## SUPERSYMMETRY AND THE REAL WORLD

G.F. Giudice

ÉCOLE DE PHYSIQUE
LES HOUCHES

École d'Été
de Physique Théorique

Les Houches, July 2007 (Session LXXXVII): String Theory and the Real World

- (I) The supersymmetric SM (structure & EW breaking)
   Gravity as mediator of susy breaking (flavour problem)
- (II) Gauge mediation, anomaly mediation, gaugino mediation
- (III) Dark matter, unification, alternative approaches

# At which energy do we expect new physics effects?

Any FT can be viewed as an effective theory below a UV cutoff

$$L_{eff} = L^{d=4}(g,\lambda) + \frac{1}{\Lambda}L^{d=5} + \frac{1}{\Lambda^2}L^{d=6} + \dots$$

$$g \quad \text{gauge}$$

$$\lambda \quad \text{Yukawa}$$

 $\Lambda$  has physical meaning: maximum energy at which the theory is valid. Beyond  $\Lambda$ , new degrees of freedom

B number 
$$\Rightarrow \frac{1}{\Lambda^2} qqql$$
 p-decay  $\Rightarrow \Lambda \ge 10^{15}$  GeV

L number  $\Rightarrow \frac{1}{\Lambda} llHH$   $v$  mass  $\Rightarrow \Lambda \ge 10^{13}$  GeV

individual L  $\Rightarrow \frac{1}{\Lambda^2} \bar{e} \, \sigma^{\mu\nu} \mu H F_{\mu\nu}$   $\mu \to e \gamma \Rightarrow \Lambda \ge 10^8$  GeV

quark flavour  $\Rightarrow \frac{1}{\Lambda^2} \bar{s} \, \gamma^\mu d \, \bar{s} \, \gamma_\mu d \, \Delta m_K \Rightarrow \Lambda \ge 10^6$  GeV

LEP1,2  $\Rightarrow |H^+ D_\mu H|^2$ ,  $\bar{e} \, \gamma^\mu e \, \bar{l} \, \gamma_\mu l \Rightarrow \Lambda \ge 10^4$  GeV

2

We are tempted to conclude that the scale of "compositeness" \_ in the SM is extremely high

BUT Let us consider 
$$V(H) = -\mu_H^2 |H|^2 + \lambda |H|^4$$

 $\mu_{\rm H}^2$  very sensitive to high-energy corrections

$$\delta\mu_H^2 = \frac{3G_F}{8\sqrt{2}\pi^2} \left(2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2\right) \Lambda^2 = -(0.2 \Lambda)^2$$

$$\Lambda_{\text{max}} = \text{TeV} \left( \frac{m_H}{115 \text{ GeV}} \right) \left( \frac{10\%}{\delta} \right)^{1/2}$$
 No large tuning  $\Rightarrow \Lambda < \text{TeV}$ 

Can  $m_H \sim 180-220$  GeV reduce the tuning? NO!

Abuse of effective theories: finite (or log-div) corrections at A remain

Ex.: in SUSY quadratic divergences cancel, but  $\delta \mu_H^2 \approx \tilde{m}^2$ 

## HIERARCHY PROBLEM

#### 2 possibilities:

- 1.  $\Lambda >> v$
- B,L, flavour conservation follows naturally
- Mysterious separation of mass scales
- 2.  $\Lambda \approx v$  New theory
- No Λ<sup>2</sup> corrections to μ<sub>H</sub><sup>2</sup>
- Must preserve accidental symmetries
- Considered a central problem
- Attempts to go beyond SM concentrate on its solution
- Linked to an energy scale that will be probed experimentally
- Difficulty to keep fundamental scalar particle much lighter than the scale of validity of the theory

## **FERMION**

QED 
$$L = \overline{\psi} \Big[ \Big( i \partial^{\mu} - e A^{\mu} \Big) \gamma_{\mu} - m \Big] \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$



$$\delta m \approx \frac{\alpha}{4\pi} m \log \frac{\Lambda^2}{m^2}$$

- $\delta m$  proportional to m
- only log divergent

It can be "naturally" small (i.e. m<<Λ) [Setting it to zero enhances the symmetry of the theory. 't Hooft]

m is protected by a symmetry

Chiral symmetry  $\psi_L \to e^{i\alpha} \psi_L, \psi_R \to e^{i\beta} \psi_R, \alpha \neq \beta \Rightarrow m$  not invariant  $\delta m \propto$  "symmetry breaking"  $\approx m$  5

## **GAUGE BOSON**

Gauge symmetry  $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda$ 

forbids 
$$m^2 A_\mu A^\mu$$

### GOLDSTONE BOSON

 $L = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - V(\Phi^{\dagger} \Phi)$  invariant under  $\Phi \rightarrow e^{i\alpha} \Phi$ 

If 
$$\langle \Phi \rangle = v \Rightarrow \Phi = \rho e^{i\varphi/v} \Rightarrow L = \partial_{\mu}\rho \partial^{\mu}\rho + \frac{\rho^{2}}{v^{2}}\partial_{\mu}\varphi \partial^{\mu}\varphi + V(\rho)$$
  
 $\Rightarrow \varphi \text{ massless}$ 

U(1) transf. 
$$\Phi \to e^{i\alpha} \Phi \Rightarrow \rho \to \rho, \varphi \to \varphi + \alpha v$$
  
 $\varphi \to \varphi + \alpha v$  forbids  $m^2 \varphi^2$ 

What protects 
$$\mu_H^2$$
?

What protects 
$$\mu_H^2$$
?  $V(H) = -\mu_H^2 |H|^2 + \lambda |H|^4$ 

Setting  $\mu_H^2 = 0$  does not increase the symmetry

# Physical interpretation: For spin-1/2 and spin-1, mass is related to existence of new helicity states

A massless spin-1/2 fermion has one helicity state



If e- is massive, a new helicity state exists

Quantum corrections to mass are multiplicative

#### A massless photon has two helicity states



For a particle at rest, we cannot distinguish between transverse and longitudinal polarizations

A massive photon has three helicities

#### SYMMETRY: relate scalars to fermions & use chiral symmetry

E.g.: complex scalar A, Weyl fermion  $\psi$ , no mass term

$$L = \partial_{\mu} A^{+} \partial^{\mu} A + i \partial_{\mu} \overline{\psi} \, \overline{\sigma}^{\mu} \psi - \kappa \left( A^{+} A \right)^{2} - \left( h A \psi \psi + \text{h.c.} \right)$$

•  $\psi$  massless because of chiral symmetry  $\psi \rightarrow e^{i\alpha}\psi$ ,  $A \rightarrow e^{-2i\alpha}A$ 

• scalar A mass = 
$$(1)^{A} + --(1)^{-1} = \frac{\kappa}{16\pi^2} \Lambda^2 - \frac{h^2}{16\pi^2} \Lambda^2$$

$$m_A^2 = 0$$
 if  $\kappa = h^2$ 

- Symmetry is needed to insure  $m_A^2 = 0$  to all orders
- Symmetry has to relate bosons to fermions

## SUPERSYMMETRY

(A solution in search of a problem)

# **Supersymmetry**: invariance under exchange of particles with different spin ⇒ involves space-time

Symmetry generators anticommute (transform bosons into fermions) and have non-trivial relations with Poincaré

$$\begin{aligned} \left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} &= 2\sigma^{\mu}_{\alpha\dot{\alpha}} P_{\mu} & \left\{ Q_{\alpha}, Q_{\beta} \right\} &= \left\{ \overline{Q}_{\dot{\alpha}}, \overline{Q}_{\dot{\beta}} \right\} = 0 \\ \left[ P_{\mu}, Q_{\alpha} \right] &= \left[ P_{\mu}, \overline{Q}_{\dot{\alpha}} \right] &= 0 & \left[ P_{\mu}, P_{\nu} \right] &= 0 \end{aligned}$$

Susy ~  $\sqrt{\text{translation}}$  Another impossible square root?  $i = \sqrt{-1}$ 

To find representations of the algebra:

Superspace  $x^{\mu} \rightarrow \left(x^{\mu}, \theta_{\alpha}, \overline{\theta}_{\dot{\alpha}}\right)$   $\theta, \overline{\theta}$  anticommuting variables

Susy algebra becomes a Lie algebra with anticommuting variables 10

#### SUPERSYMMETRIC ACTION

$$\begin{array}{ll} \text{Chiral superfield} & \overline{D}_{\!\alpha}\Phi=0 \\ \text{Vector superfield} & V=V^{\scriptscriptstyle +} & W_{\!\alpha}=-\frac{1}{4}\overline{D}\overline{D}D_{\!\alpha}V \end{array}$$

$$\int d^4x \ d^4\theta \ \Phi^+ e^V \Phi \longrightarrow \text{Kinetic term for chiral superfield}$$

$$\int d^4x \ d^2\theta \ W_a W^a \longrightarrow \text{Kinetic term for vector superfield}$$

$$\int d^4x \ d^2\theta \ f(\Phi) \longrightarrow \text{Superpotential: holomorphic function that defines interactions}$$

E.g.:  

$$W = \lambda \Phi^{3} \Rightarrow L = -\lambda (\psi \psi A + \text{h.c.}) - \lambda^{2} (A^{+}A)^{2}$$
In general: no quadratic divergences in susy theory

In general: no quadratic divergences in susy theory

### MINIMAL SUPERSYMMETRIC SM

#### Choose:

gauge group  $SU(3)\times SU(2)\times U(1)$ 

matter representation 3 gen. of quarks and leptons

2 Higgs doublets

superpotential

$$f = Y_{\mu}QU^{c}H_{2} + Y_{d}QD^{c}H_{1} + Y_{e}LE^{c}H_{1} + \mu H_{1}H_{2}$$

#### SUPERSYMMETRY BREAKING

#### See K. Intriligator's lectures

#### Break susy, but keep UV behavior ⇒ soft breaking



$$m_{\tilde{t}}^2 \neq m_t^2 ~ o ~ \delta m_h^2 \propto (m_{\tilde{t}}^2 - m_t^2) \ln \Lambda$$
 Soft breaking

$$y_{\tilde{t}}^2 \neq y_t^2 \quad \rightarrow \quad \delta m_h^2 \propto (y_{\tilde{t}}^2 - y_t^2) \Lambda^2$$
 Hard breaking

