPEs of T and T̄ with a primary operator φ of conformal dimensions are

T (y)φ(z, z̄) =
hφ(z)

(y − z)2
+
∂φ(z)

y − z
+ regy→z , (4.2.18)

T̄ (ȳ)φ(z, z̄) =
h̄ φ(z, z̄)

(ȳ − z̄)2
+
∂̄φ(z, z̄)

ȳ − z̄
+ regy→z . (4.2.19)

They yield the commutation relations:

[Ln, φ̂(z, z̄)] = (n + 1)hzn φ̂(z, z̄) + zn+1 ∂φ̂(z, z̄) ,

[L̄n, φ̂(z, z̄)] = (n + 1)h̄z̄n φ̂(z, z̄) + z̄n+1 ∂̄φ̂(z, z̄) .
(4.2.20)

4.2.3 Hamiltonian and momentum operators

Recall that from Ward identities on the cylinder, we have obtained

H =
1

2π ∫
L

0
(Tcyl + T cyl)dx , P =

1

2π ∫
L

0
(Tcyl − T cyl)dx . (4.2.21)

In terms of the Virasoro modes, this gives

H =
2π

L
(L0 + L̄0 −

c

12
) , P =

2π

L
(L0 − L̄0) . (4.2.22)

▸ Exercise : What is the charge Qε for ε(w) = e
2πn
L
w and ε(w) = ie

2πn
L
w ?

4.3 The quantum states of a CFT

4.3.1 The vacuum state

Consider the insertion of T (z) into a correlation function of scaling operators:

⟨O1(z1, z̄1) . . .On(zn, z̄n)T (z)⟩ = ⟨0∣Ô1(z1, z̄1) . . . Ôn(zn, z̄n)T̂ (z)∣0⟩ , (4.3.1)

with ∣z1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣zn∣ ≥ ∣z∣. This function is regular as z → 0, since no operator is inserted at
the origin: this means that the state

T̂ (z)∣0⟩ = ∑
m∈Z

z−m−2Lm∣0⟩ (4.3.2)

should be regular as z → 0. A similar argument can be made for T̄ ∣0⟩. Hence we get

∀m ≥ −1 , Lm∣0⟩ = L̄m∣0⟩ = 0 ,

∀m ≤ 1 , ⟨0∣Lm = ⟨0∣L̄m = 0 .
(4.3.3)

To obtain the second relation, we have used the fact that L†
m = L−m and L̄†

m = L̄−m.
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4.3.2 Primary states

Reasoning as we did above, on the correlation function

⟨O1(z1, z̄1) . . .On(zn, z̄n)φ(z, z̄)⟩ , (4.3.4)

where φ̂(z, z̄) is a primary operator of conformal dimensions (h, h̄), we see that the state
φ̂(z, z̄)∣0⟩ should be regular as z → 0. We thus define:

∣φ⟩ ∶= lim
z→0

φ(z, z̄)∣0⟩ , (4.3.5)

and call it the primary state associated to φ(z, z̄). From this definition, we have the
relation

⟨O1(z1, z̄1) . . .On(zn, z̄n)φ(0)⟩ = ⟨0∣Ô1(z1, z̄1) . . . Ôn(zn, z̄n)∣φ⟩ . (4.3.6)

Using the commutators [Lm, φ(z, z̄)] and [L̄m, φ(z, z̄)], and the properties of the ground
state, we get

L0∣φ⟩ = h ∣φ⟩ , Lm>0∣φ⟩ = 0 ,

L̄0∣φ⟩ = h̄ ∣φ⟩ , L̄m>0∣φ⟩ = 0 .
(4.3.7)

The left state ⟨φ∣ will correspond to the insertion of φ(z, z̄) at infinity. We thus consider
the correlation function

⟨φ(z, z̄)O1(z1, z̄1) . . .On(zn, z̄n)⟩ , (4.3.8)

with ∣z∣ ≥ ∣z1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣zn∣. We can use the inversion map z ↦ 1/z. Under this map, the
primary operator transforms as

φ(z, z̄)→ z−2h z̄−2h̄ φ(1/z,1/z̄) , (4.3.9)

and hence

⟨φ(z, z̄)O1(z1, z̄1) . . .On(zn, z̄n)⟩ = z
−2h z̄−2h̄ ⟨Õn(1/zn,1/z̄n) . . . Õ1(1/z1,1/z̄1)φ(1/z,1/z̄)⟩ .

(4.3.10)
Here we do not specify the transformation Oj(zj, z̄j) → Õj(1/zj,1/z̄j) for generic scaling
operators, but the only important property is that it is independent of z, z̄. This leads to
the definition:

⟨φ(∞)O1(z1, z̄1) . . .On(zn, z̄n)⟩ ∶= lim
z→∞

[z2h z̄2h̄ ⟨φ(z, z̄)O1(z1, z̄1) . . .On(zn, z̄n)⟩] .

(4.3.11)
Accordingly, we define the left primary state as:

⟨φ∣ ∶= lim
z→∞

z2h z̄2h̄⟨0∣φ̂(z, z̄) , (4.3.12)

so that we get the relation

⟨φ(∞)O1(z1, z̄1) . . .On(zn, z̄n)⟩ = ⟨φ∣Ô1(z1, z̄1) . . . Ôn(zn, z̄n)∣0⟩ . (4.3.13)
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We also have the properties:

⟨φ∣L0 = h ⟨φ∣ , ⟨φ∣Lm<0 = 0 ,

⟨φ∣L̄0 = h̄ ⟨φ∣ , ⟨φ∣L̄m<0 = 0 .
(4.3.14)

Remark 1. Note that the ground state is also a primary state – it is associated to
the trivial identity operator φ(z, z̄) = 1, with conformal dimensions h = h̄ = 0.

Remark 2. Since the primary states are eigenvectors of the self-adjoint operators L0

and L̄0, we have ⟨φ1∣φ2⟩ = 0 if h1 ≠ h2 or h̄1 ≠ h̄2. Also, from the above definitions, we
easily get ⟨φ∣φ⟩ = 1. Hence, if all primary operators in the CFT have distinct dimensions,
we recover the previous result on two-point functions

⟨φ1(∞)φ2(0)⟩ = ⟨φ1∣φ2⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

1 if (h1, h̄1) = (h2, h̄2) ,

0 otherwise.
(4.3.15)

4.3.3 Descendant states

By acting with modes L−m, L̄−m̄ with m,m̄ > 0 on a primary state ∣φ⟩, one can create
an infinity of non-zero descendant states: L−1∣φ⟩, L−2∣φ⟩, L2

−1∣φ⟩, , L−2L̄−1∣φ⟩ . . . Using the
commutation relations, a given descendant Ln1 . . . Ln` ∣φ⟩, with nj ∈ Z, can always be
written as a linear combination of descendants of the form L−m1 . . . L−mk ∣φ⟩, with m1 ≥

⋅ ⋅ ⋅ ≥mk ≥ 1. Of course, this can be combined with descendants under the anti-holomorphic
algebra Vir. Hence we consider the generating set of descendants

∣φ[m,m̄]⟩ ∶= L−m1 . . . L−mk ⋅L−m̄1 . . . L−m̄k̄ ⋅ ∣φ⟩ , (4.3.16)

with m1 ≥ ⋅ ⋅ ⋅ ≥mk ≥ 1 and m̄1 ≥ ⋅ ⋅ ⋅ ≥ m̄k̄ ≥ 1. The numbers

M = ∣m∣ =m1 + ⋅ ⋅ ⋅ +mk , M̄ = ∣m̄∣ = m̄1 + ⋅ ⋅ ⋅ + m̄k̄ (4.3.17)

are called the levels of the descendant state ∣φ[m,m̄]⟩. Using the Virasoro commutation
relations, we get

L0∣φ
[m,m̄]⟩ = (h +M) ∣φ[m,m̄]⟩ , L̄0∣φ

[m,m̄]⟩ = (h̄ + M̄) ∣φ[m,m̄]⟩ . (4.3.18)

Hence, within the space of descendants of a given primary state, the levels label the
eigenspaces of L0 and L̄0.

Remark. The states {∣φ[m,m̄]⟩} generate the space of descendants of ∣φ⟩, but they are
not always linearly independent. If a finite set of ∣φ[m,m̄]⟩ become linearly related, we say
that φ is degenerate: this case will be studied in detail, later in this course.

4.3.4 The full Hilbert space

Recall the expression of the Hamiltonian operator, which governs the imaginary-time
evolution on the cylinder:

H =
2π

L
(L0 + L̄0 −

c

12
) (4.3.19)
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From the transfer matrix point of view, we expect that the CFT Hilbert space contains
the primary states (among which the ground state ∣0⟩ minimising the eigenvalue of H),
and their descendants. Moreover, all these states should have an energy gap of order 1/L.
We also assume that the primary states form an orthonormal family. A simple way to
construct a Hilbert space V with these properties, is to assume that this space is generated
by the action of the algebra Vir⊗Vir on a certain set of primary states {∣φj⟩} with distinct
conformal dimensions.

If the set of primary operators is finite, we say that the CFT is rational. This condition
entails strong constraints on the central charge and the possible conformal dimensions for
the primary operators, which are satisfied for a discrete, infinite series of CFTs called the
minimal models.

Some CFTs have an infinite (discrete or continuous) set of primary operators: they
are called non-rational CFTs.

4.4 Representations of the Virasoro algebra

In this section, we present the basics of the representation theory of the Virasoro algebra.
As we have just seen, the Hilbert space V of a CFT is a representation of the product of
two commuting Virasoro algebras Vir ⊗Vir, corresponding to the Laurent modes of the
holomorphic and anti-holomorphic components of the stress-energy tensor. Here, we shall
describe the representation theory of a single Virasoro algebra.

4.4.1 Verma modules

Condider a lowest weight state ∣h⟩ such that

L0∣h⟩ = h∣h⟩ , Ln>0∣h⟩ = 0 . (4.4.1)

The representation generated by all the descendants of ∣h⟩ is called the Verma module Vh.
As we have done for primary states ∣φh,h̄⟩, we can define a generating set of the Verma
module as

∣h[m]⟩ = L−m1 . . . L−mk ∣h⟩ , m1 ≥ ⋅ ⋅ ⋅ ≥mk ≥ 1 . (4.4.2)

Organising states by level, we get

(L0 = h) ∣h⟩

(L0 = h + 1) L−1∣h⟩

(L0 = h + 2) L−2∣h⟩ L2
−1∣h⟩

(L0 = h + 3) L−3∣h⟩ L−2L−1∣h⟩ L3
−1∣h⟩

(L0 = h + 4) L−4∣h⟩ L−3L−1∣h⟩ L2
−2∣h⟩ L−2L

2
−1∣h⟩ L4

−1∣h⟩

. . .

(4.4.3)

The number of independent states at a given level M is equal to P (M), the number of
partitions of the integer M into a sum of positive integers [by convention, P (0) = 1].

The Virasoro character of the Verma module is the function defined as

χh(τ) ∶= TrVh q
L0−c/24 , q = exp(2iπτ) . (4.4.4)
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Using the Dedekind eta function

η(τ) = q1/24
∞
∏
n=1

(1 − qn) =
q1/24

∑
∞
M=0P (M)qM

, (4.4.5)

we obtain the expression

χh(τ) =
qh+(1−c)/24

η(τ)
. (4.4.6)

At this stage, this relation is just a compact way of encoding the degeneracies of L0 in
the module Vh.

In the Verma module, we want to define a “scalar product” (more precisely, a bilinear
form), which will be used for computing correlation functions. For compatibility with the
scalar products between physical states, it is necessary to impose, in Vh

⟨h∣h⟩ ∶= 1 , L†
n ∶= L−n . (4.4.7)

It is easy to realise that these relations actually determine completely the bilinear form
on Vh. We have the simple property:

if ∑
j

mj ≠∑
j

m′
j , then ⟨h[m]∣h[m′]⟩ = 0 , (4.4.8)

namely, the levels are mutually orthogonal, due to the fact that L0 is self-adjoint. However,
the states ∣h[m]⟩ on a given level are not orthogonal to each other.

4.4.2 Degenerate Verma modules

For generic values of (h, c), a Verma module Vh is irreducible. However, for some special
values of (h, c), Vh may become reducible, i.e. it may admit a non-trivial subspace W
which is stable under the action of the Ln’s. We then say that the module Vh (or the state
∣h⟩) is degenerate. Let us quickly examine the consequences of reducibility, and then find
for which values of (h, c) this may happen.

Suppose Vh is reducible: then, we call ∣χ⟩ a state with the minimal eigenvalue1 for L0

in the non-trivial submodule W . We then have L0∣χ⟩ = (h +N) ∣χ⟩ for some integer level
N > 0. Thus, the state ∣χ⟩ is of the form:

∣χ⟩ = (#L−N + ⋅ ⋅ ⋅ +#LN−1)∣h⟩ . (4.4.9)

For any m > 0, we have L0 ⋅ Lm∣χ⟩ = (h + N −m)Lm∣χ⟩, and hence Lm∣χ⟩ must vanish
(otherwise h +N would not be the minimal eigenvalue for L0 in W). We say that ∣h⟩ is
degenerate at level N . We thus have

∀m > 0 , Lm∣χ⟩ = 0 . (4.4.10)

This means that the descendant state ∣χ⟩ is itself a lowest-weight state. The action of the
Virasoro algebra on ∣χ⟩ thus generates a submodule Wχ, isomorphic to Vh+N . We may

1Throughout this argument, we assume that L0 is diagonalisble in Vh.
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define the quotient space V ′h = Vh/Wχ. If V ′h is still reducible, then we need to identify
a new lowest-weight vector ∣χ′⟩ at level N ′ ≥ N , and repeat the quotient procedure, to
obtain a space V ′′h , and so on. Once the subspaces generated by lowest-weight vectors
(except ∣h⟩) are quotiented out, one gets an irreducible module, called the Kac module
Kh.

The state ∣χ⟩ and all its descendants are null-states, namely:

∀∣v⟩ ∈ Vh , ∀m1 ≥ ⋅ ⋅ ⋅ ≥mk ≥ 1 , ⟨v∣L−m1 . . . L−mk ∣χ⟩ = 0 . (4.4.11)

This is proven for any ∣v⟩ = ∣h[n]⟩, by writing

⟨h[n]∣χ[m]⟩ = ⟨h∣Ln` . . . Ln1 ⋅L−m1 . . . L−mk ∣χ⟩ ,

which, using the commutation rules, can be written as a linear combination of terms of
the form

⟨h∣Lp1 . . . Lpr ∣χ⟩ ,

with p1 ≤ ⋅ ⋅ ⋅ ≤ pr and p1 + ⋅ ⋅ ⋅ + pr = (n1 + ⋅ ⋅ ⋅ + n`) − (m1 + ⋅ ⋅ ⋅ +mk). Since ⟨h∣ and ∣χ⟩ are
annihilated by negative and positive modes respectively, the result is zero.

Remark. In particular, ∣χ⟩ has norm zero: ⟨χ∣χ⟩ = 0.

Remark. The above result shows that all lowest-weight states and their descendants
are null states. However, the reciprocal is not true: some null states are not lowest-
weight. For instance, L−1∣χ⟩ is a null state, but it is not annihilated by the Virasoro
positive modes. Indeed:

L1 ⋅L−1∣χ⟩ = (L−1L1 + 2L0)∣χ⟩ = 2(h +N)∣χ⟩ ≠ 0 , if h ≠ −N . (4.4.12)

Example 1. Let us consider a state ∣h⟩ degenerate at level N = 1. This means
that ∣χ⟩ = L−1∣h⟩ is a primary: Ln>0∣χ⟩ = 0. For n > 1, we always have LnL−1∣h⟩ =

L−1Ln∣h⟩ + (n + 1)Ln−1∣h⟩ = 0. Hence, the only non-trivial condition is

L1L−1∣h⟩ = 0 ⇔ (L−1L1 + 2L0)∣h⟩ = 0 ⇔ 2h∣h⟩ = 0 . (4.4.13)

The only lowest-weight state which is degenerate at level N = 1 is thus the one with h = 0,
corresponding to the conformal dimension of the ground state.

Example 2. Let us do the same exercice for level N = 2. Writing ∣χ⟩ = (uL−2 +

vL2
−1)∣h⟩, and imposing L1∣χ⟩ = L2∣χ⟩ = 0, we get the linear system

3u + (4h + 2)v = 0

(4h +
c

2
)u + 6hv = 0 .

(4.4.14)

The system admits a non-trivial solution if and only if its determinant is zero, which
yields the relation:

16h2 + (2c − 10)h + c = 0 ⇔ h =
(5 − c) ±

√
(1 − c)(25 − c)

16
. (4.4.15)

For generic values of the central charge, there are two possible values for the dimension
of an operator degenerate at level N = 2.
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4.4.3 The Kac parametrisation of degenerate dimensions

For higher levels N , it becomes non-trivial to enumerate the degenerate dimensions. Let
us state the result, which is known as the Kac parametrisation. We write the central
charge

c = 1 − 6(b−1 − b)2 , (4.4.16)

with some nonzero parameter b. Then the degenerate states at level N are of the form
∣hr,s⟩ with r, s ∈ {1,2,3, . . .} and r × s = N , and their dimensions are given by

hrs =
(rb−1 − sb)2 − (b−1 − b)2

4
. (4.4.17)

In particular, we have h12 = (3b2 − 2)/4, h21 = (3b−2 − 2)/4, and the corresponding null
vectors are

∣χ12⟩ = (L−2 − b
−2L2

−1)∣h12⟩ , ∣χ21⟩ = (L−2 − b
2L2

−1)∣h21⟩ . (4.4.18)

Note that the Kac parametrisation of degenerate dimensions holds for any value of the
central charge. It tells us that only a finite number of dimensions h (namely, the hrs with
rs = N) can be degenerate at a given level N .

4.5 Descendant operators

Back to the physical setting, we can view the operators Ln as acting on the space of
scaling operators. To do so, let us first remark that, for any scaling operator O, the OPEs
T (z)O(0) and T̄ (z̄)O(0) admit Laurent expansions in z and z̄, respectively. Indeed,
inserting O at the origin in the plane geometry corresponds to inserting it at −∞ on the
cylinder, which does not affect the Laurent expansions of T (z) and T̄ (z̄). Thus, we can
write

T (z)O(0) =∑
n∈Z

z−n−2 (Ln ⋅O)(0) , (Ln ⋅O)(0) =
1

2iπ ∮
dy yn+1 T (y)O(0) , (4.5.1)

T̄ (z̄)O(0) =∑
n∈Z

z̄−n−2 (L̄n ⋅O)(0) , (L̄n ⋅O)(0) =
1

2iπ ∮
dȳ ȳn+1 T̄ (ȳ)O(0) , (4.5.2)

which defines the descendant operators Ln ⋅ O and L̄n ⋅ O at the origin. In the above
expressions, the contour integrals enclose the origin. By applying a translation, we get
the definition of descendant operators at any position on the plane:

(Ln ⋅O)(z, z̄) ∶=
1

2iπ ∮
dy (y − z)n+1 T (y)O(z, z̄) ,

(L̄n ⋅O)(z, z̄) ∶=
1

2iπ ∮
dȳ (ȳ − z̄)n+1 T̄ (ȳ)O(z, z̄) ,

(4.5.3)

where the contours now enclose the point z. This corresponds to Laurent expansions
around the point z:

T (y)O(z, z̄) =∑
n∈Z

(y − z)−n−2 (Ln ⋅O)(z, z̄) ,

T̄ (ȳ)O(z, z̄) =∑
n∈Z

(ȳ − z̄)−n−2 (L̄n ⋅O)(z, z̄) .
(4.5.4)
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In the case of a primary operator φ(z, z̄), the OPEs T.φ and T̄ .φ are equivalent to the
conditions:

L−1 ⋅ φ = ∂φ , L0 ⋅ φ = hφ , Ln>0 ⋅ φ = 0 , (4.5.5)

L̄−1 ⋅ φ = ∂̄φ , L̄0 ⋅ φ = h̄ φ , L̄n>0 ⋅ φ = 0 . (4.5.6)

For a generic scaling operator, recall the conformal Ward identity for an infinitesimal
conformal transformation (z, z̄)→ (z + ε, z̄ + ε̄):

δεO(z, z̄) =
1

2iπ ∮
dy ε(y)T (y)O(z, z̄) +

1

2iπ ∮
dȳ ε̄(ȳ) T̄ (ȳ)O(z, z̄) , (4.5.7)

where the contours are around the point z. A constant ε corresponds to an infinitesimal
translation, whereas ε = µz corresponds to a dilatation if µ is real, and a rotation if µ is
imaginary. Comparing with the definitions of Ln ⋅O and L̄n ⋅O, we see that

L−1 ⋅O = ∂O , L0 ⋅O = hO , (4.5.8)

L̄−1 ⋅O = ∂̄O , L̄0 ⋅O = h̄O . (4.5.9)

However, the positive modes Ln>0 and L̄n>0 may act non-trivially on O if it is not primary.

Let us show the following property:

For any scaling operator Oh,h̄ of conformal dimensions (h, h̄), the descendant op-
erators L−n ⋅Oh,h̄ and L̄−n ⋅Oh,h̄ have conformal dimensions (h + n, h̄) and (h, h̄ + n),
respectively.

Indeed, if we consider a scale transformation z → z′ = z/λ, with λ real and positive,
recall that Oh,h̄ and T transform as

Oh,h̄(z, z̄)→ λ−h−h̄Oh,h̄(z/λ, z̄/λ) , T (y)→ λ−2 T (y/λ) , (4.5.10)

and hence, the descendant operator L−n ⋅O transforms as

(L−n⋅Oh,h̄)(z, z̄)→
1

2iπ ∮
dy (y−z)−n+1 λ−2−h−h̄ T (y′)Oh,h̄(z

′, z̄′) = λ−h−h̄−n(L−n⋅Oh,h̄)(z
′, z̄′) .

(4.5.11)
Thus, the scaling dimension of L−n ⋅Oh,h̄ is h + h̄ + n. Repeating the argument with the
scale transformation replaced by a rotation, we get the conformal spin h − h̄ + n. These
values of the scaling dimension and conformal spin indeed correspond to the conformal
dimensions (h + n, h̄) for L−n ⋅Oh,h̄. The argument for L̄−n ⋅Oh,h̄ is identical, except that
the conformal spin turns out to be h − h̄ − n.

Exercise: Consider a primary operator φ(z, z̄) of conformal dimensions (h, h̄). Under
a conformal mapping z ↦ w, recall the transformations

φ(z, z̄)→ (
∂w

∂z
)

h

(
∂w̄

∂z̄
)

h̄

φ(w, w̄) , (4.5.12)

T (z)→ (
∂w

∂z
)

2

T (w) +
c

12
{w, z} , (4.5.13)
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where {w, z} denotes the Shwarzian derivative:

{w, z} = w′′′/w′ − 3/2(w′′/w′)2 . (4.5.14)

Compute the transformation of the descendant operators (L−1 ⋅φ)(z, z̄) and (L−2 ⋅φ)(z, z̄)
under the mapping z ↦ w.