#### EFFECTIVE-THEORY APPROACH

Couple susy theory to (spurion) background susy chiral superfield  $X = m_S \theta^2$ 

- Rules: Write renormalizable couplings to X
  - X has zero canonical dimension
  - $X^n = 0$ , for n > 1
  - $X^+$  cannot appear in  $\int d^2\theta$

$$\int d^2\theta \ X W_\alpha W^\alpha \stackrel{\textstyle X = m_S}{\rightarrow} \frac{\theta^2}{m_S \lambda \lambda} \qquad \text{gaugino mass}$$
 
$$\int d^4\theta \ X^+ X \Phi^+ e^V \Phi \rightarrow m_S^2 \varphi^+ \varphi \qquad \text{scalar mass}$$
 
$$\int d^4\theta \ X^+ \Phi^+ e^V \Phi \rightarrow m_S \varphi F_\varphi^* = -m_S \varphi \frac{\partial f}{\partial \varphi} \quad A \text{- term}$$
 
$$\int d^2\theta \ X f(\Phi) \rightarrow m_S f(\varphi) \qquad A \text{- term}$$

#### Recall:

$$W\left(x,\theta,\overline{\theta}\right) = -i\lambda(x) - \frac{i}{2}\sigma^{\mu}\overline{\sigma}^{\nu}\theta F_{\mu\nu} + \dots \quad \Phi\left(x,\theta,\overline{\theta}\right) = \varphi(x) + \sqrt{2}\theta\psi(x) + \dots$$

- Soft susy breaking introduces a dimensionful parameter m<sub>S</sub>
- Susy particles get masses of order m<sub>S</sub>
- Susy mass terms are gauge invariant
- Treat soft terms as independent; later derive them from theory
- Different schemes make predictions for patterns of soft telfns

$$\mu \text{ TERM}$$
  $f = \mu H_1 H_2$ 

- allowed by gauge and R symmetry
- necessary to break PQ and give mass to higgsinos

Naturalness problem: if  $\mu = O(\Lambda)$ , then Higgs mass  $O(\Lambda)$ 

SM: hierarchy problem from one-loop effects

SUSY: " tree level  $\Rightarrow \mu$  problem

Assume  $\mu = 0$  in susy theory (technically natural)

$$\int d^4 \theta \, X^+ H_1 H_2 \quad \rightarrow \quad \mu \approx m_S$$

$$\int d^4 \theta \, X X^+ H_1 H_2 \quad \rightarrow \quad B_\mu \approx m_S^2$$

To be tested in different schemes of susy breaking

#### R SYMMETRY

The symmetry generator [R,Q] = iQ  $[R,\overline{Q}] = -i\overline{Q}$ 

acts differently on different components of the supermultiplet

Kinetic terms are R-invariant; superpotential if R[f] = 2

Susy SM is R-invariant with  $R[H_1, H_2] = 1$ , R[Q, L] = 1/2

Soft terms break 
$$R$$
:  $R[A,B \text{ terms}] = R[f|_{\theta=0}] = 2$   
 $R[\text{gaugino mass}] = R[WW|_{\theta=0}] = 2$  17

#### Connection between R-symmetry and susy breaking

(see K. Intriligator's lectures)

R-symmetry is a necessary condition for susy breaking (for generic superpotentials)

Spontaneously-broken R-symmetry is a sufficient condition for susy breaking (if there are no non-compact flat directions in the classical potential)

Exact R-symmetry  $\Rightarrow$  no gaugino mass

Spont. broken R-symmetry  $\Rightarrow R$ -axion

In supergravity, cancellation of CC breaks R-symmetry

$$V \propto |F|^2 - \frac{3|f|^2}{M_P^2} \implies |f| \neq 0$$

#### Discrete subgroup (*R*-parity) survives after susy & EW breaking

$$\begin{split} \Phi\!\!\left(x,\!\theta,\!\overline{\theta}\right) &\mapsto Z_{\Phi} \Phi\!\!\left(x,\!-\theta,\!-\overline{\theta}\right) & V\!\!\left(x,\!\theta,\!\overline{\theta}\right) \mapsto V\!\!\left(x,\!-\theta,\!-\overline{\theta}\right) \\ \varphi\!\!\left(x\right) &\mapsto Z_{\Phi} \varphi\!\left(x\right) & \lambda\!\!\left(x\right) \mapsto -\lambda\!\!\left(x\right) \\ \psi\!\!\left(x\right) &\mapsto -Z_{\Phi} \psi\!\!\left(x\right) & V_{\mu}\!\!\left(x\right) \mapsto V_{\mu}\!\!\left(x\right) \\ F\!\!\left(x\right) &\mapsto Z_{\Phi} F\!\!\left(x\right) & D\!\!\left(x\right) \mapsto D\!\!\left(x\right) \end{split}$$

with 
$$Z_{\phi} = -$$
 for  $Q, U^c, D^c, L, E^c$  and  $Z_{\phi} = +$  for  $H_1, H_2$ 

R-parity = + for SM particles, R-parity = - for susy particles

- Important for phenomenology

   no tree-level virtual effects from susy
   susy particles only pair produced
   LSP stable (missing energy + dark matter)

#### R-parity does not follow from gauge & susy invariance

$$f = U^c D^c D^c + Q D^c L + L L E^c + H_2 L$$
 Violate B or L 
$$\tau_p = \frac{1}{\lambda^4} \bigg( \frac{m_S}{\text{TeV}} \bigg)^4 10^{\text{-10}} \text{ sec}$$

- Susy tree-level contributions: constraints from B, L, flavour, high-energy
- Special combinations are less constrained
- Small couplings can make LSP decay in cosmological times without collider effects
- R-parity could follow from gauge symmetry of underlying theory

#### **ELECTROWEAK SYMMETRY BREAKING**

#### Higgs potential

$$V = m_1^2 |H_1^0|^2 + m_2^2 |H_2^0|^2 - m_3^2 \left( H_1^0 H_2^0 + \text{h.c.} \right) + \frac{g_2^2 + g_Y^2}{8} \left( |H_1^0|^2 - |H_2^0|^2 \right)^2$$

- $m_{1,2,3}^2$  ~  $m_S^2$  determined by soft terms
- quartic fixed by supersymmetry
- Stability along  $H_1 = H_2 \implies m_1^2 + m_2^2 > 2 |m_3^2|$
- EW breaking, origin unstable  $\Rightarrow m_1^2 m_2^2 < m_3^4$

#### EW breaking induced by quantum corrections



- If  $\lambda_t$  large enough  $\Rightarrow SU(2) \times U(1)$  spontaneously broken
- If  $\alpha_s$  large enough  $\Rightarrow SU(3)$  unbroken
- Mass spectrum separation  $m_2^2$  < weak susy < strong susy

#### HIGGS SECTOR

8 degrees of freedom - 3 Goldstones = 5 degrees of freedom

2 scalars  $(h^0, H^0)$ , 1 pseudoscalar  $(A^0)$ , 1 charged  $(H^{\pm})$ 

3 parameters  $(m_{1,2,3}^2)$  –  $M_Z$  = 2 free parameters

$$\begin{pmatrix} H_u^0 \\ H_d^0 \end{pmatrix} = \begin{pmatrix} v_u \\ v_d \end{pmatrix} + \frac{1}{\sqrt{2}} R_\alpha \begin{pmatrix} h^0 \\ H^0 \end{pmatrix} + \frac{i}{\sqrt{2}} R_{\beta_0} \begin{pmatrix} G^0 \\ A^0 \end{pmatrix}$$

$$\begin{pmatrix} H_u^+ \\ H_d^{-*} \end{pmatrix} = R_{\beta_{\pm}} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix},$$

$$R_{\beta_0} = \begin{pmatrix} \sin \beta_0 & \cos \beta_0 \\ -\cos \beta_0 & \sin \beta_0 \end{pmatrix}, \qquad R_{\beta_{\pm}} = \begin{pmatrix} \sin \beta_{\pm} & \cos \beta_{\pm} \\ -\cos \beta_{\pm} & \sin \beta_{\pm} \end{pmatrix}$$

At tree level 
$$\beta_0 = \beta_{\pm} = \beta$$
 
$$\frac{\tan 2\alpha}{\tan 2\beta} = \left(\frac{m_{A^0}^2 + m_Z^2}{m_{A^0}^2 - m_Z^2}\right)$$

In the decoupling limit  $m_A >> m_Z$ ,  $h^0$  is the SM Higgs

#### Several interesting tree-level mass relations

$$\begin{split} m_h &\leq m_Z |\cos 2\beta|, \quad m_h < m_A < m_H, \quad m_{H^\pm}^2 = m_A^2 + m_W^2 \\ m_{h,H}^2 &= \frac{1}{2} \bigg[ m_A^2 + m_Z^2 \mp \sqrt{\left(m_A^2 - m_Z^2\right)^2 + 4 \sin^2 2\beta \, m_A^2 m_Z^2} \bigg] \end{split}$$

#### IMPORTANT RADIATIVE CORRECTIONS





Matching at 
$$m_{S:}$$
  $h = \cos \beta H_1 + \sin \beta H_2$   $V = \frac{\lambda}{4} h^4 + \frac{m^2}{2} h^2$ 

$$\lambda(m_S) = \frac{g^2 + g'^2}{8} \cos^2 2\beta \quad m^2 = -\cos 2\beta \cos^2 \beta \left(m_2^2 \tan^2 \beta - m_1^2\right)$$

$$\langle h \rangle \equiv v = \sqrt{\frac{-m^2}{\lambda}}$$
  $m_h^2 = \lambda v^2 \implies m_h = |\cos 2\beta| m_Z$ 

$$\delta \lambda = \frac{3\lambda_t^4}{4\pi^2} X_t \qquad X_t = \frac{2(A_t - \mu \cot \beta)^2}{\tilde{m}_{t_1} \tilde{m}_{t_2}} \left[ 1 - \frac{(A_t - \mu \cot \beta)^2}{12\tilde{m}_{t_1} \tilde{m}_{t_2}} \right]$$

## Running the SM RG equation for λ

Fermi 5F SM susy
$$m_h m_t m_s$$

$$t_s = \ln \frac{\tilde{m}_{t_1} \tilde{m}_{t_2}}{m_s^2}$$

$$m_h^2 = m_Z^2 \cos^2 2\beta \left(1 - \frac{3\sqrt{2}}{4\pi^2} G_F m_t^2 t_S\right) +$$

$$\frac{3\sqrt{2}}{2\pi^2}G_F m_t^4 \left\{ \frac{X_t}{2} + t_S + \frac{1}{16\pi^2} \left[ 3\sqrt{2}G_F m_t^2 - 32\pi\alpha_S \right] (X_t + t_S) t_S \right\}$$

#### Important effect because:

- 1) small tree-level  $m_h$ ,
- 2) large  $\lambda_t$ ,
- 3) heavy susy particles
- 4) large loop factor

$$m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{2\pi^2} \lambda_t^4 v^2 \ln \frac{\tilde{m}_t}{m_t}$$



## LEP gives indications for a light Higgs



Preferred value  $m_H = 76^{+33}_{-24}\,\mathrm{GeV}$  (68% CL) Upper limit  $m_H < 144\,\mathrm{GeV}$  (95% CL) including direct limit of 114 GeV :  $m_H < 182\,\mathrm{GeV}$  (95% CL)



#### The decrease in $m_t$ has worsen the SM fit

LEP/SLD/ $m_w/\Gamma_w$ :  $m_t = 178.9^{+11.7}_{-8.6} \text{ GeV}$ 

CDF/DØ:  $m_t = 170.9 \pm 1.8 \,\text{GeV}$ 

## The two best measurements of $sin^2\theta_W$ do not agree

$$A_{fb}^{0,b} \implies m_H = (230 - 800) \text{GeV}$$

$$A_{\ell}(SLD) \Rightarrow m_H = (13 - 65) \text{GeV}$$

# This makes the argument for a light Higgs less compelling



#### LEP LIMITS





# PRODUCTION AT THE LHC



"The Higgs sector is a reincarnation of the Communist Party: it controls the masses"

Stalin







- Test different production and decay channels to verify that Higgs couplings are proportional to mass (5-15% errors can be reached)
- Test variations of Higgs mechanism with several fields



$$m_H = 120 \text{ GeV}$$
  
L = 300 fb<sup>-1</sup>

#### $m_S$ is the seed of ew breaking

EW breaking is related to susy breaking,  $m_S \Rightarrow m_Z$ 

$$\delta m_2^2 = -\frac{3\lambda_t^2}{8\pi^2} \int_{-\infty}^{\Lambda^2} \frac{k^2 dk^2}{k^2 + m_t^2} + \frac{3\lambda_t^2}{8\pi^2} \int_{-\infty}^{\Lambda^2} \frac{k^2 dk^2}{k^2 + m_t^2 + m_s^2} = -\frac{3\lambda_t^2}{4\pi^2} m_s^2 \ln \frac{\Lambda}{m_s}$$

- $m_S$  plays the role of  $\Lambda^2$  cutoff
- The quantum correction is negative and drives EW breaking

Minimum of the potential

$$m_Z^2 = \frac{2(m_1^2 - m_2^2 \tan^2 \beta)}{\tan^2 \beta - 1} \approx -2m_2^2$$

$$\left|2\,\delta m_2^2\right| < \frac{m_Z^2}{\Delta} \quad \Rightarrow \quad \tilde{m}_t < 300 \; \mathrm{GeV}\left(\frac{10\%}{\Delta}\right)^{1/2}$$

$$m_h^2 \approx m_Z^2 + \frac{3}{2\pi^2}\,\lambda_t^4 v^2 \ln\frac{\tilde{m}_t}{m_t} > 114 \; \mathrm{GeV} \quad \Rightarrow \quad \tilde{m}_t > 1 \; \mathrm{TeV}\right\} \; \text{Tension}$$
with data



"Natural" supersymmetry has already been ruled out

#### To know what is "natural" we need to know the underlying probability of parameter distribution

Some schemes could improve the situation (mirage mediation?)



- scalar contribution makes it smaller
- large  $A_t / \widetilde{m_t}$  requires special choice of  $A_t (M_{GUT})$

#### Characterizing the tuning as a "criticality" condition



Why is nature so close to the critical line?

- Exact susy (and μ=0) ⇒ critical line
- Dynamical susy breaking  $M_S \sim M_P e^{-1/\alpha} \Rightarrow$  small departure from critical line stabilization of flat direction  $IH_1I=IH_2I$
- ⇒ "natural" supersymmetry with M<sub>S</sub> ~M<sub>Z</sub>



Why supersymmetry should prefer to be near critical?

# Connection susy breaking ⇔ EW breaking at the basis of low-energy supersymmetry

- Susy particle content dynamically determines EW breaking pattern
- Higgs interpreted as fundamental state, like Q and L
- Higgs mass determined by susy properties and spectrum

### After LEP, "natural" susy is ruled out

- Source of "mild" tuning (is it observable at LHC?)
- Missing principle?

#### THEORY OF SOFT TERMS

- Explain origin of supersymmetry breaking
- Compute soft terms

#### Similar to EW breaking problem

Origin of EW breaking ⇒

$$V(H) = -m_H^2 |H|^2 + \lambda |H|^4$$

• Compute EW breaking effects  $\Rightarrow L = D_{\mu}H^{+}D^{\mu}H - \lambda H\overline{\psi}\psi$ 

Gauge boson mass





### Invent a new sector which breaks supersymmetry (ask K. Intriligator)

- Small mass (weak scale) stable against quantum corrections
- Even better: if susy unbroken at tree-level, it remains unbroken to all orders in perturbation theory
- Non-perturbative effects can break susy with  $m_S \sim e^{-1/\alpha} M_P$

Couple the breaking sector to the SM superfields

STr  $M^2 = \sum_{i} (-1)^{2J} (2J + 1) M_J^2 = 0$ at tree level, with But canonical kinetic terms

sparticle < particle

What force mediates susy-breaking effects? 39

#### GRAVITY AS MEDIATOR

#### Gravity couples to all forms of energy

Assume no force stronger than gravity couples the two sectors

Susy breaking in hidden sector parametrized by X with  $\langle F_{\chi} \rangle \neq 0$ 

$$\frac{1}{M_P} \int d^2\theta \, X W_\alpha W^\alpha \quad \rightarrow \quad m_S \lambda \lambda \quad \text{gaugino mass}$$

$$\frac{1}{M_P^2} \int d^4\theta \, X^+ X \Phi^+ e^V \Phi \quad \rightarrow \quad m_S^2 \varphi^+ \varphi \quad \text{scalar mass}$$

$$\frac{1}{M_P} \int d^4\theta \, X^+ \Phi^+ e^V \Phi \quad \rightarrow \quad m_S \varphi \, F_\varphi^* = -m_S \varphi \, \frac{\partial f}{\partial \varphi} \quad A - \text{term}$$

$$\frac{1}{M_P} \int d^2\theta \, X \, f(\Phi) \quad \rightarrow \quad m_S f(\varphi) \quad A - \text{term} \quad m_S = \text{TeV} \Rightarrow$$

$$\frac{1}{M_P} \int d^4\theta \, X^+ H_1 H_2 \quad \rightarrow \quad m_S \int d^2\theta \, H_1 H_2 \quad \mu \text{ term}$$

$$\frac{1}{M_P^2} \int d^4\theta \, X X^+ H_1 H_2 \quad \rightarrow \quad m_S^2 H_1 H_2 \quad \mu \text{ term}$$

$$\frac{1}{M_P^2} \int d^4\theta \, X X^+ H_1 H_2 \quad \rightarrow \quad m_S^2 H_1 H_2 \quad B_\mu - \text{term}$$

#### ATTRACTIVE SCENARIO

- Gravity a feature of local supersymmetry
- Gravity plays a role in EW physics
- No need to introduce ad hoc interactions
- Justification for  $\mu \approx m_S$

#### BUT

- Lack of predictivity (10<sup>2</sup> parameters)
- Flavour problem

#### FLAVOUR PROBLEM

SM, Yukawa =0 
$$\Rightarrow$$
  $L = \overline{\psi}i\gamma^{\mu}D_{\mu}\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ 

invariant under global  $SU(3)^5$  3 generations 5 species  $(q_L, u_R, d_R, l_L, e_R)$ 

broken by  $\lambda_a$  (a=e,u,d) 3×3 matrices which generate

$$\overline{q}_L \lambda_u u_R H^* + \overline{q}_L \lambda_d d_R H + \overline{l}_L \lambda_e e_R H$$

The violation is special

- no FCNC at tree level  $\overline{\psi}\gamma^{\mu}\psi A_{\mu} \rightarrow \overline{\psi}U^{\dagger}\gamma^{\mu}U\psi A_{\mu}$
- suppressed by GIM: FCNC = loop  $\times$  CKM  $\times \Delta m_a^2$

Ex.: 
$$\frac{\Delta m_K}{m_K} \approx \frac{g^2}{16\pi^2} G_F f_K^2 \sin^2 \theta_c \frac{m_c^2}{m_W^2} \approx 7 \times 10^{-15}$$

individual L conserved (or m<sub>v</sub> suppressed)

## These features are generally not preserved in BSM, as soon as new sources of SU(3)<sup>5</sup> breaking are present

$$\begin{split} \tilde{m}_{i}^{2} & 1+8 \text{ of } SU(3)_{i} \\ A_{a} & \left(3,\overline{3}\right) \text{ of } SU(3)_{L} \times SU(3)_{R} \\ \overline{q} & \overline{q} \, \overline{q} \, \overline{g} \to \overline{q} \, \underline{U}^{+} \, \underline{\tilde{U}} \, \overline{q} \, \overline{g} \\ \overline{q} & \overline{g} & \overline{q} \, \overline{q} \, \overline{g} & \overline{q} \, \underline{u}^{+} \, \underline{\tilde{U}} \, \overline{q} \, \overline{g} \\ \underline{q} & \underline{q} \, \underline{q} \, \underline{g} \to \overline{q} \, \underline{u}^{+} \, \underline{\tilde{U}} \, \overline{q} \, \underline{g} \\ \underline{q} & \underline{q} \, \underline{q} \, \underline{g} \to \overline{q} \, \underline{u}^{+} \, \underline{\tilde{U}} \,$$