4.6 Action of the Ln’s in correlation functions

We would like to compute a correlation function where all operators are primary, except
a descendant operator O

[m]
h,h̄

= L−m1 . . . L−mkOh,h̄ inserted at the origin. Thus we consider

the correlation function

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)O
[m](0)⟩ = ⟨0∣φ1(z1, z̄1) . . . φn(zn, z̄n)L−m1 . . . L−mk ∣Oh,h̄⟩ (4.6.1)

where ∣z1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣zn∣, and φ1, . . . , φn are primary operators, and m1 ≥ ⋅ ⋅ ⋅ ≥ mk > 0. In the
above expressions, we have dropped the symbol ,̂ and we have simply written φj instead

of φ̂j in the expectation value, to lighten the notation. Recall the commutation relations:

[L−m, φj(z, z̄)] = (1 −m)hjz
−m φj(z, z̄) + z

−m+1 ∂φj(z, z̄) , (4.6.2)

and the property
∀m > 0 , ⟨0∣L−m = 0 . (4.6.3)

Using these identities, we can commute L−m1 , . . . L−mk to the left of the φj’s, and we easily
get

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)O
[m]
h,h̄

(0)⟩

= L−m1 . . .L−mk ⟨φ1(z1, z̄1) . . . φn(zn, z̄n)Oh,h̄(0)⟩ , (4.6.4)

where L−m is the first-order differential operator defined as

L−m =
n

∑
j=1

z−mj [(m − 1)hj − zj∂j] . (4.6.5)

Remark: If the descendant operator O
[m]
h,h̄

is inserted at a generic position, by trans-

lation invariance we get

⟨φ1(z1, z̄1) . . . φn(zn, z̄n)O
[m]
h,h̄

(w, w̄)⟩

= L−m1(w) . . .L−mk(w) ⟨φ1(z1, z̄1) . . . φn(zn, z̄n)Oh,h̄(w, w̄)⟩ , (4.6.6)

where

L−m(w) =
n

∑
j=1

(zj −w)−m [(m − 1)hj − (zj −w)∂j] . (4.6.7)
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Lecture 5

Fusion rules and minimal models

5.1 The Operator Product Expansion in CFTs

Consider two scaling operators Oi(r′),Oj(r), and let r′ → r inside a correlation function,
where all the other operators are located at a larger distance to Oj(r). Then, for r′ = r+ ε
with ε→ 0, the product Oi(r+ε),Oj(r) may be viewed, at large distance, as a single local
operator located at r. The latter may be, in turn, decomposed on the basis of scaling
operators, with ε-dependant coefficients:

Oi(r + ε)Oj(r) ∼
ε→0
∑
k

ckij(ε)Ok(r) . (5.1.1)

This relation is called the Operator Product Expansion (OPE). It defines an algebra on
operators, simply called the operator algebra. The coefficients ckij(ε) are the structure
constants of this algebra.

In the case of a 2d CFT, the explicit space dependance of the ckij’s reads, in complex
coordinates

Oi(z, z̄)Oj(0,0) = ∑
Ok scaling op.

Ckij z
−hi−hj+hk z̄−h̄i−h̄j+h̄k Ok(0,0) . (5.1.2)

In principle, any n-point correlation function could be computed by repeatedly applying
the OPE relations, until one gets to a linear combination of two-point functions.

Let us focus on the OPE of two primary operators:

φi(z, z̄)φj(w, w̄) =

∑

φk primary

[m,m̄]

Ck
ij([m], [m̄]) (z −w)−h

k
ij+M (z̄ − w̄)−h̄

k
ij+M̄φ

[m],[m̄]
k (w, w̄) , (5.1.3)

where
hkij ∶= hi + hj − hk , h̄kij ∶= h̄i + h̄j − h̄k , (5.1.4)

and [m] = (m1, . . . ,m`) with m1 ≥ m2 ≥ ⋅ ⋅ ⋅ ≥ m` ≥ 1, and similarly for [m̄], and we have
used the short-hand notations

M = ∣m∣ ∶=m1 + ⋅ ⋅ ⋅ +m` , M̄ = ∣m̄∣ ∶= m̄1 + ⋅ ⋅ ⋅ + m̄¯̀, (5.1.5)

φ
[m],[m̄]
k ∶= L−m1⋯L−m` ⋅ L̄−m̄1⋯L̄−m̄¯̀ ⋅ φk . (5.1.6)
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For a given pair φi, φj, only a subset of primary operators φk contribute to the r.h.s.
of the OPE φi.φj. We denote this as

φi × φj →∑
k

Nk
ij φk , (5.1.7)

where the fusion integer Nk
ij = 1 if the fusion φi×φj → φk is allowed, and Nk

ij = 0 otherwise.

Descendant operators will be treated later in this course. At this point, we simply
notice that, since the insertion of an operator L−m or L̄−m in a correlation function amounts
to applying a differential operator, the OPE φi ⋅φ

[m,m̄]
j (including the structure constants)

can be obtained directly from φi ⋅ φj. Similarly, we shall see later that the fusion to a

descendant operator, namely φi × φj → φ
[m,m̄]
k , is determined by the fusion φi × φj → φk.

Hence, in this lecture, we focus on fusion between primary operators.

5.2 Fusion with a degenerate operator

Consider the OPE of primary operators φi ⋅ φj, in the case where φj is degenerate under
the Virasoro algebra. We suppose that φj possesses a descendant χj at level N , which is
itself a primary operator:

∣χj⟩ = (L−N + ⋅ ⋅ ⋅ +#LN−1)∣φj⟩ , Lm>0∣χj⟩ = 0 . (5.2.1)

Recall that, as a consequence, ∣χj⟩ is a null vector of the Hilbert space, namely it is
orthogonal to any state, and thus every correlation function including ∣χj⟩ must vanish.
In particular, we have

⟨φk∣φi(z, z̄)∣χj⟩ = ⟨φk∣φi(z, z̄)(L−N + ⋅ ⋅ ⋅ +#LN−1)∣φj⟩ = 0 . (5.2.2)

As we have seen in the previous Lecture, each insertion of a mode L−m can be expressed
as the action of a differential operator, by the use of the commutators [L−m, φi(z, z̄)]. In
the present case, the explicit expression is

⟨φk∣φi(z, z̄)L−m1 . . . L−m` ∣φj⟩ = L−m1 . . .L−m` ⋅ ⟨φk∣φi(z, z̄)∣φj⟩ , (5.2.3)

where L−m ∶= z−m [(m − 1)hi − z∂z]. Moreover, the three-point function of primary oper-
ators is always of the form

⟨φk∣φi(z, z̄)∣φj⟩ = ⟨φk(∞)φi(z, z̄)φj(0)⟩ = const × z−hi−hj+hk z̄−h̄i−h̄j+h̄k . (5.2.4)

Comparing with the OPE relation, we see that the multiplicative constant is nothing but
the OPE coefficient Ck

ij. Moreover, each differential operator L−m has the following action
on power functions:

L−m ⋅ zα = [(m − 1)hi − α] z
α−m . (5.2.5)

Thus, the condition ⟨φk∣φi(z, z̄)∣χj⟩ = 0 translates into a polynomial equation of order N ,
relating hi, hj, hk. As a consequence:
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For a given pair of primary operators (φi, φj), if φj is degenerate at level N under
the Virasoro algebra Vir, with the null vector ∣χj⟩, then the fusion φi × φj → φk is
only possible if the conformal dimension hk is one of the N solutions of a polynomial
equation parameterised by hi and hj.

Remark 1: The same result can be obtained for an operator φj degenerate under the
algebra Vir: in this case, the conformal dimension h̄k must be a solution of a polynomial
equation parameterised by h̄i and h̄j. If φj is degenerate and scalar, then both hk and
h̄k are constrained by the same type of equations, but they can be different, even when
hi = h̄i.

Remark 2: The above result is a necessary condition for the φi × φj → φk to be
admissible, but it is not always sufficient. In particular, if φi is also degenerate, then
some additional constraints can yield the possible values of hk.

Let us treat the case of an operator φj degenerate at level N = 2 in more detail. Recall
that, with the parameterisation of the central charge c = 1 − 6(b−1 − b)2, the degenerate
dimensions at level two are h12 = (3b2 − 2)/4 and h21 = (3b−2 − 2)/4. Consider the case
when the conformal dimensions of φj are hj = h̄j = h12 – we shall simply write φj = φ12 in
the following argument. The null vector at level two is ∣χ12⟩ = (L−2 − b−2L2

−1)∣φ12⟩, which
yields the condition

⟨φk∣φi(z, z̄)L−2∣φ12⟩ − b
−2 ⟨φk∣φi(z, z̄)L

2
−1∣φ12⟩ = 0 , (5.2.6)

and, in turn, the polynomial equation

(2hi + h12 − hk) − b
−2 (hi + h12 − hk + 1)(hi + h12 − hk) = 0 . (5.2.7)

At this point, it is convenient to use the Kac parameterisation for hi, even in the case
when hi is not degenerate. We write

hi = hλ,µ =
(λb−1 − µb)2 − (b−1 − b)2

4
, (5.2.8)

with λ,µ real. Note that this parameterisation is not unique, because it is invariant under
(λ,µ) → (λ + αb,µ + αb−1) for any real α. After some simple algebra, one finds that the
solutions of the polynomial equation are

hk = hλ,µ+1 or hk = hλ,µ−1 . (5.2.9)

Hence, in the Kac parameterisation, we get the fusion rule

φλ,µ × φ12 → φλ,µ+1 + φλ,µ−1 . (5.2.10)

The above case for φj = φ12 has been fully treated with a simple argument, relying on
the exact form of the null descendant χ12. For degenerate operators at higher levels, more
elaborate approaches, such as the “Coulomb Gas”, are used to derive the fusion rules –
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in this lecture, we state the results without proof. Recall that all operators degenerate at
level N have a conformal dimension of the form

hr,s =
(rb−1 − sb)2 − (b−1 − b)2

4
, (5.2.11)

with r, s positive integers, and r×s = N . As we have done in the above example, a generic
conformal dimension h can also be written (in a non-unique way) in Kac parameterisation,
namely h = hλ,µ with λ,µ real. The fusion rule of a generic primary operator φλ,µ with a
degenerate primary operator φr,s is given by

φλ,µ × φr,s =
(r−1)/2
∑

k=−(r−1)/2

(s−1)/2
∑

`=−(s−1)/2
φλ+2k,µ+2` , (5.2.12)

where each sum has unit increments. Note that, when φλ,µ is also degenerate (namely,
when λ and µ are positive integers), some terms may be suppressed from the sum, due
to additional fusion rules arising from the null-vector conditions of φλ,µ. Thus, strictly
speaking, the right-hand side of the above relation should be read as the maximal set of
admissible primary operators resulting from the OPE φλ,µ ⋅ φr,s.

5.3 Minimal models

5.3.1 Kac table and fusion rules

We want to build a “minimal” CFT model, namely a model with as few primary operators
as possible, closing under the operator algebra. We suppose that the conformal symmetry
encoded by the algebra Vir⊗Vir describes completely the model, and hence each primary
operator is completely specified by its conformal dimensions (h, h̄).

Remark: For simplicity, in this lecture we shall study the case when all primary
operators are scalars, namely they have conformal dimensions h = h̄. There exist other
series of Virasoro minimal models, with some non-scalar primary operators – we will deal
with them in the lecture devoted to modular invariance.

For consistency, our CFT must include the identity operator 1. Suppose that the CFT
also includes a non-trivial primary operator φ. Then, the fusion φ×φ will force our model
to include other primary operators, which can semselves be fused with φ and so on. As
we have seen above, a simple way to restrict the possible outcomes of the fusion, is to
take φ to be a degenerate primary operator, φ = φrs, which will produce at most N = rs
new operators when fused with another operator. Hence, we suppose that φ = φ12. By
the fusion process:

φ12 × φ12 → φ11 + φ13 , (5.3.1)

we see that a primary operator with dimension h13 should also be included. If we repeat
this process, we produce the primary operators:

φ11 , φ12 , φ13 , φ14 , . . . (5.3.2)

The only condition under which this set of operators can be finite, is if there exists two
positive integers k, ` such that 1 < k < ` and h1k = h1`. From the explicit form of the
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dimensions, this yields b2 = 2/(k + `). If we define the integer p′ = k + `, then we have, for
any m, the identity h1m = h1,p′−m. As a result, we obtain the set of primary operators

{φ11 , φ12 , . . . φ1,p′−1} , (5.3.3)

with the identification φ1m = φ1,p′−m. This defines the minimal modelM2,p′ , with a central
charge c = 1 − 3(p′ − 2)2/p′. Recall that p′ = k + ` with 1 < k < `, and hence the integer
is in the range p′ ≥ 3. The model M2,3, with c = 0, contains only the identity operator
φ11 = φ12, and it is trivial.

Remark: It turns out that the above set of primary operators, for the even values
p′ = 4,6,8, . . . , leads to an inconsistent CFT. For instance, if p′ = 4, the identity operator
is 1 = φ11 = φ13, and hence it obeys the two null-state equations:

L−11 = 0 , (L−3 +#L−2L−1 +#L3
−1)1 = 0 . (5.3.4)

As a result, we have L−11 = L−31 = 0, which, in turns, yields

L−21 =
1

4
[L1, L−3]1 = 0 . (5.3.5)

Hence, in the model M2,4, the stress-energy tensor is T = 0, which is inconsistent with
the central charge c = −2.

If we include not only the primary operator φ12, but also φ21, then by repeated fusion,
for generic values of the central charge, we obtain all the φrs with r, s positive integers.
Similarly to the previous case, the operator algebra closes on a finite set when the central
charge is of the form c = 1 − 6(b−1 − b)2, with b2 = p/p′, where p < p′ are two coprime
positive integers. The expressions for the central charge and the dimensions of degenerate
operators take the form:

c = 1 −
6(p′ − p)2

pp′
, hrs =

(rp′ − sp)2 − (p′ − p)2

4pp′
. (5.3.6)

The operator algebra of this model closes on a finite number of primary operators, which
are all degenerate:

{φrs , r = 1, . . . , p − 1 , s = 1, . . . , p′ − 1} . (5.3.7)

This set of operators is called the Kac table, and it defines the minimal model Mp,p′ .
Each primary operator actually appears twice in this table, due to the relation:

hp−r,p′−s = hrs ⇒ φp−r,p′−s ≡ φrs . (5.3.8)

As a consequence, in the minimal modelMp,p′ , the primary operator φrs is degenerate at
level rs and at level (p − r)(p′ − s).

The total number of primary operators is (p − 1)(p′ − 1)/2, and their fusion rules are
given by

φr1s1 × φr2s2 →
p−1−∣p−r1−r2∣
∑

k=1+∣r1−r2∣
k+r1+r2=1 mod 2

p′−1−∣p′−s1−s2∣
∑

`=1+∣s1−s2∣
`+s1+s2=1 mod 2

φk` . (5.3.9)
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These fusion rules are of course compatible with the identification φrs ≡ φp−r,p′−s. Another
important property of these fusion rules is that they obey a Z2 symmetry. We define the
Z2 charge of a primary operator φrs as (−1)mrs , where

mrs ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r − 1 mod 2 if p is even,

s − 1 mod 2 if p′ is even,

r + s mod 2 otherwise.

(5.3.10)

With this definition, we have mrs =mp−r,p′−s, and the fusion rules conserve this Z2 charge:

If φr1s1 × φr2s2 → φk` , then mr1s1 +mr2s2 =mk` mod 2 . (5.3.11)

Hence, all the minimal models encode an internal Z2 symmetry, on top of conformal
invariance.

5.3.2 Unitary and non-unitary models

For generic values of the integers p, q, the model Mp,p′ is “non-unitary”, i.e. the “scalar

product” defined by ⟨φi∣φj⟩ = δij for primaries and L†
n = L−n is not positive (this scalar

product is definite thanks to the quotienting with respect to null states, but some states
can have negative norm). Alternatively, if one changes to a positive definite scalar product,
then the Hamiltonian H = 2π

L (L0 + L̄0 − c/12) is no longer Hermitian. This is clearly seen
on the dimensions of the Kac table for the minimal model Mp,p′ . In a unitary CFT, all
primary dimensions should be positive, because, for any primary state ∣φ⟩:

∥L−1∣φ⟩∥
2 = ⟨φ∣L1L−1∣φ⟩ = ⟨φ∣(L−1L1 + 2L0)∣φ⟩ = 2h .

This is consistent with the relation with eigenvalues of the transfer matrix.

log(λj/λ0) = −
2π

N
(hj + h̄j) . (5.3.12)

Now let us find the minimal dimension in the Kac table (5.3.7). From the Bézout theorem,
one can find two positive integers u, v such that uq − vp = 1. Let k = ⌊u/p⌋ = ⌊v/p′⌋, and
r0 ∶= u − kp, s0 ∶= v − kp′. These two indices satisfy 1 ≤ r0 ≤ p − 1 and 1 ≤ s0 ≤ p′ − 1, and
the corresponding dimension is

h0 = hr0,s0 =
1 − (p′ − p)2

4pp′
. (5.3.13)

If p′ = p + 1 then h0 = h11 = 0, and all the other dimensions hrs are positive. One
can show that the models Mp,p+1 are in fact unitary. In contrast, if p′ > p + 1 then
h0 < 0, and the model cannot be unitary. This is in contradiction with the interpretation
of the vacuum state ∣0⟩ as the (scaling limit of the) Perron-Froebenius vector of the
transfer matrix. Actually, non-unitary CFTs are associated to local lattice models with
non-positive Boltzmann weights, where the transfer matrix cannot be chosen real and
symmetric in the canonical basis of row configurations.
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Critical exponent Value for Ising

specific heat C ∝ ∣t∣−α α = 0
spontaneous magnetisation ⟨σ⟩∝ ∣t∣β β = 1/8

zero-field susceptibility χ∝ ∣t∣−γ γ = 7/4
magnetisation at critical temperature ⟨σ⟩∝ ∣h∣1/δ δ = 15

correlation length ξ ∝ ∣t∣−ν ν = 1
anomalous dimension ⟨σ(0)σ(r)⟩∝ ∣r∣−η η = 1/4

Table 5.1: Critical exponents of the Ising universality class

5.3.3 Example: the Ising model

Consider the two-dimensional Ising model in a magnetic field h, with Boltzmann weight

exp−
⎛

⎝
J ∑

⟨i,j⟩
σiσj + h∑

i

σi
⎞

⎠
, (5.3.14)

and the lattice spins σi are ±1. Criticality is achieved for a particular value J = Jc of
the spin coupling and in the absence of magnetic field h = 0. Euclidean quantum field
theory provides a good description of the universal behavior of the scaling region, i.e. the
vicinity of the critical point in which the correlation length is much larger than the lattice
spacing, with an effective action of the form

S = S0 + t∫ d2x ε(x) + h∫ d2xσ(x) , (5.3.15)

where S0 denotes the unperturbed, conformal invariant action describing the fluctuations
of the Ising model at criticality. The two perturbations account for change of J (or
equivalently temperature) and magnetic field, respectively. While the field σ is simply
the scaling limit of the lattice operator σi, the energy ε is the scaling limit of the composite
operator σiσj, for i, j neighbors. In the CFT language this is expressed via the fusion
rules

σ × σ = 1 + ε (5.3.16)

The scaling dimensions of these fields are ∆ε = 1 and ∆σ =
1
8 . These values follow from

the critical exponents, as defined in section 1.1.3, which for the Ising model are known
exactly1. They are listed in table 5.1, where t ∶= (J − Jc) is the (reduced) temperature
and h the magnetic field. The RG exponent yt (respectively yh) of the scaling field ε
(respectively σ) is readily obtained from the critical exponents, via

β =
2 − yh
yt

, γ =
2yh − 2

yt
. (5.3.17)

Thus yt = 1 and yh = 15/8. The scaling dimensions follow, as described in section 1.1.3.

1The Ising model at zero magnetic is one of the most celebrated integrable models and was solved
on the square lattice in 1944 by Onsager. In the late eighties A. Zamolodchikov solved the model in a
magnetic field at the critical temperature within the framework of integrable quantum field theory.

87



The central charge of the Ising model can be extracted from the system-size dependence
of the ground-state energy, which is also known exactly. For the Ising model one finds

c =
1

2
(5.3.18)

The critical behavior of the two-dimensional Ising model is described by the minimal
model M3,4, which contains three admissible chiral primary fields:

φ11 = φ23 , φ13 = φ21 , φ12 = φ22 , (5.3.19)

with conformal dimensions

h11 = 0 , h13 =
1

2
, h12 =

1

16
, (5.3.20)

as listed in the Kac Table, Fig.(5.1). Their (chiral) fusion rules are

φ12 × φ12 → φ11 + φ13 , φ13 × φ13 → φ11 , φ12 × φ13 → φ12 . (5.3.21)

Of course the physical operators occurring in the Ising model can be arranged into repre-
sentations of Vir⊗Vir. In some sense one can think of primary operators as ”products” of
holomorphic and anti-holormophic fields, and thus they are labelled by their left and right
conformal dimensions (h, h̄). In the Ising model there are three local primary operators

r

s

ϕ1,1 = 1 ϕ2,1 = ϵ

ϕ2,2 = σ

Figure 5.1: Kac Table for the minimal model M3,4 associated with the Ising model.

• the identity operator 1 with (h, h̄) = (0,0),

• the energy operator ε with (h, h̄) = (1/2,1/2),

• the spin operator σ with (h, h̄) = (1/16,1/16).

with Z2 charges

(−1)m1 = +1 , (−1)mε = +1 , (−1)mσ = −1 , (5.3.22)

and fusion rules

σ × σ → 1 + ε , ε × ε→ 1 , σ × ε→ σ . (5.3.23)

This corresponds to the smallest unitary model with Z2 symmetry, and a single odd
operator σ. Hence, it can be identified with the continuum limit of the critical Ising
model on a regular lattice.
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5.3.4 Kac modules and Virasoro characters

The character of a representation W of the Virasoro algebra is defined as

TrW(qL0−c/24) , (5.3.24)

where q is a formal parameter.

Let us first recall the character of the Verma module Vh:

TrVh(q
L0−c/24) = qh−c/24

∞
∑
N=0

dimN(Vh)q
N = qh−c/24

∞
∑
N=0

P (N)qN

=
qh+(1−c)/24

η(q)
, (5.3.25)

where dimN(Vh) is the dimension of level N in the representation Vh. In a Verma module,
this dimension is simply equal to P (N), the number of partitions of the integer N . In
the final expression, we have used η(q), the Dedekind eta function, defined for ∣q∣ < 1 by

η(q) = q1/24
∞
∏
n=1

(1 − qn) ,
1

η(q)
= q−1/24

∞
∏
n=1

∞
∑
k=0

qnk =
∞
∑
N=0

P (N)qN . (5.3.26)

For h = hrs, we shall use the short-hand notation for Verma modules Vrs ∶= Vhrs .
The primary operator φrs has null vectors of dimensions

hrs + rs = hp+r,p′−s = hp′−r,q+s , and hrs + (p − r)(p′ − s) = hr,2p′−s = h2p−r,s .

The Kac module Krs is obtained by quotienting the Verma module Vrs by the two cor-
responding submodules of null vectors, which are themselves isomorphic to two Verma
modules:

Krs = Vrs/(Vp+r,p′−s + Vr,2p′−s) . (5.3.27)

It turns out that the submodules Vp+r,p′−s and Vr,2p′−s of Vrs are not in direct sum. Let us
first identify the submodules of Vp+r,p′−s. Since φp+r,p′−s is degenerate at level (p+r, p′−s),
the representation Vp+r,p′−s admits a submodule isomorphic to V2p+r,s. This same operator
φp+r,p′−s ≡ φp−r,p′+s is also degenerate at level (p − r, p′ + s), and thus it has a submodule
Vr,2p′+s. With the same reasoning, we find that Vr,2p′−s also has V2p+r,s and Vr,2p′+s as
submodules. Hence, the intersection is given by

Vp+r,q−s ∩ Vr,2p′−s = V2p+r,s + Vr,2p′+s , (5.3.28)

and the character of the Kac module is

χrs(q) ∶= TrKrs(q
L0−c/24) = (TrVrs −TrVp+r,p′−s+Vr,2p′−s)(q

L0−c/24) (5.3.29)

= [TrVrs − (TrVp+r,p′−s +TrVr,2p′−s) +TrV2p+r,s+Vr,2p′+s](q
L0−c/24) (5.3.30)

This process repeats recursively:

V2p+r,s ∩ Vr,2p′+s = V3p+r,p′−s + Vr,4p′−s , (5.3.31)

and so on. This yields the expression for the Kac character:

χrs(q) =
q(1−c)/24

η(q)
[qhrs +

∞
∑
k=1

(−1)k(qhkp+r,sk + qhr,kp′+sk )] , (5.3.32)
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where

sk ∶=

⎧⎪⎪
⎨
⎪⎪⎩

s for k even,

p′ − s for k odd.