#### INDIVIDUAL LEPTON NUMBER



MEG at PSI will reach 10<sup>-13</sup> with 2 years of 10<sup>7</sup>/sec muon beam and eventually 10<sup>-14</sup> with 10<sup>8</sup>/sec

#### CP PROBLEM

- The flavour structure of soft terms include many new phases
- From  $\epsilon_K$  most stringent limits on flavour structure
- CP violation present even in the absence of a flavour structure

Consider 
$$N_g = 1$$
 (or universality)
$$L = (\lambda_e H_d L E + \mu H_u H_d)_F + g \lambda f \tilde{f}^* + M \lambda \lambda + \tilde{m}^2 |\tilde{f}|^2 + (A \lambda_e H_d L E + B \mu H_u H_d)_S$$

- Superfield rotation to make superpotential parameters real (g in gaugino interactions remains real)
- R rotation to make M real ⇒ phases in A and B cannot be removed

### Contribution to CP-violating observables

$$\begin{split} L &= \theta \frac{\alpha_s}{8\pi} G \tilde{G} + \frac{c_g}{3} f^{abc} G^a \tilde{G}^b G^c \\ &- \frac{i}{2} d_f \bar{f} F^{\mu\nu} \sigma_{\mu\nu} \gamma_5 f - \frac{i}{2} \tilde{d}_q \bar{q} G^{\mu\nu} \sigma_{\mu\nu} \gamma_5 q \end{split}$$



In basis  $\theta = 0$  electron EDM  $d_{e}$ 

neutron EDM 
$$d_n \approx 2d_d - 0.5d_u + e\left(0.4\tilde{d}_d - 0.1\tilde{d}_u + 0.3\text{GeV}c_g\right)$$

$$|d_e| < 2 \times 10^{-27} \text{ ecm}$$
  $d_e \approx \left(\frac{300 \text{ GeV}}{m_S}\right)^2 \sin \phi \times 10^{-25} \text{ ecm}$   $\Rightarrow \sin \phi < 10^{-2}$ 

$$|d_n| < 3 \times 10^{-26} \text{ ecm}$$
  $d_n \approx \left(\frac{300 \text{ GeV}}{m_S}\right)^2 \sin \phi \times 10^{-24} \text{ ecm}$ 

Future: DeMille et al. (Yale) 10<sup>-29</sup> ecm in 3 years and 10<sup>-31</sup> ecm in 5 years.

Lamoreaux et al. (Los Alamos): 10<sup>-31</sup> ecm and eventually 10<sup>-35</sup> ecm.

Results from Hinds et al. (Sussex) and Semertzidis et al. (Brookhaven) plans to improve by 10<sup>5</sup> sensitivity on μ EDM

### Special flavour structures of soft terms are needed

UNIVERSALITY:  $\tilde{m}_i^2 \propto 1$   $A_a \propto \lambda_a$ 

Particular case of MFV: Yukawa only spurion breaking SU(3)5

ALIGNMENT: small mixing angles in squark/slepton sector, although no small mass splitting

These structures are not stable under radiative corrections

Ex.:  $f = h_{ij}Q_iQ_jY$  heavy field with mass  $\Lambda_F$  light fields

$$\frac{\Delta \tilde{m}_{Q_iQ_j}^2}{Q_j} \propto \frac{h_{ik}h_{jk}^*}{16\pi^2} \ln \frac{M_P}{\Lambda_F} \quad \text{effect does not decouple} \\ \quad \bullet \quad \text{sensitive to high-energy physics}$$

#### In gravity mediation, flavour symmetries are necessary:

Why violations are present in Yukawa and not in soft terms? Soft terms: 15 masses, 42 mixing angles, 40 phases Most "sugra" or "CMSSM" analyses use:  $m_0$ , M,  $\mu$ ,  $A_0$ : why? Is there a dynamical explanation for MFV?

## Coloured particles have large cross sections at the LHC



1 month (low lum): 1  $fb^{-1}$ ;  $M_q \sim 1-1.5 \text{ TeV}$ 

1 year (low lum): 10 fb<sup>-1</sup>;  $M_q \sim 1.5$ -2 TeV

1 year (high lum): 100  $fb^{-1}$ ;  $M_g \sim 2-2.5 \text{ TeV}$ 

9.21 year (high lum): 300 fb<sup>-1</sup>;  $M_g \sim 2.5-3$  TeV

Clear signal:  $\sigma(\text{TeV }\tilde{g}) \approx \text{pb}$ 

LHC with 100 fb<sup>-1</sup> ⇒ 10<sup>4</sup> € / gluino



Figure 9. Dilepton kinematic edge in  $\tilde{\chi}_2^0$  decay (Atlas TDR).

#### **EXAMPLE:**

 $\tilde{\mu} \rightarrow \chi^0 \mu$  at linear collider Max and Min of  $E_u$  for forward and backward emission

$$\begin{split} \tilde{\mu} &= \left(E_{beam}, \sqrt{E_{beam}^2 - \tilde{m}_{\mu}^2}\right) \\ \chi^0 &= \left(E_{beam} - E_{\mu}, \mp \sqrt{\left(E_{beam} - E_{\mu}\right)^2 - \tilde{m}_{\chi}^2}\right) \\ \mu &= \left(E_{\mu}, \sqrt{E_{beam}^2 - \tilde{m}_{\mu}^2} \pm \sqrt{\left(E_{beam} - E_{\mu}\right)^2 - \tilde{m}_{\chi}^2}\right) \end{split}$$

$$E_{\mu}^{\text{max/min}} = \frac{E_{beam}}{2} \left( 1 - \frac{\tilde{m}_{\chi}^2}{\tilde{m}_{\mu}^2} \right) \left( 1 \pm \sqrt{1 - \frac{\tilde{m}_{\mu}^2}{E_{beam}^2}} \right)$$

 $\mu$  on mass shell



#### **GAUGE MEDIATION**

Soft terms are generated by quantum effects at a scale  $M \ll M_P$ 



- If  $M << \Lambda_F$ , Yukawa is the only effective source of flavour breaking (MFV); flavour physics is decoupled (unlike sugra or technicolour)
- · Soft terms are computable and theory is highly predictive
- Free from unknowns related to quantum gravity

#### BUILDING BLOCKS OF GAUGE MEDIATION



SUSY SM: observable sector with SM supermultiplets

SUSY: "hidden" sector with  $\langle X \rangle = M + \theta^2 F$ 

Messengers: gauge charged, heavy (real rep), preserve gauge unification (complete GUT multiplet)

#### Ex.:

$$\Phi + \overline{\Phi} = 5 + \overline{5} \text{ of } SU(5) \text{ with } f = X\Phi\overline{\Phi}, \quad V = M^2(|\varphi|^2 + |\overline{\varphi}|^2) + F(\varphi\overline{\varphi} + \text{h.c.})$$

Parameters: M, F, N (twice Dynkin index; N=1 for 5+5) 54

# COMPUTING THE SOFT TERMS

Gaugino mass: one loop







Scalar masses: two loops







Exploit properties of supersymmetry





Calculate in exact susy and then  $M \rightarrow X = M + \theta^2 F$  to extract susy breaking effects (promote couplings to superfields)

Gauge kinetic term  $L = \int d^2\theta SW^{\alpha}W_{\alpha} + h.c.$ 

S holomorphic chiral superfield such as  $\operatorname{Re} S|_{\theta=0} = \frac{1}{4\alpha^2}$ 

$$|\operatorname{Re} S|_{\theta=0} = \frac{1}{4g^2}$$

Gaugino mass 
$$M_{\tilde{g}}(Q) = -\frac{1}{2} \frac{\partial \ln S(X,Q)}{\partial \ln X} \bigg|_{X=M} \frac{F}{M}$$

$$\frac{d}{d \ln O} \frac{1}{g^2} = \frac{b}{8\pi^2} \quad \text{with } b = 3N_C - N_f \text{ in } SU(N_C) \text{ with } N_f \text{ flavours}$$

Choose 
$$\Lambda > M > Q$$
 Re $S(M,Q) = \frac{1}{4g^2(Q)} = \frac{1}{4g^2(\Lambda)} + \frac{b'}{32\pi^2} \ln \frac{|M|}{\Lambda} + \frac{b}{32\pi^2} \ln \frac{Q}{|M|}$ 

$$\Rightarrow S(X,Q) = S(\Lambda) + \frac{b'}{32\pi^2} \ln \frac{X}{\Lambda} + \frac{b}{32\pi^2} \ln \frac{Q}{X}$$

Taking derivatives

$$M_{\tilde{g}}(Q) = \frac{g^2(Q)}{16\pi^2} N \frac{F}{M}$$

Gaugino mass given by the discontinuity of the β-function 56

#### Consider the matter Lagrangian

$$\begin{split} L &= \int d^4\theta \, Z \big( X, X^+ \big) Q^+ Q + \Big[ \int d^2\theta \, f \big( Q \big) + \text{h.c.} \Big] \qquad \text{Expand in } \theta \\ L &= \int d^4\theta \left( Z + \frac{\partial Z}{\partial X} F \theta^2 + \frac{\partial Z}{\partial X^+} F^+ \overline{\theta}^2 + \frac{\partial^2 Z}{\partial X \partial X^+} F F^+ \theta^2 \overline{\theta}^2 \right) \bigg|_{X=M} Q^+ Q + \Big[ \int d^2\theta \, f \big( Q \big) + \text{h.c.} \Big] \\ \text{Redefine } Q' &= Z^{1/2} \bigg( 1 + \frac{\partial \ln Z}{\partial X} F \theta^2 \bigg) \bigg|_{X=M} Q \\ L &= \int d^4\theta \left( 1 + \frac{\partial^2 \ln Z}{\partial X \partial X^+} F F^+ \theta^2 \overline{\theta}^2 \right) \bigg|_{X=M} Q'^+ Q' + \left[ \int d^2\theta \left( f \big( Q' \big) - \frac{\partial f}{\partial Q'} \frac{\partial \ln Z}{\partial X} \bigg|_{X=M} F \theta^2 \right) + \text{h.c.} \right] \\ \widetilde{m}_Q^2(Q) &= -\frac{\partial^2 \ln Z \big( X, X^+, Q \big)}{\partial \ln X \partial \ln X^+} \bigg|_{X=M} \frac{F F^+}{M M^+} \\ &= A(Q) = \frac{\partial \ln Z \big( X, X^+, Q \big)}{\partial \ln X} \bigg|_{X=M} \frac{F}{M} \end{split}$$

#### The equation for the wave-function renormalization is

$$\frac{d}{d \ln Q} \ln Z = \frac{c g^2}{4\pi} \qquad c = \frac{n^2 - 1}{2n} \text{ for fundamental of } SU(n)$$

$$Z(X,X^+,Q) = Z(\Lambda) \left[ \frac{g^2(\Lambda)}{g^2(X)} \right]^{2c/b'} \left[ \frac{g^2(X)}{g^2(Q)} \right]^{2c/b}$$

$$\frac{1}{g^{2}(Q)} = \frac{1}{g^{2}(\Lambda)} + \frac{b'}{16\pi^{2}} \ln \frac{XX^{+}}{\Lambda^{2}} + \frac{b}{16\pi^{2}} \ln \frac{Q^{2}}{XX^{+}}$$

Taking derivatives at Q = M

$$\tilde{m}_{Q}^{2}(M) = 2c \frac{g^{4}}{\left(16\pi^{2}\right)^{2}} N \frac{F^{2}}{M^{2}}$$

$$A(M) = 0$$

Soft terms are given by discontinuities of  $\beta$  and  $\gamma$  functions at the messenger scale

### In general

$$\begin{split} M_{\tilde{g}} &= \frac{\Delta \beta_g}{2} \frac{F}{M} & \beta_\lambda \equiv \frac{d\lambda^2}{d \ln Q} \\ A_\alpha &= \frac{\Delta \gamma_\alpha}{2} \frac{F}{M} & \gamma_\alpha \equiv \frac{d \ln Z}{d \ln Q} \\ \tilde{m}_\alpha^2 &= \frac{1}{4} \sum_i \left[ \Delta \beta_i \frac{\partial \gamma_\alpha^{(-)}}{\partial \lambda_i^2} - \beta_i^{(+)} \frac{\partial \Delta \gamma_\alpha}{\partial \lambda_i^2} \right] \frac{F^2}{M^2} \\ \text{In our case: } \Delta \beta_g &= \frac{N g_i^4}{8 \pi^2}, \quad \gamma_\mathcal{Q} = \frac{c_i g_i^2}{4 \pi^2} \end{split}$$

### Gaugino mass at one loop, scalar masses at two loops:

$$m_S \approx \frac{g^2}{16\pi^2} \frac{F}{M}$$

 $F/M \sim 10\text{-}100 \text{ TeV}$ , but M arbitrary

To dominate gravity and have no flavour problem

$$\frac{F}{M_P} < 10^{-2} \frac{g^2}{16\pi^2} \frac{F}{M} \implies M < 10^{15} \text{ GeV}$$

From stability:  $F^{1/2} < M$ 

From perturbativity up to the GUT scale:  $N < 150/\ln \frac{M_{GUT}}{M}$ 



- Theory is very predictive
- Gaugino masses are "GUT-related", although they are not extrapolated to M<sub>GUT</sub>
- Gaugino/scalar mass scales like N<sup>1/2</sup>
- Large squark/slepton mass ratio and small A do not help with tuning



### Higgs mass is the strongest constraint: stop masses at several TeV

## HOW IS μ GENERATED?

## Messenger interactions do not violate PQ We need new couplings

$$f = \lambda X H_1 H_2$$

Tuning  $\lambda$  to be one-loop is not sufficient

$$\begin{split} \mu = \lambda M, \qquad B_{\mu} = \lambda F \quad \Rightarrow \quad \frac{B_{\mu}}{\mu} = \frac{F}{M} \approx 10 - 100 \text{ TeV} \\ f = H_1 \Phi_1 \Phi_2 + H_2 \overline{\Phi}_1 \overline{\Phi}_2 \\ \text{at one loop} \quad \frac{1}{16\pi^2} \int d^4 \theta H_1 H_2 \frac{X^+}{X} + \text{h.c.} \quad \Rightarrow \quad \frac{B_{\mu}}{\mu} = \frac{F}{M} \end{split}$$

- In theories with a single scale, the relation  $\frac{B_{\mu}}{\mu} = \frac{F}{M}$  is OK
- It is problematic, when soft terms are computed as loop factors times F/M

#### Alternative solutions

Generate 
$$\mu$$
 from  $\int d^4\theta H_u H_d D^2 f(X,X^+)$ 

Antichiral: does not generate  $B_u$ 

New singlet superfield with 
$$f = \lambda N H_u H_d - \frac{k}{3} N^3$$
  
 $< N > = \mu, < F_N > = B_u$ 

Scalar potential for 
$$v = 0$$
:  $V = k^2 |N|^4 - \left(\frac{k}{3}A_k N^3 + \text{h.c.}\right) + \tilde{m}_N^2 |N|^2$ 

Non-trivial vacuum triggered by  $m_N^2$  or  $A_k$ 

In gauge mediation  $m_N^2 = A_k = 0$  at messenger scale

Mass spectrum is unacceptable

#### Direct coupling of the singlet to the messenger sector

$$f = X(\overline{\Phi}_1 \Phi_1 + \overline{\Phi}_2 \Phi_2) + N \overline{\Phi}_1 \Phi_2$$

Doubling of messengers necessary to avoid kinetic mixing  $NX^+$ This can generate negative  $m_N^2$  and large  $A_k$ 

Singlet is sometimes introduced in gravity-mediation (although there is no μ problem)

New Higgs quartic coupling  $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta - ...$ 

Perturbativity up to  $M_{GUT}$  requires  $\lambda(m_S)$  < 0.5; new contribution at small tan $\beta$  smaller than old at large tan $\beta$ 

#### Crucial difference between gauge and gravity mediation

$$m_{3/2} = \frac{F}{\sqrt{3}M_P} \Rightarrow \text{ in gravity } m_{3/2} \approx m_S, \text{ in gauge } m_{3/2} \approx \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^2 2 \text{ eV}$$

In gauge mediation, the gravitino is always the LSP

$$\frac{\mathbf{q}}{\widetilde{\mathbf{q}}} = -\frac{1}{F} J_{\varrho}^{\mu} \partial_{\mu} \widetilde{G} = -\frac{1}{F} \left( \widetilde{m}_{\varphi}^{2} \overline{\psi}_{L} \varphi + \frac{M_{\tilde{g}}}{4 \sqrt{2}} \overline{\lambda}^{a} \sigma^{\mu \nu} F_{\mu \nu}^{a} \right) \widetilde{G} + \text{h.c.}$$
 
$$\frac{\Delta \widetilde{m}^{2}}{F} \quad \text{on mass shell}$$

Goldberger-Treimanino relation

NLSP decays travelling an average distance

$$\ell \approx \left(\frac{100 \text{ GeV}}{m_{NLSP}}\right)^5 \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^4 \sqrt{\frac{E^2}{m_{NLSP}^2}} - 1 \quad 0.1 \text{ mm}$$

From microscopic to astronomical distances

 $\chi^0$  or  $\tau_R$  are the NLSP (NLSP can be charged)

In gravity-mediation, "missing energy" is the signature



Intermediate region very interesting (vertex displacement; direct measurement of *F*)

#### ANOMALY MEDIATION

- Supergravity mediation effects depend on higherdimensional couplings of hidden-visible sector
- There is an "unavoidable" effect ⇒ anomaly mediation
- In many cases it is subleading. In some cases it can become the dominant effect

Consider coupling to gravity in superconformal formalism with the conformal compensator chiral superfield

$$\Phi = 1 - m_{3/2}\theta^2$$

Its couplings are dictated by conformal invariance

$$L = \int d^4\theta \Phi^+ \Phi Q^+ e^V Q + \int d^2\theta \Biggl( \Phi^3 f(Q) + \frac{1}{g^2} W^\alpha W_\alpha + \text{h.c.} \Biggr)$$

- One can construct allowed couplings by considering all visible fields with d = R = 0 and  $\Phi$  with  $d_{\Phi} = 1$ ,  $R_{\Phi} = 2/3$
- By rescaling  $Q \to Q/\Phi$ , we can eliminate  $\Phi$ , if  $f(Q) \sim Q^3$  has no dimensionful couplings (it is the case of interest because  $\mu$  has to come from susy breaking)
- Classically, but not quantum mechanically! (Scale anomaly)

$$L = \int d^4\theta Z \left(\frac{\mu}{|\Phi|}\right) Q^+ e^V Q + \int d^2\theta \left[f(Q) + S\left(\frac{\mu}{\Phi}\right) W^\alpha W_\alpha\right] + \text{h.c.}$$

Can depend on both  $\Phi$  and  $\Phi^+$ , but R-symmetry implies dependence only on  $\Phi\Phi^+$ 

Holography implies dependence only on  $\Phi$ 

$$\begin{split} M_{\lambda} &= -\frac{1}{2} \left. \frac{\partial \ln S}{\partial \ln \Phi} \right|_{0} F_{\Phi} \\ m_{\tilde{Q}}^{2} &= -\frac{\partial^{2} \ln Z_{Q}}{\partial \ln \Phi \partial \ln \Phi^{\dagger}} \right|_{0} F_{\Phi}^{\dagger} F_{\Phi} \\ A_{Q_{i}} &= \left. \frac{\partial \ln Z_{Q_{i}}}{\partial \ln \Phi} \right|_{0} F_{\Phi}. \\ M_{\lambda} &= -\frac{g^{2}}{2} \frac{dg^{-2}}{d \ln \mu} m_{3/2} = \frac{\beta_{g}}{g} m_{3/2} \\ m_{\tilde{Q}}^{2} &= -\frac{1}{4} \frac{d^{2} \ln Z_{Q}}{d (\ln \mu)^{2}} m_{3/2}^{2} = -\frac{1}{4} \left( \frac{\partial \gamma}{\partial g} \beta_{g} + \frac{\partial \gamma}{\partial y} \beta_{y} \right) m_{3/2}^{2} \\ A_{y} &= \frac{1}{2} \sum_{i} \frac{d \ln Z_{Q_{i}}}{d \ln \mu} m_{3/2} = -\frac{\beta_{y}}{y} m_{3/2}. \end{split}$$