Using the notation

∆rs ∶= hrs +
1 − c

24
=

(p′r − ps)2

4pp′
, (5.3.33)

we can write

χrs(q) =
1

η(q)
[q∆rs +

∞
∑
n=1

(q∆2np+r,s + q∆r,2np′+s)] −
1

η(q)

∞
∑
n=1

(q∆(2n−1)p+r,p′−s + q∆r,2np′−s) ,

(5.3.34)

which can be re-arranged as the difference:

χrs(q) =Krs(q) −Kr,−s(q) , where Krs(q) ∶=
1

η(q)
∑
n∈Z

q(p
′r−ps+2npp′)2/4pp′ .

(5.3.35)
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Lecture 6

Correlation functions

6.1 Descendants in the Operator Product Expansion

In the previous lecture, we have discussed the OPE between two primary operators:

φi(z, z̄)φj(w, w̄) =

∑

φk primary

[m],[m̄]

Ck
ij([m], [m̄]) (z −w)−h

k
ij+∣m∣ (z̄ − w̄)−h̄

k
ij+∣m̄∣φ

[m,m̄]
k (w, w̄) , (6.1.1)

where
hkij ∶= hi + hj − hk , h̄kij ∶= h̄i + h̄j − h̄k . (6.1.2)

So far, we have focused on the terms in the right-hand side where [m] = [m̄] = ⋅, namely
the primary operators φk. Let us discuss here the terms corresponding to descendants of
φk.

First, recall that the descendants of different primary operators or different levels are
orthogonal:

if (k, ∣m∣, ∣m̄∣) ≠ (`, ∣n∣, ∣n̄∣) , then ⟨φ
[m,m̄]
k ∣φ

[n,n̄]
` ⟩ = 0 . (6.1.3)

However, at a given level M , the descendant states ∣φ
[m,m̄]
k ⟩ do not form, in general, an

orthogonal basis. Hence, we introduce a dual basis ⟨φ̃
[m,m̄]
k ∣ of descendants at level M ,

such that
⟨φ̃

[m,m̄]
k ∣φ

[n,n̄]
k ⟩ = δm,n δm̄,n̄ . (6.1.4)

With this definition, it is straightforward to relate the structure constants Ck
ij([m], [m̄])

to expectation values:

⟨φ̃
[m,m̄]
k ∣φi(z, z̄)∣φj⟩ = C

k
ij([m], [m̄])z−h

k
ij+∣m∣ z̄−h̄

k
ij+∣m̄∣ . (6.1.5)

Let us approach the computation of these expectation values in two steps. First, we con-
sider a simpler object ⟨φ

[n,n̄]
k ∣φi(z, z̄)∣φj⟩, and compute it using the commutation relations

[L−n, φi] and [L̄−n̄, φi]:

⟨φ
[n,n̄]
k ∣φi(z, z̄)∣φj⟩ = ⟨φk∣Ln` . . . Ln1 L̄n̄¯̀ . . . L̄n̄1 φi(z, z̄)∣φj⟩ (6.1.6)

= Un1 . . . Un` ⋅ Ūn̄1 . . . Ūn̄¯̀ ⋅ ⟨φk∣φi(z, z̄)∣φj⟩ (6.1.7)

= Un1 . . . Un` ⋅ Ūn̄1 . . . Ūn̄¯̀ ⋅C
k
ij z

−hkij z̄−h̄
k
ij (6.1.8)

91



where
Un = z

n [(n + 1)hi + z∂z] , Ūn = z̄
n [(n + 1)h̄i + z̄∂̄z̄] . (6.1.9)

These differential operators have a simple action on power functions:

Un ⋅ z
α z̄ᾱ = [(n + 1)hi + α] z

α+n z̄ᾱ , Ūn ⋅ z
α z̄ᾱ = [(n + 1)h̄i + ᾱ] z

α z̄ᾱ+n . (6.1.10)

As a result, the expectation value under study takes the factorised form:

⟨φ
[n,n̄]
k ∣φi(z, z̄)∣φj⟩ = C

k
ij γ

k
ij[n] γ̄

k
ij[n̄] z

−hkij+∣n∣ z̄−h̄
k
ij+∣n̄∣ , (6.1.11)

where Ck
ij is the structure constant associated to the fusion of primary operators φi×φj →

φk, and γkij[n] is a polynomial in (hi, hj, hk) of degree ∣n∣, and γ̄kij[n̄] is a polynomial in

(h̄i, h̄j, h̄k) of degree ∣n̄∣.
Let us now argue that the structure constants Ck

ij([m], [m̄]) obey a similar factorisa-
tion:

Ck
ij([m], [m̄]) = Ck

ij β
k
ij[m] β̄kij[m̄] . (6.1.12)

The main idea is to show that the dual basis elements ⟨φ̃
[m,m̄]
k ∣ have a factorised form.

We write ∣φk⟩ = ∣hk⟩⊗ ∣h̄k⟩, and we consider separately the representations of Vir and Vir
generated by ∣hk⟩ and ∣h̄k⟩. Let Q be the matrix of the scalar product in the space of

descendants of ∣hk⟩, at level M , and A be the inverse of Q. The dual basis of the ∣h
[m]
k ⟩’s

is constructed as
⟨h̃

[m]
k ∣ =∑

[n]
amn ⟨h

[n]
k ∣ , (6.1.13)

where the sum runs over the canonical basis of descendants of level M = ∣m∣. Similarly,
we have a dual basis

⟨̃̄h
[m̄]
k ∣ =∑

[n̄]
ām̄n̄ ⟨h̄

[n̄]
k ∣ , (6.1.14)

at level M̄ . Because of the property

⟨φ
[m,m̄]
k ∣φ

[m′,m̄′]
k ⟩ = ⟨h

[m]
k ∣h

[m′]
k ⟩ × ⟨h̄

[m̄]
k ∣h̄

[m̄′]
k ⟩ , (6.1.15)

it is then straighforward to see that the dual basis elements ⟨φ
[m,m̄]
k ∣ are of the form

⟨φ̃
[m,m̄]
k ∣ =∑

n,n̄

amn ām̄n̄⟨φ
[n,n̄]
k ∣ , (6.1.16)

where the sum runs over the canonical basis of descendants of level (M,M̄). Hence, we
get

Ck
ij([m], [m̄]) = ⟨φ̃

[m,m̄]
k ∣φi(1)∣φj⟩ (6.1.17)

=∑
n,n̄

amn ām̄n̄⟨φ
[n,n̄]
k ∣φi(1)∣φj⟩ (6.1.18)

=∑
n,n̄

amn ām̄n̄C
k
ij γ

k
ij[n] γ̄

k
ij[n̄] , (6.1.19)

which is the expected result, with

βkij[m] =∑
n

amn γ
k
ij[n] , β̄kij[m̄] =∑

n̄

am̄n̄ γ̄
k
ij[n̄] . (6.1.20)
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The above argument can be easily generalised to obtain a family of expectation values
which will be useful in this lecture:

⟨φ̃
[m,m̄]
k ∣φi(z, z̄)∣φ

[n,n̄]
j ⟩ = Ck

ij β
k
ij[m,n] β̄

k
ij[m̄, n̄] z

−hkij+∣m∣−∣n∣ z̄−h̄
k
ij+∣m̄∣−∣n̄∣ . (6.1.21)

In this expression, the constants βkij[m,n] and β̄kij[m̄, n̄] are obtained by using only the

Virasoro commutation relations, like for the γkij[m] and βkij[m] discussed previously.

6.2 Conformal blocks

Let us consider the correlation function of four primary operators:

⟨φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)⟩ . (6.2.1)

The Moebius transformation
z ↦

z2 − z1

z2 − z4

×
z − z4

z − z1

(6.2.2)

maps the points zi as

(z1, z2, z3, z4)↦ (∞,1, z,0) , where z =
(z2 − z1)(z3 − z4)

(z2 − z4)(z3 − z1)
. (6.2.3)

Hence, the above correlation function is related by conformal covariance, to:

G(z, z̄) = ⟨φ1(∞,∞)φ2(1,1)φ3(z, z̄)φ4(0,0)⟩ . (6.2.4)

In the range ∣z∣ < 1, G(z, z̄) can be written in Heisenberg formalism:

G(z, z̄) = ⟨φ1∣φ2(1,1)φ3(z, z̄)∣φ4⟩ . (6.2.5)

In the Hilbert space, we can write the identity operator as:

1 =∑
k

∑
[m]
∑
[m̄]

∣φ
[m,m̄]
k ⟩⟨φ̃

[m,m̄]
k ∣ , (6.2.6)

where the sum is over all possible primary states φk, and we have used the dual basis of
descendants derived before. We insert this resolution of identity into the expression for
G(z, z̄), between φ2(1,1) and φ3(z, z̄):

G(z, z̄) = ∑
k,[m],[m̄]

⟨φ1∣φ2(1,1)∣φ
[m,m̄]
k ⟩⟨φ̃

[m,m̄]
k ∣φ3(z, z̄)∣φ4⟩ . (6.2.7)

Recall from the previous calculations that we have:

⟨φ
[m,m̄]
k ∣φ2(1,1)∣φ1⟩ = C

k
21 γ

k
21[m]γ̄k21[m̄] , (6.2.8)

⟨φ̃
[m,m̄]
k ∣φ3(z, z̄)∣φ4⟩ = C

k
34 β

k
34[m]β̄k34[m̄] z−h

k
34+∣m∣ z̄−h̄

k
34+∣m̄∣ . (6.2.9)

This gives:

G(z, z̄) = ∑
k,[m],[m̄]

(Ck
21)

∗Ck
34 (γ

k
21[m])∗βk34[m]z−h

k
34+∣m∣

× (γ̄k21[m̄])∗β̄k34[m̄]z̄−h̄
k
34+∣m̄∣ , (6.2.10)
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and hence the decomposition:

G(z, z̄) =∑
k

(Ck
21)

∗Ck
34F

34
12 (k∣z) F̄

34
12 (k∣z̄) , (6.2.11)

where

F34
12 (k∣z) ∶= z

−hk34 ∑
[m]

(γk21[m])∗βk34[m] z∣m∣ ,

F̄34
12 (k∣z̄) ∶= z̄

−h̄k34 ∑
[m̄]

(γ̄k21[m̄]))∗β̄k34[m̄] z̄∣m̄∣ .
(6.2.12)

These functions are called the conformal blocks of the correlation function G(z, z̄). Note
that they have the form of a power function multiplied by a power series. Also, by
construction of the coefficients γkij[m] and βkij[m], the dominant coefficient of these power
series is always equal to one. For example:

F34
12 (k∣z) = z

−hk34 (1 + α1z + α2z
2 + . . . ) , (6.2.13)

where α1 contains the contribution from L−1φk, α2 contains contributions from {L−2φk, L2
−1φk},

and so on.

In the regime ∣1−z∣ < 1, we can use the invariance of G(z, z̄) under the conformal map
u↦ 1 − u, to get :

G(z, z̄) = ⟨φ1(∞,∞)φ2(0,0)φ3(1 − z,1 − z̄)φ4(1,1)⟩ (6.2.14)

= ⟨φ1∣φ4(1,1)φ3(1 − z,1 − z̄)∣φ2⟩ , (6.2.15)

which yields the decomposition:

G(z, z̄) =∑
k

(Ck
41)

∗Ck
32F

32
14 (k∣1 − z) F̄

32
14 (k∣1 − z̄) . (6.2.16)

Similarly, for ∣z∣ > 1, if we use the map u↦ 1/u, we get:

G(z, z̄) = z−2h3 z̄−2h̄3 ⟨φ1(0,0)φ2(1,1)φ3(1/z,1/z̄)φ4(∞,∞)⟩ (6.2.17)

= z−2h3 z̄−2h̄3 ⟨φ4∣φ2(1,1)φ3(1/z,1/z̄)∣φ1⟩ , (6.2.18)

which yields the decomposition:

G(z, z̄) = z−2h3 z̄−2h̄3 ∑
k

(Ck
24)

∗Ck
31F

31
42 (k∣1/z) F̄

31
42 (k∣1/z̄) . (6.2.19)

Hence, for any four-point function of primary operators, we have three possible channels
for the decomposition into conformal blocks. The consistency conditions between these
three possible decompositions is often called crossing symmetry, and it is the basis for the
conformal bootstrap.
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6.3 Chiral primary operators

The conformal blocks are not physical correlation functions. Instead, they are algebraic
objects belonging in the representation theory of a single Virasoro algebra. As a tool to
study the conformal blocks, we introduce the chiral primary operators φi(z), acting on
representations of a single Virasoro algebra. First, recall the form of the expectation value
for physical states and operators:

⟨φ̃
[m,m̄]
k ∣φi(z, z̄)∣φ

[n,n̄]
j ⟩ = Ck

ij β
k
ij[m,n] β̄

k
ij[m̄, n̄] z

−hkij+∣m∣−∣n∣ z̄−h̄
k
ij+∣m̄∣−∣n̄∣ . (6.3.1)

We thus define the chiral primary operators φi(z) and φ̄i(z̄) through their matrix elements:

⟨h̃
[m]
k ∣φi(z)∣h

[n]
j ⟩ ∶= βkij[m,n] z

−hkij+∣m∣−∣n∣ , (6.3.2)

⟨̃̄h
[m̄]
k ∣φ̄i(z̄)∣h̄

[n̄]
j ⟩ ∶= β̄kij[m̄, n̄] z̄

−h̄kij+∣m̄∣−∣n̄∣ , (6.3.3)

with the same constants βkij[m,n] and β̄kij[m̄, n̄] as in the physical matrix elements.

Using the dual bases of chiral descendants, the orthogonal projectors onto the modules
generated by ∣hk⟩ and ∣h̄k⟩ are given by

Pk ∶=∑
[m]

∣h
[m]
k ⟩⟨h̃

[m]
k ∣ , P̄k ∶=∑

[m̄]
∣h̄

[m̄]
k ⟩⟨̃̄h

[m̄]
k ∣ . (6.3.4)

In terms of chiral primary operators, the conformal blocks can be written

F34
12 (k∣z) =∑

[m]
⟨h1∣φ2(1)h

[m]
k ⟩⟨h̃

[m]
k ∣φ3(z)∣h4⟩ , (6.3.5)

F̄34
12 (k∣z̄) =∑

[m̄]
⟨h̄1∣φ̄2(1)h̄

[m̄]
k ⟩⟨̃̄h

[m̄]
k ∣φ̄3(z̄)∣h̄4⟩ , (6.3.6)

and hence we get:

F34
12 (k∣z) = ⟨0∣φ1(∞)φ2(1)Pkφ3(z)φ4(0)∣0⟩ ,

F̄34
12 (k∣z̄) = ⟨0∣φ̄1(∞)φ̄2(1)P̄kφ̄3(z̄)φ̄4(0)∣0⟩ .

(6.3.7)

The conformal block F34
12 (k∣z) thus appears as a correlator of chiral primary operators,

with the insertion of a projector Pk on a “virtual” intermediary sector, namely the Virasoro
module with lowest weight hk.

Through a reversed computation, one can show that the chiral primary operators
defined by the above matrix elements satisfy the commutation relations with the Ln’s

[Ln, φi(w)] = wn[(n + 1)hi +w∂w]φi(w) . (6.3.8)

In turn, the chiral OPE T ⋅ φi can be derived from the commutation relations:

T (z)φi(w) =
hiφi(w)

(z −w)2
+
∂φi(w)

z −w
+ regz→w , for ∣z∣ > ∣w∣ , (6.3.9)

and the same can be done for the chiral OPE φi ⋅ φj

Pkφi(z)φ
[n]
j (w) =∑

[m]
βkij[m,n] (z −w)−h

k
ij+∣m∣−∣n∣ φ

[m]
k (w) , for ∣z∣ > ∣w∣ . (6.3.10)
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By construction, it is obvious that the projectors satisfy:

[Ln,Pk] = 0 , PkP` = P`Pk = δk` . (6.3.11)

Now let us consider conformal blocks with primary operators inserted at generic posi-
tions

⟨0∣φ1(z1)φ2(z2)Pkφ3(z3)φ4(z4)∣0⟩ , (6.3.12)

with ∣z1∣ ≥ ∣z2∣ ≥ ∣z3∣ ≥ ∣z4∣. From the above properties of chiral primary operators and
projectors, we are now able to study the transformation of these conformal blocks under
conformal mappings. First, note that, for the rescalings z ↦ z/λ, the chiral OPE φi ⋅ φj
behaves as

Pkφi(z)φ
[n]
j (w) = λ−hi−hj−∣n∣∑

[m]
βkij[m,n] (z/λ −w/λ)−h

k
ij+∣m∣−∣n∣ λhk+∣m∣φ

[m]
k (w) . (6.3.13)

Using repeatedly this relation to decompose the conformal block, one gets the scaling
covariance relation:

⟨0∣φ1(z1)φ2(z2)Pkφ3(z3)φ4(z4)∣0⟩

=
4

∏
j=1

λ−hj ⟨0∣φ1(z1/λ)φ2(z2/λ)Pkφ3(z3/λ)φ4(z4/λ)∣0⟩ . (6.3.14)

A similar argument yields the behaviour under rotations:

⟨0∣φ1(z1)φ2(z2)Pkφ3(z3)φ4(z4)∣0⟩

=
4

∏
j=1

e−ihjθ ⟨0∣φ1(e
−iθz1)φ2(e

−iθz2)Pkφ3(e
−iθz3)φ4(e

−iθz4)∣0⟩ . (6.3.15)

In fact, since the chiral OPE φi ⋅ φj completely determines, recursively, the conformal
block, it also yields its covariance property under any global conformal transformation
z ↦ z′:

⟨0∣φ1(z1)φ2(z2)Pkφ3(z3)φ4(z4)∣0⟩

=
4

∏
j=1

(
∂z′j
∂zj

)

hj

⟨0∣φ1(z
′
1)φ2(z

′
2)Pkφ3(z

′
3)φ4(z

′
4)∣0⟩ , (6.3.16)

provided the radial ordering is preserved, namely ∣z′1∣ ≥ ∣z′2∣ ≥ ∣z′3∣ ≥ ∣z′4∣.

For infinitesimal conformal maps z ↦ z + ε(z), we can derive Ward identities for
conformal blocks as follows. On one hand, the variation of the conformal block is given
by the above covariance property, and on the other hand, any closed contour integral with
an insertion of T (w) is determined by the chiral OPEs T ⋅φj derived above – the presence
of Pk does not affect the contour deformation, because it commutes with T (w). Recall
that, for physical primary operators, the OPE T ⋅φj was derived from the conformal Ward
identity, and hence its singular terms exactly correspond to the holomorphic part of the

96



variation of the physical φj. Since the chiral OPEs mimick the physical ones, we get the
conformal Ward identity:

δε⟨0∣φ1(z1)φ2(z2)Pkφ3(z3)φ4(z4)∣0⟩

=
1

2iπ ∮
dw ε(w) ⟨0∣T (w)φ1(z1)φ2(z2)Pkφ3(z3)φ4(z4)∣0⟩ , (6.3.17)

where the integration contour encloses all points z1, z2, z3, z4.

Remark: Let us stress again the logic we have used here to derive this Ward identity
for conformal blocks. In contrast to the Ward identities for physical correlation functions,
the derivation does not rely on the definition of T (z) as the stress-energy tensor asso-
ciated to a fundamental action. Instead, we have defined the chiral primary operators
through their matrix elements, chosen as to mimick the holomorphic part of their physical
counterparts. Then, we have argued that, through a sequence of reversed computations,
we can recover the chiral OPEs T ⋅ φj and φi ⋅ φj, which yield in turn the transformation
properties of chiral correlators: the latter are thus also given by the holomorphic part of
their physical counterparts.

6.4 Correlation functions of degenerate operators

So far, we have discussed generic conformal blocks, and described their main properties
under conformal transformations. In order to make more advanced analysis, we need
some additional knowledge on the admissible values of the internal dimensions hk: for
this reason, we shall now consider the case when some of the external φj’s are degenerate
primary operators. To illustrate the general argument, let us focus on four-point functions
of the form

G(z, z̄) = ⟨φ1(∞)φ2(1)φ12(z, z̄)φ4(0)⟩ . (6.4.1)

For this analysis, it will be convenient to use the following form of the differential action of
the L−m’s in the correlation function (or in the conformal block). For any set of primary
operators φ1, φ2, φ3, φ4, we have:

⟨φ1(∞)φ2(1)(L−m1 . . . L−mkφ3)(z, z̄)φ1(0)⟩

= U
[m]
1 . . .U

[m]
k ⟨φ1(∞)φ2(1)φ3(z, z̄)φ1(0)⟩ , (6.4.2)

where the differential operators U
[m]
j are given by

U
[m]
j =

αmj−1(z)

zmj−1(1 − z)mj−1
∂z +

β
[m]
j (z)

zmj(1 − z)mj
, (6.4.3)

and the polynomials αm(z) and β
[m]
j (z) are:

α−1(z) = 0 , α0(z) = 1 , (6.4.4)

αm(z) = zm+1 − (z − 1)m+1 =
m

∑
`=0

z`(z − 1)m−` , (6.4.5)

β
[m]
j (z) = (mj − 1)[h2z

mj + h4(z − 1)mj]

+ (h1 − h2 − h4 − h3 −mj+1 − ⋅ ⋅ ⋅ −mk)z(z − 1)αmj−2(z) , (6.4.6)
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which canbe proven using the commutation relations [Ln, φj(zj, z̄j)].
In particular, we have:

⟨φ1(∞)φ2(1)(L
2
−1φ3)(z, z̄)φ4(0)⟩ = ∂

2
z ⟨φ1(∞)φ2(1)φ3(z, z̄)φ4(0)⟩ , (6.4.7)

⟨φ1(∞)φ2(1)(L−2φ3)(z, z̄)φ4(0)⟩ =

[
2z − 1

z(1 − z)
∂z +

h2z2 + h4(1 − z)2 − (h1 − h2 − h4 − h3)z(1 − z)

z2(1 − z)2
]

× ⟨φ1(∞)φ2(1)φ3(z, z̄)φ4(0)⟩ . (6.4.8)

Recall the null-vector conditions for φ3 = φ12:

(L−2 − b
−2L2

−1)φ12 = 0 , (L̄−2 − b
−2L̄2

−1)φ12 = 0 . (6.4.9)

They yield the two ordinary differential equations (ODEs) for the correlation function
G(z, z̄) = ⟨φ1(∞)φ2(1)φ12(z, z̄)φ4(0)⟩:

[b−2 ∂2
z −

2z − 1

z(1 − z)
∂z −

h2z2 + h4(1 − z)2 − (h1 − h2 − h4 − h12)z(1 − z)

z2(1 − z)2
]G(z, z̄) = 0 ,

[b−2 ∂2
z̄ −

2z̄ − 1

z̄(1 − z̄)
∂z̄ −

h2z̄2 + h4(1 − z̄)2 − (h1 − h2 − h4 − h12)z̄(1 − z̄)

z̄2(1 − z̄)2
]G(z, z̄) = 0 .