- Form valid to all orders in perturbation theory
- Gaugino mass and trilinear at one loop, scalar mass square at two loops
- Gravitino is heavy,  $m_{3/2} \sim 10\text{-}100 \text{ TeV}$
- Form of soft terms invariant under RG transformations
- β function and threshold effects of heavy states exactly compensate



#### Consider heavy fields in vector-like irrep of gauge group

$$L = \int d^2\theta M \Phi \overline{R} R + \text{h.c.}$$

 $\Phi$  appears to compensate for conformal breaking of M

Because of gravity, R acts like a messenger with  $F/M = -m_{3/2}$ 

This gives gaugino mass contribution  $\delta M_{\tilde{g}} = -\frac{\Delta \beta_g}{g} m_{3/2}$ 

Above 
$$M \Rightarrow M_{\tilde{g}}^{(+)} = \frac{\beta_g^{(+)}}{g} m_{3/2}$$

Below 
$$M \implies M_{\tilde{g}}^{(-)} = M_{\tilde{g}}^{(+)} + \delta M_{\tilde{g}} = \frac{\beta_g^{(-)}}{g} m_{3/2}$$

Gaugino mass remains on its anomaly-mediation RG trajectory

- Predictive power: all soft terms determined by low-energy parameters (up to overall scale  $m_{3/2}$ )
- · UV insensitivity: solution to the flavour problem



# Is anomaly-mediation a dominant source of susy breaking?

No gauge singlet in hidden sector:  $\int d^2\theta \frac{X}{M_{Pl}}WW$  does not exist gaugino mass only  $M_S^3/M_P^2 \sim \text{keV}$ 

Extra dimensional separation of hidden and visible sector  $L(M_P) = \frac{1}{M_P^{n-2}} Q^+ Q O_{hid}$ 

Conformal sequestering

$$L(M_P) = \frac{1}{M_P^{n-2}} Q^+ Q O_{hid}$$

$$L(\mu) = \left(\frac{\mu}{M_P}\right)^{\gamma} \frac{1}{M_P^{n-2}} Q^+ Q O_{hid}$$

n and  $\gamma$  canonical and anomalous dimensions of  $O_{hid}$ Unfortunately sleptons have negative square masses

Neglecting Yukawas 
$$\frac{\partial \gamma}{\partial g} > 0 \Rightarrow \tilde{m}_{\varrho}^2 \propto -\beta_g$$
 Both  $SU(2)$  and  $U(1)$  are not asymptotically free

Extra contributions?  $\left\{\begin{array}{ll} \bullet \text{ universal scalar term } m_0^2 \\ \bullet \text{ deflection from RG trajectory} \end{array}\right.$ 

# Previous example suggests a solution

With a new gauge-mediation contribution  $F/M \neq m_{3/2}$ , we deflect the anomaly-mediation RG trajectory

We want  $F/M \sim m_{3/2}$ , or else  $\begin{cases} \text{irrelevant contribution} \\ \text{gauge mediation} \end{cases}$ 

Ex. 
$$\int d^2\theta \left[ SR\overline{R} + \frac{S^n}{\left( M\Phi \right)^{n-3}} \right]$$

The potential is 
$$V = M^4 \left\{ n^2 \left| \frac{S}{M} \right|^{2(n-1)} + \left[ (n-3) \left( \frac{S}{M} \right)^n \frac{F_{\Phi}}{M} + \text{h.c.} \right] \right\}$$

The minimum is 
$$\left(\frac{\left\langle S\right\rangle}{M}\right)^{n-2} = \frac{n-3}{n(n-1)}\frac{\left\langle F_{\Phi}\right\rangle}{M}$$
. Therefore  $\frac{\left\langle F_{S}\right\rangle}{\left\langle S\right\rangle} = nM\left(\frac{S}{M}\right)^{n} = \frac{n-3}{n-1}\left\langle F_{\Phi}\right\rangle$ 

For 
$$n>3$$
 and  $M>>\langle F_\Phi\rangle$ , we find  $\langle F_\Phi\rangle <<\langle S\rangle << M$  and  $\langle F_S\rangle/\langle S\rangle \approx \langle F_\Phi\rangle = -m_{3/2}$ 

This gives the desired effect and the spectrum is modified

# Characteristic features of anomaly mediation

With gaugino unification 
$$\frac{M_2}{M_1} \approx 2 \quad \frac{M_3}{M_1} \approx 7$$

In anomaly mediation 
$$\frac{M_1}{M_2} \approx 3 \quad \frac{M_3}{M_2} \approx 7$$

# LSP nearly degenerate W-ino

$$m_{\chi^*} - m_{\chi^0} \approx \frac{\alpha M_W}{2(1 + \cos \theta_W)} \approx 165 \text{ MeV (tree level is typically smaller)}$$

This allows the fast decay  $\tilde{W}^{\,{\scriptscriptstyle \pm}} \to \pi^{\,{\scriptscriptstyle \pm}} \tilde{W}^{\,{\scriptscriptstyle 0}}$ 

The pions are soft, making their detection difficult

# Degeneracy of charged sleptons (if correction is universal)

$$\tilde{m}_{e_L}^2 - \tilde{m}_{e_R}^2 = \left(11\tan^4\theta_W - 1\right)\frac{3}{2}M_2^2 - \left(\frac{1}{2} - 2\sin^2\theta_W\right)M_Z^2\cos 2\beta + \text{loop}$$
cancels for
$$\sin^2\theta = \frac{1}{2} - 0.2317$$

$$\sin^2\theta = \frac{1}{2} - 0.2317$$

$$\sin^2\theta = \frac{1}{2} - \frac{1}{2}$$

$$\sin^2 \theta_W = \frac{1}{1 + \sqrt{11}} = 0.2317$$
  $\sin^2 \theta_W = 1/4$   
 $\sin^2 \theta_W (\exp) = 0.2312$ 



## MIRAGE UNIFICATION

It is possible to have a mixed modulus and anomaly mediation such that

$$\frac{F_T}{T} = M_0 \approx \frac{m_{3/2}}{\ln(M_P/m_{3/2})}$$

For  $m_{3/2} \approx 10$  TeV, this is comparable to anomaly contribution

Although uplift potential not consistent with extra dim, one finds

$$M_{\tilde{g}} = A = \sqrt{2}\,\tilde{m}$$
 at  $M_{mir} = \frac{M_{GUT}}{\left(M_P/m_{3/2}\right)^{\alpha/2}}$ 

 $\alpha$  is the ratio of anomaly/modulus contributions

No physical threshold at  $M_{mir}$ 



- small log
- large A
- compressed spectrum

is best to reduce tuning

# GAUGINO MEDIATION



Gaugino masses at tree level  $\int d^2\theta \frac{X}{M} W^{\alpha}W_{\alpha}$  with "GUT" relations

Scalar masses from RG evolution

- All mass squared positive
- Scalar masses comparable to gaugino masses for large log

el 
$$\int d^2\theta \frac{X}{M} W^a W_a$$
 with "GUT" relations olution 
$$\frac{d\tilde{m}^2}{d \ln Q} = \frac{c}{4\pi^2} g^2 M^2$$
 Gauge invariant 
$$\tilde{m}^2(Q) = \frac{2c}{b} \left[ g_{GUT}^4 - g^4(Q) \right] \left( \frac{M_{\tilde{g}}}{g^2} \right)^2$$
 ole to og 
$$\frac{b}{16\pi^2} \ln \frac{M_{GUT}}{Q} = 80$$

# Many emerging possibilities for soft term structure



- Single scale (incalculable soft terms, flavour problem, μ OK)
- Multi scales (predictive, flavour OK, μ problem)
- Experimental signature quite distinct

### DARK MATTER

Indirect evidence for DM is solid

Cosmology lectures



- weak gravitational lensing of distant galaxies
- velocity dispersion of galaxy satellites
- · structure formation in N-body simulations



- Opportunity for particle physics
- Intriguing connection weak-scale physics ⇔ dark matter



# Assume stable massive particle in thermal equilibrium at early times

$$\frac{dn}{dt} + 3Hn = -\sigma \left(n^2 - n_{eq}^2\right)$$

$$\sigma = \left\langle \sigma_{ann} v \right\rangle_T \qquad n_{eq} \approx \begin{cases} T^3 & T >> m \\ \left(mT\right)^{3/2} e^{-m/T} & m >> T \end{cases}$$

During radiation dominance,  $H = \frac{1}{2t}$   $t \propto T^{-2}$ 

Change variables 
$$x = \frac{m}{T}$$
,  $Y = \frac{n}{s}$   $s \propto T^3$ 

$$\frac{dY}{dx} = -\frac{\sigma s}{xH} \left( Y^2 - Y_{eq}^2 \right) = -\frac{c}{x^2} \left( Y^2 - Y_{eq}^2 \right) \qquad \left( \text{Use } H \propto T^2 / M_P \right)$$

Take  $\sigma$  independent of T (not always the case)

$$c \propto \frac{\sigma n}{H}\Big|_{T=m} \propto M_P m \sigma = \frac{\text{annihilation rate}}{\text{expansion rate}} \text{ when particle becomes non-rel.}$$

$$\frac{dY}{dx} = -\frac{c}{x^2} \left( Y^2 - Y_{eq}^2 \right)$$

At large T (small x):  $Y_{eq} \approx \text{constant} \implies Y(x) = Y_{eq}$ 

At small 
$$T$$
 (large  $x$ ):  $Y_{eq} \approx x^{3/2}e^{-x} \Rightarrow \frac{1}{Y(x)} = -\frac{c}{x} + \frac{1}{Y_{\infty}}$ 