(6.4.10)
An important property of this pair of differential equations is that their invariance under
the change of parameters and variables:

(h1, h2, h4)↔ (h1, h4, h2) , (z, ∂z)↔ (1 − z,−∂z) , (z̄, ∂z̄)↔ (1 − z̄,−∂z̄) , (6.4.11)

which reflects the identity

⟨φ1(∞)φ2(1)φ3(z, z̄)φ4(0)⟩ = ⟨φ1(∞)φ4(1)φ3(1 − z,1 − z̄)φ2(0)⟩ . (6.4.12)

To discuss the conformal blocks, for simplicity, we restrict to the case

G(z, z̄) = ⟨φrs(∞)φ12(1)φ12(z, z̄)φrs(0)⟩ . (6.4.13)

We have the fusion rules:

φ12 × φ12 → 1 + φ13 , φ12 × φrs → φr,s+1 + φr,s−1 , (6.4.14)

and hence the two conformal blocks in the z → 0 channel are

I1(z) = ⟨φrs(∞)φ12(1)Phr,s+1φ12(z)φrs(0)⟩ ,

I2(z) = ⟨φrs(∞)φ12(1)Phr,s−1φ12(z)φrs(0)⟩ ,
(6.4.15)

and similarly in the z → 1 channel:

J1(z) = ⟨φrs(∞)φrs(1)P1φ12(1 − z)φ12(0)⟩ ,

J2(z) = ⟨φrs(∞)φrs(1)Ph13φ12(1 − z)φ12(0)⟩ .
(6.4.16)

The differential equations obeyed byG(z, z̄) were derived using the commutators [Ln, φj(z, z̄)].
Since the commutators with chiral operators φj(z) and φ̄j(z̄) have the same form, and
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the Ln’s commute with the projectors Ph, we get the same differential equations for the
conformal blocks Ik and Īk. From the invariance of these equations under (6.4.11), the
conformal blocks Jk and J̄k are also solutions of these equations. Let us write the holo-
morphic and anti-holomorphic differential equations with h1 = h4 = hrs and h2 = h12 as

[b−2 ∂2
z −

2z − 1

z(1 − z)
∂z −

hrs(1 − z)2 + h12z(2 − z)

z2(1 − z)2
]F (z) = 0 , (6.4.17)

[b−2 ∂2
z̄ −

2z̄ − 1

z̄(1 − z̄)
∂z̄ −

hrs(1 − z̄)2 + h12z̄(2 − z̄)

z̄2(1 − z̄)2
] F̄ (z̄) = 0 . (6.4.18)

Let us discuss the holomorphic differential equation (6.4.17). The two sets of conformal
blocks {I1, I2} and {J1, J2} are two bases of holomorphic solutions of this equation. By
construction, the block Ik(z) is a function of the form:

Ik(z) = z
λ

∞
∑
n=0

an z
n . (6.4.19)

Inserting this form into the differential equation, and keeping only the dominant term in
the limit z → 0, we get the characteristic equation for the local exponent λ:

b−2λ(λ − 1) + λ − hrs = 0 . (6.4.20)

The two solutions are

λ1 = −h12 − hrs + hr,s+1 , λ2 = −h12 − hrs + hr,s−1 , (6.4.21)

corresponding to the solutions I1, I2. The differential equation turns into a linear recursion
system for the series coefficients an. A convenient way of treating this problem is to
introduce the operator θ = z∂z, which satisfies

θ ⋅ zλ = λzλ . (6.4.22)

Using the property z2∂2
z = θ(θ − 1), we rewrite the equation as

{b−2(1 − z)2 θ(θ − 1) − (1 − z)(2z − 1)θ − [hrs(1 − z)
2 + h12z(2 − z)]}F (z) = 0 , (6.4.23)

which is of the form
[R0(θ) + z R1(θ) + z

2R2(θ)]F (z) = 0 , (6.4.24)

where R0,R1,R2 are polynomials of degree two. Inserting the power series, we get the
recursion

R0(λ)a0 = 0 , (6.4.25)

R0(λ + 1)a1 +R1(λ)a0 = 0 , (6.4.26)

R0(λ + n)an +R1(λ + n − 1)an−1 +R2(λ + n − 2)an−2 = 0 n ≥ 2 . (6.4.27)

The explicit form of R0 is

R0(θ) = b
−2θ(θ − 1) + θ − hrs , (6.4.28)

and hence, since we have set λ to one of the solutions {λ1, λ2} of the characteristic
equation, we have R0(λ) = 0, and we can set a0 = 1 by convention. Moreover, we assume
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that the local exponents are non-degenerate, namely (λ1 − λ2) is not an integer, so that
for any positive integer n, we have R0(λ + n) ≠ 0. As a result, all the coefficients an are
completely determined by the recursion. This way of solving a holomorphic differential
equation is known as the Froebenius method. A similar approach can be used to determine
the conformal blocks in the z → 1 channel:

Jk(z) = (1 − z)µ
∞
∑
n=0

bn(1 − z)
n . (6.4.29)

The physical correlation function is reconstructed from the conformal blocks as

G(z, z̄) = (C
φr,s+1

φ12,φrs
)2 ∣I1(z)∣

2 + (C
φr,s−1

φ12,φrs
)2 ∣I2(z)∣

2 (6.4.30)

= C1
φ12,φ12

C1
φrs,φrs

∣J1(z)∣
2 +Cφ13

φ12,φ12
Cφ13

φrs,φrs
∣J2(z)∣

2 . (6.4.31)

6.5 Crossing symmetry

This identity between the two expansions of the physical correlation function is known as
crossing symmetry. An important additional ingredient is the linear relation between the
two bases of conformal blocks

Ik(z) =
2

∑
`=1

Pk` J`(z) . (6.5.1)

Recall that {I1, I2} and {J1, J2} are bases of holomorphic solutions to the same differential
equation, which is why they are related by a matrix P , known as the fusion matrix.

If we generalise to an expansion of the form:

G(z, z̄) =
2

∑
i,j=1

Xij Īi(z̄) Ij(z) , (6.5.2)

after the change of basis, we get:

G(z, z̄) =
2

∑
k,`=1

Yk` J̄k(z̄)J`(z) , Y = P †XP . (6.5.3)

The particular choice
Xij =Xi δij , Yk` = Yk δk` , (6.5.4)

with

X1 = (C
φr,s+1

φ12,φrs
)2 , X2 = (C

φr,s−1

φ12,φrs
)2 , Y1 = C

1
φ12,φ12

C1
φrs,φrs

, Y2 = C
φ13

φ12,φ12
Cφ13

φrs,φrs
,

(6.5.5)
corresponds to our physical correlation function. Different forms for the matrices X and
Y may arise if we allow G to have non-trivial monodromies as φ12(z, z̄) winds around
φrs(0) or φ12(1). The conditions Yk` = 0 (resp. Xk` = 0) for k ≠ ` lead to the linear system
for the Xi’s (resp. Yi’s):

∀k ≠ ` ,
2

∑
i=1

P̄ik Pi`Xi = 0 ,
2

∑
i=1

(P̄ −1)ik (P
−1)i` Yi = 0 . (6.5.6)
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The crucial ingredient in the determination of {Xi} and {Yk} is the fusion matrix
P relating the two bases of conformal blocks. For the case of a differential equation
of order N , a general method, known as the Coulomb-Gas approach, and based on the
representation of Ik and Jk as contour integrals over (N − 1) auxiliary variables, may be
used to calculate the matrix elements of A. However, in this lecture, we are focusing on
the simplest case

G(z, z̄) = ⟨φh(∞,∞)φ12(1,1)φ12(z, z̄)φh(0,0)⟩ , (6.5.7)

where the ODE is second order, and can be reduced to the hypergeometric differential
equation. Using the Kac parameterisation c = 1−6Q2, and hα = α(α−2Q), with 2Q = b−1−b,
we have the fusion :

φ12 × φhα = φhα+b/2 + φhα−b/2 . (6.5.8)

From the simple identity
hα+β = hα + hβ + 2αβ ,

we see that the conformal blocks at z = 0 with internal dimensions hα+b/2 and hα−b/2,
respectively, are of the form:

I1(z) = z
bα(1 + a1z + . . . ) , I2(z) = z

b(2Q−α)(1 + b1z + . . . ) . (6.5.9)

In the channel z → 1, we have the fusion

φ12 × φ12 = 1 + φ13 , (6.5.10)

and the conformal blocks at z = 1 are given by:

J1(z) = z
−2h12(1 + c1z + . . . ) , J2(z) = z

h13−2h12(1 + d1z + . . . ) . (6.5.11)

To study the local exponents at z →∞, let us first use conformal invariance under z ↦ 1/z,
which yields the relation:

G(z, z̄) = ∣z∣−4h12 G(1/z,1/z̄) . (6.5.12)

The local exponents at z → ∞ are thus 2h12 + bα and 2h12 + b(2Q − α). The Riemann
scheme for the ODE satisfied by G is:

0 1 ∞

bα −2h12 2h12 + bα
b(2Q − α) h13 − 2h12 2h12 + b(2Q − α)

We define the function g(z, z̄) as

G(z, z̄) ∶= ∣z∣2bα ∣1 − z∣−4h12 g(z, z̄) . (6.5.13)

This function g satisfies a second-order differential equation, with local exponents

0 1 ∞

0 0 2bα
1 − b2 − 2bα 2b2 − 1 1 − b2

=

0 1 ∞

0 0 A
1 −C C −A −B B

(6.5.14)

with
A = 2bα , B = 1 − b2 , C = b2 + 2bα . (6.5.15)
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The differential equation for g takes the explicit form

[∂2
z +

C − (A +B + 1)z

z(1 − z)
∂z −

AB

z(1 − z)
] g = 0 , (6.5.16)

which is known as the hypergeometric differential equation. The fusion matrix for the
holomorphic solutions of this equation are known (see Appendix), and we have:

P =

⎡
⎢
⎢
⎢
⎢
⎣

Γ(C)Γ(D)
Γ(C−A)Γ(C−B)

Γ(C)Γ(−D)
Γ(A)Γ(B)

Γ(2+C)Γ(D)
Γ(1−A)Γ(1−B)

Γ(2−C)Γ(−D)
Γ(1−C+A)Γ(1−C+B)

⎤
⎥
⎥
⎥
⎥
⎦

,

P −1 =

⎡
⎢
⎢
⎢
⎢
⎣

Γ(1−C)Γ(1−D)
Γ(1−C+A)Γ(1−C+B)

Γ(C−1)Γ(1−D)
Γ(A)Γ(B)

Γ(1−C)Γ(1+D)
Γ(1−A)Γ(1−B)

Γ(C−1)Γ(1+D)
Γ(C−A)Γ(C−B)

⎤
⎥
⎥
⎥
⎥
⎦

,

(6.5.17)

with D = C −A −B = 2b2 − 1. Using P = P̄ , the linear system for Y1, Y2 yields the ratio:

Y2

Y1

=
γ(C −A)γ(C −B)γ(−D)

γ(A)γ(B)γ(D)
=
γ2(b2)γ(2 − 2b2)γ(1 − 2b2)

γ(2bα)γ[2b(2Q − α)]
, (6.5.18)

where γ(x) ∶= Γ(x)/Γ(1−x). The coefficients Y1, Y2 are related to the structure constants:

Y1(α) = C
1
φ12,φ12

×C1
φrs,φrs

= 1 , Y2(α) = C
φ13

φ12,φ12
×Cφ13

φrs,φrs
, (6.5.19)

with h = α(α − 2Q). We obtain the non-trivial structure constant by combining the
equations for generic α = αrs = [(1 − r)/b − (1 − s)b]/2 and α = α12 = b/2:

Cφ13

φrs,φrs
=

Y2(α)
√
Y2(b/2)

=

√
γ3(b2)γ(2 − 2b2)γ(1 − 2b2)γ(2 − 3b2)

γ(2bα)γ[2b(2Q − α)]
. (6.5.20)

We can then compute the coefficients X1,X2:

X1 = (P −1)2
11 Y1 + (P −1)2

21 Y2 =
γ(C −A)γ(C −B)

γ(C)γ(D)
,

X2 = (P −1)2
12 Y1 + (P −1)2

22 Y2 =
γ(C − 1)γ(D)

γ(A)γ(B)
.

(6.5.21)

This yields the OPE structure constants:

C
φr,s+1

φ12,φrs
=

¿
Á
ÁÀ γ(b2)γ(2 − 2b2)

γ[2b(α + b/2)]γ[2b(2Q − α)]
,

C
φr,s−1

φ12,φrs
=

¿
Á
ÁÀ γ(b2)γ(2 − 2b2)

γ[2b(2Q − α + b/2)]γ(2bα)
.

(6.5.22)

6.6 Appendix: Fuchsian differential equations

6.6.1 Regular singularities

Consider a linear differential equation of the form

[∂Nz +
p1(z)

z(1 − z)
∂N−1
z + ⋅ ⋅ ⋅ +

pN(z)

zN(1 − z)N
]G(z, z̄) = 0 , (6.6.1)
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where pj(z) is a polynomial of degree j or smaller.

At z = 0, the term ∂N−jz G has a pole of order at most j: we say that z = 0 is a regular
singularity of the ODE. Similarly, the point z = 1 is a regular singularity.

To study the solutions of (6.6.1) in the vicinity of a singular point w ∈ {0,1,∞}, it
will be convenient to express the ODE in terms of the differential operator

θw ∶= (z −w)∂z ,

with the property
(z −w)k∂kz = θw(θw − 1) . . . (θw − k + 1) . (6.6.2)

For instance, at w = 0, after multiplying the ODE by zN , we get an equation of the form:

[θN + q1(z)θ
N−1 + ⋅ ⋅ ⋅ + qN−1(z)θ + qN(z)]G = 0 , (6.6.3)

where we have denoted simply θ ∶= θ0, and the functions qj(z) are linear combinations of
p`(z)/(1 − z)`, and thus, they are regular as z → 0:

qj(z) ∶=
N

∑
`=1

αj` p`(z)

(1 − z)`
, p`(z) =

j

∑
n=0

p`,n z
n (6.6.4)

For w =∞, we use the variable u = 1/z, and define θ̂ ∶= u∂u = −z∂z. Equation (6.6.3) takes
the form:

[θ̂N + q̂1(u)θ̂
N−1 + ⋅ ⋅ ⋅ + q̂N−1(u)θ̂ + q̂N(u)]G = 0 , (6.6.5)

where

q̂j(u) ∶=
N

∑
`=1

αj` p̂`(u)

(1 − u)`
, p̂`(u) =

`

∑
n=0

p`,`−n u
n . (6.6.6)

Since the coefficients q̂j(u) are regular as u → 0, the point z =∞ is also a regular singu-
larity.

Hence the three singular points {0,1,∞} of the ODE (6.6.1) are regular singularities:
this type of complex differential equation is called a Fuchsian differential equation.

6.6.2 Basis of solutions in the vicinity of a singularity

Let us look for solutions which behave as a power law in the z variable in the vicinity of
the singularity z = 0. Inserting G(z, z̄) ∼ zλ into the ODE (6.6.3), and using θ.zλ = λzλ,
we find that the exponent λ should be a solution of the characteristic equation:

R(λ) ∶= λN +
N−1

∑
j=0

qN−j(0)λ
j = 0 . (6.6.7)

The roots of R are called the local exponents of the ODE at z = 0. Now we consider a
local exponent λ, and we shall construct a solution of the form

zλf(z) = zλ
∞
∑
n=0

an z
n , a0 = 1 , (6.6.8)
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for 0 < ∣z∣ < ρ, and −π < Arg z < π, where ρ is the radius of convergence of the solution
(ρ ≤ 1, because z = 1 is a singular point). Let us write the series expansion of the
coefficients qj as

qj(z) =
∞
∑
n=1

qj,n z
n for ∣z∣ < 1 . (6.6.9)

Then, inserting G(z) = zλfλ(z) into (6.6.3), we get

∞
∑
n=0

[(λ + n)Nan +
N−1

∑
j=0

n

∑
k=0

(λ + k)jqN−j,n−k ak] z
λ+n = 0 . (6.6.10)

Introducing the polynomials

Qk(λ) ∶=
N−1

∑
j=0

qN−j,k λ
j for k ≥ 1 ,

This can be rewritten as

zλ
∞
∑
n=0

[R(λ + n)an +
n−1

∑
k=0

Qn−k(λ + k)ak] z
n = 0 . (6.6.11)

For any n, the coefficients a0, . . . an of the function fλ(z) are determined by an (n + 1) ×
(n + 1) lower-triangular linear system:

R(λ)a0 = 0

Q1(λ)a0 +R(λ + 1)a1 = 0

. . .

Qn(λ)a0 + ⋅ ⋅ ⋅ +Q1(λ + n − 1)an−1 +R(λ + n)an = 0

(6.6.12)

Since R(λ) = 0, the leading coefficient can always be set to a0 = 1. Let us consider the
“generic” case, when the roots of R do not differ by an integer, so that, for any integer
n ≥ 1, R(λ + n) ≠ 0. The entire function fλ(z) is then defined uniquely by the recursion
relation:

a0 = 0 , an = −
1

R(λ + n)

n−1

∑
k=0

Qn−k(λ + n − k)ak for n ≥ 1 . (6.6.13)

From this procedure, called the Froebenius method, we get a basis of solutions to the ODE:

{zλ1f1(z) , z
λ2f2(z) , . . . , z

λNfN(z)} , (6.6.14)

where λ1, . . . , λN are the roots of the characteristic equation. It is possible to show that
each entire function fj(z) admits an analytic continuation on C/{0,1,∞}.

6.6.3 The case of degenerate exponents

If R admits two roots of the form (λ1, λ2) = (λ,λ + r) with r ∈ N, we say that the local
exponent λ is degenerate. Let us first treat the case r ≥ 1. The recursion system (6.6.12)
for λ2 has a unique solution, which defines the function zλ+rf2(z), with f2(0) = 1. For the
solution associated to λ1, after setting a0 = 1, the coefficients a1, . . . ar−1 are fixed uniquely,
but ar can be set to any value ar = α, which defines the one-parameter family of solutions
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zλf
(α)
1 (z), and we have f

(α)
1 (z) = f

(0)
1 (z) + αzrf2(z). For any value of α, the functions

zλf
(α)
1 (z) and zλ+rf2(z) are independent solutions of the form (6.6.8). In the case of a

multiply-degenerate exponent λ, where the roots of R are of the form

(λ1, . . . , λm) = (λ,λ + r1, . . . , λ + rm−1) , (6.6.15)

with 0 < r1 < r2 < ⋅ ⋅ ⋅ < rm−1, using the same method, one can construct a set of m
independent solutions

{zλf1(z) , z
λ+r1f2(z) , . . . , z

λ+rm−1fm(z)} (6.6.16)

with fj(0) = 1. The function fm is unique, whereas, for the entire function fj associated
to λ+ rj with 1 ≤ j <m−1, we can choose freely the values of the coefficients aj, . . . , am−1.

In the case of a double root λ1 = λ2 = λ, if no other root is of the form λ + Z, the
recursion system (6.6.12) gives a unique solution zλfλ(z). To build intuitively a second,
independent solution, it is useful to think of this situation as the limit ε → 0 of an ODE
with exponents λ,λ + ε. Under this hypothesis, the difference of the two independent
solutions zλfλ(z), zλ+εfλ+ε(z) would be of the form:

zλ+ε
∞
∑
n=0

an(λ + ε) z
n − zλ

∞
∑
n=0

an(λ) z
n ∼
ε→0

ε zλ [ln z
∞
∑
n=0

an z
n +

∞
∑
n=0

bn z
n] , (6.6.17)

where an = an(λ) and bn = ∂λan(λ). Hence, we look for a solution of the form

zλ [gλ(z) + ln z fλ(z)] , where gλ(z) =
∞
∑
n=0

bn z
n , (6.6.18)

and zλfλ(z) is the “regular” solution. Inserting the above form into the ODE, and using

θk.(zλ ln z) = λkzλ ln z + kλk−1zλ ,

we get the relations for n ≥ 0 :

R(λ + n)an +
n−1

∑
k=0

Qn−k(λ + k)ak = 0 , (6.6.19)

[R(λ + n)bn +
n−1

∑
k=0

Qn−k(λ + k)bk] + [R′(λ + n)an +
n−1

∑
k=0

Q′
n−k(λ + k)ak] = 0 . (6.6.20)

From the first relation, we recover the regular solution if we set a0 = 1. In the second
relation, since R(λ) = R′(λ) = 0, we can set b0 to any value b0 = α, and this defines

uniquely the function g
(α)
λ (z) = g

(0)
λ (z) + αfλ(z). For any value of α, the functions

{zλfλ(z) , zλ[g
(0)
λ (z) + (α + ln z)fλ(z)]} (6.6.21)

are independent solutions.

Similarly, for a root λ of multiplicitym, we can construct linearly independent solutions
{ϕ1(z), . . . ϕm(z)} of the form

ϕ1(z) = z
λf1(z) , (6.6.22)

ϕ2(z) = z
λ [ln z f1(z) + f2(z)] , (6.6.23)

. . . (6.6.24)

ϕk(z) = z
λ
k−1

∑
r=0

(
k − 1
r

) (ln z)k−1−r fr+1(z) , (6.6.25)
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To describe the determination of the entire functions f1(z), . . . , fm(z), let us introduce
the polynomial of degree N in t:

D(z, t) = tN + q1(z)t
N−1 + ⋅ ⋅ ⋅ + qN(z) , (6.6.26)

so that the ODE reads D(z, θ)G = 0. Using the identity

θp.[(ln z)r ϕ(z)] =
min(r,p)
∑
`=0

(
r
`

) (ln z)r−`
p!

(p − `)!
θp−`.ϕ(z) , (6.6.27)

we get

D(z, θ).[(ln z)r ϕ(z)] =
r

∑
`=0

(
r
`

) (ln z)r−`D(`)(z, θ).ϕ(z) , (6.6.28)

where D(`)(z, t) ∶= (∂t)`D(z, t) is also a polynomial in t. The function f1(z) is determined
by the homogeneous ODE:

D(z, θ).[zλf1(z)] = 0 . (6.6.29)

Then, the condition D(z, θ).ϕ2 = 0 yields:

D(1)(z, θ).[zλf1(z)] +D(z, θ).[z
λf2(z)] = 0 , (6.6.30)

which is an ODE for f2(z), with a source term given by the knowledge of f1(z). The func-
tions fk(z) are determined recursively by the coefficient of (ln z)0 in the ODE D(z, θ).ϕk =
0, which reads:

k−1

∑
r=0

(
k − 1
r

)D(r)(z, θ).[zλfk−r(z)] = 0 . (6.6.31)

The value of the polynomials at z = 0:

D(`)(0, λ) = R(`)(λ) = 0 for ` = 0, . . . ,m − 1 , (6.6.32)

allow us to set fk(0) = 1. Then, the higher coefficients in the power series for fk(z) are
uniquely determined by the above ODE.