Call  $x_f$  the matching point (because of exponential the two regimes are quickly reached)

Since 
$$Y_{\infty} << Y(x_f) \implies Y_{\infty} \approx \frac{x_f}{c}$$

Matching the two branches at  $x_f$ :

$$Y_{eq}(x_f) \approx Y_{\infty} \implies x_f^{3/2} e^{-x_f} \approx \frac{x_f}{c} \implies x_f \approx \ln c$$

Relic density  $Y_{\infty}$  is roughly inversely proportional to annihilation / expansion rate at moment of non-rel. (up to log corrections)







T << M

# Putting constants back

$$\Omega_{\chi} = \frac{mn_{\infty}}{\rho_c} = \frac{(4\pi)^2}{3} \sqrt{\frac{\pi}{45}} \frac{x_f g_S(\gamma)}{g_*^{1/2}} \frac{T_{\gamma}^3}{H_0^2 M_P^3 \sigma}$$
If  $\sigma = \frac{k}{128\pi m^2} \implies \Omega_{\chi} = \frac{0.22}{k} \left(\frac{m}{\text{TeV}}\right)^2$ 

Weak-scale particle candidate for DM

No parametric connection to the weak scale

Observation provides a link  $M_{DM} \leftrightarrow <H>$ Many BSM theories have a DM candidate

Susy has one of the most appealing

# Supersymmetric Dark Matter

R-parity ⇒ LSP stable

RG effects ⇒ colour and electric neutral massive particle is LSP
Heavy isotopes exclude gluino, direct searches exclude sneutrino
Neutralino or gravitino are the best candidates

#### **NEUTRALINO**

Because of strong exp limits on supersymmetry, current eigenstates are nearly mass eigenstates:

Bino, Wino, Higgsino

# BINO



# **HIGGSINO**



$$angle 
angle 
angle$$

# WINO

$$\langle \sigma_{eff} v \rangle = \frac{3g^4}{16\pi M_2^2},$$
  
$$\Omega_{\tilde{W}} h^2 = 0.13 \left( \frac{M_2}{2.5 \text{ TeV}} \right)^2.$$



Neutralino: natural DM candidate for light supersymmetry

Quantitative difference after LEP & WMAP

Both  $M_Z$  and  $\Omega_{\rm DM}$  can be reproduced by low-energy supersymmetry, but at the price of some tuning.

Unlucky circumstances or wrong track?

## COANNIHILATION

Consider more particle species with  $\delta m < T_f$ 

Since 
$$x_f \approx 20 - 25 \implies \frac{\delta m}{m} \le 5\%$$

Boltzmann equations for the different species

$$\sigma_{ij} = \sigma\left(\chi_{i}\chi_{j} \to XX'\right) \quad \sigma'_{ij} = \sigma\left(\chi_{i}X \to \chi_{j}X'\right) \quad \Gamma_{ij} = \Gamma\left(\chi_{i} \to \chi_{j}XX'\right)$$

$$\frac{dn_{i}}{dt} = -3Hn_{i} - \sum_{i,X} \left[\left\langle\sigma_{ij}v\right\rangle\left(n_{i}n_{j} - n_{i}^{eq}n_{j}^{eq}\right) - \left(\left\langle\sigma'_{ij}v\right\rangle n_{i}n_{X} - \left\langle\sigma'_{ji}v\right\rangle n_{j}n_{X'}\right) - \Gamma_{ij}\left(n_{i} - n_{i}^{eq}\right)\right]$$

Since all  $\chi_i$  eventually decay into  $\chi_1$ , we use  $n = \sum_i n_i$ 

$$\frac{dn}{dt} = -3Hn - \left\langle \sigma_{eff} v \right\rangle \left( n^2 - n_{eq}^2 \right)$$

$$\langle \sigma_{eff} v \rangle = \frac{\sum_{ij} w_i w_j \sigma_{ij}}{\left(\sum_i w_i\right)^2}, \quad w_i = \left(\frac{m_i}{m_1}\right)^{3/2} e^{-x\left(\frac{m_i}{m_1}-1\right)}$$

Annihilation rate of other species can be much larger than LSP

# TO OBTAIN CORRECT χ RELIC ABUNDANCE

- Heavy susy spectrum: Higgsino (1 TeV) or Wino (2.5 TeV)
- Coannihilation Bino-stau (or light stop?)
- Nearly degenerate Bino-Higgsino or Bino-Wino
- S-channel resonance (heavy Higgs with mass  $2m_{\gamma}$ )
- T<sub>RH</sub> close to T<sub>f</sub>

All these possibilities have a very critical behavior with underlying parameters

Decay into a lighter particle (e.g. gravitino)

# **GRAVITINO**

# If gravitinos were in thermal equilibrium at early times

$$\Omega_{3/2}h^2 \approx 0.1 \frac{m_{3/2}}{100\,\mathrm{eV}}$$
 Possible in gauge mediation with  $\sqrt{F} \approx 600\,\mathrm{TeV}$ 

# Assume inflation and a maximum temperature $T_{RH}$

Light gravitinos are produced through their spin-1/2 component, with coupling constant  $1/F \sim 1/(m_{3/2}M_P)$ 



# Heavy gravitinos decay late

$$\tau(\tilde{G}) = \left(\frac{\text{TeV}}{m_{3/2}}\right)^3 4 \times 10^5 \text{ sec}$$

From BBN, 
$$T_{RH} < 10^6 \text{ GeV}$$
  
for  $m_{3/2} = \text{TeV}$ 

# Gravitinos can be produced by late NLSP decay

$$\Omega_{3/2} = \frac{m_{3/2}}{m_{\chi}} \Omega_{\chi}$$

#### This can dilute the excessive Bino relic abundance

However the case  $\chi \to \tilde{G}\gamma$  is ruled out by BBN, and possibly a window remains for  $\tilde{\tau} \to \tilde{G}\tau$ 

Gravitino DM requires a mixture of thermal and non-thermal components

The link DM ↔ weak scale is lost

Slow NLSP decay detectable at the LHC?

# How can we identify DM at the LHC?

Establishing the DM nature of new LHC discoveries will not be easy. We can rely on various hints

- If excess of missing energy is found, DM is the prime suspect
- Reconstructing the relic abundance (possible only for thermal relics and requires high precision; LHC + ILC?)
- Identify model-dependent features (heavy neutralinos, degenerate stau-neutralino, mixed states,  $m_A = 2 m_\chi$ )
- Compare with underground DM searches

## DIRECT DM DETECTION

MW has a halo filled with  $\chi$ , and locally  $\rho_{halo} = 0.3 \text{ GeV/cm}^3$ , v = 300 km/sec

Scattering off nuclei leaves an energy deposition

$$E_{\text{max}} \approx \frac{2m_N v^2}{\left(1 + \frac{m_N}{M_\chi}\right)^2} = \left(1 + \frac{76 \text{GeV}}{M_\chi}\right)^{-2} 150 \text{keV} \quad \text{on } Ge$$

visible in the form of scintillation light, ionization energy or thermal energy

Small rate: sheltering from cosmic rays

Annual modulation: Earth velocity around the Sun adds to the velocity of the solar system in the MW



v gives 3×10-38 cm<sup>2</sup>

A weakly-interacting massive neutrino is ruled out

Why not the neutralino?



# SCATTERING RATE



$$\rightarrow \ \overline{\chi}\gamma^{\mu}\gamma_5\chi \ \overline{q}\gamma_{\mu}\gamma_5q$$

Non-rel matrix element on the nucleon is proportional to nucleon spin

# Scalar interaction only from





$$\rightarrow \overline{\chi}\chi \overline{q}q$$

$$\frac{G_F M_W m_q}{m_h^2} \overline{\chi} \chi \overline{q} q$$

# Only for mixed states

$$\langle N | m_q \overline{q} q | N \rangle = \frac{2m_N}{27} \overline{\psi}_N \psi_N$$



Improvements from CRESST, ZEPLIN, XENON will explore the most interesting region

Detection rate depends on local density

Use collider data to extract halo density

## GRAND UNIFICATION

- Fundamental symmetry principle to embed all gauge forces in a simple group
- Partial unification of matter and understanding of hypercharge quantization and anomaly cancellation

To allow for unification, we need to unify  $g,g',g_S$  from effects of low-energy degrees of freedom (depends on the GUT structure only through threshold corrections)





## PROTON DECAY

New feature of supersymmetry: p-decay for d = 5

$$f = c_L O_L + c_R O_R \qquad O_L = Q_L^k Q_L^l Q_L^i L_L^j \qquad O_R = \overline{U}_R^i \overline{D}_R^j \overline{U}_R^k \overline{E}_R^l$$

 $O_L$  vanishes if k=l=i and  $O_R$  vanishes if i=k



Depends on Yukawa couplings (with naïve SU(5) relations), on  $M_H$  and on 2 new phases

## DRESSING





 $p \rightarrow K^+ \overline{\nu}$  dominates over

 $p \rightarrow \pi^+ \overline{v}$  (Cabibbo suppressed)

 $p \rightarrow K^0 \mu^+$  (suppressed by  $m_u$ )

# Rates depends upon

- susy mass spectrum
- flavour violations in susy-breaking sector
- couplings and mass of H<sub>C</sub>
- new phases (possible cancellation in LLLL or RRRR, but not both)





# Determining $M_H$ from threshold corrections

Define 
$$g_1(M_{GUT}) = g_1(M_{GUT})$$
 and  $\varepsilon \equiv \frac{g_3(M_{GUT}) - g_1(M_{GUT})}{g_1(M_{GUT})}$ 

$$\varepsilon_{H_c} = 0.3 \frac{\alpha_{GUT}}{\pi} \ln \left( \frac{M_{H_c}}{M_{GUT}} \right) \implies 3.5 \times 10^{14} < \frac{M_{H_c}}{\text{GeV}} < 3.6 \times 10^{15} \quad (90\% \text{ CL})$$

Thresholds from other GUT particles?