6.6.4 Riemann scheme of the differential equation

For each singular point w ∈ {0,1,∞}, we can apply the Froebenius method, and construct
a basis with local exponents given by the roots of the characteristic polynomial Rw(λ).
We denote {λ1, . . . , λN} the local exponents at z = 0, {µ1, . . . , µN} those at z = 1, and
{ν1, . . . , νN} those at z =∞. These data are stored in the Riemann scheme:

0 1 ∞

λ1 µ1 ν1

λ2 µ2 ν2

⋮ ⋮ ⋮

λN µN νN

Using the characteristic equations (6.6.7), one can prove Fuchs’ relation:

N

∑
j=1

(λj + µj + νj) =
N(N − 1)

2
. (6.6.33)
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If we change the unknown function to g(z) with G(z) = zα g(z), then from the relation

θ.[zαϕ(z)] = zα(θ + α).ϕ(z) , (6.6.34)

we get

[(θ + α)N +
N−1

∑
j=0

qN−j(z) (θ + α)
j] g(z) = 0 , (6.6.35)

and hence, the local exponents for g at z = 0 are {λ1 − α, . . . λN − α}, and those at z =∞
are {ν1+α, . . . νN +α}. We can similarly introduce a factor (1−z)β, to shift the exponents
µj and νj by −β and +β, respectively. Overall, if we make the change of function

G(z) = zα (1 − z)β g(z) , (6.6.36)

the new function g(z) satisfies a Fuchsian equation with Riemann scheme

0 1 ∞

λ1 − α µ1 − β ν1 + α + β
λ2 − α µ2 − β ν2 + α + β

⋮ ⋮ ⋮

λN − α µN − β νN + α + β

Of course, the degeneracies of exponents, as well as the Fuchs relation are preserved by
this operation.

6.6.5 Monodromy of solutions

Let {ϕ1(z), . . . ϕN(z)} be a basis of solutions of the Fuchsian ODE (6.6.1). Then, for any
singular point w, if we apply a rotation of 2π around w, we get the functions {ϕ1(w +

e2iπ(z −w)), . . . ϕN(w + e2iπ(z −w))}, which are again solutions of the ODE. Hence, there
exists an invertible matrix M (w) (the monodromy matrix around w) such that

ϕj(w + e2iπ(z −w)) =
N

∑
k=1

M
(w)
jk ϕk(z) . (6.6.37)

In the case when the characteristic polynomial R(λ) at z = 0 has no multiple roots,
the monodromy matrix for the basis {zλ1f1(z), . . . zλNfN(z)} constructed above is the
diagonal matrix:

M (0) = diag(e2iπλ1 , . . . , e2iπλN ) .

If P (λ) has multiple roots, then M (0) has some additional off-diagonal terms, and is no
longer diagonalisable.

Given a basis of solutions {ϕ1(z), . . . ϕN(z)} expressed in terms of series at z = 0, it is
a harder task to determine its monodromy around z = 1. A way to do this, is to use the
fusion matrix from {ϕ1(z), . . . ϕN(z)} to a basis {ψ1(z), . . . ψN(z)} of solutions defined in
the vicinity of z = 1:

ϕj(z) =
N

∑
k=1

Pjk ψk(z) . (6.6.38)

Then, the monodromy of the basis {ϕ1(z), . . . ϕN(z)} around z = 1 is given by:

M (1) = P.diag(e2iπµ1 , . . . , e2iπµN ).P −1 . (6.6.39)
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6.6.6 Example: the hypergeometric equation

Consider a second-order Fuchsian equation with the Riemann scheme:

0 1 ∞

0 0 A
1 −C C −A −B B

By identifying the coefficients of the characteristic polynomials at z = 0,1,∞, one can
show that the corresponding ODE must be given by the hypergeometric equation:

[∂2
z +

C − (A +B + 1)z

z(1 − z)
∂z −

AB

z(1 − z)
] g = 0 . (6.6.40)

As long as C ∉ Z, the Froebenius method at z = 0 and z = 1 respectively provides the
bases of solutions:

I1(z) = 2F1(A,B;C ∣z) , I2(z) = z
1−C

2F1(1 +B −C,1 +A −C; 2 −C ∣z) , (6.6.41)

J1(z) = 2F1(A,B; 1 −D∣1 − z) , J2(z) = (1 − z)D 2F1(C −A,C −B; 1 +D∣1 − z) , (6.6.42)

where D = C −A −B. The function 2F1(A,B;C ∣z) is Gauss’s hypergeometric series

2F1(A,B;C ∣z) =
∞
∑
n=0

(A)n (B)n

(C)n n!
zn , (6.6.43)

where we have used the Pochhammer symbol:

(u)n = u(u + 1) . . . (u + n − 1) =
Γ(u + n)

Γ(u)
. (6.6.44)

Using the Euler Beta function

B(u, v) = ∫
1

0
tu−1 (1 − t)v−1 dt =

Γ(u)Γ(v)

Γ(u + v)
for Re(u),Re(v) > 0 , (6.6.45)

One can write the hypergeometric function as

2F1(A,B;C ∣z) =
1

B(B,C −B)
∫

1

0
xB−1(1 − x)C−B−1(1 − zx)−A dx , (6.6.46)

for Re(c) > Re(b) > 0 and z ∈ C/[1,+∞[. Suppose z ∈]0,1[. Using the change of variables
x = 1/t and x = t/z, respectively, we get

I1(z) =
1

N1
∫

∞

1
tA−C(t − z)−A(t − 1)C−B−1dt , (6.6.47)

I2(z) =
1

N2
∫

z

0
tA−C(z − t)−A(1 − t)C−B−1dt , (6.6.48)

where N1 = B(B,C − B) and N2 = B(1 − A,1 + A − C). Similarly, with the changes
x = 1/(1 − t) and x = (1 − t)/(1 − z), we get

J1(z) =
1

M1
∫

0

−∞
(−t)A−C(z − t)−A(1 − t)C−B−1dt , (6.6.49)

J2(z) =
1

M2
∫

1

z
tA−C(t − z)−A(1 − t)C−B−1dt , (6.6.50)
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where M1 = B(B,1 +A −C) and M2 = B(1 −A,C −B).
If we define the holomorphic function

f(t) = tA−C(t − z)−A(t − 1)C−B−1 (6.6.51)

for t ∈ C/] −∞,0], the closed-contour relations

∫

+∞+iε

−∞+iε
f(t)dt = 0 , (6.6.52)

for ε→ 0± we get the two equations:

e−iπ(B+1)Ĵ1(z) + e
iπ(D−1)Î2(z) + e

iπ(C−B−1)Ĵ2(z) + Î1(z) = 0 , (6.6.53)

e+iπ(B+1)Ĵ1(z) + e
iπ(1−D)Î2(z) + e

iπ(1−C+B)Ĵ2(z) + Î1(z) = 0 , (6.6.54)

where Îk = NkIk(z) and Ĵk = MkJk(z) are the unnormalised integrals. We obtain the
relations

Î1(z) =
1

sinπD
[sinπ(C −A) Ĵ1(z) − sinπA Ĵ2(z)] , (6.6.55)

Î2(z) =
1

sinπD
[sinπB Ĵ1(z) − sinπ(C −B) Ĵ2(z)] . (6.6.56)

From the identity Γ(x)Γ(1 − x) = π/ sinπx, we get the change of basis:

[
I1(z)
I2(z)

] =

⎡
⎢
⎢
⎢
⎢
⎣

Γ(C)Γ(D)
Γ(C−A)Γ(C−B)

Γ(C)Γ(−D)
Γ(A)Γ(B)

Γ(2+C)Γ(D)
Γ(1−A)Γ(1−B)

Γ(2−C)Γ(−D)
Γ(1−C+A)Γ(1−C+B)

⎤
⎥
⎥
⎥
⎥
⎦

⋅ [
J1(z)
J2(z)

] . (6.6.57)

We have just proven these relations for z ∈]0,1[, but by analytic continuation, they extend
to z ∈ C/(] −∞,0] ∪ [1,+∞[).
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Lecture 7

CFT on the torus and the modular
bootstrap

7.1 Complex tori

So far we have mostly focused on conformal field theories on the Riemann sphere. It’s
time to consider the torus. From a statistical physics point of view, this is quite a natural
thing to do. Indeed as soon as one works with periodic boundary condition we are in
fact working on the torus, see Fig. 7.1. Likewise in condensed matter physics, the torus
appears naturally upon considering a periodic one-dimensional quantum system at finite
temperature. At a more abstract level, having a consistent formulation of conformal field

Figure 7.1: The square grid with periodic boundary condition is a torus

theories on higher genus surfaces, and in particular on the torus, yields deep insights into
their structure.

7.1.1 Topological classification of closed surfaces

A closed1 surface refers to a two-dimensional manifold that is compact and without bound-
ary. As is probably well known to many readers, the topology of a connected closed surface
is fully determined by two topological invariants : its genus g (or equivalently its Euler
characteristic χ), and whether it is orientable or not. Given a closed surface, how can
one figure out its genus g ? A very concrete and elementary way is to compute its Euler
characteristic χ. Given a triangulation of the surface, χ is defined as

χ = V −E + F (7.1.1)

where V,E and F are the total number of vertices, edges and faces of the triangulation,
respectively. It is a fact that χ does not depend on the triangulation, and is indeed a

1not to be confused with closed in the sense of topology.
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topological invariant of the surface. The Euler characteristic is related to the genus as
follows

• if the surface is orientable, χ = 2 − 2g

• if the surface is unorientable, χ = 2 − g

For an informal discussion about the topological classification of closed surfaces including
a sketch of proof, the reader is invited to read chapter 2 of Donaldson’s Riemann Surfaces.
This classification also holds for smooth surfaces : any two smooth manifolds with the
same genus and that are both orientable (or both non-orientable) are equivalent, in the
sense that there exists a diffeomorphism between them. This is because two-dimensional
smooth manifolds are diffeomorphic if and only if they are homeomorphic (this is non
trivial, and not valid in higher dimensions). From now on we will restrict our attention
to oriented surfaces, for which the first few topological classes are depicted in fig. (7.2).

Figure 7.2: Oriented closed surfaces of genus g = 0,1,2 and 3.

While the topological classification of surfaces is all well and good, in order to put a
CFT on a surface one needs to endow the surface with a Riemannian metric. As soon as
extra structure is added (beyond the smoothness structure), such as a Riemannian metric
or a conformal structure, the topological classification is clearly no longer sufficient. As
depicted in fig. (7.3), a two-dimensional sphere can have many different shapes ! Given

Figure 7.3: Two surfaces with the topology (and smooth structure) of the sphere S2.
They are clearly not isometric : one displays constant curvature while the other does not.
They are however conformally equivalent since the moduli space of the sphere is trivial.

the simple manner in which CFT correlation functions behave under Weyl rescaling, what
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we really care about is the complex structure induced by the metric2. Thus within the
framework of CFT one is concerned about the classification of (oriented) surfaces endowed
with a complex structure, that is the classification of Riemann surfaces. The moduli space
describes the various inequivalent complex structures (compatible with the given orienta-
tion) one can put on a surface of fixed genus. In the case of a genus 0 (topological sphere),
the moduli space turns out to be trivial : all metrics are in the same conformal class (up
to diffeomorphism). To say things differently, given two spheres with arbitrary metric g1

and g2, there always exist a conformal map between them. For surfaces of higher genus
this is no longer the case. We will describe in detail the moduli space of the torus (genus
g = 1) below. Let us simply mention that for genus g ≥ 2 the moduli space is parametrized
by 3g − 3 complex parameters.

7.1.2 Curvature, genus and the uniformization theorem

One could wonder whether there is a notion of a canonical metric in a given conformal
class. The existence of isothermal coordinates tells us that every metric is locally con-
formally flat : for each point x there exists a metric (in the same conformal class) which
is flat in some neighborhood of x (i.e. there exist coordinates such that gµν = δµν). If
we forget about the complex structure, this is rather intuitive. Imagine that the surface
is made from dough. Then we can flatten it from the sides pushing all curvature away
from x. While it is less clear that this can be done while preserving angles, it turns out
to be true. However the Gauss-Bonnet theorem provides an obstruction to removing all
the curvature and having a globally flat metric. Indeed the total curvature is related to
the genus through

∫
M
RdV = 8π(1 − g) . (7.1.2)

So unless g = 1, it is not possible to make the metric globally flat. The next best thing is
constant curvature, and this is the essence of the uniformization theorem : every smooth
Riemannian metric on a two-dimensional surface is conformal to one with constant cur-
vature. Whether this curvature is positive, null, or negative depends on the genus, as
dictated by the Gauss-Bonnet theorem. In practice this means that the sphere (g = 0) ad-
mits a metric with constant positive curvature. This is the usual round metric as inherited
from the canonical embedding in R3. The torus (g = 1) can be endowed with a flat metric
(zero curvature), while for higher genus there exist a metric of constant negative curvature.

Two oriented Riemannian surfaces (M1, g1) and (M2, g2) are conformally equiva-
lent (i.e. related through a Weyl rescaling) if and only if they have the same genus and
same moduli. Any Riemannian surface (M,g) is conformally equivalent to a surface
of constant curvature.

2Recall that two Riemannian metrics are called conformally equivalent when they differ by a Weyl
transformation, i.e. when they define the same angles. An equivalence class of such metrics is called
a conformal structure or conformal class. Furthermore if the surface is oriented a conformal structure
induces a unique complex structure (and vice-versa) via isothermal coordinates.
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7.1.3 Complex tori and moduli space

Topologically a (two-dimensional) torus T is simply the cartesian product of two circles
S1 × S1, thus we may write

T ≃ R2/Z2 (7.1.3)

where ≃ stands for diffeomorphic. This means that as a smooth surface, the torus is equiva-
lent to the plane quotiented by the group Z2 of translations generated by (x, y)→ (x+1, y)
and (x, y) → (x, y + 1). This is nothing but a square with opposite side identified (a.k.a.
periodic boundary conditions). If we consider instead a torus endowed with a complex
structure (or equivalently a conformal class of Riemannian metrics), we are now looking
at a complex torus, that is a genus 1 Riemann surface. The moduli space of the torus is
not trivial, which amounts to saying that two complex tori are in general not conformally
equivalent3. This is strikingly different from the sphere !

A convenient and simple way to describe a complex torus is as a quotient of the plane
by a lattice. Given two complex numbers ω1 and ω2 such that ω1/ω2 is not real, the lattice
Λ generated by ω1 and ω2 is the subset

Λ = ω1Z⊕ ω2Z (7.1.4)

as depicted in fig. (7.4). The complex numbers ω1 and ω2 are called periods of the lattice.
Given a lattice Λ, the quotient space C/Λ defines a complex torus. Concretely this means

ω1

ω2

Figure 7.4: The lattice Λ = ω1Z⊕ ω2Z generated by ω1 and ω2.

identifying z ≡ z + ω1 ≡ z + ω2. As a Riemannian surface the torus inherits the flat metric
g = dx⊗dx+dy⊗dy of Euclidean space R2. As a Riemann surface, the complex structure
(or conformal class) of C induces a complex structure on T (the only one compatible with
the above flat metric), and this complex structure depends on the lattice Λ.

3Recall that two Riemann surfaces are said to be (conformally) equivalent if there exist a biholomorphic
isomorphism between them, i.e. a holomorphic map which is one-one and onto, and whose inverse is also
holomorphic.
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It is a standard result of the theory of Riemann surfaces that the above construction
exhausts all possible complex tori, in the sense that any complex torus is conformally
equivalent to such a quotient (the reader is invited to read Donaldson chapter 6). But
not all lattices yield inequivalent complex tori :

Fact4 : two complex tori C/Λ and C/Λ′ are conformally equivalent if and only if the two
lattices Λ and Λ′ differ by a rotation/dilation, i.e. Λ′ = αΛ for some α ∈ C∗.

In particular the lattice ω1Z⊕ ω2Z is equivalent to

Λ = Z + τZ, τ =
ω2

ω1

(7.1.5)

Note that we can assume without loss of generality that Im(τ) > 0 (if it is negative, one
can simply interchange ω1 and ω2, or change ω1 → −ω1). We will denote by H the upper
half-plane

H = {τ ∈ C, Im τ > 0} . (7.1.6)

Furthermore given a lattice Λ, the choice of periods is not unique. Two bases (ω1, ω2) and
(ω′1, ω

′
2) generate the same lattice if an only if they are related by a unimodular matrix

A, i.e. a matrix with integer coefficients and determinant ±1. Namely

(
ω′2
ω′1

) = (
a b
c d

)(
ω2

ω1
) , a, b, c, d ∈ Z, ad − bc = ±1 (7.1.7)

In terms of the parameter τ , this means

τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ Z, ad − bc = 1 (7.1.8)

Note that ad − bc = −1 is no longer allowed once we restrict τ ∈ H. Indeed

Im(
aτ + b

cτ + d
) =

(ad − bc)

∣cτ + d∣2
Im(τ) (7.1.9)

We have reached a full description of the moduli space of the torus as

H/SL(2,Z) , (7.1.10)

namely the quotient of the upper half-plane τ = τ1+iτ2 ∈ H by the group SL(2,Z) acting as
in eq. (7.1.8). The standard choice for the fundamental domain F is depicted in Fig. 7.5.
In fact staring at (7.1.8) reveals that SL(2,Z) does not have a faithful (or effective) action,
in the sense that the matrices A and −A have identical actions. Thus one introduces the
modular group (a.k.a. the projective special linear group) PSL(2,Z) = SL(2,Z)/Z2 of
matrices with integer coefficients and unit determinant, in which the matrices A and −A
are identified.

4The proof is rather elementary given a little knowledge about covering spaces and lifting of maps (for
which an excellent reference is A. Hatcher, Algebraic topology chapter 1) and rests on the two following
facts

(i) any bi-holomorphic map between C/Λ and C/Λ′ lifts into a conformal automorphism of C

(ii) conformal automorphisms of C are of the form z → αz + β
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Figure 7.5: Fundamental domain F of the torus moduli space.

Complex tori are realized as quotient spaces

Tτ = C/(Z + τZ) (7.1.11)

where τ is in the upper half-plane. Furthermore Tτ and Tτ ′ are conformally equivalent
if and only τ and τ ′ are related by the modular group PSL(2,Z), namely if there exists
a, b, c, d integers with ad − bc = 1 such that

τ ′ =
aτ + b

cτ + d
(7.1.12)

In the following we will need the following fact about the modular group: it is generated
by the so-called modular T - and S-transformations :

T ∶ τ ↦ τ + 1 , S ∶ τ ↦ −1/τ . (7.1.13)

The proof of this statement is left as the following exercice.

Exercice : Let S,T and U be the following matrices

S = (
0 1
−1 0

) , T = (
1 1
0 1

) , U = (
1 0
1 1

) . (7.1.14)

Check that U = TST . Show that for two coprime integers a, c, Euclid’s algorithm yields
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a sequence of integers n1,⋯, n2p such that

T n1Un2T n3⋯Un2p (
a
c

) = (
1
0

) or (
0
1

) (7.1.15)

Since U = TST and S (
0
1

) = (
1
0

), the above implies that there exists m1,⋯,mk such

that

Tm1STm2⋯STmk (
a
c

) = (
1
0

) (7.1.16)

Deduce that S and T indeed generate SL(2,Z).

7.2 Torus partition function and modular invariance

Geometrically the complex torus Tτ is a parallelogram spanned by 1 and τ = τ1 + iτ2

with its opposite sides identified. Identifying the red pair of sides in Fig. 7.6 amounts to
identifying z and z + 1. This rolls the parallelogram into a cylinder of height τ2.

Figure 7.6: The cylinder obtained from the unit cell after the identification of the red
edges.

We now need to close up our torus, by identifying z and z + τ . Since we are on a
cylinder, this is conveniently done in Hamiltonian formalism as follows. Decomposing
z = x + it we interpret x as the space coordinate (on a circle) and t as the (imaginary)
time. If τ was pure imaginary, say τ = iτ2, the partition function would coincide exactly
with that of a one-dimensional quantum system at inverse temperature β = τ2, namely

Z(iτ2) = Tr (e−τ2H) ,

where H is the Hamiltonian of the 1d quantum system on a circle of unit length. However
the real part τ1 of τ requires an additional translation of space on top of the Euclidean
time evolution before sewing up (i.e. before taking the trace), therefore

Z(τ) = Tr (e−τ2He−iτ1P ) .

The cylinder Hamiltonian H and total momentum P can be obtained easily via con-
formal mapping to the plane through w = e−i2πz, as in Fig. 7.7, where we can use the
formalism of radial quantization. Recall that P and H are characterized (in Euclidean
time) by

∂tO = [H,O], −i∂xO = [P,O]
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Figure 7.7: The flat torus is conformally equivalent to an annulus with edges identified.

where the slightly unusual form of the time translation stems from the fact that we are
working in imaginary time, i.e. in Euclidean signature. Comparing with the Ward identity
(3.2.25) we get

P = −
i

2π ∫
1

0
T21(x,0)dx, H =

1

2π ∫
1

0
T22(x,0)dx , (7.2.1)

While the above relations holds for any QFT, for conformal field theories we can go further.
First since T is traceless (in flat space), we have T21 = i(T − T ) and T22 = −(T + T ) (see
Table 3.1). Furthermore Tcyl(z) = −(2π)2 (w2Tplane(w) − c/24), yielding

1

2π ∫
1

0
Tdx = i∮

⤿
(wT (w) −

c

24

1

w
)dw = −2π (L0 −

c

24
) , (7.2.2)

leading to5

P = 2π(L̄0 −L0) , H = 2π (L0 + L̄0 −
c

12
) . (7.2.3)

Looking back at the annulus in Fig. 7.7, this is not surprising: P implements (clock-wise)
rotations, while H is the generator of dilations. The only non-trivial part is the shift of
energy proportional to − c

12 , which comes from the Weyl transformation when going from
the cylinder to the annulus.

We end up with the following expression for the partition function

Z(τ) = Tr (qL0− c
24 q̄L̄0− c

24 ) , q = e2πiτ , (7.2.4)

in which the trace is taken over the whole Hilbert space of the CFT. To be more precise,
this is the space of states for the system with periodic boundary conditions (i.e. a circle),
that is to say the Hilbert space relevant for radial quantization (as opposed, for instance,
to the Hilbert space of a system with open boundary conditions, which is relevant for
boundary CFT).

7.2.1 Modular invariance

We have just obtained an expression of the partition function on the torus Tτ that depends
explicitly on the modulus τ . However we have seen that acting on τ with the modular

5Note the sign of the total momentum, which is the opposite of the one obtained in Chapter 4. This
is correct, and is due to the choice of orientation for the space coordinate x.
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group PSL(2,Z) yields the same torus. Thus the partition function must be modular
invariant :

Z(τ) = Z (
aτ + b

cτ + d
) , for all (

a b
c d

) ∈ SL(2,Z) . (7.2.5)

From the above discussion about the modular group, modular invariance boils down to
invariance under the modular T - and S-transformations :

Z(τ) = Z(τ + 1) , and Z(τ) = Z(−1/τ) . (7.2.6)

Let us illustrate modular invariance with two examples: the (non-compact, free mass-
less) scalar field and the Ising model.

Scalar field

The free scalar field provides an interesting first example. The torus partition function
can be evaluated using the path-integral approach, i.e. by computing the zeta-regularized
determinant of the Laplacian on the torus. This calculation can be found for instance in
Lectures on Conformal Field Theory by Krzysztof Gawedzki (problem 4, page 10) or in
Conformal Field Theory by Di Francesco et al., section 10.2. Here we will not follow this
path-integral approach, but rather the Hamiltonian formalism as in (7.2.4).