## d = 5 PROTON DECAY

- depends on unknown aspects of susy GUT
  - doublet-triplet splitting
  - fermion mass relations
- most plausible estimate in conflict with observation
- need for mechanisms to suppress or eliminate d=5
- operators

- new symmetries
- orbifold projections

## d = 6 PROTON DECAY

# Unavoidable contribution from X gauge boson exchange

$$\left(\overline{u}^{c}\right)_{L}\gamma_{\mu}q_{L}\left(\overline{e}^{c}\right)_{L}\gamma_{\mu}q_{L}$$
  $\left(\overline{u}^{c}\right)_{L}\gamma_{\mu}q_{L}\left(\overline{d}^{c}\right)_{L}\gamma_{\mu}\ell_{L}$ 

# Neglecting GUT threshold effects

$$\tau_p(p \to e^+ \pi^0) \approx 10^{36} - 10^{37} \text{ yrs}$$

SuperKamikande 
$$\tau_p(p \rightarrow e^+\pi^0) > 5 \times 10^{33} \text{ yrs}$$

Future experiments can reach 10<sup>34</sup> yrs or even 10<sup>35</sup> yrs

# What screens the Higgs mass?



Dynamical EW breaking

HIGGSLESS

Delayed unitarity violat.

Fundamental scale at TeV

**Dynamics** 

# IS THERE A SYMMETRY OR DYNAMICAL PRINCIPLE BEHIND THE HIERARCHY?

## Cancellation of

electron self-energy π<sup>+</sup>-π<sup>0</sup> mass difference K<sub>L</sub>-K<sub>S</sub> mass difference gauge anomaly

cosmological constant

# Existence of

positron ρ charm top

10-3 eV??

#### AN UNORTHODOX USE OF SUPERSYMMETRY

Abandon hierarchy problem (speculations on probability distributions of theories) and use only observational hints

Gauge-coupling unification: motivated by theory that addresses fundamental structure of SM and by measurements on  $\alpha_i$ 

Dark matter: connection between weak scale and new particle masses

$$\Omega_{\rm rel} h^2 \approx \frac{0.1 \, \rm pb}{\langle \sigma \, v \rangle}$$

Proposal of SPLIT SUPERSYMMETRY: retain at the weak scale only gauginos, higgsinos and one Higgs boson (squarks, sleptons and extra Higgs at the scale  $\widetilde{m}$ )

### Eliminate:

- Excessive flavour and CP violation
- Fast dim-5 proton decay
- · Tight constraints on the Higgs mass

• DM & gauge-coupling unification

#### Retain:

0.125  $\alpha_{\rm s}({\rm M_Z})$ 0.12  $M_2 = 300 \,\text{GeV}$ Gauge-coupling unification as 0.115  $M_2 = 1 \text{ TeV}$ successful (or better) 0.11 than in ordinary SUSY  $10^{3}$ 109  $10^{12}$  $10^{6}$  $10^{15}$ 

m (GeV)

# Why supersymmetry? (Bottom-up)

- Minimality: search for unification with single threshold, only fermions in real reps, and  $10^{15}$  GeV <  $M_{GUT}$  <  $10^{19}$  GeV  $\Rightarrow$  SpS has the minimal field content consistent with gauge-coupling unification and DM
- Splitting of GUT irreps: in SpS no need for new split reps either than SM gauge and Higgs
- Light particles: R-symmetry protects fermion masses
- Existence and stability of DM: R-parity makes χ stable
- Instability of coloured particles: coloured particles are necessary, but they decay either by mixing with quarks (FCNC!) or by interactions with scale < 10<sup>13</sup> GeV

SpS not unique, but it has all the necessary features built in

# Why supersymmetry? (Top-down)

$$X = 1 + \theta^2 \widetilde{m}$$

$$\int d^4 \theta \, X^* X \, Q^* Q \to \widetilde{m}_Q^2 = \widetilde{m}^2 \qquad \int d^2 \theta \, X \, W_\alpha W_\alpha \to M_{\widetilde{g}} = \widetilde{m}$$

$$\int d^4 \theta \, X^* X \, H_1 H_2 \to B_\mu = \widetilde{m}^2 \qquad \int d^2 \theta \, X \, Q^3 \to A = \widetilde{m}$$

$$\int d^4 \theta \, X^* \, H_1 H_2 \to \mu = \widetilde{m}$$

$$R - \text{invariant soft terms} \qquad R - \text{violating soft terms}$$

$$(\text{choose R}[H_1 H_2] = 0 \text{ so that} \qquad (R[X] = 0, R - \text{symmetry})$$

$$\int d^2 \theta \, H_1 H_2 \text{ forbidden} \qquad \text{broken by } F_X)$$

- R-symmetry "splits" the spectrum ( $M_{\tilde{g}}$  and  $\mu$  mix through renorm.)
- R-invariant  $\Rightarrow$  dim = 2

R-violating  $\Rightarrow$  dim = 3

## Split Supersymmetry determined by susy-breaking pattern

D-breaking 
$$Y = 1 + \theta^4 \widetilde{m}^2$$
  

$$\int d^4 \theta \ Y Q^* Q \to \widetilde{m}_Q^2 = \widetilde{m}^2 \qquad \int d^4 \theta \ Y H_1 H_2 \to B_\mu = \widetilde{m}^2$$
Non renorm. operators 
$$\frac{1}{M_*} \int d^4 \theta \ Y W_\alpha W_\alpha \to M_{\widetilde{g}} = \frac{\widetilde{m}^2}{M_*}$$

$$\frac{1}{M_*} \int d^4 \theta \ Y Q^3 \to A = \frac{\widetilde{m}^2}{M_*} \qquad \frac{1}{M_*} \int d^4 \theta \ Y D^2 (H_1 H_2) \to \mu = \frac{\widetilde{m}^2}{M_*}$$

- Analogy: in SM, L not imposed but accidental. m<sub>v</sub> small, although L-breaking is O(1) in underlying theory
- In supergravity,  $\mu$  not generated at  $O(M_{Pl})$  but only  $O(M_S^2/M_{Pl})$
- Here,  $M_g$  and  $\mu$  not generated at O(m) but only  $O(m^2/M_*)$

# OBSERVATIONAL CONSEQUENCES OF SPLIT SUPERSYMMETRY

- Only one Higgs boson with SM properties
- With respect to MSSM, larger log corrections to  $\lambda = g^2$





- Charged R-hadrons. Time delay & anomalous ionization energy loss. At LHC, M<2.5 TeV. Mass resolution better than 1%</li>
- Neutral R-hadrons. Tagged jet M<1.1 TeV. Once tagged, identify gluino small energy deposition
- Flippers. Difficulty in tagging
- Gluinonium. M<1 TeV, direct mass reconstruction</li>
- Stopped gluinos. Possibility of measuring long lifetimes

## **GAUGINO COUPLINGS**

In SUSY, gauge (g) and gaugino  $(\tilde{g})$  couplings are equal





- Fit of M,  $\mu$ ,  $g_{l}$ ,  $g_{l}$  from  $\chi$  cross section and distributions
- Η χ χ final states
- BR( $\chi \rightarrow \chi H$ )

At LHC 
$$\Delta(\tilde{g}/g - 1) = 0.2 - 0.5$$

At ILC 
$$\Delta(\tilde{9}/g-1) = 0.01 - 0.05$$

Heavy squarks and sleptons suppress flavour & CP violation, dim-5 proton decay

New source of flavour-diagonal CP violation remains

$$\mathcal{L} = \frac{M}{2}\widetilde{W}\widetilde{W} + \mu H_u H_d + \frac{\widetilde{g}_u}{\sqrt{2}}H^*\widetilde{W}\widetilde{H}_u + \frac{\widetilde{g}_d}{\sqrt{2}}H\widetilde{W}\widetilde{H}_d + \text{h.c.}$$

CP violation in

$$\operatorname{Im}\left(\widetilde{g}_{u}^{*}\widetilde{g}_{d}^{*}M\mu\right)$$

Effects on SM matter at two loops: **EDM** 







Present limit:  $d_e < 1.7 - 10^{-27} e \text{cm}$  at 95% CL (DeMille et al.)

Future: DeMille et al. (Yale) 10<sup>-29</sup> ecm in 3 years and 10<sup>-31</sup> ecm in 5 years.

Lamoreaux et al. (Los Alamos): 10<sup>-31</sup> ecm and eventually 10<sup>-35</sup> ecm.

Results from Hinds et al. (Sussex) and Semertzidis et al. (Brookhaven) plans to improve by 10<sup>5</sup> sensitivity on µ EDM 11.

#### STATISTICAL CRITICALITY

Assume soft terms are environmental parameters

Simplest case: m<sub>i</sub>=c<sub>i</sub> M<sub>S</sub> and M<sub>S</sub> scans in multiverse

$$Q_C = M_P \times F(c_i, \alpha_a, \lambda_t)$$
 is fixed

Two possibilities:

1) 
$$M_S > Q_C$$
: unbroken EW

2) 
$$M_S < Q_C$$
: broken EW

Impose prior that EW is broken

(analogy with Weinberg)

In "field-theoretical landscapes" we expect  $N \propto M_S^n$ 

Probability distribution 
$$dP = \begin{cases} n \left(\frac{M_S}{Q_C}\right)^n \frac{dM_S}{M_S} & \text{for } M_S < Q_C \\ 0 & \text{for } M_S > Q_C \end{cases}$$

$$\left\langle \frac{M_Z^2}{M_S^2} \right\rangle = \frac{2 d m_2^2}{M_S^2 d \ln Q} \left\langle \ln \frac{Q_C}{M_S} \right\rangle$$
$$= \frac{9 \lambda_t^2}{4 \pi^2} \times \frac{1}{n} \approx \frac{0.15}{n}$$

- Susy prefers to be broken at high scale
   Susy near-critical
- Prior sets an upper bound on M<sub>S</sub>

Little hierarchy: Supersymmetry visible at LHC, but not at LEP (post-diction) 120



Supersymmetry looks tuned because there many more vacua with  $\langle H \rangle = 0$  than with  $\langle H \rangle \neq 0$ 

The level of tuning is dictated by RG running, and it is of the order of a one-loop factor