To do so, all we need to know is the spectrum of (L0, L̄0). Recall that the Hilbert
space is spanned by the states

∣{n},{n}, α⟩ = a−n1⋯a−npa−n̄1⋯a−n̄p̄ ∣α⟩ (7.2.7)

where ni, n̄i > 0, and the state ∣α⟩ is characterized by

a0∣α⟩ = α∣α⟩, an∣α⟩ = an∣α⟩ = 0 for n > 0 , (7.2.8)

where α can be any real number. The state ∣{n},{n}, α⟩ has conformal dimensions

h =
α2

2
+

p

∑
j=1

nj , h̄ =
α2

2
+

p̄

∑
j=1

n̄j . (7.2.9)

Thus

Z(τ) = Tr (qL0− c
24 q̄L̄0− c

24 ) = ∫
R
dα ∑

{n,n̄}
qα

2+∑j nj q̄α
2+∑j n̄j (7.2.10)

= ∫
R
dα (qq̄)

α2

2

∞
∏
n=1

(
∞
∑
k=0

qkn)
∞
∏
n̄=1

(
∞
∑
k=0

q̄kn̄) = ∫
R
dαe−2πα2τ2

∞
∏
n=1

1

1 − qn
1

1 − q̄n
(7.2.11)

As long as Im(τ) > 0 this means

Z(τ) =
1

√
2Im(τ) ∣η(τ)∣

2
, (7.2.12)
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where η(τ) is the Dedekind eta function defined (for Im(τ) > 0) by

η(τ) = e
πiτ
12

∞
∏
n=1

(1 − e2nπiτ) = q
1
24

∞
∏
n=1

(1 − qn) . (7.2.13)

It is not completely trivial that the above partition function is indeed modular invariant.
While it is straightforward to check that Z(τ + 1) = Z(τ), checking that Z(−1/τ) = Z(τ)
is less trivial. It is however a consequence of the identity

η(−1/τ) =
√
−iτ η(τ) , (7.2.14)

where we choose the principal branch of the square-root.

The Ising model

The critical Ising model in two dimensions exhibits a central charge c = 1
2 , and is described

by the minimal model M3,4, as explained in section 5.3.3. We have already encountered
the following operators :

• the identity operator Φ1,1 = 1 with (h, h̄) = (0,0),

• the energy operator Φ2,1 = ε with (h, h̄) = (1/2,1/2),

• the spin operator Φ2,2 = σ with (h, h̄) = (1/16,1/16).

Let us assume that there are no further local primary fields6. Thus the Hilbert space
is spanned by the three above primary states together with their descendants,

H = (K1,1 ⊗K1,1)⊕ (K2,1 ⊗K2,1)⊕ (K2,2 ⊗K2,2) , (7.2.15)

where Kr,s stands for the Kac module (i.e. the Verma module quotiented by the null-
vectors), with highest weight hr,s, as described in Lecture 5. The expression of the parti-
tion function follows

Z(τ, τ̄) = χ1,1(q)χ1,1(q̄) + χ2,1(q)χ2,1(q̄) + χ2,2(q)χ2,2(q̄) (7.2.16)

in terms of the characters χr,s(q)

χr,s(q) ∶= TrKr,s(q
L0−c/24) (7.2.17)

In order to derive the above partition function, we have made a strong conjecture
about the operator content of the Ising CFT. Modular invariance provides a highly non
trivial consistency check. It turns out that the three characters χ1 = χ1,1, χ2 = χ2,1 and
χ3 = χ2,2 transform linearly under the modular group:

χi(τ + 1) =
3

∑
j=1

Tijχj(τ) , χi(−1/τ) =
3

∑
j=1

Sijχj(τ) ,

6We already know that there are other primary fields : the disorder operator µ, the chiral fermions
Ψ and Ψ, but these are not strictly local. In terms of Hilbert space, they correspond to anti-periodic
boundary conditions, as will be established in the next exercise.
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where the so-called modular T and S matrix are

T = e−i
π
24

⎛
⎜
⎝

1 0 0
0 eiπ 0

0 0 e
iπ
8

⎞
⎟
⎠
, S =

1

2

⎛
⎜
⎝

1 1
√

2

1 1 −
√

2
√

2 −
√

2 0

⎞
⎟
⎠
. (7.2.18)

Invariance of the partition function (7.2.16) under τ → τ +1 holds trivially. Checking that
the partition function (7.2.16) is indeed invariant τ → −1/τ is a straightforward exercise
left to the reader. Since these two transformations generate the whole modular group, it
follows that (7.2.16) is indeed modular invariant.

In fact a much stronger argument can be given in favor of our tentative partition
function (7.2.16). Not only is (7.2.16) modular invariant, it is in fact the only modular
invariant partition function that one can build out of the the chiral primary fields φ1,1, φ2,1

and φ2,2 ! Indeed the most generic partition function is of the form

Z(τ, τ̄) =∑
i,j

Ni,jχi(q)χj(q̄), (7.2.19)

where Ni,j are non negative integers and N1,1 = 1. Modular invariance boils down to

S†NS = N, T †NT = N (7.2.20)

In the Ising model all the conformal dimensions being distinct modulo 1, the constraint
T †NT = N is tantamount to N being diagonal. Solving S†NS = N yields N ∝ I. Finally
N0,0 = 1 yields N = I as the unique solution. Thus the only modular invariant partition
function that one can build is indeed (7.2.16).

Exercise : So far we considered the Ising model on the torus with periodic boundary
conditions. However we can play around with the Z2 symmetry to twist the boundary
conditions, and these twisted partition functions will involve the quasi-local fields µ, Ψ
and Ψ̄. Let Zn1,n2(τ) denote the torus partition function with the following boundary
conditions

σ(z + 1) = (−1)n1σ(z), σ(z + τ) = (−1)n2σ(z) (7.2.21)

The numbers of Z2 defects n1 and n2 are naturally defined modulo 2.

▸ Under a modular transformation τ → aτ+b
cτ+d argue that (

n2

n1
) → (

a b
c d

)(
n2

n1
), in

the sense that

Zn1,n2 (
aτ + b

cτ + d
) = Zcn2+dn1,an2+bn1(τ) (7.2.22)

In particular

Zn1,n2(τ + 1) = Zn1,n2+n1(τ), Zn1,n2(−1/τ) = Zn2,n1(τ) (7.2.23)

▸ Show that each partition function Zn1,n2 is invariant under the congruence subgroup
Γ(2) defined as

Γ(2) = {(
a b
c d

) ∈ SL(2,Z), with a, d odd and b, c even } (7.2.24)
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It is a fact that Γ(2) is generated by T 2 and ST 2S. Argue that the most generic Γ(2)
invariant partition function is a linear combination of

∣χ1,1∣
2
+ ∣χ2,1∣

2
, ∣χ2,2∣

2
and χ1,1χ2,1 + χ2,1χ1,1 (7.2.25)

▸ The twisted partition functions can equivalently be interpreted as partition functions
with periodic boundary conditions, but with a closed (non-contractible) line of disorder
operator wrapping around the torus. Argue that Z10, Z01 and Z11 correspond respectively
to the three following situations, in which the red line represents the disorder line :

▸ The partition function Z0,1(τ) is

Z0,1(τ) = TrH (ΘqL0− c
24 q̄L̄0− c

24 ) (7.2.26)

where H is the Hilbert space (7.2.15) corresponding to periodic boundary condition, and
Θ is an operator that implements the Z2 twist. Argue that Θ is characterized by

Θ∣0⟩ = ∣0⟩, Θ∣ε⟩ = ∣ε⟩, Θ∣σ⟩ = −∣σ⟩, and [Θ, Ln] = 0 (7.2.27)

Deduce that

Z0,1(τ) = ∣χ1,1∣
2
+ ∣χ2,1∣

2
− ∣χ2,2∣

2
(7.2.28)

▸ Deduce Z0,1 and Z1,1

Z1,0(τ) = Z0,1(−1/τ) = χ1,1χ2,1 + χ2,1χ1,1 + ∣χ2,2∣
2

(7.2.29)

Z1,0(τ + 1) = Z1,1(τ) = −χ1,1χ2,1 − χ2,1χ1,1 + ∣χ2,2∣
2

(7.2.30)

The partition function Z1,0 and Z1,1 can be written as

Z1,0(τ) = TrH′ (qL0− c
24 q̄L̄0− c

24 ) , Z1,1(τ) = TrH′ (ΘqL0− c
24 q̄L̄0− c

24 ) (7.2.31)

where H′ is the Hilbert space of the Ising model with anti-periodic boundary conditions.
The above expressions imply that

H′ = (V1,1 ⊗ V2,1)⊕ (V2,1 ⊗ V1,1)⊕ (V2,2 ⊗ V2,2) (7.2.32)

Thus the primary fields in the anti-periodic sector are Ψ̄, Ψ and µ. Under the Z2 symmetry
Θ, the fermions Ψ and Ψ̄ are odd, while µ is even.

Θ∣Ψ⟩ = −∣Ψ⟩, Θ∣Ψ̄⟩ = −∣Ψ̄⟩, Θ∣µ⟩ = ∣µ⟩ . (7.2.33)

This is consistent with the lattice construction of Ψ and Ψ̄ as products of a σ and a µ, or
equivalently with the fusion rule

σ × µ = Ψ + Ψ̄ (7.2.34)
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7.2.2 Rational CFTs

The infinite-dimensional symmetry algebra of local conformal transformations7 is isomor-
phic to two copies of the Virasoro algebra. Thus the Hilbert space can be decomposed
into irreducible representations of Vir⊗Vir. Typically

⊕
i,j

Ni,jVi ⊗ Vj (7.2.35)

where Ni,j is the multiplicity of the occurence of the representation Vi⊗Vj. In some cases,
such as the free scalar field, the discrete sum is replaced by an integral. Broadly speaking
there are two types of CFTs :

(i) theories with a discrete spectrum

(ii) theories with a continuous spectrum

where it should be understood that we are talking about the spectrum of (L0 + L̄0), or
equivalently the energy spectrum on a circle, and not the energy spectrum on the real
line (indeed, the latter is always continuous for a critical system as there is no energy
gap). From now on we will restrict our attention to CFTs with a discrete spectrum, or
equivalently a discrete set of primary fields. In this case the decomposition (7.2.35) is
valid, and it follows that the partition function can be written as

Z(τ, τ̄) =∑
i,j

Ni,jχi(q)χj(q̄) (7.2.36)

where χi(q) are the Virasoro characters

χi(q) = TrVi (q
L0− c

24 ) (7.2.37)

as introduced in previous lectures. Note that Ni,j are non-negative integers, and that the
vacuum being non degenerate we must have N0,0 = 1 (in a unitary CFT the vacuum is the
only state with a vanishing conformal dimension, therefore V0⊗V0 can only appear once).

We will further restrict our attention to rational CFTs, that is CFTs with finitely
many chiral primary fields {φi, i ∈ I} labeled by some finite set I (e.g. the entries of the
Kac table in the case of minimal models). In this case the r.h.s. of (7.2.36) is a finite sum.
Very much like the conformal blocks on the sphere transform linearly under monodromy
operations, the characters of a rational CFT form a finite-dimensional representation of
the modular group :

χi(τ + 1) =∑
j∈I
Tij χj(τ), χi(−1/τ) =∑

j∈I
Sij χj(τ) . (7.2.38)

Modular invariance of the partition function (7.2.36) is tantamount to

S†NS = N , T †NT = N . (7.2.39)

7strictly speaking we are dealing with the complexification of this algebra (recall the discussion at the
end of section 2.2.2) with a central extension (the central charge).
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The modular bootstrap amounts to finding all matrices Ni,j with non-negative integer
coefficients, subject to N1,1 = 1, and satisfying the above constraints.

Modular invariance of the partition function is analogous to crossing symmetry of
four-point functions on the sphere : it provides a constraint on how to piece together
the holomorphic and anti-holomorphic parts of the CFT. One can think of the charac-
ters χi(q) as conformal blocks on the torus (notice that they are holomorphic in τ), and
the modular group on the torus is the analog of the braid group on the four-punctured
sphere. In fact these are two examples of a more general problem, that of computing
n-point correlation functions on a genus g surface. The braid group and modular group
are particular instances of mapping class groups (see Conformal field theory and mapping
class groups by T. Gannon).

7.3 Minimal models and ADE classification

Minimal models are a prime example of rational CFTs, where the modular bootstrap pro-
gram described above can be applied. This leads to the complete classification of modular
invariant partition functions. This classification, known as the ADE classification, was
obtained in 1987 by Cappelli, Itzykson and Zuber. The proof of this classification goes in
two steps:

• find all invariants without demanding Ni,j integer,

• impose Ni,j to be non negative integers.

The details are very technical and go well beyond the scope of this lecture. We will not
go further into the ADE classification, and invite the reader to look at section 3.2. in
A-D-E Classification of Conformal Field Theories for the classification itself. We will
simply illustrate the modular bootstrap with some examples. We have already solved the
problem for M3,4, for which there is only one modular invariant. This corresponds to
the universality class of the Ising model. We will also discuss the minimal model M5,6.
We will find that there are two modular invariants, one of which being relevant for the
three-state Potts model.

Recall that minimal models Mp,p′ are labelled by two coprime integers p, p′, with
2 ≤ p < p′, with central charge

c(p, p′) = 1 −
6(p − p′)2

pp′
. (7.3.1)

For a given minimal modelMp,p′ , the allowed representations of the Virasoro algebra are
labelled by a two integers (r, s), with conformal dimension

hr,s =
(p′r − ps)2 − (p − p′)2

4pp′
(7.3.2)

The operator algebra of this model closes on a finite number of primary operators, which
are all degenerate, and correspond to

{
1 ≤ r ≤ p − 1
1 ≤ s ≤ p′ − 1

(7.3.3)
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Figure 7.8: Fundamental domain ps < p′r of the Kac Table for the minimal model M5,7.

and are subject to the identification (r, s) = (p − r, p′ − s). Thus we can restrict (r, s) to
be in the range I

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ≤ r ≤ p − 1
1 ≤ s ≤ p′ − 1
ps < p′r

(7.3.4)

as in figure (7.8), for a total of (p−1)(p′−1)
2 chiral primary fields.

The corresponding characters are

χr,s(τ) =
1

η(τ)
(∑
n∈Z

q(p
′r−ps+2npp′)2/4pp′ −∑

n∈Z
q(p

′r+ps+2npp′)2/4pp′) . (7.3.5)

Note that the characters are linearly independent8functions of τ . Thus the T and S
matrices are unequivocally defined through (7.2.38).

Modular T matrix for minimal models

The T matrix is particularly simple as it is diagonal, namely

Tij = δije
2iπ(hi− c

24
)

This is straightforward since χi is of the form

χi(τ) = e
2iπτ(hi− c

24
)
∞
∑
n=0

Ni(n)e
2iπnτ

8By construction all conformal dimensions hr,s are distincts. Indeed hr1,s1 = hr2,s2 iff p′r1 − ps1 =
±(p′r2 − ps2), which we can rewrite as p′(r1 ∓ r2) = p(s1 ∓ s2). Thus r1 ∓ r2 = 0 mod p and s1 ∓ s2 = 0
mod p′. In the range (7.3.3) the only solutions are (r1, s1) = (r2, s2) and (r1, s1) = (p − r2, p′ − s2). More
generally for a given central charge, two irreducible representations of the Virasoro algebra with the same
conformal dimension are necessarily isomorphic, that is they are in fact the same representation.
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although care has to be taken into defining the phase e2iπ(hi− c
24

). What we really mean by
the modular T -transformation τ → τ + 1 is the transformation of the characters χi under
analytic continuation as we follow a path from τ to τ + 1 in the fundamental domain of
the moduli space. Thus invariance of the partition function

Z(τ) =∑
i,j

Ni,jχi(q)χj(q̄) (7.3.6)

under τ → τ + 1 is achieved as soon as Ni,j = 0 when hi ≠ hj mod 1. This means that all9

primary fields must have integer spin.

Modular S matrix for minimal models

Invariance under τ → −1/τ is far less trivial. For a generic minimal model Mp,p′ the S
matrix is known (see Appendix 7.4.3 for a derivation), and is given by

S(r1,s1),(r2,s2) = 2

√
2

pp′
(−1)1+s1r2+s2r1 sinπ

p′r1r2

p
sinπ

ps1s2

p′
. (7.3.7)

Note that S = S†, thus for any minimal model the following partition function

Z(τ) = ∑
i,j∈I

∣χi(q)∣
2

(7.3.8)

is modular invariant. For obvious reasons, this is called the diagonal modular invariant
of the minimal model Mp,p′ . In such a diagonal theory, the physical primary fields are
labelled by the Kac table (in principle the Kac table labels chiral primary fields, not
physical ones). Thus there are exactly (p − 1)(p′ − 1)/2 physical primary fields, and they
are all scalar. This is what happens for instance for the Ising model. But we will see with
the three-state Potts model that (7.3.8) may not be the only possible modular invariant
partition function.

The minimal model M5,6 and the three-state Potts model

The three-state Potts model has Boltzmann weight

exp
⎛

⎝
−
J

3
∑
⟨i,j⟩

(1 + σiσj + σiσj)
⎞

⎠
= exp

⎛

⎝
−J ∑

⟨i,j⟩
δσi,σj

⎞

⎠
(7.3.9)

where the lattice spins σi take values in {1, e
2iπ
3 , e−

2iπ
3 }. The Boltzmann weight is invariant

under global Z3 rotations

σi → e
2iπ
3 σi (7.3.10)

and reflection

σi → σi . (7.3.11)

9at least the local ones, that is those appearing in the partition function. For instance we have seen
that the Ising model contains primary fields (Ψ and Ψ̄) with spin ±1/2, but those are not strictly local
and do not appear in the Ising partition function.
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Together these transformations generate the dihedral group D3 (which is isomorphic to
the group of permutations S3).

The lattice three-state Potts model is exactly solvable, and the critical exponents and
central charge are known. In particular the central charge is c = 4/5. This corresponds
to the minimal modelM5,6, whose Kac table contains 10 chiral primary fields (or equiva-
lently 10 degenerate representations of the Virasoro algebra), with conformal dimensions
listed in Fig.(7.9).

0 2
5

7
5

3

13
8

1
40

21
40

1
15

2
3

1
8

r

s

Figure 7.9: Kac Table for the minimal model M5,6.

Let us solve the modular bootstrap for this model, i.e. classify all possible modular
invariant partition functions one can build with these representations. An important dif-
ference with the minimal modelM3,4 is that some of the conformal dimensions appearing
in the Kac table differ by an integer, namely

h4,1 = h1,1 + 3 , h3,1 = h2,1 + 1 . (7.3.12)

Thus T -invariance does not preclude the appearance of the following non-diagonal sectors

V1,1 ⊗ V4,1, V4,1 ⊗ V1,1, V2,1 ⊗ V3,1, V3,1 ⊗ V2,1 (7.3.13)

in the Hilbert space. Further demanding S-invariance10, thus achieving full modular
invariance, we are left with two two linearly independent solutions. This means that
there are two distinct universality classes with a central charge c = 4

5 . Of course one
of them is the diagonal modular invariant (7.3.8), in which the above-mentioned non

10Already in this simple case this requires a little bit for work (or a computer). To better appreciate the
tour de force achieved by the ADE classification, and the computational difficulty of solving the modular

126



diagonal sectors are forbidden. But these sectors do appear in the the other modular
invariant, namely :

Z = ∣χ1,1 + χ4,1∣
2
+ ∣χ2,1 + χ3,1∣

2
+ 2∣χ4,3∣

2 + 2∣χ3,3∣
2 (7.3.14)

Equivalently a CFT with such a modular invariant has the following Hilbert space (on
the circle)

H = (V1,1 ⊕ V4,1)⊗ (V 1,1 ⊕ V 4,1)⊕ (V2,1 ⊕ V3,1)⊗ (V 2,1 ⊕ V 3,1)

⊕ 2V4,3 ⊗ V 4,3 ⊕ 2V3,3 ⊗ V 3,3 (7.3.15)

Let’s conclude this chapter with some notable features about this modular invariant.

• Some chiral fields are forbidden. Not all possible chiral fields φr,s are involved
in (7.3.14), only those with s odd. Note that this is consistent with fusion rules, in
the sense that this subset is stable under fusion. Thus there are no (local) physical
operators with conformal dimension (left or right) in the set {1/40,21/40,1/8,13/8}.

• Multiplicities and D3 symmetry. Some operators appear with multiplicities.
These degeneracies are related to the D3 symmetry of the three-state Potts model.
For instance there are two primary fields with conformal dimensions (1/15,1/15).
They correspond to two spin fields σ1 and σ2 which are respectively the scaling limit
of the lattice spin operators σ and σ2 = σ. These two fields are distinguished by
their behavior under Z3 rotations

σ1 → e
2iπ
3 σ1, σ2 → e−

2iπ
3 σ2 (7.3.16)

Furthermore Z3 symmetry requires them to be dual to each other, in the sense that

⟨σ1(r1)σ2(r2)⟩ =
1

∣r1 − r2∣
4
15

, ⟨σ1(r1)σ1(r2)⟩ = ⟨σ2(r1)σ2(r2)⟩ = 0 . (7.3.17)

• Non-scalar primary fields and W -algebra. The modular invariant (7.3.14)
involves sectors for which the highest weight state has h ≠ h̄. In particular the
field W = φ4,1 ⊗ φ̄1,1 has spin 3, and it is holomorphic (since h̄ = 0, ∂̄W = L−1W is
a null-vector and thus decouples from the theory). Such a chiral field signals the

bootsrap, here is the S-matrix for M5,6 :

S = 1√
5!

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b
√

3b b
√

3b 2b a
√

3a 2a
√

3a

b −a
√

3a −a
√

3a −2a b −
√

3b 2b −
√

3b√
3b

√
3a

√
3a −

√
3a −

√
3a 0 −

√
3b −

√
3b 0

√
3b

b −a −
√

3a −a −
√

3a −2a b
√

3b 2b
√

3b√
3b

√
3 −

√
3a −

√
3a

√
3a 0 −

√
3b

√
3b 0 −

√
3b

2b −2a 0 −2a 0 2a 2b 0 −2b 0

a b −
√

3b b −
√

3b 2b a −
√

3a 2a −
√

3a√
3a −

√
3b −

√
3b

√
3b

√
3b 0 −

√
3a −

√
3a 0

√
3a

2a 2b 0 2b 0 −2b 2a 0 −2a 0√
3a −

√
3b

√
3b

√
3b −

√
3b 0 −

√
3a

√
3a 0 −

√
3a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where a =
√

5 −
√

5 and b =
√

5 +
√

5. The entries corresponds to the fields φr,s in the Kac table given in
figure 7.9, arranged according to lexicographic order on (r, s).
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presence of an additional symmetry (besides Virasoro) for which its modes Wn are
the generators

W (z) =∑
n∈Z

z−n−3Wn . (7.3.18)

These modes, together with the Virasoro modes, generate the so-called W3 algebra
(of which the Virasoro is a subalgebra), which we mention here without derivation

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln,Wm] = (2n −m)Wn+m

[Wn,Wm] =
16

22 + 5c
(n −m)Λn+m +

c

360
n(n2 − 1)(n2 − 4)δn+m,0

+(n −m) [
1

15
(n +m + 2)(n +m + 3) −

1

6
(n + 2)(m + 2)]Ln+m

where

Λn =
∞
∑

m=−∞
∶LmLn−m ∶ +dnLn , d2m =

(1 −m2)

5
, d2m−1 =

(1 +m)(2 −m)

5
.

This is a particular case of a (quantum) W -algebra.

Since we have a larger symmetry algebra at our disposal, it is a good idea to organise
the Virasoro representations into (irreducible) representations of the extended W3

algebra. For instance the state highest state of V4,1, ∣Φ4,1⟩ = ∣W ⟩, is not primary with
respect to theW3 algebra, since it is descendant of a the vacuum ∣W ⟩ =W−3∣0⟩, very
much like ∣T ⟩ = L−2∣0⟩. Thus it is very natural to gather the Virasoro representations
V1,1 and V4,1 into a single representation of W3. Let’s call it V1

V1 = V1,1 ⊕ V4,1 . (7.3.19)

How do we know that V1 is a representation a W3, i.e. that it is stable under action
of the modes Wn ? Simply from the fusion rules W × 1 =W and W ×W = 1, which
can be recast as

W (z)V1,1 ⊂ V4,1, and W (z)V4,1 ⊂ V1,1 (7.3.20)

Thus

W (z)V1 ⊂ V1 (7.3.21)

Furthermore V1 is an irreducible representation of W3, since V1,1 and V4,1 are irre-
ducible w.r.t. Virasoro. Likewise, ∣Φ3,1⟩ =W−1∣Φ2,1⟩, and we have another irreducible
W3 representation

V2 = V2,1 ⊕ V3,1 . (7.3.22)

Finally the W3-algebra discriminates between the two copies of the representation
V4,3 (and likewise V3,3), in the sense that σ1 and σ2 have opposite eigenvalue under
W0. Thus the two copies of the Virasoro representation V4,3 become two inequivalent
representations V3 and V∗3

V3,3 → V3 and V∗3 . (7.3.23)
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Likewise for V3,4 :

V3,4 → V4 and V∗4 . (7.3.24)

In terms of these W3 representations, the modular invariant of the three-state Potts
model is simpler : it is diagonal, in the sense that the Hilbert space is

H = (V1 ⊗ V1)⊕ (V2 ⊗ V2)⊕ (V3 ⊗ V3)⊕ (V∗3 ⊗ V
∗
3)⊕ (V4 ⊗ V4)⊕ (V∗4 ⊗ V

∗
4)

It turns out that the CFT underlying the three-state Potts model is the first of a
sequence of minimal models of the W3 algebra.

Some references for this chapter:

• Introduction to Conformal Field Theory, Ralph Blumenhagen and Erik Plauschinn.
In particular chapter 4 deals with modular invariance. A presentation of W -algebras
and more generally extended symmetries can be found in chapter 3.

• section 10.7 in Conformal Field Theory, Di Francesco et al.. In particular section
10.7.2 contains a much more detailed description of the field content of the three-
state Potts model.

• A-D-E Classification of Conformal Field Theories , scholarpedia, Andrea Cappelli
and Jean-Bernard Zuber

7.4 Appendix

7.4.1 Some useful identities

The Poisson summation formula

The Poisson summation formula is the following identity between distributions

∑
n∈Z

δ(x − n) =∑
k∈Z

ei2πkx (7.4.1)

Note that both sides of the above equation are periodic in x, so we can think of x as living
on the circle R/Z. The Poisson summation formula is simply the decomposition of the
Dirac delta on the circle (the left hand side) in Fourier series (the right hand side).

The Poisson summation formula implies that for appropriate functions f ∶ R→ C

∑
n∈Z

f(n) =∑
k∈Z

f̂(k) (7.4.2)

where f̂ is the Fourier transform of f , namely

f̂(k) = ∫
R
e−i2πkxf(x)dx (7.4.3)

Indeed formally

∑
k∈Z

f̂(k) =∑
k∈Z
∫
R
e−i2πkxf(x)dx = ∫

R
(∑
k∈Z

e−i2πkx) f(x)dx

= ∫
R
∑
n∈Z

δ(x − n)f(x)dx =∑
n∈Z

f(n)
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In particular for f(x) = 1√
α
e−

π
α
(x+β)2

we get

∑
k∈Z

e−παk
2+2πiβk =

1
√
α
∑
n∈Z

e−
π
α
(n+β)2

. (7.4.4)

Jacobi’s triple product identity

For complex numbers z ≠ 0 and ∣x∣ < 1,

∞
∏
m=1

(1 − x2m) (1 + zx2m−1) (1 + z−1x2m−1) =
∞
∑
n=−∞

xn
2

zn (7.4.5)

Many proofs of this result are known. Some are combinatorial/enumerative (having to do
with counting partitions), some are number-theoretic. The curious reader can find a very
readable computational proof in George E. Andrews The Theory of Partitions. There is
also a very elegant combinatorial proof in Conformal Field Theory by Di Francesco et al,
in appendix 10.A.1.

Let’s just mention that it is fairly easy to show that
∞
∏
m=1

(1 − x2m) (1 + zx2m−1) (1 + z−1x2m−1) = a0(x)
∞
∑
n=−∞

xn
2

zn (7.4.6)

up to an unknown function a0(x). Indeed the function

F (z) =
∞
∏
m=1

(1 − x2m) (1 + zx2m−1) (1 + z−1x2m−1) (7.4.7)

is holomorphic on C ∖ {0}, so it is can be represented as a Laurent series

F (z) =∑
n∈Z

an(x)z
n (7.4.8)

Now notice that F obeys

zxF (zx2) = F (z) (7.4.9)

In terms of the Laurent series, this means an+1 = x2n+1an, thus an = xn
2
a0 and

F (z) = a0(x)
∞
∑
n=−∞

xn
2

zn (7.4.10)

To finish the proof one would have to evaluate a0(x). This is more technical, and it turns
out that a0 = 1.

7.4.2 Theta functions

Jacobi’s theta function ϑ(z; τ) is defined as

ϑ(z; τ) =
∞
∑
n=−∞

e(iπn2τ+i2πnz) =
∞
∑
n=−∞

q
n2

2 ei2πnz (7.4.11)

for z ∈ C and τ in the upper half plane (Im(τ) > 0). Jacobi’s triple product identity states
that

ϑ(z; τ) =
∞
∏
n=1

(1 − e2nπiτ) (1 + e(2n−1)πiτ+2πiz) (1 + e(2n−1)πiτ−2πiz) . (7.4.12)
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Some auxiliary theta functions

In some cases it may be useful to consider the following auxiliary theta functions

ϑ [
a
b

] (z∣τ) =∑
n∈Z

eπiτ(n+a)
2

e2πi(n+a)(z+b) (7.4.13)

= ∑
k∈a+Z

eπiτk
2

e2πik(z+b) (7.4.14)

= eiπτa
2

e2iπ(z+b)aϑ(z + b + aτ ; τ) (7.4.15)

In particular is is customary to introduce

θ1 = ϑ [
1/2
−1/2

] (z∣τ) = −ϑ [
1/2
1/2

] (z∣τ) (7.4.16)

θ2 = ϑ [
1/2
0

] (z∣τ) (7.4.17)

θ3 = ϑ [
0
0

] (z∣τ) (7.4.18)

θ4 = ϑ [
0

±1/2
] (z∣τ) (7.4.19)

Using Jacobi’s triple product identity, this can be rewritten as

ϑ [
a
b

] (z∣τ) = eiπτa
2

e2iπ(z+b)a
∏
m≥1

(1 − e2iπτm) (1 + eiπτ(2m−1)e2iπ(z+b+aτ)) (1 + eiπτ(2m−1)e−2iπ(z+b+aτ))

(7.4.20)

from which we can see that the zeroes are located at

z = (
1

2
− b) + τ (

1

2
− a) +Z + τZ (7.4.21)

We have

ϑ [
a + 1
b

] (z∣τ) = ϑ [
a
b

] (z∣τ) = ϑ [
−a
−b

] (−z∣τ) (7.4.22)

from which we can always choose 0 ≤ a < 1 (or at least for the real part of a if a is not
real). Similarly

ϑ [
a

b + c
] (z∣τ) = ϑ [

a
b

] (z + c∣τ) (7.4.23)

The two boundary conditions are

ϑ [
a
b

] (z + n∣τ) = e2iπanϑ [
a
b

] (z∣τ), n ∈ Z (7.4.24)

and

ϑ [
a
b

] (z + cτ ∣τ) = e−2iπc(z+b)e−iπτc
2

ϑ [
a + c
b

] (z∣τ), c ∈ R (7.4.25)

131



Under the ”easy” modular transformation we have

ϑ [
a
b

] (z∣τ + n) = e−iπa(1+a)nϑ [
a

na + n
2 + b

] (z∣τ), n ∈ Z (7.4.26)

The non trivial modular transformation can be obtained from the Poisson resummation
formula

∑
n∈Z

e−παn
2+2πiβn =

1
√
α
∑
n∈Z

e−
π
α
(n+β)2

(7.4.27)

from which we get

ϑ [
a
b

](−
z

τ
∣ −

1

τ
) =

√
−iτe−

iπa2

τ e2πia(b− z
τ
)
∑
n∈Z

eπiτ(n−b+
a+z
τ

)2

(7.4.28)

=
√
−iτe−

iπa2

τ e2πia(b− z
τ
)e

πi
τ
(a+z)2

∑
n∈Z

eπiτ(n−b)
2

e2πi(n−b)(z+a) (7.4.29)

=
√
−iτ e

πi(2ab+ z
2

τ
)
ϑ [

−b
a

] (z∣τ) (7.4.30)

There is also a simple transformation under Fourier sums

N

∑
n=1

e
2πinm
N ϑ [

a + n
N

b
] (z∣τ) = e−2πiamϑ [

Na
b+m
N

](
z

N
∣
τ

N2
) (7.4.31)

The theta functions relevant for the Dirac fermion

When studying the characters of the Dirac fermions on the torus, the following theta
functions turn out to be useful.

θ1(z∣τ) = −i ∑
r∈Z+1/2

(−1)r−1/2yrqr
2/2 (7.4.32)

θ2(z∣τ) = ∑
r∈Z+1/2

yrqr
2/2 (7.4.33)

θ3(z∣τ) =∑
n∈Z

ynqn
2/2 (7.4.34)

θ4(z∣τ) =∑
n∈Z

(−1)nynqn
2/2 (7.4.35)

where z is a complex variable and τ a complex parameter living on the upper-half place.
We introduced q = e2iπτ and y = e2iπz. Theta functions have a single zero, located at
z = 0,1/2,1/2(1 + τ) and τ/2, respectively. They have no pole. Using Jacobi’s triple
product identity one can rewrite them as

θ1(z∣τ) = −iy
1/2q1/8

∞
∏
n=1

(1 − qn)
∞
∏
n=0

(1 − yqn+1)(1 − y−1qn) (7.4.36)

θ2(z∣τ) = y
1/2q1/8

∞
∏
n=1

(1 − qn)
∞
∏
n=0

(1 + yqn+1)(1 + y−1qn) (7.4.37)

θ3(z∣τ) =
∞
∏
n=1

(1 − qn)
∞
∏

r∈N+1/2
(1 + yqr)(1 + y−1qr) (7.4.38)

θ4(z∣τ) =
∞
∏
n=1

(1 − qn)
∞
∏

r∈N+1/2
(1 − yqr)(1 − y−1qr) (7.4.39)
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Theta functions are all related by shifting their arguments.

θ4(z∣τ) = θ3(z + 1/2∣τ) (7.4.40)

θ2(z∣τ) = θ1(z + 1/2∣τ) (7.4.41)

θ1(z∣τ) = −ie
iπzq1/8θ4(z + 1/2τ ∣τ) (7.4.42)

Theta functions are the building blocks of doubly periodic functions on the complex
plane. They are not periodic under z → z+1 or z → z+τ , but they behave in the following
simple fashion

θ1(z + 1∣τ) = −θ1(z∣τ) θ1(z + τ ∣τ) = −
1

yq1/2 θ1(z∣τ) (7.4.43)

θ2(z + 1∣τ) = −θ2(z∣τ) θ2(z + τ ∣τ) =
1

yq1/2 θ2(z∣τ) (7.4.44)

θ3(z + 1∣τ) = θ3(z∣τ) θ3(z + τ ∣τ) =
1

yq1/2 θ3(z∣τ) (7.4.45)

θ4(z + 1∣τ) = θ4(z∣τ) θ4(z + τ ∣τ) = −
1

yq1/2 θ4(z∣τ) (7.4.46)

We have

θ1(z∣τ + 1) = eiπ/4θ1(z∣τ), θ1(z∣ − 1/τ) = −i
√
−iτeiπz

2τθ1(−τz∣τ) (7.4.47)

7.4.3 Modular S-matrix for the minimal model Mp,p′

The characters are a representation of the modular group. One can prove that they are
the solutions of a differential equation in τ (of order (p−1)(p′−1)

2 ) that follows from the
null-vector at level (p − 1)(p′ − 1) in the module of the identity. In order to compute
the S-matrix, we follow closely Di Francesco et al, chapter 10, section 10.6 (up to some
change of notations). Let us first rewrite the characters as

χr,s(τ) =Kλr,s(τ) −Kλr,−s(τ) , (7.4.48)

where λr,s = p′r − ps and λr,−s = p′r + ps and

Kλ(q) ∶=
1

η(τ)
∑

k=λ mod N

q
k2

2N , N = 2pp′ . (7.4.49)

Since Kλ =Kλ+N , λ only matters mod N . The parameter λ ∈ Z/NZ will soon turn out to
be a simpler parametrization of the characters than (r, s). But first we need to understand
the reflexion (r, s)→ (r,−s) at the level of Z/NZ.

Fact : let (r0, s0) be two integers such that p′r0 − ps0 = 1, and let ω0 = p′r0 + ps0 mod N .
Then the reflexion (r, s)→ (r,−s) is implemented in Z/NZ by multiplication by ω0 :

λr,−s = ω0λr,s (7.4.50)

as follows easily from the identity

(p′r0 − ps0)(p
′r + ps) = (p′r0 + ps0)(p

′r − sps) mod N (7.4.51)

133



Thus the characters can be conveniently written as

χλ(τ) =Kλ(τ) −Kω0λ(τ) (7.4.52)

At this stage a straightforward application of the Poisson resummation formula yields

Kλ(−1/τ) =
1

√
N

N−1

∑
µ=0

e−i2π
λµ
N Kµ(τ) (7.4.53)

and thus (since ω2
0 = 1 mod N)

Kω0λ(−1/τ) =
1

√
N

N−1

∑
µ=0

e−i2π
ω0λµ

N Kµ(τ) =
1

√
N

N−1

∑
µ=0

e−i2π
λµ
N Kω0µ(τ) (7.4.54)

It follows that

χλ(−1/τ) =
1

√
N

N−1

∑
µ=0

e−i2π
λµ
N χµ(τ) (7.4.55)

However this is not the end of the story, since

• we need to go back to the label (r, s) instead of λ

• the characters appearing in the r.h.s. are not linearly independent.

To resolve these two issues, we use the following facts.

Fact 1: The map

(r, s)→ λr,s = p
′r − ps mod N (7.4.56)

is a bijection from {(r, s), 0 ≤ r ≤ p − 1, 1 − p′ ≤ s ≤ p′} to ZN . Indeed since p and p′ are
coprime this map is injective11, and therefore a bijection since both sets are of size N .
Thus we may write

χλ(−1/τ) =
1

√
N

p−1

∑
r=0

p′

∑
s=1−p′

e−i2π
λλr,s
N χr,s(τ) (7.4.57)

Fact 2: For all values of λ such that λ = ±ω0λ mod N , we have χλ = 0, so we can remove
them from the above sum. But λr,s = ±ω0λr,s iff r = 0 mod p or s = 0 mod p′. Therefore
we can exclude r = 0 and s = 0, yielding

χλ(−1/τ) =
1

√
N

p−1

∑
r=1

p′−1

∑
s=1

(e−i2π
λλr,s
N χr,s(τ) + e

−i2π λλr,−s
N χr,−s(τ)) (7.4.58)

=
1

√
N

p−1

∑
r=1

p′−1

∑
s=1

(e−i2π
λλr,s
N − e−i2π

λλr,−s
N )χr,s(τ) (7.4.59)

11Suppose λr1,s1 = λr2,s2 mod N . This mean p′(r1 − r2) = p(s1 − s2) mod 2pp′, and in particular
p′(r1 − r2) = 0 mod p. Given the range of r, this implies r1 = r2 and thus s1 − s2 = 0 mod 2p′, which in
turns means s1 = s2.
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Finally we exploit χp−r,p′−s = χr,s, together with λp−r,p′−s = −λr,s to restrict the sum to
the fundamental domain of the Kac table (see Fig. (7.8))

χλ(−1/τ) =
2

√
N
∑
r,s

(cos 2π
λλr,s
N

− cos 2π
λλr,−s
N

)χr,s(τ) (7.4.60)

=
4

√
N
∑
r,s

sin 2π
λp′r

N
sin 2π

λps

N
χr,s(τ) (7.4.61)

and we get the S-matrix

S(r1,s1),(r2,s2) =
4

√
2pp′

sinπ
(p′r1 − ps1)p′r2

pp′
sinπ

(p′r1 − ps1)ps2

pp′
(7.4.62)

i.e .

S(r1,s1),(r2,s2) = 2

√
2

pp′
(−1)1+s1r2+s2r1 sinπ

p′r1r2

p
sinπ

ps1s2

p′
(7.4.63)

In the above derivation we took (r2, s2) in the range (7.3.4), i.e. with ps2 < p′r2, but for
obvious reasons the above S matrix has to be invariant under (r2, s2) → (p − r2, p′ − s2).
This elementary sanity check is left to the reader.

This S matrix enjoys

S2 = 1, S = S = St (7.4.64)

In particular S is unitary.
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Lecture 8

CFT in curved space

So far we have discussed conformal invariance for a quantum field theory on the complex
plane, and we now consider a field theory living on an arbitrary two-dimensional curved
space (M,g). This essentially brings two new features in the game

• the topology of space-time (i.e. the smooth surface M itself, as characterized by its
genus1),

• the geometry of space-time, as described by the Riemannian metric g.

One must prescribe how to extend the theory from flat Euclidean space to an arbitrary
curved space, through an action that now depends explicitly on the metric g (and on the
manifold M)

S[Φ, g] = ∫
M
L(Φ(x), ∂µΦ(x), gµν(x))dV (x) (8.0.1)

where dV (x) =
√

∣g(x)∣d2x is the Riemannian volume element, and ∣g(x)∣ stands for the
determinant of the matrix gµν(x) = g(∂µ, ∂ν). Besides allowing us to work on curved space,
introducing an arbitrary metric g has an important benefit : the action now takes the
same mathematical form in all coordinate systems (even in flat space, one could decide to
work in polar coordinates for instance). One says that such a theory is generally covariant,
and it means that the theory does not require the choice of a coordinate system in order
to be well-defined. For instance the free scalar field can be coupled to the metric as follow

S[φ, g] = ∫ gµν∂µφ∂νφdV (x) (8.0.2)

where gµν = g(dxµ, dxν) is the inverse matrix of gµν . It is not very difficult to check that
the above expression remains the same in all coordinate systems.

On a generic curved manifold there is no longer a preferred coordinate system (nor a
globally defined one), so having a coordinate-independent formulation of physics is a very
natural requirement indeed. One can push this idea even further and use a coordinate-free
formalism in which fields become purely geometric objects. For instance the action (8.0.2)
is just the expression in local coordinates of the intrinsic quantity

S = ∫ dφ ∧ ⋆dφ = ∫ g(dφ, dφ)dV = ∥dφ∥2
g (8.0.3)

1For now we will restrict ourselves to compact, oriented manifolds without boundary. Conformal field
theories can also be defined on unorientable manifolds and in the presence of boundaries, but this is a
more advanced topic which we will not address at this stage.
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At the classical level general covariance means that the action is invariant under isome-
tries, in the sense that for any diffeomorphism f ∶M →M

S[f∗Φ, f∗g] = S[Φ, g] (8.0.4)

which essentially means that the Lagrangian density L is a scalar : f∗L = L ○ f .

We assume that general covariance still holds at the quantum level. In the path
integral this amounts to

e−S[f
∗Φ,f∗g]Df∗g[f

∗Φ] = e−S[Φ,g]Dg[Φ] (8.0.5)

where we write Dg[Φ] to emphasise that the functional measure does in general depend
on the metric. Why is that ? Naively it does not, but the fact that it has to be regularized
(for instance through a short-distance cut-off) makes the story more subtle. For instance
a short-distance cut-off - such as a lattice constant - introduces a UV length, de facto
making the integration measure scale-dependent. In practice assuming general covariance
means finding a way to regularize the QFT in such a way as to preserve this invariance.
We will see in the next tutorial how this is done for the free boson. If we denote by Zg
the partition function of the QFT on (M,g), we have for any diffeomorphism f ∶M →M

Zg = Zf∗g (8.0.6)

where we dropped the subscript M . Furthermore for a correlation function

⟨O⟩f∗g =
1

Zf∗g
∫ Oe−S[Φ,f

∗g]Df∗g[Φ] =
1

Zg
∫ (f∗O) e−S[f

∗Φ,f∗g]Df∗g[f
∗Φ] (8.0.7)

=
1

Zg
∫ (f∗O) e−S[Φ,g]Dg[Φ] = ⟨f∗O⟩g (8.0.8)

or more explicitly

⟨(f∗O1)(x1)⋯(f∗Op)(xp)⟩g = ⟨O1(x1)⋯Op(xp)⟩f∗g (8.0.9)

Another way to think about (8.0.6) and (8.0.9) is in term of active versus passive transfor-
mation. An elementary but useful example is that of a scale transformation f(x) = λx on
the Euclidean plane (with metric ηµν = δµν). The active transformation amounts to send
the point x to λx, hence multiplying the length of curves by a factor λ. In the passive
transformation points do not move, but the definition of distance is rescaled by changing
the metric to f∗η = λ2η. Again the length of all curves is multiplied by λ. Clearly these
two transformations are equivalent. For instance in a CFT the two point function of a
scalar primary field φ∆ with scaling dimension ∆ obeys

⟨φ∆(x1)φ∆(x2)⟩λ2η = λ
−2∆ 1

∥x1 − x2∥
2∆

= ⟨φ∆(λx1)φ∆(λx2)⟩η . (8.0.10)

In the first equality we used the behavior of a correlation function under a Weyl rescaling
(8.2.12) which we’ll derive shortly.
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8.1 Stress-energy tensor revisited

In section 3.1 we have defined the classical stress-energy tensor through (3.1.8), that is
as the response of the theory to an infinitesimal diffeomorphism while leaving the (flat)
metric unchanged. The generalization to curved space is immediate :

S[Φ + δεΦ, g] − S[Φ, g] = −
1

2π ∫M
T µν∇µεν dV (x) (8.1.1)

but just as in flat space this leaves the freedom to add to T µν any covariantly conserved
tensor. General covariance allows to bypass this ambiguity by defining the stress-energy
tensor as the response of the theory to an infinitesimal change of the metric (see appendix
(3.4.2))

S[Φ, g + δg] − S[Φ, g] =
1

4π ∫M
T µνδgµν dV (x) = −

1

4π ∫M
Tµνδg

µν dV (x) (8.1.2)

or equivalently

Tµν(x) = −4π
δS

δgµν(x)
. (8.1.3)

Note that we work with the following convention for functional derivatives :

δF = ∫
M

δF

δf(x)
δf(x)dV (x)

for a generic functional F of a function f defined on M . This means

δf(x)

δf(y)
= δy(x) (8.1.4)

where δy(x) is the delta-function normalized with respect to the volume form, in the sense
that

∫
M
δy(x)h(x)

√
∣g(x)∣d2x = h(y) . (8.1.5)

for any test function h.

Equation (8.1.7) defines the so-called Hilbert stress-energy tensor, and the fact that
it coincides with our previous definition (8.1.1) in flat space is a simple consequence of
general covariance. This stress-energy tensor is symmetric by construction. The reader
might wonder what happened to the intrinsic ambiguity underlying the definition of the
stress-energy tensor in flat space. It is not really gone, and it hides in the fact that the
extension of the theory from flat space to curved space may not be unique. For instance
we could decide that the action of a free scalar field in curved space is

S[φ, g] = ∫ (gµν∂µφ∂νφ + αRφ) dV (x) . (8.1.6)

Both theories (8.0.2) and (8.1.6) are indistinguishable in the flat space limit since the
scalar curvature R vanishes, but even in flat space the corresponding Hilbert stress-energy
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tensors as defined by (8.1.7) do not coincide : they differ by an improvement term.

At the quantum level there may be contributions coming from the integration measure,
thus we define

⟨Tµ1ν1(y1)⋯Tµrνr(yr)O1(x1)⋯Op(xp)⟩g

=
(4π)r

Zg

δr

δgµ1ν1(y1)⋯δgµrνr(yr)
Zg⟨O1(x1)⋯Op(xp)⟩g (8.1.7)

This allows to write the infinitesimal change of the partition function and correlation
functions under a change of metric g → g + δg as

δZg
Zg

=
1

4π ∫
⟨Tµν(x)⟩δg

µν(x)
√

∣g(x)∣d2x (8.1.8)

and

δ⟨O⟩g =
1

4π ∫
(⟨Tµν(x)O⟩g − ⟨Tµν(x)⟩g⟨O⟩g) δg

µν(x)
√

∣g(x)∣d2x (8.1.9)

where O stands for O1(x1)⋯Op(xp).

The terminology tensor is now fully justified, since general covariance implies that the
Hilbert stress-energy tensor indeed transforms as a tensor under isometries :

⟨(f∗T )µν(x)(f
∗O1)(x1)⋯(f∗Op)(xp)⟩g = ⟨Tµν(x)O1(x1)⋯Op(xp)⟩f∗g (8.1.10)

where

(f∗T )µν(x) = Tρσ(f(x))
∂fρ

∂xµ
∂fσ

∂xν
. (8.1.11)

Another benefit of defining Tµν through (8.1.7) is that the Ward identity becomes an
elementary consequence of general covariance. Indeed for an infinitesimal diffeomorphism
fµ(x) = xµ + εµ(x) the relation (8.0.9) together with (8.1.9) yields

∑
j

⟨O1(x1)⋯δεOj(xj)⋯Op(xp)⟩g = −
1

4π ∫
δεgµν⟨T

µν(x)O⟩g dV (x) (8.1.12)

= −
1

2π ∫
∇µεν(x)⟨T

µν(x)O⟩g dV (x) (8.1.13)

and we recover the Ward identity (3.2.18) in flat space.

8.2 Conformal/Weyl covariance

As explained in section (2.2), a conformal transformation can be split into an isometry
and a Weyl rescaling. Since we have assumed invariance under isometries (this is the
content of general covariance) conformal invariance is then equivalent to Weyl invariance.
Under an infinitesimal Weyl rescaling δgµν(x) = 2σ(x)gµν(x), one has from (8.1.7)

δZ = −(
1

2π ∫M
⟨T µµ⟩σ dV )Z (8.2.1)
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Näıvely conformal symmetry requires T µµ ≃ 0, but for a QFT in curved space there is an
anomaly. From general covariance, the trace of the stress-energy tensor must be invariant
under isometries, and it must vanish in the flat space limit. Furthermore, it must be of
scaling dimension 2. In two-dimensions this only leaves one possibility : T µµ can only be
proportional to the scalar curvature R. The usual convention is to write the numerical
prefactor as −c/12, where c is called the central charge :

T µµ ≃ −
c

12
R (8.2.2)

This is called the Weyl anomaly, and under an infinitesimal Weyl rescaling we have

Ze2δσg = (1 +
c

24π ∫M
δσ(x)Rg(x)dVg(x) +O(δσ2))Zg . (8.2.3)

where Rg is the scalar curvature associated to the metric g, and dV = dVg =
√

∣g∣d2x. This
can be rephrased as

δ

δσ(x)
∣
σ=0

logZe2σg =
c

24π
Rg(x) (8.2.4)

Starting from some partition function Zg0 , (8.2.4) determines the partition function for
all metrics in the same conformal class, i.e. of the form g = e2σg0. Indeed from (8.2.3) we
have

Ze2δσg = (1 +
c

24π ∫M
δσ(x) [R0 − 2∆0σ(x)] dV0(x) +O(δσ2))Zg . (8.2.5)

where we used Re2σg0
= e−2σ(R0−2∆0σ), withR0 and ∆0 begin the curvature and Laplacian

of the reference metric g0. Thus

δ

δσ(x)
logZe2σg0

=
c

24π
(R0(x) − 2∆0σ) (8.2.6)

Upon integrating (8.2.6) we find the following behavior of the partition function under a
finite Weyl rescaling (as long as the function σ has compact support)

Ze2σg = exp(
c

24π ∫M
(gµν∂µσ∂νσ +Rgσ) dVg)Zg (8.2.7)

Exercise : Wess-Zumino consistency condition. Check that (8.2.7) is consistent
under the composition of Weyl transformations, in the sense that g → e2σ1+2σ2g yields the
same answer as g → e2σ1g followed by g → e2σ2g.

Exercise : For a given background metric g0, consider the functional differential
equation

δ

δσ(x)
F [σ] = R0(x) − 2∆0σ (8.2.8)

with boundary condition F [0] = 0. It is clear that the solution, if it exists, is unique.
Check that

F [σ] = ∫
M

(gµν0 ∂µσ∂νσ +R0σ) dV0 (8.2.9)
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is a solution, as long as the function σ has compact support.

We now know how the partition function of a conformal field theory behaves under
Weyl rescaling. What about correlation functions ? The definition (8.1.7) of the stress-
energy tensor a la Hilbert tells us that under an infinitesimal Weyl rescaling δgµν(x) =
2σ(x)gµν(x) a correlation function ⟨O⟩ = ⟨O1(x1)⋯Op(xp)⟩ behaves as

δ (Z⟨O⟩) = −(
1

2π ∫M
⟨T µµO⟩σ dV )Z (8.2.10)

i.e.

δ⟨O⟩ = −
1

2π ∫M
⟨(T µµO⟩ − ⟨T µµ⟩⟨O⟩)σ dV . (8.2.11)

The Weyl anomaly cancels out in ⟨T µµO⟩ − ⟨T µµ⟩⟨O⟩, and only the contact terms of T µµ
can contribute : as in flat space, they may modify the naive classical transformation of
fields. While classical fields are invariant under Weyl transformation, quantum fields have
to be regularized, and hence become sensitive to change of scales. Vertex operators in the
free scalar theory provide a good and explicit example. For instance for scalar primary
fields

⟨O1(x1)⋯Op(xp)⟩e2σg =
p

∏
i=1

e−γiσ(xi)⟨O1(x1)⋯Op(xp)⟩g . (8.2.12)

which we will write as

(Oi)e2σg = e
−γiσ (Oi)g (8.2.13)

where γi is the anomalous dimension of the field Oi.

Exercise : By computing 4π
Z

δ
δgµνZ⟨T ρρO⟩ using (8.2.2), show that the contact term

between T ρρ and Tµν is

T ρρ(x)Tµν(y) = 4π
c

12

δR(x)

δgµν(y)
(8.2.14)

and evaluate the functional derivative using eq. (8.5.25). Deduce that in a locally flat
metric

T ρρ(x)Tzz(y) = −4π
c

12
∂2
zδ(x − y) (8.2.15)

and recover (3.3.26).

8.3 Behavior of the stress-energy tensor under Weyl

rescaling

In a classical field theory enjoying Weyl invariance, the stress tensor behaves as

(Tµν)e2σg = (Tµν)g (8.3.1)
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Indeed Weyl invariance of the action implies S[Φ, g + δg] − S[Φ, g] = S[Φ, e2σ(g + δg)] −
S[Φ, e2σg], yielding

∫
M

(Tµν)g δg
µν dV = ∫

M
(Tµν)e2σg δg

µν dV (8.3.2)

since δg̃µν = e−2σδgµν and dṼ = e2σdV for g̃ = e2σg.

At the quantum level however the anomalous behavior (8.2.7) means that the quantum
stress tensor transforms as

(Tµν)e2σg = (Tµν)g +
c

6
(∂µσ∂νσ −

1

2
gµν∂

ρσ∂ρσ + gµν∆σ −∇µ∇νσ) (8.3.3)

Indeed under gµν → gµν + δgµν we have

1

Ze2σg
δ (Ze2σg⟨O⟩e2σg) =

1

4π ∫
⟨TµνO⟩e2σgδg̃

µν dṼ (8.3.4)

=
1

4π ∫
⟨TµνO⟩e2σgδg

µν dV (8.3.5)

Thus

⟨TµνO⟩e2σg =
4π

Ze2σg

δ

δgµν
(Ze2σg⟨O⟩e2σg) (8.3.6)

When the functional derivative δ
δgµν acts on O, it only produces contact terms. So away

from coinciding points we can write

(Tµν)e2σg =
4π

Ze2σg

δ

δgµν
Ze2σg (8.3.7)

Plugging in (8.2.7) we get

(Tµν)e2σg =
4π

Ze2σg

δ

δgµν
Ze2σg (8.3.8)

= (Tµν)g +
c

6

δ

δgµν ∫M
(gµν∂µσ∂νσ +Rgσ) dV (8.3.9)

Computing the functional derivatives (see (8.5.22) and (8.5.25) in the Appendix) yields
(8.3.3).

Exercise : using equation (8.3.3), check that T µµ transforms as

(T µµ)e2σg = e
−2σ ((T µµ)g +

c

6
∆σ) (8.3.10)

and in particular we recover (T µµ)e2σdzdz̄ =
c
6e

−2σ∆σ = − c
12R.

We are now going to work in isothermal coordinates according to which we can define
complex coordinates. We now have

gµν(x) = e
2σ(x)δµν , Rg = −2∆gσ = −2e−2ω (∂2

1 + ∂
2
2)σ = −8e−2σ∂∂̄σ (8.3.11)

We get

(Tzz)e2σdzdz̄ = (Tzz)dzdz̄ +
c

6
((∂σ)2 − ∂2σ) (8.3.12)
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8.4 Behavior of the stress-energy tensor under con-

formal maps

Since we know how the stress-tensor transforms under isometries and Weyl transformation,
we know how it behaves under conformal transformations. Consider a conformal map

f ∶ (M,g)→ (M, g̃) (8.4.1)

z → f(z) (8.4.2)

In practice we can always exploit Weyl transformations to make the metric locally flat
around all insertions. So we consider a point z and its image w = f(z) with metric (locally,
i.e. in some neighborhood) of the form g = dzdz̄ and g̃ = dwdw̄, so that f∗g̃ = e2σg with

2σ = log ∂f
∂z + log ∂f̄

∂z̄ , at least in some neighborhood of z. From general covariance

⟨(f∗T )(z)⋯⟩g̃ = ⟨T (z)⋯⟩f∗g̃ = ⟨T (z)⋯⟩e2σg (8.4.3)

Now remember that T stands for Tzz, and therefore (f∗T )(z) = (∂zf)2T (f(z)) = (∂zw)2T (w).
Now (8.3.12) gives the behavior under a Weyl rescaling :

⟨T (z)⋯⟩e2σg = ⟨(T (z) −
c

12
S(f)(z))⋯⟩g (8.4.4)

where S(f) is the Schwarzian derivative as defined in eq. (3.3.30)

S(f) = ∂z (
∂2
zf

∂zf
) −

1

2
(
∂2
zf

∂zf
)

2

=
∂3
zf

∂zf
−

3

2
(
∂2
zf

∂zf
)

2

(8.4.5)

Thus we recover the anomalous transformation eq. (3.3.29)

⟨((∂zf)
2T (f(z)) +

c

12
S(f)(z))⋯⟩g̃ = ⟨T (z)⋯⟩g (8.4.6)

We are going to write the above slightly abusively as

T (w) = (
∂w

∂z
)

−2

[T (z) −
c

12
{w, z}] (8.4.7)

keeping in mind however that we are working in locally flat metrics (hence the metric
need not be the same in the l.h.s. and the r.h.s.).

Some references for this chapter:

• Lectures on Conformal Field Theory , Krzysztof Gawedzki (chapter 2)

• String Theory: Volume 1, Joseph Polchinski
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8.5 Appendix

8.5.1 Some basic notions in Riemannian geometry

While Riemannian geometry does not play an essential role throughout this lecture, no-
tions such as metric, Levi-Civita connection and curvature are mentioned at times. This
section - aimed at the reader already familiar with these concepts - is simply a reminder
of basic definitions and an excuse to fix our notations.

Covariant derivative, Levi-Civita connection, Christoffel symbols

We consider a Riemannian manifold (M,g) where g is the metric. Given a local chart
(coordinate system) xµ, the components of the metric are

gµν = g(∂µ, ∂ν), gµν = g(dxµ, dxν) , (8.5.1)

and these two matrices are inverses of each other

gµνg
νρ = δρµ . (8.5.2)

The Levi-Civita connection (or covariant derivative) ∇ is the only torsion-free, metric-
compatible connection on the tangent bundle of Riemannian manifold. Torsion-free means

∇XY −∇YX = [X,Y ] (8.5.3)

while metric-compatibility is ∇g = 0, i.e.

∇Z (g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ) (8.5.4)

In local coordinates the Christoffel symbols Γρµν are defined by

∇∂µ∂ν = Γρµν∂ρ (8.5.5)

and they can be expressed in terms of the metric as

Γρµν =
1

2
gρσ (∂νgρµ + ∂µgρν − ∂ρgµν) (8.5.6)

The Levi-Civita connection has a natural extension to the dual bundle (i.e. the cotangent
bundle) and more generally to arbitrary tensor bundles :

(∇ρT )ν1...νs
µ1...µr

=
∂

∂ρ
T ν1...νs

µ1...µr (8.5.7)

+ Γν1
σρT

σν2...νs
µ1...µr +⋯ + ΓνsσρT

ν1...νs−1σ
µ1...µr (8.5.8)

− Γσµ1ρT
ν1...νs

σµ2...µr −⋯ − ΓσµrρT
ν1...νs

µ1...µr−1σ. (8.5.9)

Following standard notations we will often drop the parenthesis and write ∇ρT ν1...νs
µ1...µr

in place of (∇ρT )ν1...νs
µ1...µr

. One should be careful about this abuse of notation. For
instance the metric-compatibility reads

∇ρgµν = 0 (8.5.10)

being understood that ∇ρgµν stands for (∇ρg)µν and not for ∇ρ(gµν). Indeed the latter is
in general non vanishing since

∇ρ(gµν) = ∂ρgµν . (8.5.11)

A last remark is that this extension to arbitrary tensors is natural in the sense that it is
compatible with Leibniz rule and with trace operations (tensor contraction). For instance

gµν∇ρTµν = ∇ρ(g
µνTµν) (= ∂ρT

µ
µ) . (8.5.12)
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Curvature

The Riemann curvature tensor is defined by

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w (8.5.13)

In local coordinates, we work with the convention

Rµνρσ = g(R(∂µ, ∂ν)∂σ, ∂ρ) (8.5.14)

This tensor enjoys the following properties

Rµνρσ = −Rνµρσ, Rµνρσ = −Rµνσρ, Rµνρσ = Rρσµν . (8.5.15)

In terms of the Christoffel symbols we have

Rρ
µσν = ∂σΓρνµ − ∂νΓ

ρ
σµ + ΓρσλΓ

λ
νµ − ΓρνλΓ

λ
σµ (8.5.16)

The Ricci tensor is given by

Ric(u, v) = Trg(x→ R(x,u)v) (8.5.17)

which means in local coordinates

Rµν = Ric(∂µ, ∂ν) = g
ρσRρµσν = R

ρ
µρν (8.5.18)

This is a symmetric tensor, whose local expression in terms of the Christoffel symbols is

Rµν = ∂ρΓ
ρ
νµ − ∂νΓ

ρ
ρµ + ΓρρλΓ

λ
νµ − ΓρνλΓ

λ
ρµ (8.5.19)

Finally the Ricci scalar is simply R = Rµ
µ.

Variation of the Einstein-Hilbert action

We want to compute the variation δSg of the Einstein-Hilbert action

Sg =
1

2 ∫
R
√

∣g∣dnx (8.5.20)

under an infinitesimal change of metric gµν → gµν + δgµν . The answer is

δSg =
1

2 ∫
Gµνδg

µν
√

∣g∣dnx (8.5.21)

where Gµν = Rµν −
1
2Rgµν is the Einstein tensor.

A first useful formula is

δ
√

∣g∣ = −
1

2

√
∣g∣gµνδg

µν =
1

2

√
∣g∣gµνδgµν (8.5.22)
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Indeed for any invertible matrix A one has

det(A +H) = detA(1 +A−1H) = detA + detATr(A−1H) +O(H2) (8.5.23)

which can be written as ∂ detA
∂Aµν

= detAAνµ, where Aµν stands for (A−1)µν . So under
A→ A + δA we get

δ detA = detAAνµδAµν (8.5.24)

and (8.5.22) follows.

The variation of the Ricci curvature R is in itself of interest and will prove useful :

δR = (Rµν −∇µ∇ν + gµν∇ρ∇
ρ) δgµν (8.5.25)

where δgµν = −gµρgνσδgρσ. Deriving this identity is a rather lengthy but standard calcu-
lation. We start with

δR = (δgµν)Rµν + g
µνδRµν (8.5.26)

and

δRρ
σµν = ∂µδΓ

ρ
νσ − ∂νδΓ

ρ
µσ + δΓ

ρ
µλΓ

λ
νσ (8.5.27)

+ ΓρµλδΓ
λ
νσ − δΓ

ρ
νλΓ

λ
µσ − ΓρνλδΓ

λ
µσ (8.5.28)

= ∇µδΓ
ρ
νσ −∇νδΓ

ρ
µσ (8.5.29)

Indeed δΓρνσ being the difference between two connections, it is a tensor, and it makes
sense to take its covariant derivative. This yields the Palatini identity

δRµν = ∇ρδΓ
ρ
νµ −∇νδΓ

ρ
ρµ . (8.5.30)

Since covariant derivative commutes with contraction we get

δR = (δgµν)Rµν +∇ρ (g
µνδΓρνµ) −∇ν (g

µνδΓρρµ) (8.5.31)

= (δgµν)Rµν +∇ρ (g
µνδΓρνµ − g

µρδΓσσµ) (8.5.32)

This is enough to get (8.5.21), since the term in ∇ρ above yields a pure divergence in
δSg and therefore does not contribute. But to get (8.5.25) we must further massage this
divergence term.

gµνδΓρνµ − g
µρδΓσσµ = δ (g

µνΓρµν) − (δgµν)Γρµν − g
µρδ∂µ log

√
∣g∣ (8.5.33)

where we have used

Γσµσ =
1

2
gρσ∂µgρσ =

1

2g
∂µg = ∂µ log

√
∣g∣ (8.5.34)

We now use

gµνΓρνµ = −
1

√
∣g∣
∂µ (

√
∣g∣gµρ) = −∂µg

µρ − gµρ∂µ log
√

∣g∣ (8.5.35)
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and we get

gµνδΓρνµ − g
µρδΓσσµ = −∂µδg

µρ − Γσµσδg
µρ (8.5.36)

− Γρµνδg
µν − 2gµρ∂µδ log

√
∣g∣ (8.5.37)

= −∇µδg
µρ − gµρ∂µδ log ∣g∣ (8.5.38)

= −∇µδg
µρ − gµρ∂µ

δg

g
(8.5.39)

= −∇µδg
µρ + gµρ∂µ(gνσδg

νσ) (8.5.40)

= −∇µδg
µρ + gµρ∇µ(gνσδg

νσ) (8.5.41)

= −∇µδg
µρ + gµρgνσ∇µδg

νσ (8.5.42)

and this yields (8.5.25).

Peculiarities in two dimensions

In two-dimensions, due to the symmetries (8.5.15) of the Riemann curvature tensor, there
is only one independent component :

Rµνρσ =
R

2
(gµρgνσ − gµσgνρ) (8.5.43)

and the Einstein tensor vanishes2

Rµν =
R

2
gµν (8.5.45)

In fact one can say much more : any two-dimensional Riemannian manifold is (locally)
conformally flat, in the sense that there exist local coordinates in which the metric is
conformal to the Euclidean metric :

gµν(x) = e
σ(x)δµν (8.5.46)

Such coordinates are called isothermal coordinates. To say things differently, in two di-
mensions each point has a neighborhood that can be mapped to flat space by a conformal
map.

Furthermore if the surface under consideration is oriented, then it is naturally a Rie-
mann surface, i.e. a one-dimensional complex manifold. This is a simple consequence of
the existence of isothermal coordinates. The main observation is that transition functions
between isothermal coordinates are conformal maps (and therefore holomorphic or anti-
holomorphic). If the surface under consideration is oriented, then we can choose our atlas
of isothermal coordinates to be oriented, in which case the transition functions - being
orientation preserving - are holomorphic. What we have on our hands is an atlas whose

2As a cultural remark, this makes two-dimensional gravity quite peculiar. In fact the Einstein-Hilbert
action becomes a topological invariant since on a compact surface of genus g the Gauss-Bonnet theorem
states that

∫ R
√
∣g∣d2x = 8π(1 − g) . (8.5.44)

Deforming the surface (i.e. changing the metric) leaves the Einstein-Hilbert action unchanged, which is
another way to see that the Einstein tensor must vanish (from (8.5.21)).
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transition functions are holomorphic, i.e. a Riemann surface. To say things differently
(oriented) isothermal coordinates are complex coordinates.

Notice also that two oriented Riemannian manifolds that are conformally equivalent
yield the same complex structure, so in this sense Weyl transformations are compatible
with complex structure. In layman terms : if a function is holomorphic for the metric g,
it is also holomorphic for eσg.

Finally a map between two oriented Riemannian manifolds is conformal if and only
if it is holomorphic or anti-holomorphic (in the sense that (∂1 ∓ i∂2)f = 0 in isothermal
coordinates).

It should be clear from the discussion above that using (local) complex coordinates is
going to prove rather beneficial. We list below some related basic formulas.

Let (x1, x2) be isothermal coordinates, and define z = x1 + ix2, z̄ = x1 − ix2. A local
frame of the (complexified) cotangent space is given by

dz = dx1 + idx2, dz̄ = dx1 − idx2 (8.5.47)

and the dual frame in the tangent space reads

∂ =
1

2
(∂1 − i∂2) , ∂̄ =

1

2
(∂1 + i∂2) (8.5.48)

In particular the metric

g = eσ(x) (dx1 ⊗ dx1 + dx2 ⊗ dx2) (8.5.49)

reads in complex coordinates

g =
1

2
eσ(x) (dz ⊗ dz̄ + dz̄ ⊗ dz) (8.5.50)

which is to say in components

gzz = gz̄z̄ = 0, gzz̄ = gz̄z =
1

2
eσ (8.5.51)

The inverse metric is given by

gzz = gz̄z̄ = 0, gzz̄ = gz̄z = 2e−σ (8.5.52)

A real vector field ξ = ξ1∂1 + ξ2∂2 can be decomposed in the basis (∂, ∂̄) as

ξ = ξz∂ + ξz̄∂̄, ξz = ξz̄ = ξ1 + iξ2 (8.5.53)

Complex indices are raised and lowered according to

ξz = gzz̄ξ
z̄ =

1

2
eσξz̄, ξz = 2e−σξz̄ (8.5.54)

The stress-energy tensor Tµν has components

Tzz = Tz̄z̄ =
1

4
(T11 − T22 − iT12 − iT21) (8.5.55)

Tzz̄ = Tz̄z =
1

4
(T11 + T22 + i(T12 − T21)) (8.5.56)
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The Riemannian volume form ω =
√

∣g∣dx1 ∧ dx2 is

ω = eσ
dz̄ ∧ dz

2i
(8.5.57)

The covariant derivative becomes particularly simple: the only non-zero Christoffel sym-
bols are

Γzzz = ∂σ, Γz̄z̄z̄ = ∂̄σ (8.5.58)

as well as the scalar curvature

R = −4e−σ∂∂̄σ = −∆σ (8.5.59)

where ∆ is the Laplacian.
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